
A PRINCIPLE-BASED SYSTEM FOR NATURAL

LANGUAGE ANALYSIS AND TRANSLATION

by

Matthew Walter Crocker1

Technical Report 88-18

August 1988

© Matthew Walter Crocker, 1988

1 A thesis was submitted in partial fulfillment of the requirements for the degree of Master of Science.

Abstract

Traditional views of grammatical theory hold that languages are characterised by sets of con­
structions. This approach entails the enumeration of all possible constructions for each language
being described. Current theories of transformational generative grammar have established an
alternative position. Specifically, Chomsky's Government-Binding theory proposes a system of
principles which are common to human language. Such a theory is referred to as a "Universal
Grammar''(UG). Associated with the principles of grammar are parameters of variation which ac­
count for the diversity of human languages. The grammar for a particular language is known as a
"Core Grammar", and is characterised by an appropriately parametrised instance of UG. Despite
these advances in linguistic theory, construction-based approaches have remained the status quo
within the field of natural language processing. This thesis investigates the possibility of devel­
oping a principle-based system which reflects the modular nature of the linguistic theory. That
is, rather than stipulating the possible constructions of a language, a system is developed which
uses the principles of grammar and language specific parameters to parse language. Specifically,
a system ls presented which performs syntactic analysis and translation for a subset of English
and German. The cross-linguistic nature of the theory is reflected by the system which can be
co~sidered a procedural model of UG.

ii

Contents

Abstract

List of Figures

Acknowledgements

1 Introduction

2 · Government-Binding Theory
2.1 Acquisition and Explanation
2.2 A Model of Grammar

2.2.1 A System of Rules ..
2.2.2 A System of Principles .

2.3 X-Theory
2.4 0-Theory and Lexical Selection
2.5 Movement . .
2.6 Government
2. 7 Case Theory . . .
2.8 Bounding Theory .

3 Representations and Analysis
3.1 The Lexicon

3.1.1 The Dictionary .
3.1.2 The Morphology

3.2 Phrase Structure
3.3 Transformations

3.3.1 X 0-Substitution
3.3.2 X-Substitution

iii

ii

vi

vii

1

4
4
6
7
8
9

12
14
15
16
18

22
22
22
24
25
27
28
29

4 Parsing with Principles
4.1 The Parsing Module

4.1.1 Parsing X Phrase Structure
4.1.2 Parsing Specifiers, Adjuncts, and Arguments

4.2 Principles as Constraints ...
4.2.1 Applying Constraints
4.2.2 The ECP ..
4.2.3
4.2.4
4.2.5

Case Theory
0-Theory
Subjacency and Movement

5 Principle-Based Translation
5.1 Recovering D-structure .
5.2 Translation
5.3 Generating S-structures

6 Evaluation and Discussion

1

A

B

C

D

E

F

G

6.1 Principle-Based Systems
6.2 The Lexicon
6.3 Syntactic Analysis . . .

6.3.1 The Parsing Module
6.3.2 The Constraint Module

6.4 Translation and Generation
6.5 Related Issues

6.5.1 Partial Evaluation ...
6.5.2 Modeling Linguistic Performance

Conclusions

Example Translations

Parsing Module

Language Parameters

Constraint Module

Translation Module

Morphological Analyser

The Lexicon

iv

30
31
32
35
37
39
40
41
42
43

48
49
50
53

57
57
58
59
60
61
62
63
63
64

66

73

76

87

89

99

111

116

List of Figures

2.1 Model of Grammar .

4.1 The Parsing Model .

5.1 The Translation Model .

V

7

30

. 48

Acknowledgements

First and foremost I would like to express my gratitude to my supervisors: Dr. Michael
Rochemont, for his invaluable assistance with the linguistic theory and guidance throughout the
course of this thesis, and Dr. Harvey Abramson, for originally pointing me in the right direction
and providing me with a background in logic programming.

I would especially like to thank Randy Sharp for his comments and suggestions during the
final stages of the thesis, Brian Ross for his friendship and numerous helpful discussions, Barry
Brachman for technical assistance, and the members of the Department of Computer Science who
made the whole process enjoyable: Dave, Brent, Rick, and Heidi to name just a few. In addition,
special thanks must go to my parents and Myron for their constant support and encouragement
of my academic pursuits.

Finally, I would like to thank the Natural Sciences and Engineering Research Council for its
support through two postgraduate scholarships, Dr. Abramson for research assistantships under
an IBM SUR Grant, and the Department of Computer Science for additional funding.

