
V ALIRA/V ALISYN
Protocol Valida tor/ Synthesizer

User's Manual (Version 1.2)

S. T. Vuong and T. Lau

Technical Report 88-19

Department of Computer Science
University of British Columbia

Vancouver, B.C, CANADA V6T 1W5

August 1988

Copyright {CJ UBC Department of Computer Science, 1988

VALIRA User's Manual - Version 1.2 (1988)

I. INTRODUCTION

Computer Science Department
University of British Columbia

Vancouver, B.C., CANADA V6T 1 W5

V ALm.A (VALidation via Reachability Analysis) is a protocol validation fool that accepts a
given protocol specification in a communicating finite state ma.chine (CFSM) model and performs
a validation via reachability analysis. Tlle syntactic properties of the protocol, including state
ambiguities, state deadlocks, unspecified receptions, non-executable interactions, and unbounded
channels, are analyzed and reported.

The program can validate protocols with:

1. up to ten processes (CFSMs).

2. priority channels. Priorities for messages can be set individually by assigning a priority
value to each message type. The higher the priority value, the higher the priority.

3. FIFO channels. Two approaches for validating such protocols are provided: the conven­
tional approach (which works for any FIFO protocol) and the R.-approach (which guarantees
a finite reachability tree, but only works for well-ordered FIFO protocols).

4. non-FIFO channels.

As a side note, V ALIRA handles the flow of messages among processes in different ways for
different types of protocols. For protocols with conventional FIFO or priority channels, ea.ch mes­
sage from a process can only have one destination process; i.e. no multi-casting. For non-FIFO
protocols or FIFO protocols using R-sta.te approach, a message can have multiple destinations.

The commands used in VALIRA are self-explanatory. Basically, a user can apply the pack­
age without reading the command explanation part of the manual. However, the output represen­
tation part should be read. Commands can be entered in either upper or lower case. IDega.l com­
mands or inputs will be signaled by a 11 beep" sound for re-entering.

This manual is intended as a user reference. As for the internal structures or background
theories of V ALIRA, interested readers are referred to papers such as [Vuong86], [Zafi.80J.

II. HOW TO RUN VALIRA

V ALffiA currently runs on SUN 3 workstation, IBM-PC and is readily portable to any
machine suporting C. Its source consists of around 7,000 lines of commented C code (occupying
around 550Kbytes) and its executable object code is under lO0Kbytes.

On the faculty SUN 3 machine, it is invoked with the command
rvvuong/V ALIRA/package

V ALffiA provides a two-level interactive environment which includes :

1. The interpreting level, where, in general, the user can monitor the validation process.

2. The editing level, where the user can use the editing commands provided to make changes
on the entered transitions. The editing level is invoked on the interpreting level, so it is one
level below.

II.A. The invocation phase

Upon invocation of the package, the user automatically enters the interpreting level, and
will be prompted by the interpreter to respond with either "Y" or "n" for information required by
the package. These questions allows the user to choose the type of protocol to work on. First, the

user is greeted with the following heading and a prompt:

••••••••••••••••••••••••••••••••••••••
VALIRA version 1.2 (1988)

Department of Computer Science
University of British Colwnbia

••••••••••••••••••••••••••••••••••••••
Default settings :

FIFO and conventional approach
number of processes = 2
channel bound = 3
node limit of the tree= 1000

Do you want to change any of the above 7 [y In lqJ _

If the default setting above is not suitable, the user can set up the program himself or her­
self by answering "n" at this point. In this case, the interpreter will prompt for more answers to
several other questions. The examples below show the requests and answers for some types of pro­
tocols.

Example 1 Running a two-process priority protocol

Number of processes : 2
Priority channels 7 [ylnlq} y
Channel bound : 3

Example 2 Running a two-process non-FIFO protocol

Number of processes : 2
Priority channels 7 [ylnlqJ n
FIFO channels 7 [ylnlqJ n

Example 3 Running a three-process FIFO protocol

Number of processes : 3
Priority channels 7 [ylnlqJ n
FIFO channels? [yln l qj y

At this point, the user can choose between using the R-state approach or the conventional
approach. In general, the R-state approach should be applied, since it is more efficient and
guarantees a finite reachability tree. However, the R-state approach cannot validate every type of
FIFO protocols. The message "non-well-ordered protocol" will appear if the R-state approach
fails to work. In that case, the conventional approach has to be used.

After setting up the protocol type, the program will ask for the node limit of the reachabil­
ity tree:

VALffiA 1.2 - 2 -

Node limit of the tree

This entry would be used as the global state limit of the reachability tree.

11.B. The input phase

User's Manual

When the queries in the invocation phase have been responded to, the interpreter will enter
the input phase where the user is prompted to input the transitions for each process.

Enter transitions for process 1 .­
>0 1 -1
>1 0 1
>

The prefix character in the input phase is a 11 > 11
1 and the transitions are entered in the form:

0 1-1

where

0 is the initiating process state of a transition

1 is the resulting process state of a transition

-1 is the transition arc between the two process states

Thus, the above input corresponds to the transition:

- 1
0 ---------> 1

The input phase is terminated by entering a null line.

The input of the process states and the message types have the following restrictions:

process state must be numbered from O up to at the maximum of 35. Note that the initial
state of each. process must be state 0./ JR

message type must be numbered within 1 and 35.

11.C. The editing phase

Every time an input phase is terminated, the interpreter will automatically invoke the tran­
sition editor so that changes are possible. The prefix character given by the transition editor is a
11 :", which is followed by entering one of the following commands:

h print the message
s stop editing
c clear all transitions
p print all transitions
r n replace transition n
d n delete transition n
1 n insert transition(s) after transition n

The usage of the above commands is like in any simple line editor.

11.D. The execution phase

VALmA 1.2 - 3 - User's Manual

The interpreter starts the execution phase when the transitions of all proceues are entered.
The information entered are echoed to the UBer if the user reponds to the following with "Y"

Do you want to view your input? [ylnlq]

Then the following request appears:

Do you want the reachability tree printed 7 [ylnlq]

It should be replied accordingly.

The generation of the reachability tree starts at this point. Shown on the screen will be the
print-out of a reachability tree, a node table, and an error summary. Some special notations used
in the output will be explained further in section III.

11.E. The command phase

The interpreter enters the command phase after the execution on generating the reachability
tree. A list of commands will be printed for selection, as shown below:

1. Print the reachability tree
2. Print the node table
3. Print the sunmary
4. Edit transitions
5. Run
6. Quit

It em numb e r 7

These commands provide the user with an environment in which the protocol entered can be
modified and rerun. The commands are selected by entering its item number. Say, if 11 411 is
entered, the interpreter will prompt

process number 7

The proceBB number of the desired proceBB should then be entered. The transition editor (Section
11.C) will be invoked to edit the transitions of that process. Upon termination (by the 11 s11 com­
mand in the transition editor), the control will be returned to the interpreter in the command
phase.

ID. Output representations

This section describes the representations used in printing the reachability tree, the node
table, and the error summary. To illustrate this, the sample run of an erroneous protocol shown in
Figure 1 is given in Figure 2.

VALmA 1.2 - 4- User'• Manual

Pl P2
me1Sage1

1 REQUEST
2 WAIT
3 GRANT
4 RELEASE

states

O idle
1 request
2 connect
3 wait

Figure 1. An erroneous protocol.

VALmA 1.2 - 5 - User's Manual

/** Figure 2. A sample run of the erroneous protocol of Figure 1 •• /

••••••••••••••••••••••••••••••••••••••
VALIRA version 1.2 (1988)

Department of Computer Science
University of British Columbia

Default settings :

FIFO and conventional approach
number of processes = 2
channel bound = 3
node limit of the tree= 1000

Do you want to change any of the above ?

Enter transitions for process 1 :-
S amp 1 e i n p u t 0 1 - 1
Meaning state Oto state 1 with the transmission of type 1 mes§

(terminate with a null line)
>0 1 -1
>0 2 1
>1 0 2
>1 2 3
>2 0 -4
>
Enter edit coIIIIland (or type h for help)
: s

for process 2 :-
0 1 -1

Enter transitions
Sample input
Meaning state Oto state 1 with the transmission of type 1 mesg

(t e rmi n at e w i th a nu l 1 1 in e)
>0 1 1
>0 2 1
>1 2 - 3
>1 3 - 2
>3 0 4
>3 2 1
>2 0 4
>
Enter edit coIIUland (or type
:p
1. 0 1 +1
2. 0 2 +1
3. 1 2 -3

h for help)

VAL IRA 1. 2 - 6 - User's Manual

4. 1 3 -2
5. 3 0 +4
6. 3 2 +1
7. 2 0 +4

: r h
h print this message
s atop editing
C clear all transitions
p print transitions
r n replace transition n
d n delete transition n
in insert tranaition(s) after transition n

(i O for inserting before transition 1)
(sample input : 0 1 -1

meaning : state O to state 1 with the transmission of type 1 message)
:r 2

2. 0 2 +1
>0 2 - 1
: s

Do you want to view your input 7 [ylnlq] y

Reachabi 1 i ty analysis of protocol with FIFO channels

Process 1
0 -> 1 - 1
0 -> 2 +1
1 -> 0 +2
1 -> 2 +3
2 -> 0 -4

Process 2
0 -> 1 +1
0 -> 2 - 1
1 -> 2 - 3
1 -> 3 -2
3 -> 0 +4
3 -> 2 +1
2 -> 0 +4

process 1 transmits 2 message(s) 1 4
process 2 transmits 3 message(s) 1 3 2

Do you want the reachabilty tree printed 7 [yjnjq] y

- ---- -- - ---- -- --- - - --- -- -- -- - --- level
Io I 1 I 2 I 3 14 Is 16 I 1 Is 19

0 1 2 (Pl+l) [URI
(P2+1) [UR]

110 111 112 113 j14 115 116 117

VAL IRA 1. 2 - 7 - User 1 s Manual

3 4 5 6 7 (P2+4) I i I
(P2+4)[OJ

8 9 10 11
12 (Pl-1)[2 I

(Pl+l)[s I

There are a total of 12 different node(s)
Do you want the node table 7 [yln[q] y

Node configuration :
(sl,s2;tl,t2;t3,t4,t5)

Message counter
Message type

tl t2 t3 t4 t5
1 4 1 3 2

01
41
81

12 1

(root}OO
3(P2-3)12 ... 1.
3(P2-2)13 1
O (P2 - 1) O 2 .• 1 ••

O(Pl-1)101. .. .
4(P1+3)22
8(P1+2)03

Hit return for the sunmary

ERROR SUMMARY

1. The list of deadlock node(s) .­
Configuration: node(al, .. , s2)

11(1, 2)

2. Stable state(s) .­

Pl P2

0
1
2
0
1

0
1
2
3
2

(node 0)
(node 3)
(node 5)
(node 9)
(node 11)

3. Non-executable interaction(s) .-
Configuration s -> s' message

process 2 : 3 -> 0 +4

l(P2- l) 121. 1..
5(Pl-4)02.1. ..
9(Pl-1)131. . ..

4. The first unspecified reception is detected at node 2.
The lowest level UR is detected at node 2 (level 3).

The list of UR node(s)
Configuration : node(sl, .. , s2; reception)

1 (P2+1) 11.
6(Pl-1) 1211. .•

10 (P2+1) 12 •..••

VAL IRA 1. 2

process 1

process 2

- 8 -

2 (1, 2; +1)

2 (1, 2; +1

5. The reachability tree is bounded at level 6.

6. Max channel queue length= 2.

Choose one item from the list below
1. Print the reachability tree
2. Print the node table
3 . Pr i n t t he s unma r y
4. Edit transitions
5. Run
6. Quit

I t em numb e r ? 6

Tot al CPU time
Total System Call

0.220000 second(s)
0.200000 second(s)

User's Manual

***** End of execution*****

Figure 2. A sample run of the erroneous protocol

ID.A. Representation of the reachability tree

As noted in Figure 2, the reachability tree is printed horizontally from left to right, with
each node in the tree represented by a node number. Figure 3 shows the same reachability tree
a.long with branches connecting between every pair of parent and child nodes. For simplicity,
these branches are not shown in the actual print out.

level -----------------
10 11 12 13 14 1 s I 6 I 1 Is I 9 po

0---1---2---(Pl+l)[UR]
I I ---(P2+1)[URJ
I ---3---4---5---6---7---(P2+4)[11
I I ---(P2+4)[O]
I ---s---9---10--11
---12--(Pl-1) [2]

--- (Pl+l)[5]

Figure S. A reachability tree with branches shown.

VALm.A 1.2 - 9 - User's Manual

In most cases, the reachability tree printed would go beyond the right margin. To solve this
problem, the portions which go beyond the right margin will be restarted printing from the left
margin, on a new level scope. An example of this is shown in Figure 4 and Figure 5.

margin-->I
--- -- -- -- ---------- le ve.l -- -- --- ---- -- -- -- I
10 I 1 12 13 14 15 16 17 1s 19 110 I

I
0 1 2 (Pl+l) [URI I

(P2+1) [URI I
3 4 5 6 7 8 9 10 11 112 13

114
15 16 17 18 19 I

20 (Pl-1)[21 I
(Pl+l) I s I I

Figure 4. A reachability tree that goes beyond the right margin.

------------------- level ------------------
10 11 12 13 14 15 16 17 18 19 110

0 1 2 (Pl+l) [URI
(P2+1) [UR]

3 4 5 6 7 8 9 10 11

- - -- - ---- -- - ------ - level -- - - -- - -- ---- -- - --
111 112 113 114 115 116 111 118 119 120 121

12 13
14

level - - -- - - --- -- - -- -- -- -
15 16 17 18 19 110

15 16 17 18 19
20 (Pl-1)[21

(Pl+l)[5]

Figure 5, A reachability tree printed in different scopes of levels.

To represent the different kind of nodes in the reachability tree the following notations are
being used:

1. Unapecified node

An unspecified node indicates an unspecified reception. It is represented by the nota­
tion:

(Pi+m)[UR]

where i is the process number, mis the me111age type, and (Pi+m) represents the transition
that initiates the unspecified reception. For example, the 11 (Pl+l)[UR]" node shown in

VALm.A 1.2 - 10 - User's Manual

Figure 3 represents that 11 proceBB 1 receives message 1 leading to an unspecified reception".

2. Repeated nodea

A repeated node is represented by the notation:

(Pi+m)[n]
where n is the node number of the duplicated node, and (Pi+m) has the same meaning as in
the unspecified node representation. Thus, the node 0 (P1-1)["2l" represents that "process 1
transmits message 1 resulting in a duplica.ted node having th.e same global state value as

node 2 11 •

3. Unbounded nodea

An unbounded node appears when the number of messages in a channel exceeds a
prespecified channel bound. It is represented by the notation:

(Pi-m)[UCJ

where (Pi-m) has the same meaning as in the unspecified node repre!lenta.tion. Thus, the
node 11 (Pl-2)[UCJ II represents that "process 1 transmits message 211 resulting in the channel
bound being exceeded 11 •

4. Others

Other than the above, all the nodes in the reachability tree are represented by sequen­
tially ordered node numbers. The global state value of these nodes can be found in its
corresponding entry within the node table, as will be described sh9rtly.

III.B. Representation of the node table

It is assumed the user has a general understanding of the following terminology and nota­
tions: 1

configuration <S; T> = <a1 , ••• , &d,t1 , , •• , tM>

where:

N is the total number of processes and Mis the total number of meseage types.

local state ai is the current state of process i.

meseage counter t1c is the number of type-k messages.