Vl

Chapter 1

Introduction

Linguistic theory as it has developed within the transformational generative enterprise is funda,.
mentally concerned with the nature of the human language faculty. The underlying hypothesis is
that humans are innately endowed with some knowledge of language. Those principles of gram­
mar which are innate are said to constitute a theory of Universal Grammar (UG). Such a theory
could, for example, shed light on the process of child language acquisition. As Chomsky observes,
some fundamental questions which arise in this pursuit are [Chomsky 86b]:

(1) (i)
(ii)
(iii)

What constitutes knowledge of language?
How is knowledge of language acquired?
How is knowledge of language put to use?

The questions of (li) and (liii) raise the distinction between a theory of linguistic competence,
represented by a particular grammar, and a theory of linguistic performance. Specifically, a
theory of grammar must provide an account of the fundamental principles of UG, as well as
those elements of grammar which must be learned. The latter must also be consistent with some
psychologically plausible theory of language acquisition (i.e. the question of (lii)). A theory of
performance will indicate how knowledge of language is put to use in tasks of recognising and
producing utterances.

Work within transformational generative grammar focuses primarily on the questions (li&ii).
The prevalent theory is Chomsky's Government-Binding Theory which posits a set of fundamen­
tal, language independent subtheories. Each subtheory consists of principles of grammar, which
are taken to have parameters of variation which account for the diversity in phenomena across
human languages. The set of principles constitutes an instance of UG, where the grammar for
an individual language, or Core Grammar, is represented by a specific set of parameter settings.

It is important to note that the program of research sketched above represents a significant
shift in focus from systems of rules to systems of principles. That is, while some linguistic theories,
including early transformational grammar, attempt to characterise languages via descriptive sets
of rules, the current approach is oriented toward the determination of a set of underlying principles

1

,,

CHAPTER 1. INTRODUCTION 2

which can account for all languages. The advantages of such an approach are clear; in addition
to accommodating theories of acquisition, the resulting theory will possess explanatory abilities
which permit us to derive the properties of various languages instead of merely stipulating them.

Despite these advances in linguistic theory, rule-based approaches have remained the status
quo in natural language processing systems. These systems are typically based upon some large
context free grammar which is either used to compute parsing tables, or used directly in an
Augmented Transition Network (ATN) or Logic Grammar. As a result, they inherit many of
the problems of the rule-based grammar upon which they are founded. As Barton points out,
rule systems are both unconstrained and stipulative in nature [Barton 84]. Not only are large
numbers of language dependent rules required, but their correctness is difficult to ensure given
the lack of underlying principles.

An alternative approach is to construct systems which employ the principles of grammar
directly. This thesis is concerned with the implementation of a natural language analysis system
which is based upon a subset of the principles of Government-Binding theory. We propose a
particular procedural interpretation of the principles of GB theory, which are realised as a Prolog
logic program 1 . In this way, the parser can be considered to model human linguistic competence.
An effort is made to reflect the modularity present within the theory, and preserve its cross­
linguistic capacity.

· The parser attempts to maintain the distinction between the language independent principles
of UG, and the specific rules and parameters relevant to an individual language. That is, a
language independent parser is constructed which accesses the language specific information to
parse a particular language. To illustrate this, a syntactic translation2 system is developed,
which permits qi-directional translation between English and German. The system consists of a
principle-based parser which performs syntactic analysis, and a translator which translates lexical
items and generates sentences in the target language. The basic approach was initially developed
by Sharp, and later adopted by Dorr (see [Sharp 85), [Dorr 87]). Both describe principle-based
parsing/translation systems for English and Spanish.

The basic goal of this research is to provide further insight into possible design strategies
for principle-based systems. Emphasis is placed particularly on the design of an efficient system
which retains the cross-linguistic capacity of the linguistic theory. The application to English and
German brings to light certain language variations which are not clearly handled by the previous
systems, and as such provides further evidence that a "universal parser" is indeed possible.

In Chapter 2 we present the Government-Binding theory as an instance of UG. Specifically,
we motivate the theory with respect to language acquisition and the desire for an explanatory
theory of grammar. We then present the model of grammar and each of the relevant subsystems

1 The discussion of implementation in Chapters 4 and 5 assumes a knowledge of Prolog on the part of the reader.
For an introduction to the language see (Clocksin et al. 81], [Hogger 84], and [Sterling et al. 86]. For a more
theoretical discussion see [Lloyd 87].