As illustrated in Figure 2, the node table consists of all the nodes in the reachability tree.
They are ordered according to their node numbers, from node O (root node) to the last node.
Each node entry in the node table is composed of three parts:

<parent node number><transition><global state>

For example, node 1 in Figure 2:
0(Pl-1) 1010000

represents the transition 11 process 1 transmits message 111 initiated at node O resulting in a global
state 101000 (corresponding to node 1).

The general configuration of the global states (i.e. node representation) is printed in the first
line of the node table. In thls example, the configuration < sl,s2jtl,t2;t3,t4,t5> is used. To avoid
confusions, the local states and message types are limited to a maximum number of 35. The
numbers from 10 to 35 are printed as A to Z, respectively. Thus, a global state having sl=ll and
s2=2 will be printed with sl,s2=B2 rather than sl,s2= 112 which is ambiguous. The message type
associated with each message counter is also printed as in Figure 2. Also for easier reading, if a
message counter is zero, it is represented by a 11 • 11 instead of a 11 011 so that the counters with posi­
tive values become more obvious.

1 Detailed explanations of the terminology and notations can be found in (Vuong86,83, Hui86].

VALmA 1.2 - 11- User's Manual

When the ~state approach is UBed, there will be an extra set of state pointers - the r-atate
pointers - included in the configuration (i.e.<S;R;T>). Each message channel, in thia case, is
associated to a r-atate pointer. A r-atate pointer indicates the next message to be received from
the corresponding channel by pointing to the state (in the sending proceBB) where the meBBage waa
sent.

As a final note, if the symbol w appeva in a message counter, the message counter is
unbounded and so is the corresponding channel.

m.c. The error aummary

The eITOr summary is self-explanatory. However, some attention should be paid to the
stable-state table. H there exists a column in the stable-state table such that two entries contain­
ing the same state, then state ambiguity occurs. For example, the pair (O,O) and (0,3) in the
stable-state table shown in Figure 2 indicates that state O in proceBB 1 can coexist stably with
either state O or state 3 in process 2. The above observation can be extended to the multi-process
caae.

==============================

I r

VALIRA 1.2 - 12 - User's Manual

APPENDIX A

Example 1 - Protocol with Priority Channels

For protocols with priority channels, the program will ask for the priorities for all the mes­
sages from all the processes. The priority of a message is assigned by giving a positive integer
when asked for the priority - the larger the number, the higher the priority .

••••••••••••••••••••••••••••••••••••••
VALIRA version 1.21 (1988)

Department of Computer Science
University of British Columbia

••••••••••••••••••••••••••••••••••••••
Default settings :

FIFO and conventional approach
number of processes = 2
channel bound = 3
node limit of the tree= 1000

Do you want to change any of the above?

Number of processes

Priority channels 7

Channel bound : 3

2

[y In I qJ Y

Node limit of the tree 100

Enter transitions for process 1 :-
S amp 1 e input O 1 - 1

[y In I qJ Y

Meaning state Oto state 1 with the transmission of type 1 messag

(terminate with a nu 11 line)
>0 1 - 1
>1 0 1
>1 2 - 2
>2 1 2
>2 3 1
>3 0 2
>
Enter edit conmand (or type h for help)
: S

Please enter priority for each message in Process 1:
Priority of message 1? 1
P ri or i t y o f me s s age . 2 ? 2

VAL IRA 1. 2 - 13 - User's Manual

Enter transitions for process 2 :-
Sample input O 1 -1
Meaning state Oto state 1 with the , transmission of type 1 meuas

(terminate with a null line)
>0 1 1
>l 0 - 1
>1 3 2
>3 1 -2
>0 2 2
>2 0 -2
>2 3 1
>
Enter edit comnand (or type h for help)
: s
Please enter priority for each message in Process 2 :
Priority of message 1 7 1
Priority of message 2 7 2

Do you want to view your input ? IYlnlqJ n

Do you want the reachabilty tree printed 7 !ylnlqJ y

- 1 eve l
10 I 1 12 13 14 IS 16 I 7 I 8 19 110 111 112 113 114 11s 116 111

0 1 2 3 4 (P1+2) I 1]
5 6 7 8 9 10 11 (P1+2)[OJ

12 (Pl+l)llOJ
13 14 (Pl-2) I SJ

(Pl+l) I OJ
15 (P2 - 2) I 5 J

(P2-1) I 14 J
(P2 - 1) I 13]

(P2+l)l15J
(P2+1) I 6J

There are a total of 15 different node(s)
Do you want the node table ? !YlnlqJ y

Node configuration :
(sl,s2;tl,t2;t3,t4)

Message counter
Message type

tl t2 t3 t4

01
4
8

12

(root)OO
3 (P2 - 2) 2 O 1. . 1
7(P2-1)20.11.
8 (P2+2) 2 2 .. 1.

1 2 1 2

O(Pl-1)101. ..
4 (P2+1) 21. .. 1
8 (Pl+l) 30. 1..

12 (P2 - 2) 2 0 .. 11

l(Pl-2)2011..
5(P1+2)11
9(P2+2)32 •...

13 (P1+2) 10 .. 1.

2 (P2+2) 221. ..
6(Pl-2)21.1..

10(P2-2)30 ... 1
7 (P2+2) 23

VALIRA 1.2

Hit return for the sunmary

ERROR SUMMARY

1. No state deadlock.

2. Stable state(s) :­

Pl P2

0
1
3
2

0
1
2
3

(node 0)
(node 6)
(node 10)
(node 15)

- 14 -

3. No non-executable interaction.

4. No unspecified reception.

5. The reachability tree is bounded at level 11.

6. Max channel queue length= 2.

Choose one item from the list below
1. Print the reachability tree
2. Print the node table
3. Print the sunmary
4 . Edi t trans i t ions
5. Run
6. Quit

It em number ? 6

Total CPU time
Total System Call

0.140000 second(s)
0.040000 second(s)

User's Manual

***** End of execution*****

VALffiA 1.2 - 15 - U ser111 Manual

APPENDIXB

Example 2 - Protocol with 3 processes

This example shows a protocol with more than 2 proceBSes and the protocol is validated
with the R-approach. Note that the behaviour of the program varies with the validation method
for multi-process protocols. For FIFO protocols under R-approach validation or non-FIFO proto­
cols, multi-casting is performed (though there may be excessive unspecified receptions reported).
For FIFO protocols under conventional validation or protocols with priority channels, no multi­
casting is performed; each meBSage can have only one destination, namely the proceu (excluding
the process sending the message) with the smallest process number.

VALIRA version 1.21 (1988)

Department of Computer Science
University of British Columbia

••••••••••••••••••••••••••••••••••••••
Default settings :

FIFO and conventional
number of processes
channel bound
node limit of the tree

approach
= 2
= 3
= 1000

Do you want to change any of the above ?

Number of processes

Priority channels ?

FIFO channels 7

3

[y In I q] n

[y In I qJ Y

Do you want the R-state approach? [ylnlq] y

Node limit of the tree : 100

Enter transitions for process 1 :-
S amp 1 e input 0 1 - 1
Meaning state Oto state 1 with the transmission of type 1 meaaag

(terminate with a null line)
>0 1 -1
>1 0 2
>1 2 3
>2 0 -4
>
Enter edit conmand (or type h for help)

VAL IRA 1. 2 - 16 - User's Manual

: s

Enter transitions for process 2 :-
Sample input O 1 - 1
Meaning state Oto state 1 with the transmission of type 1 message.

(terminate with a null line)
>0 1 - 5
>1 0 6
>1 2 7
>2 0 -4
>
Enter edit conmand (or type h for help)
: s

for process 3 :-
0 1 -1

Enter transitions
Sample input
Meaning state O to state 1 with the transmission of type 1 message.

(terminate with a null line)
>0 1 1
>1 0 -2
>1 1 5
>1 3 -3
>0 2 5
>2 0 -6
>2 2 1
>2 3 -7
>3 3 1
>3 3 5
>3 0 4
>
Enter edit conmand (or type
: s

h for help)

Do you want to view your input 7 [ylnlq] n

Do you want the r-equivalent states (for advanced users only) ? [yjnjq] y

Process states .­
process 1 :
to process 2

state (rstates
0 1 2
1 0 2
2 0 1

; %r(mess,nextr))
0=0
l=l
2=1

to process 3
state (rstates i %r(mess,nextr))
0=0 0 (1 , 1)
1=1 1 0 2 (4, 0) (1 , 1)
2=2 2 (4, 0)

process 2

VAL IRA 1. 2

to process 1
state (
0=0
l=l
2=1

to process 3
state (
0=0
l=l
2=2

process 3 :
to process 1

state (
0=0
1=1
3=0
2=0

to process 2
state (
0=0
1=0
3=0
2=2

- 17 -

rstates
0 1 2
1 0 2
2 0 1

; %r(mess,nextr))

rstates ; %r(mess,nextr)
0 I (5,1)
1 0 2 ; (4,0) (5,1)
2 (4,0)

rstates ; %r(mess,nextr))
0 1 2 3 (3 IO) (2,0)
1 j (3 IO) (2 JO)
3 0 1 2 (3 IO) (2 JO)
2 0 1 3 (3, 0) (2 JO)

rstates ; %r (me s s , next r))
0 1 3 2 (7 IO) (6, 0)
1 0 2 3 (7, 0) (6, 0)
3 0 1 2 (7 IO) (6 IO)
2 (7 IO) (6,0)

User's Manual

Do you want the reachabilty tree printed 7 [ylnlq] y

- 1 eve 1
10 I 1 I 2 I 3 14 Is I 6 I 1 Is I 9 110 111 112 113 114 115 116 117

0 1 2 3 4 5 (Pl-1)[2]
6 7 8 (P2+6) [1]

9 10 (P2-5)[3]
11 (P1+2) [0]

(P2 - 5) [4]
12 13 14 15 16 17 18

-------------------------------- level --------------------------------
118 119 120 121 122 123 124 125 J26 121 128 129 130 131 132 133 134 135

19 20 21 {Pl-1)[18]
22 23 24 (Pl-1)[17]

{P3+4) [21]

- ------------------------------- level
10 I 1 12 Is 14 I 5 I 6 I 1 Is I 9 110 111 112 113 114 115 116 111

(P3+4) [2]
(P3+4) [1]

25 {Pl-1)116]

,

VALIRA 1.2 - 18 - User's Manual

(P3+5) [24j
(P3+4)[5)

(P3+4) [0 J
26 (Pl-4)[251

(P3+5) [2 3 I
2 7 (Pl+3) [2 6 I

(P3+5)[22)
28 29 (Pl-1)[8]

(P2+6) [O]
30 (Pl+2) [0]

31 (Pl+2) [5)
32 (Pl+2) [6]

33 34 35 (P2+6)~
36

- • - - - - - - - - - • - - - - - - - • - - - - - - - - - - - - level -
118 119 120 121 122 123 124 125 126 121 128 129 ISO 131 132 133 134 135

(P2+6)[10J
(P3-2)[33l
37 38 39 40 (P2+6) [15]

(P3+4)[35]
(P2+6)[14]
(P3+4)[34l

(P2+6) [13]
41 (Pl+3)[13]

4 2 (Pl+3) [2 6]
4 3 (Pl+3) [2 3]

10 11 12 13 14 15 16 17

level
I 8 I 9 110 111 112 113 114 115 116 117

(P2+6) [OJ
(P2+6) [30 J

44 45 46 47

- I eve I - - - - - - - - - - - - - - - - - - - . - - - - - - - - - - - -
118 119 120 121 122 123 124 125 126 121 128 129 ISO 131 132 133 134 135

48 49 50 51 52 53 54 (P2-5) [51]

(P3+4) [2]
(P3+1)[57j
(P3+4)[1 1

(P3+1) [56]

5 5 5 6 5 7 (P2 - 5) [5 0]
(P3+4) [54]

level
10 I 1 I 2 I 3 14 Is I 6 I 1 I 8 I 9 110 111 112 113 114 115 116 111

58

VAL IRA 1. 2 - 19 - User's Manual

- ---- - -----·- · ·······-··· -- --- - - level --------------------------------
118 119 120 121 122 123 124 125 126 121 128 129 130 131 132 133 134 135

(P2+7) [56J

level
10 I 1 12 13 14 Is 16 I 1 Is I 9 110 111 112 113 114 115 116 111

59 (Pl-1) [J
60

--- - --- - ------------------------ level --- -- - -- ------------------------
118 119 120 121 122 123 124 125 126 121 128 129 130 131 132 133 134 135

(Pl-1)[48J
61 (Pl-1) [49J

(P3+4) [5]
(P3+4) [0]

level
10 I 1 12 13 14 I 5 I 6 I 1 I 8 I 9 110 111 112 113 114 115 116 111

62 (P1+2) [69J
63 (P1+2) [60]

64

-- - -- - --- -- --- - -- - -------------- level ------------------------· · ··· ··-
118 119 120 121 122 123 124 126 126 121 128 129 j30 131 j32 133 134 135

(P1+2) [61]
(P3+4) [31]

level
10 11 12 13 14 15 16 17 I 8 I 9 110 111 112 113 114 115 116 111

(P3+4)[~
65 66 67 68 {P2+6){16]

(P3+4) f 8 J
(P2+6) [14]
(P3+4)[29]

(P2+6) [13 J
(P2+6) [41 J

69 (P2+7)[47J
(P3+1) [56]

(P3+1) [52]
(P3-6) [29]
70 (Pl-1)[69]

(P2+7) [59J
71 (P1+2)[6J

72 (P1+2) [34J
(P2+6) [11 J

VAL IRA 1. 2 - 20 - User's Manual

73 (P1+2)(45]

(P3-3)(27]
(P3+5) [19]

(P3+5) [7]
(P3+1)[10]

(P2 - 5) [5]

74 (P1+2)[59]
75 (P1+2)(60]

76 (P1+2)[6ll
(P3+4) [4)

(P3+4)[11)

There are a total of 76 different node(s)
Do you want the node table 7 [yln!q] y

Node configuration :
(sl,s2,s3;r12,r13;r21,r23;r31,r32;tl,t2;t3,t4;t5,t6,t7,t8)

Message counter : tl t2 t3 t4 t5 t6 t7 t8
Mess age type 1 4 5 4 2 3 6 7

01
2
4
6
8

101
121
141
161

181
20
22
24
26

281
30
321
341
361
381
401
421
441
461
481
SOI
521
541
561
581

601
62

(root) 000000000
1 (P2·-5)1100000001. 1
3(P3-2) 110000010 .. 1.1. ..
5(P3+5)012000000
7 (P3-6) 1100000021 1.
9(P2+6)101000000

10(P3-3) 103000010 1..
13(Pl-4}003020000.1.
15 (P2 - 5) 113020000111
17(P3+4) 1100000001.
19 (P3- 2) 110000010 1 .. .
19(P3-3)113000010 1 ..
23(Pl-4)013020000.1
13(P2-5)213000000 .. 1
9(P3-2) 110000002 1. 1.

28(P2+6) 100000000 1 .. .
31 (P3+5) 112000000 1 .. .
33(P1+2) 010000000 1.
35(P3+1)111000000 1.
37(P1+3) 213000000 1 .
39(Pl-1) 11302000011. ... 1.
41(P2-5) 113000000 .. 1 .. 1 ..
32 (P3-7) 113000000 1 .. 1
45(Pl-1) 1130000001. 1
47(P2-4}1030002001. .1. .. .
4 9 (P 3+ 1) 113 0 0 0 2 0 0 .. 11
5l(P3+5)112000000
53(P2+6) 100000000
55(P2+7)123000000
46(P3+1) 113000000 1
59(P2-4)003000200 ... 1. .. .
44(P2+7) 123000000 1. ..