2 By syntactic translation we mean to imply that no semantics or pragmatics are involved. Rather, a simple
system of lexical equivalence is assumed.

CHAPTER 1. INTRODUCTION 3

of principles and parameters. In Chapter 3, we describe the system of representations adopted
for the lexicon and phrase structure. In addition, we present a language specific analysis of
the transformations which are accounted for by the present system. Chapter 4 presents the
implementation of the syntactic analysis component while Chapter 5 describes the translation
component. Chapter 6 is devoted to a discussion and evaluation of the overall system, and
examines related WOl'k in proposing possible improvements and extensions . Chapter 7 presents
a general summary of the work and results, and suggests directions for future research_, Finally,
Appendlx. A illustrates the performance of the system with a number of example translations,
while the remaining appendices contain the Prolog source code.

Chapter 2

Government-Binding Theory

Current efforts in transformational generative grammar (TGG) have led to the approach we
know as Government-Binding Theory (henceforth, GB theory). The aim of the research has
been to move away from systems of rules, favoring systems of principles. GB theory posits
a set of independent subtheories of principles which are fundamental to all human languages.
When combined, these subtheories yield a coherent theory of grammar, known as Universal
Grammar. Each subsystem, or module, is intended to apply cross-linguistically, with some degree
of parametrization of the principles for individual languages. Such a theory, with parameters
instantiated appropriately, is said to constitute the Core Grammar of a specific language.

In this chapter we will first discuss language acquisition and explanation as motivating forces
in theoretical linguistics. We then outline the overall model of grammar and present each of the
modules of GB theory relevant to this work.

2.1 Acquisition and Explanation

The relevance of language acquisition to linguistic theory was recognised by transformational
grammarians as early as Aspects of the Theory of Syntax (Chomsky 65]. This early work, how­
ever, was oriented more towards achieving descriptive adequacy for natural language grammars,
than towards producing a grammatical theory. The more recent aim of Chomskian linguistics
(see [Chomsky 73]) has been to provide a theory of grammar with certain explanatory abilities.
Specifically, linguistic research has been guided more explicitly by the problem of language ac­
quisition. This entails that grammatical theory account for the ability of children to master a
rich and highly structured knowledge of grammar despite the fact that they are presented with
data which is both degenerate and deficient. Hornstein and Lightfoot outline these deficiencies
on three levels (Hornstein et al. 81]:

(2) (i) Children hear speech which does not consist uniformly of complete grammatical
sentences, but also utterances with pauses, incomplete statements, slips of the

4

CHAPTER 2. GOVERNMENT-BINDING THEORY

tongue, etc.

(ii) Despite being presented with finite data, children become able to deal with an
infinite range of utterances.

(iii) People attain knowledge of the structure of language, despite the absence of such
data. That is, people are able to make judgements concerning complex/rare
sentences, ambiguity relations, and grammaticality using knowledge which is not
available as primary linguistic data (PLD) to the child.

5

The problem of language acquisition then is that children acquire an extremely sophisticated
knowledge of language despite it being underdetermined through the poverty of stimuli of (2).
Furthermore, this occurs rather uniformly despite variation in intelligence and experience.

In attempting to account for this problem, the theory of grammar presupposes an a priori
knowledge of language 1 . The assumption is that humans are endowed with a language faculty
which consists of a set of "genetically encoded" principles [Lightfoot 82]. These principles are
then activated appropriately during the acquisition process. A crucial observation at this point is
that a child learns any language to which he is exposed. This entails that the innate principles be
language independent. A fundamental goal of linguistics research is to determine the content of
these principles such that they are abstract enough to account for all attainable languages, while
still being rich enough to explain language acquisition under seemingly impoverished conditions.
It is worth noting that these criteria of abstractness and richness are in conflict. However, this
seems desirable as it provides rather strict guidelines for research.

The basic approach taken in the pursuit of such a theory has been to attribute parameters
of variation to each of the principles. The value of a given parameter is drawn from a finite
(presumably small) set of possible values. The theory of grammar defined by the set of principles
is knowIL as Unive1·sal G'mmmar (UG). When the parameters are appropriately instantiated for
a specific language, UG is said Lo constitute a core grammar for that language.

The process oflanguage acquisition can now be considered a parameter setting operation. The
child begins at the initial state Si with an uninstantiated set of principles . The parameters then
become set via some Language Acquisition Device (LAD) which interprets the data presented to
the child (for further discussion see (Chomsky 81b]). After sufficient information and experience,
all the parameters are set and the child has a knowledge of the core grammar (i.e. the final
state, SJ). If we take the data presented to the child to be random and unstructured, we can
make a further simplification by suggesting that acquisition is effectively instantaneous 2• This
essentially assumes that the relevant data is presented to the child all at once .. This hypothetical
formulation of the acquisition process is known as the logical problem of language acquisition.

1 This is opposed to inductive theories of learning which appear insufficient to account for the language acquisition
problem given the poverty of stimuli assumption.

2 Wltile this may indeed be too s trong a simplifi cation, it should be noted that it does not conflict with theories
which assume a more incremental learning process involving maturation of the child and langu age fac ulty.
Rather, it abstracti;1 away from these issues, so as to simplify the task at hand.

I

CHAPTER 2. GOVERNMENT-BINDING THEORY 6

By adopting such a solution to the problem of language acquisition, we now have a metric for
evaluating the explanatory adequacy of a theory of grammar. The criteria for explanation have
been outlined as follows [Hornstein et al. 81]:

(3) (i) Coverage of empirical data: show that facts follow from the principles.

(ii) Simplicity and elegance of the principles.

(iii) The principles should contribute insight to the problem of language acquisition.

The requirement of (3iii) entails that the parameters of variation meet certain learnability
criteria. Specifically, they must be determinable on the basis of positive evidence only. The
motivation for this is that children by assumption are not exposed to the ungrammatical data,
in any systematic way, which might be necessary to fix parameters (for further discussion see
[Wexler et al. 80]).

2.2 A Model of Grammar

Transformational generative grammar is considered to have its origins in Syntactic Structures
[Chomsky 57]. The original model proposed two levels of syntactic representation; deep-structure
(or, D-structure) and surface-structure (or, S-structure) 3 • D-structures constituted a representa­
tion of the semantically relevant grammatical functions, and were considered to be generated by a
set of phrase-structure rules. D-structures were then mapped to their "surface form" via a set of
transformational operations. These transformational operations included rules for passivisation,
wh-movement, subject raising, etc. and typically specified the structural description (SD) and
structural change (SC). Consider for example the following:

(4) (a) The poem was written by Coleridge.
(b) Coleridge [TNSpastl write the poem.
(c) X NP AUX V NP y by z

SD: 1 2 3 4 5 6 7 8
SC: 1 5 3+be 4+en <P 6 7+2 8

If we take the sentence of (4a) to have the D-structure representation of (4b), where the poem
is the object of write, and Coleridge is the subject, then we can see that a rule such as that of
(4c) is perfectly adequate to describe the passive transformation of (4b) to (4a).

If we consider however the criteria and motivations for an explanatory theory of grammar
as presented in Section 2.1, we see that the model presented above is inadequate. Not only are
the rules language dependent in nature, but they also are highly specialised and rather vast in

3 In fact, the notions of "deep" and "D" structure are not coextensive, and the same can be said for "surface"
and "S" structure. Indeed, the abbreviated notation was adopted by Chomky explicitly to avoid confusion in
the literature. For our purposes however, we may take them to be similar.

CHAPTER 2. GOVERNMENT-BINDING THEORY 7

number. The former almost certainly eliminates the plausability of such rules being innate, and
the latter presents a problem fo r learning under the poverty of stimuli assumption of (2).

The pursuit of au explanatory theory of grammar has led to the reduction of the rule com­
ponent in favor of universal principles. The current model has a similar format to that of early
TGG, that is the generation of D-structures which are mapped to S-structures via a transforma­
tional component. In addition, two interpretive components have been added; the LF (Logical
Form) component, and the PF (Phonetic Form) component. Both are derived from S-structure,
resul ting in the model of grammar illustrated in Figure 2.1.

D-structure

S-structure

Phonetic Form Logical Form

Figure 2.1: Model of Grammar

In the remainder of this section, we will discuss the system of rules and principles which
are relevant to the system presented here. Specifically, we adopt the linguistic framework of
Government-Binding theory as presented in (Chomsky 81a], and recent developments within
that theory. A fairly detailed account of the evolution of generative grammar is presented in
(vRiemsdijk et al. 86].