O(Pl-1)1000000001
2 (P3+1) 111000000 .. 1
4(P1+2)010000000 .. 1
6(Pl-1) 1120000001
8(P3+1)111000002 1.

10(P3-2) 100000010 1 .. .
12 (P1+3) 203000000
14 (Pl-1) 10302000011.
16(P3+5) 11302000011
18(P3+1)111000000
20 (P1+2) o 10000000
22 (P1+3) 213000000
14(P2-5)013020000.ll
12 (P2-5) 113000010 .. 1. .1..
28 (Pl+2) 010000002 1.
3 0 (P2 - 5) 110 0 O o O O O •• 1. 1. ..
32 (P3-6) 110000000 1. 1.
34(Pl-1) 1100000001. 1.
36(P3-3) 113000000 11.
38(Pl-4}013020000.1. ... 1.
37 (P2+6) 103000000 1..
42 (P3+5) 113000000 1. .
44(P1+2)013000000 1
46 (P2+7) 1230000001
48 (P2- 5) 1130002001. 11
50 (P3+4) 110000000 .. 1.
52 (P3- 6) 110000002 1.
52 (P3- 7) 113000002 1
56(P2-4) 103000200 ... 1
45 (P2+7) 023000000
60(P2-5)013000200 .. ll
6 2 (P2 - 4) 10 3 o O O 2 0 0 . . . 11 . . .

VAL IRA 1. 2 - 21 - User's Manual

641
661
681
701

721
74
761

63(P2-6) 113000200 .. 111 ...
6 5 (P 1 +3) 2 13 0 0 0 0 0 2 1.
67(Pl-1)11302000211 1.

6(P3-7)013000002 1
71(P3-6)110000010 1.1.
7 3 (P2+7) 123000010 1. ..
75(P2-5) 113000210 .. 111. ..

Hit return for the sunmary

ERROR SUMMARY

1. No state deadlock.

2. Stable state(s) :­

Pl P2 P3

0 0 0 (node
0 1 2 (node
1 0 1 (node
2 0 3 (node
1 1 1 (node
0 1 0 (node
2 1 3 (node
1 1 2 (node
1 0 0 (node
1 2 3 (node
0 2 3 (node

0)
6)
10)
13)
19)
21)
23)
52)
54)
56)
69)

3. No non-executable interaction.

4. No unspecified reception.

9(P3-3)113000002 11.
66(Pl-4)013020002. 1. ... 1.

7 (P3- 7) 1130000021 1
4 (P3+5) 112 0 0 o 0 10 1. ..

71 (P3-7) 113000010 1 .. 1
74(P2-4) 103000210 ... 11 ...

5 . The reachability tree is bounded at level 25.

Choose one item from the list below
1. Print the reachability tree
2. Print the node table
3. Print the sumnary
4. Edit transitions
5. Run
6. Quit

I t em numb e r ? 6

Tot al CPU time
Total System Call

1.020000 second(s)
0.080000 second(s)

V ALISYN User's Manual - Version 1.2 (1988)

1. INTRODUCTION

Computer Science Department
University of British. Columbia

Vancouver, B.C., CANADA V6T 1 W5

VALISYN (VALidator-SYNthesizer) is a software package which assists its user in syn­
thesizing and validating communication protocols between two communication finite state
ma.chine {CFSM) by applying production rules [Zafi80J, a.esuming error-free FIFO channels. VAL­
ISYN makes sure that the synthesized protocols do not contain state-deadlocks, unspecified recep­
tions, and non-executable interactions, and will report on these errors plus the existence of state
ambiguities if they occur on the original inputted protocol As V ALISYN and V ALIRA handles
the same protocol design errors, they may substitute one another in a number of typical cases,
e.g. validation of two-process protocols. But their different features and modes of of operation
make them complementary to one another in many aspects. For example, VALIRA should be
used to validate multi-process protocols, whereas for interactive design of protocols, V ALISYN
should be employed to give the users better insight to the potential design errors at hand.

The V ALISYN package provides the following features:

1. Two modes of operation: interactive and non-interactive. In the interactive mode, a user
can either design a correct protocol by interacting with the package, or validate an existing
protocol by interactively synthesizing the correct version of the given protocol. In the non­
interactive mode, validation of an existing protocol can be performed by entering the entire
protocol specification altogether.

2. An erase feature which allow erasure of any previously entered transmission arcs, for the
interactive mode.

3. A timer to enable termination of the program in case of an unbounded protocol.

4. Two levels of debugging information to reveal the underlying mechanism of the program.
This feature is useful for further development work on VALISYN, and should not concern a
typical user.

V ALISYN is easy to use. The program guides the user through the whole process of syn­
thesis or validation of a protocol. The following sections of the manual give a brief explanation
on how to operate the program and the format of both input data and output.

2. RUNNINGVALISYN

2.1 Starting V ALISYN

The program currently runs on SUN workstation and IBM PC, and is easily portable to any
machine supporting C. Its source consists of over 11,000 lines of C code (occupying over
600Kbytes) and its executable object code is around 164Kbytes.

On the faculty SUN-3/160 machine, it can be invoked with the command

~vuong/VALISYN/package

The heading of the program will appear as follows:

VALISYN 1. 2 - 2 - User's Manual

••••••••••••••••••••••••••••••••••••••
VALISYN version 1.2 (1988)

Department of Computer Science
University of British Columbia

••••••••••••••••••••••••••••••••••••••

which indicates that the program has started.

The program first asks for the mode of operation. Depending on the user's choice, it then
accepts descriptions of the protocol in the form of transition arcs. Upon completion of the input
process, the synthesized protocol and an eITor summary are produced.

2.2 Debugging information

V ALISYN has the ability to provide debugging information if the user is interested in or
wants to verify the internal mechanism of the program. Thus the following request will appear:

Do you want debugging information [ylnJ

Under normal operation, the answer should be 11 n", for the program slows down significantly
with the debugging feature turned on. Answer "Y" if debugging information is wanted.

There are two levels of debugging information. The first level shows the rule or replication
applied. For example, the following may appear in the output if level 1 debugging information is
turned on:

Rule lB is called

The second level shows every arc (or branch of a tree, the internal representation of a pro­
cess) generated and where applied, the reason for its generation. For example

2 1.1 2.0 0.3 3.1

means that for the tree of process 2, the reception arc +2.0 with subscript 3.1, which departs from
state node 1.1 to entry state node 0.3, is created.

Thus the program will give one more request:

Level 1, level 2 or both [ll2lbJ

The user should choose either 11 111 , 11 211 or 11b 11 (for both) depending on his/her need.

For more information on the internal representation of processes and production rules, the
reader is referred to [Zafi80J and [Tong85J.

VALISYN 1.2 - 3 - User's Manual

2.3 Modes of operation

The program has two modes of operation: interactive and non- interactive.

The interactive mode allows the user, with the help of the program, to design protocols
which contain no state deadlocks, unspecified receptions, and non-executable interactions. The
user needs only to enter the transmission arcs for the protocol. The program will try to generate
the reception arcs according to production rules. When a new reception arc is generated, the user
will be asked to enter the entry state for the arc, based on his semantic consideration. In the case
of protocol validation, the 118er enters the transmission arcs and the entry states for the generated
reception arcs according to the given protocol specification. The validation is realized by compar­
ing the synthesized correct version with the given one.

The non-interactive mode accepts both transmiBBion arcs and reception arcs for both
processes, i.e. the entire protocol specification to be validated is entered at the beginning. It
then works in the same way as the interactive mode except that the process of resynthesizing the
correct protocol and checking it with the given one is automated and is executed without the
user's intervention and 11 babysitting11 of the terminal.