2.2.1 A System of Rules

The three basic parts of the rule system of GB are outlined in (Chomsky 82] as follows:

(5) (A) Lexicon
(B) Syntax: (i)

(ii)
(C) Interpretive: (i)

(ii)

Base component
Transformational component
PF component
LF component

The Lexicon constitutes the vocabulary of a language. That is, it consists of a set of entries
for each lexical item, with information concerning its syntactic features, morphology, phonology,

CHAPTER 2. GOVERNMENT-BINDING THEORY 8

and selectional requirements. The Base Component, combined with information projected from
the lexicon, generates D-structures.

The Transformational Component maps a D-structure representation to a corresponding S­
structure via application of the Move-a rule. This rule simply provides for the movement of
elements from D-structure to S-structure positions. The resulting S-structure is then subject to
the well-formedness conditions imposed by the principles of grammar. Viewed slightly differently,
we can consider the principles to act as constraints on the application of Move-a. Additionally,
the interpreted components map S-structures to their PF (phonetic form) and LF (logical form)
representations respectively. As with the generation of S-structure, Move-a also plays a role in the
generation of these representations. We restrict the discussion here however to the D-structure
and S-structure levels of representation. The Base Component and Transformational Component
together generate the structural representations, or Syntax of sentences.

2.2.2 A System of Principles

As we have seen, the rule systems are stated very generally. That is, subcategorization infor­
mation projected from the lexicon, combined with X-theory 4 and lexical insertion yields D­
structures. The basic transformation operation Move-a then maps D-structures to S-structures.
This simplicity in the systems of rules is made possible by the shift in emphasis to the system of
principles.

The principles of GB theory interact so as to impose well-formedness conditions at the various
syntactic levels of representation (i.e. D-structure, S-structure, and LF). These subsystems of
principles, as outlined in [Chomsky 82] are:

(6) (a) X-theory
(b) 0-theory
(c) Case theory
(d) Binding theory
(e) Bounding theory
(f) Control theory
(g) Government theory

As we have mentioned earlier, the generation of D-structures is determined by information
projected from the lexicon in conjunction with some version of the X-theory of phrase structure.
Specifically, lexical properties may include certain selectional requirements. Consider for example
that some prepositions, such as for, subcategorize for an NP object, while others, such as away
do not. Additionally, verbs may subcategorize for a variety of phrasal constituents. In general,
these sub categorized positions must be assigned a thematic role (henceforth, 0-role). It is also

4 Additionally, X-theory creates positions for adjuncts. Adjuncts ma.y appear, regardless of subcategorization, for
the purposes of modification and further description. We will return to the discussion of adjuncts in Section 2.3.

CHAPTER 2. GOVERNMENT-BINDING THEORY 9

possible for a predicate VP to assign a B-role to the subject position, even though that position
is not subcategorized.

The generation of S-structures via the rule Move-a is constrained by the interaction of sev­
eral principles. The Projection Principle requires that selectional properties of lexical items be
represented at each syntactic level. This entails that moved constituents leave a trace behind in
their D-structure positions. Bounding theory imposes locality conditions on the application of
Move-a via the principle of Subjacency. Note however that under the right conditions elements
may still be moved an arbitrary distance. This is achieved by successive "hopping" from one
subjacent position to another. The abstract notion of chains is used to represent a constituent
in terms of its "history of movement", in which the links of the chain record each application of
Move-a. As we will see, chains provide an extremely convenient and elegant means of stating
certain principles.

Case theory concerns the assignment of Case to noun phrases (NP's). The so-called Case
Filter is instrumental in determining the distribution of NP's by requiring that each chain receive
Case exactly once. Binding theory outlines possible coreference relations holding between NP's,
while Control theory determines the reference of PRO, a phonetically null pronominal anaphor.
Finally, the theory of Government defines the structural domain of lexical items. This notion
pl~ys an integral part in several of the prin ciples .

· The remainder of this chapter will examine each of the relevant principles and their interaction
in some detail. The theories of Binding and Control have been omitted from the discussion as
they are not present in the system developed here.

2.3 X-Theory

X-theory provides a generalised schema for the representation of phrase structure. The theory
ca.pi t-al.ises on the observation that all phrasal categories bear a certain stJ"uctural resemblance.
Specifically, X-theory captures the endocent-ric nat1ITe of phrases with respect to a {lexical) head.
The head of a phrase is taken to be that lexical item of which the phrase can be considered a
"projection". Consider for example the following set of traditional phrase structure rules 5 for a
subset of English:

(7) (a) S -+

(b) NP -+

(b) VP -+

(b) PP -+

NP Aux VP
Det N (PP)
V (NP) (PP)
P (NP)

A cursory inspection of (7b-d) makes apparent the systematic redundancy of such phrase
structure rules. That is, NP is a projection of N, VP of V etc. for each lexical category. Fur-

5 Using standard notation and terminology, we take those symbols on the left of the -+ to be non-terminal,
phrasal nodes, and the rest, by default, to be terminal symbols (i.e. representing a class of lexical items) .
Symbols appearing in ()'s are considered optional.