The operating mode can be chosen by answering the following request:

Do you want Interactive or Non-interactive Ii In l

2.3.1 Interactive mode

In the interactive mode, the user will see the following prompt:

Please enter a transmission event {or type h for help)

At this point, either a command or a transmission arc is entered. The acceptable commands
are:

a. 11 h 11 or "help"

This command brings out the list of valid values for all the entries in a transmission arc,
and other legal commands.

b. "erase"

This command allows the erasure of previously entered transmission arcs and the reception
arcs generated for them. The user can either erase a transmission arc by entering the arc, as
described above, or by entering 11 last 11 , which instructs the program to erase the last
transmission arc entered. The 11 help 11 command can be used when in doubt, and the 11 q11

command can be used to leave the erase mode.

c. "end11

This command signifies the end of data entry. The program will then produce a complete
list of transmission and reception arcs for both processes and an error summary.

To enter a transmission arc, the following format is used:

[process number], [departure state] [entry state] [transmissionj

VALISYN 1.2 - 4 - User's Manual

For example

1,0 1 -1

means that process 1 moves from departure state Oto entry state 1 by transmitting measage 1; or,
in a graphical form

Process 1

- 1
0 ----> 1

After receiving a transmiBBion arc from the user, the program will prompt the user for
semantic information (i.e. entry states) needed for generating reception arcs according to produc­
tion rules. A prompt similar to'the ones below will appear:

2, 0 ? +1 enter the "entry state" (or type h for help)

or

2 I 3 ? +5 (4) enter the "entry state" (or type h for help)

The user is required to enter the entry state (i.e. the state at the question mark) for the reception
arc. For reception arcs, a number in a bracket represents the occUITence of a collision in the
reception. In the example above, message 5 collides (crosses) with meBBage 4 (i.e. message 5 is
received in proceBB 2 while meBBage 4 is 11in transit" to process 1). After all the reception arcs are
generated for the transmission arc, the user can view the stable states by answering "Y" to the
following request:

Do you want to display the stable state pairs [yin]

The structure of stable state tables is explained in Section 3.2 of the manual.

The program will again ask for transmission arcs until the command "end" is received. At
that time, the following request will appear:

Do you want the list of executed transition arcs [yin]

The whole listing of all the arcs will be printed if "Y" is received.

An error summary is then printed. Since protocols generated with the help of interactive
mode are almost error-free, the summary is only a subset of the one generated in the non­
interactive mode. Further details are presented in Section 3.3.

2.1.2 Non-interactive mode

VALISYN 1.2 - 5 - User's Manual

When non-interactive mode is chosen, the following request will appear:

Do you want to have the default CPU limit 50 sec. [yin]

The reason for setting a time limit is obvious -- to avoid running the program infinitely for certain
large and complex protocols. To change the default time, answer "n" and enter the required
time.

The program is now ready to receive the lists of transmission and reception arcs for both
processes. There are a total of 4 lists: a transmission list and a reception list for each of the two
processes. Each list consists of arcs on separate lines. A blank line ends the list. An example of
a transmission list is

0 0 - 1
2 0 -4

The fonnat for an arc is:

<- Note: blank line

[departure state] [entry statej [message]

Transmission message is represented by a negative message number. Reception message is
represented by a positive message number of which the plus sign "+" can be neglected. For exam­
ple, 0 0 1 is a reception arc, but O 2 -2 is a transmission arc.

A prompt of the form

Please enter the transmission arc(s) for process 1
(end with a NULL line) .

will appear to inform the user which list should be entered. After entering the four lists, a request
will appear:

Do you want the list of executed transition arcs [y lnl

The listing of all the arcs for the (re)synthesized protocol will be printed if "y" is received.
An error summary is then printed. Please refer to Section 3 for details on output formats.

2.4 Limits for input

For both interactive and non-interactive mode, there are limits to the values of input which
are considered valid. The range of valid values are listed below:

a. Process number : 1 and 2

b. Departure states and entry states : 0 to 98

VALISYN 1.2

c.

d.
Transmission arcs

Reception area

: -1 to -68

: 1 to 68

- 6 - User's Manual

For non-interactive mode, the dummy state 99 for a process may appear in the output
(stable state table and error summary). This dummy process state serves as the entry state for all
unspecified receptions occurred in this process during the resynthesis (validation) process. Thia
dummy state "absorbs" all the unspecified receptions to allow the synthesis (the validation) to
execute until completion.

2.5 Special cases

As 1tated in Section 1, a timer is provided so that the program will stop automatically if a
certain time limit is exceeded.

In interactive mode, if a protocol is suspected to be unbounded or it is very large and com­
plex, the program will be interrupted by the timer and the user will be informed of the situation

Tot a. l CPU t ime
Total System Call

15.880000 second(s)
0.160000 second(s)

••• Warning -- the protocol may be unbounded

The user can carry on with the synthesis if (s)he believes that the protocol is valid. ff not,
(s)he can stop the synthesis by answering "n" when the following occurs:

Do you want to carry on with the synthesis [yjnJ

In non-interactive mode, the program will stop with the same warning as above. A sample
run of an unbounded protocol in interactive mode is included in Section 4 of the manual.

3. OUTPUT

The outputs of V ALISYN include the list of all arcs in the final protocol (called the area
list), stable state tables, and an error summary.

Special attention must be paid to the dummy process state 99. This state number is larger
than the highest process state number allowed to be inputted. Thia dummy state is used
exclusively by the program to act as the entry state for unspecified receptions. Reported errors
(unspecified receptions, state deadlocks and state ambiguities) involving state 99 should, there­
fore, all be ignored.

8.1 Arcs list

The list consists of six sub-lists, three for each process:

a. The list of transmission arcs.

b. The list of reception arcs.

c. The list of reception arcs with collision.

VALISYN 1.2 - 7 -

An example of an area list is

Process
2 -> 0
0 -> 1
3 -> 1

Process
1 -> 0
1 -> 2
2 -> 3

1 has
- 5
-1
-6

1 has
+2
+3
+4

the following transmission arc(s)

the following reception arc(a)

User's Manual

Process 1 has the following reception arc(s) with collision
0 -> 0 +4(5}
1 -> 1 +4 (1)

Process
1 -> 0
1 -> 2
2 -> 3

Process
2 -> 0
0 -> 1
3 -> 1

2 has
- 2
-3
-4

2 has
+5
+1
+6

the following transmission arc(s)

the following reception arc(s)

Process 2 has the following reception arc(s) with collision
3 -> 0 +5(4)
0 -> 1 +1(4)

The general form for an arc is

[de par t u r e s t at e] - > [en t r y s t at e] [mes s age] ([co 1 1 i s i on])

The [collision] field will only appear in sub-list 3. For example, the arc

1 -> 2 +3(4)

means that by receiving 3 (in collision with 4), the state changes from 1 to 2.

Again positive_ messages indicate reception, while negative ones indicate transmission.

S.2 Stable state table

A stable state table shows all the stable state pairs in a matrix form. For example

Stable States
Process 1 - Process 2

VALISYN 1. 2 - 8 - User's Manual

0 1 2

0 1 0 0
1 1 1 0
2 0 0 1

The row represents the states for proceBS 1, and the column represents the states for procesa
2. A 11 111 in the matrix means that the corresponding pair of states forms a stable state pair. For
example, the above table shows that there are 4 stable state pairs: (O,O), (1,0), (1,1) and (2,2).
Note that if the sum of all the numbers (either 1 or 0) in any column or row is greater than 1,
state ambiguity is present; for example, the first column and the second row of the matrix.

3.3 Error summary

The error summary summarizes all the errors or potential erroIB in a protocol. The error
summary for a protocol generated using the interactive mode is less detailed than the one gen­
erated using non-interactive mode because in the former, the synthesized protocol is guaranteed to
contain no erroIB such as unspecified reception. An example of the error summary generated using
non-interactive mode is given below.

ERROR SUMMARY

1. The list of deadlock state(s) . ­
format : (sl, s2)

(1 I Q) (1,99) (3 I Q)

2. The stable state(s) table : -

Stable States
Process 1 Process 2

0 1 2 99

0 1 1 0 1
1 1 1 0 1
2 1 1 1 1
3 1 Q 1 0

99 1 1 1 0

(99, 0)

3. No non-executable transmission arc.

4. Non-executable reception arc(s) .-
format : s -> s' reception (collision)

process 1 3 -> 0 +2

5. Unspecified reception arc(s) : -
format : s -> s' reception (collision)

VALISYN 1. 2 - 9 - User's Manual

process 1 0 ->99 +2 (4) 3 ->99 +5 (4)
2 ->99 +2 2 ->99 +3
99->99 +2 (4) 99->99 +3 (4)
99->99 +5

process 2 1 ->99 +1 2 ->99 +1 (3)
99->99 +4

Note that the representation of arcs is the same as the ones in the "Arcs list 11 •

The deadlock nodes are represented by an ordered pair (al, s2), which means that a
deadlock state occurs when process 1 is at state al and process 2 is at s2. They are listed in Sec­
tion 1 of the Error Summary. Section 2 contains the stable state table as explained previously.

Non-executable arcs (either for transmission or reception) refer to the arcs that are entered
by the user but cannot be executed. They are listed in Sections 3 and 4.

When reception arcs are not specified for some of the executable transmission arcs, those
arcs are generated by V ALISYN so that every executable transmission arc has at least one recep­
tion arc in the other process. These arcs are listed in Section 5.

The user is reminded to ignore all errors involving dummy state 99 which is introduced
merely to absorb all unspecified receptions.

To illustrate the usage and response of VALISYN, three sample runs are provided in the
Appendix for the case of (i) interactive mode, (ii) non-interactive mode, and (iii) potential
unbounded channel.

VALISYN 1.2 - 10 -

APPENDIX

SAMPLE RUNS

User's Manual

Three sample runs of V ALISYN are included in this appendix to illustrate the usage and
response of the package under various operating modes and situations: (i) interactive mode, (ii)
non-interactive mode, and (iii) potential unbounded channel.

A.l Interactive Mode

••••••••••••••••••••••••••••••••••••••
VALISYN version 1.2 (1988)

Department of Computer Science
University of British Columbia

••••••••••••••••••••••••••••••••••••••

Do you want debugging information [yin!
n

Do you want Interactive or Non-interactive
i

[i In l

Please enter a transmission event (or type h for help)
h

format process no , dept. state entry state trans. arc

e.g. 1, 2 3 -4

Where process no
dept. state
entry state
trans. arc

1 to 2
0 to 98
0 to 98

- 1 to -58

enter END to end the process
enter ERASE to erase a transmission arc

Please enter a transmission event (or type h for help)
1,0 1 -1

2, 0 ? +1
1

enter the "entry state" (or type h for help)

Do you want to display the stable state pairs
y

Stable States

[yjnj

VALISYN 1. 2

Process 1 Process 2
0 1

0 1 0
1 0 1

- 11 - User's Manual

Please enter a transmission event (or type h for help)
2,1 2 -3

1, 1 ? +3
h

enter the "entry state" (or type h for help)

Valid entry states : 0 to 98

1, 1 7 +3
2

enter the "entry state" (or type h for help)

Do you want to display the stable state pairs
y

Stable States
Process 1 Process 2

0 1 2

0 1 0 0
1 0 1 0
2 0 0 1

[yin]

Please enter a transmission event (or type h for help)
2,2 3 4

••• Illegal transmission arc 4 (valid input : -1 to -58)

Please enter a transmission event (or type h for help)
2,2 3 -4

1, 2 ? +4
3

enter the "entry state" (or type h for help)

Do you want to display the stable state pairs
n

[yin]

Please enter a transmission event (or type h for help)
erase

Enter the transmission arc to be ERASED (or type h for help)
2,1 2 -3

Do you really want to ERASE the arc
y

[yin]

Tr an smi s s ion arc 2, 1 2 -3 has been removed

Do you want to display the stable state pairs [yin]

VALISYN 1. 2

y

Stable States
Process 1 Process 2

0 1

0 1 0
1 0 1

- 12 -

Do you want the list of executed transition arcs
y

Process 1 has the fo 11 owing transmission arc(s)
0 -> 1 - 1

Process 1 has the fo 11 owing reception arc(s)

Process 1 has the fol lowing reception arc(s) with

Process 2 has the following transmission arc(s)

Process 2 has the following reception arc(s)
0 -> 1 +1

User's Manual

[yin!

collision

Process 2 has the following reception arc(s) with collision

Please enter a transmission event (or type h for help)
2,1 2 -3

1, 1 ? +3
2

enter the "entry state" (or type h for help)

Do you want to display the stable state pairs
n

[ylnJ

Please enter a transmission event (or type h for help)
2,2 3 -4

1, 2 ? +4
3

enter the "entry state" (or type h for help)

Do you want to display the stable state pairs
n

[ylnJ

Please enter a transmission event (or type h for help)
2,1 0 -2

1, 1 ? +2
0

enter the "entry state" (or type h for help)

VALISYN 1.2 - 13 -

Do you want to display the stable state pairs
n

User's Manual

[yin]

Please enter a transmission event (or type h for help)
1,3 1 -6

2, 3 ? +6
1

enter the "entry state" (or type h for help)

Do you want to display the stable state pairs
n

[yin]

Please enter a transmission event (or type h for help)
1,2 0 -5

2, 2 ? +5
0

enter the "entry state" (or type h for help)

2, 3 ? +5(4) enter the "entry state" (or type h for help)
0

1, 0 ? +4(5) enter the "entry state" (or type h for help)
0

2' 0 ? +1(4) enter the "entry state" (or type h for help)
1

1, 1 ? +4 (1) enter the "entry state" (or type h for help)
1

Do you want to display the stable state pairs
y

Stable States
Process 1

0
1
2
3

Please enter a
end

Process 2
0 1 2 3

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

tr an smi s s ion event (or type h for

Do you want the list of executed transition arcs
y

Process
2 -> 0
0 -> 1
3 -> 1

1 has the following transmission arc(s)
-5
- 1
-6

[yin]

help)

[yin]

VALISYN 1.2

Process
1 -> 0
1 -> 2
2 -> 3

1 has
+2
+3
+4

- 14 - User's Manual

the following reception arc(s)

Process
0 -> 0
1 -> 1

1 has the following reception arc(s) with collision
+4(5)
+4 (1)

Process 2 has the following transmission arc(s)
1 -> 0 - 2
1 -> 2 -3
2 -> 3 -4

Process 2 has the following reception arc(s)
2 -> 0 +5
0 -> 1 +l
3 -> 1 +6

Process 2 has the following reception arc(s) with collision
3 -> 0 +5(4)
0 -> 1 +1(4)

ERROR SUMMARY

1. No deadlock state.

2. The stable state(s) table . -

Stable States
Process 1 Process 2

0 1 2 3

0 1 0 0 0
1 0 1 0 0
2 0 0 1 0
3 0 0 0 1

Tot al CPU time
Total System Call

0.860000 second(s)
0.380000 second(s)

VALISYN 1.2 - 15 -

A.2 Non-interactive Mode

••••••••••••• •••••••••••••••••••••••••
VALISYN version 1.2 (1988)

Department of Computer Science
University of British Columbia

••••••••••••••••••••••••••••••••••••• •

Do you want debugging information [yin]
n

Do you want Interactive or Non-interactive
n

filnl

U ser'a Manual

Do you want to have the default CPU limit 50 sec.
y

[yjn]

Format for inputting the arc :

e.g . Transmission arc -- i 2 -3
i.e. from dept. state 1 to entry state 2 with trans. arc 3
Note -- the FIRST trans. arc in Process 1 will be executed first

Reception arc -- 1 2 3
i . e . f r om d e p t . s t a t e 1 t o e n t r y s t a t e 2 w i t h r e c p t . a r c 3

Please enter the transmission arc(s) for process 1
(end with a NULL line)
0 0 1 -1
2 0 - 4

Please enter the reception arc(s) for process 1
(end with a NULL line)
1 0 2
1 2 3
2 1 5
0 0 5
1 1 5
0 3 3
3 0 2

Please enter the transmission arc(s) for process 2
(end with a NULL line)
1 0 2
••• Illegal transmission arc 2 (val id input -1 to -58)

1 0 - 2

VALISYN 1. 2

1 2 -3
2 1 -5

- 16 -

Please enter the reception arc(s) for process 2
(end with a NULL line)
2 0 4
0 0 4
1 0 4
0 1 1

User's Manual

Do you want the list of executed transition arcs [yin]
y

Process 1 has the following transmission arc(s)
2 -> 0 -4
0 -> 1 - 1

Process 1 has the fol lowing reception arc(s)
1 -> 0 +2
2 -> 1 +6
1 -> 2 +3
0 -> 3 +3
0 ->99 +2
2 ->99 +2
2 ->99 +3
3 ->99 +6
99->99 +6

Process 1 has the following reception arc{s) with collision
0 -> 0 +5 { 4)
1 -> 0 +2 { 1)
1 -> 1 +6(1)
2 -> 1 +5(1)
1 -> 2 +3(1)
0 -> 3 +3{4)
0 ->99 +2(4)
3 ->99 +5{4)
99->99 +2{4)
99->99 +3{4)

Process 2 has the following transmission arc(s)
1 -> 0 -2
2 -> 1 -5
1 -> 2 - 3

Process
1 -> 0
2 -> 0
0 -> 1

2 has
+4
+4
+1

the following reception arc(s)

VALISYN 1.2

1 ->99 +1
99->99 +4

- 17 - User's Manual

Process 2 ha.a the following reception a.rc(s) with collision
0 -> 0 +4(2)
1 -> 0 +4(2)
1 -> 0 +4(3)
1 -> 0 +4(5)
2 -> 0 +4(3)
0 -> 1 +1 (2)
0 -> 1 +1(3)
0 -> 1 +1 (5)
1 ->99 +1(5)
2 ->99 +1 (3)
99->99 +4(5)

ERROR SUMMARY

1 . The 1 i s t of de ad 1 o ck stat e (s) . -
format : (sl, s2)

(1, 0) (1,99) (3 I Q)

2 . The stable sta.te(s) table . -
Stable States

Process 1 Process 2
0 1 2 99

0 1 1 0 1
1 1 1 0 1
2 1 1 1 1
3 1 0 1 0

99 1 1 1 0

(99 I O)

3. No non-executable transmission arc.

4. Non-executable reception a.rc(s) :-
format : s -> s' reception (collision)

process 1 3 -> 0 +2

5. Unspecified reception arc(s) :-
format : s -> s' reception (collision)

process 1 0 ->99 +2 (4)
2 ->99 +2

3 ->99 +5 (4)
2 ->99 +3

VALISYN 1. 2

process 2

Tot al CPU time
Total System Call

- 18 -

99->99 +2 (4)
99->99 +5

1 ->99 +1
99->99 +4

0.900000 second(s)
0.140000 second(s)

User's Manual

99->99 +3 (4}

2 ->99 +1 (3)

VALISYN 1.2 - 19-

A.I Potential Unbounded Channel

••••••••••••••••••••••••••••••••••••••
VALISYN version 1.2 (1988)

Department of Computer Science
University of British Columbia

••••••••••••••••••••••••••••••••••••••

Do you want debugging information [yin)
n

Do you want Interactive or Non-interactive
i

! i In I

Please enter a transmission event (or type h for help)
1,0 0 -1

User's Manual

2, 0 ? +1
0

enter the "entry state" (or type h for help)

Do you want to display the stable state pairs
n

[yin]

Please enter a transmission event (or type h for help}
1,0 0 -2

2, 0 ? +2
0

enter the "entry state" (or type h for help)

Do you want to display the stable state pairs
n

[yin]

Please enter a transmission event (or type h for help)
2,0 0 -1

1, 0 ? +1 enter the "entry state" (or type h for help)
0

1, 0 ? +1(1) enter the "entry state" (or type h for help)
0

1, 0 7 +1(2) enter the "entry state" (or type h for help)
0

Do you want to display the stable state pairs
n

[yin!

Please enter a transmission event (or type h for help)
12,0 0 -2

VALISYN 1. 2 - 20 - User's Manual

1, 0 ? +2 enter the "entry state" (or type h for help)
0

1, 0 ? +2 (1) enter the "entry state" (or type h for help)
0

1, 0 ? +2 (2) enter the "entry state" (or type h for help)
0

Do you want to display the stable state pairs
y

Stable States
Process 1

0

Process 2
0

1

[ylnl

Please enter a transmission event (or type h for help)
1,0 0 - 3

2' 0 ? +3 enter the "entry state" (or type h for help)
0

2, 0 ? +3 (1)
0

2, 0 ? +3(2)
0

Tot a l CPU t ime
Total System Call

enter the "entry state"

enter the "entry state"

15.880000 second(s)
0.160000 second(s)

(or

(or

*** Warning the protocol may be unbounded

type h for

type h for

Do you want to display the stable state pairs
y

[y In]

Stable States
Process 1

0

Process 2
0

1

Do you want the list of executed transition arcs
y

Process 1 has the following transmission arc(s)
0 -> 0 -1
0 -> 0 -2
0 -> 0 -3

Process 1 has the following reception arc(s)

[ylnl

help)

help)

VALISYN 1. 2

0 -> 0 +1
0 -> 0 +2

- 21 - User' a Manual

Process
0 -> 0
0 -> 0
0 -> 0
0 -> 0
0 -> 0
0 -> 0

1 has
+1 (1)
+1(2)
+1(3)
+2 (1)
+2(2)
+2(3)

the following reception arc(s) with collision

Process 2 has the following transmission arc(s)
0 -> 0 - 1
0 -> 0 - 2

Process
0 -> 0
0 -> 0
0 -> 0

2 has
+1
+2
+3

the following reception arc(s)

Process
0 -> 0
0 -> 0
0 -> 0
0 -> 0
0 -> 0
0 -> 0

2 has
+1(1)
+1(2)
+2(1)
+2(2)
+3(1)
+3(2)

the following reception arc(s) with collision

Do you want to carry on with the synthesis
y

[yin]

Tot a 1 CPU t ime
Total System Call

26.460000 second(s)
0.240000 second(s)

••• Warning the protocol may be unbounded

Do you want to display the stable state pairs
y

Stable Sta.tea
Process 1

0

Process 2
0

1

[yin]

Do you want ~he list of executed transition area [yjn]
y

Process 1 ha.a the following transmission arc(s)
0 -> 0 -1

VALISYN 1.2 - 22 -

0 -> 0
0 -> 0

Process
0 -> 0
0 -> 0

-2
-3

1 has the following reception arc(s)
+1
+2

User's Manual

Process
0 -> 0
0 -> 0
0 -> 0
0 -> 0
0 -> 0
0 -> 0

1 has the following reception arc(s) with collision
+1(1)
+1(2)
+1(3)
+2 (1)
+2(2)
+2 (3)

Process
0 -> 0
0 -> 0

2 has the following transmission arc(s)
- 1

Process
0 -> 0
0 -> 0
0 -> 0

-2

2 has
+l
+2
+3

the following reception arc(s)

Process
0 -> 0
0 -> 0
0 -> 0
0 -> 0
0 -> 0
0 -> 0

2 has
+1(1)
+1(2)
+2(1)
+2(2)
+3(1)
+3(2)

the following reception arc(s) with collision

Do you want to carry on with the synthesis
n

[yin]

Do you want the list of executed transition arcs [yin]
n

ERROR SUMMARY

1. No deadlock state.

2. The stable state(s) table .­

Stable States
Process 1 Process 2

0

VALISYN 1. 2

0

Tot a 1 CPU t ime
Total System Call

1

- 23 -

28.780000 second(s)
0.300000 second(s)

User's Manual