CHAPTER 2. GOVERNMENT-BINDING THEORY 10

thermore, the choice of constituents which may follow the head (known as the complements), is
already specified in the lexicon as selectional requirements. These two observations make possible
the following general rule:

(8) X ---t X Complements

Where X may be any lexical category6 , N, V, A or P. X represents a non-terminal node which
inherits its grammatical properties from X. The choice of Complements is projected from the
subcategorization information in the lexical entry for X.

The next level of phrase structure includes the rule for specifiers. The possible specifiers
of a phrase are determined by the lexical properties of a given head. For instance, the possible
specifiers for noun phrases are taken to be determiners (eg. articles the,a and quantifiers each,all)
and possessive NP's, as in the man's coat. For adjective and prepositional phrases, the specifiers
may be degree modifiers. The phrase structure rule for specifiers is the following:

(9) X - Specifier X

. Finally, the theory must account in some way for adjuncts to phrases. Adjuncts are those
phrases which are in no way lexically selected by the head, but rather appear optionally to further
modify or describe the phrase in question. Typical examples are prepositional phrases (PP's)
which can modify NP's, VP' or AP's as in the following:

(10) (a)
(b)
(c)

the man on the hill
watched with the telescope
drunk at the party

(= NP)
(= VP)
(= AP)

Indeed, such PP adjuncts can also be a source of syntactic ambiguity as in the now famous
example: I saw the man on the hill with the telescope. in which the two PP's can be interpreted
as modifying either saw or man in a variety of ways. Additional adjuncts include adjectives and
relative clauses for noun phrases and adverbs to verb phrases. The addition of appropriate rules
for adjuncts yields the following set of rules for a theory of X 7 :

(11) (a) X - Specifier X
(b) X - Adjuncts X
(c) X - X Adjuncts
(d) X - X Complements

6 The lexical categories a.re not "arbitrary". Rather, they ca.n be considered abbreviations for the more funda­
mental substantive [± NJ a.nd predicative [± V] features. The correspondence is a.s follows: N = (+N -V], V =
(-N +VJ, A= (+N +V], and P = (-N -VJ.

7 In the two-level X system, X = XP. That is, NP, VP, etc. refer to the maximal projections of their respective
phrasal categories. We use both notations interchangeably throughout the thesis.

CHAPTER 2. GOVERNMENT-BINDING THEORY 11

We have so far considered phrase structure only with respect to the so-called lexical categories.
We have yet to provide an analysis of the the sti:ucture of S (that is, the rule of (7a)) in terms of X­
theory. Additionally, we must account for the structure of embedded and relative clauses. Earlier
formulations of X phrase structure took these as exceptional constituents, and the following rules
were stipulated for them:

(12) (a) S -+ NP Inf l VP
(b) S-+ Comp S

The rule of (12a) is virtually identical to that of (7a), with the exception that the Aux (auxil­
liary) element has been replaced by lnfl (for, i.nflection). Infl is presumed to contain information
about the tense of the clause typically represented by the (±TNS] feature. Just in the case Inf1
is (+TNS], it also contains the agreement element (abbreviated AGR) consisting of the usual
person, number, and gender attributes. The second rule, (12b), states t.hat embedded or relative
clauses consist of a (possibly optional) element Comp, followed by an S. Comp is a complemen­
tizer element such as that or for. The foUowing example uses the traditional labeled bracketing
representation to illustrate these constructions:

(13) [s I think [5 that [s the man bought [NP the book [5 that [s I wanted]]]]]]

A more recent analysis however has been to consider Infl and Comp as non-lexical categories,
which are subject to the rules of X -theory i.n the same way as lexical categories [Chomsky 86a].
That is, take Infl (= I) to be the head of JP (=S) and Comp (= C) to be the head of GP
(=S). Under this analysis, it seems natural to let the subject NP be a specifier to IP, and assume
t hat VP is a complement whicl1 is inlterently selected for by I. Additionally, C selects for an IP
complement. The specifier position of CP, as we shall see in Chapter 3, is useful as a landing site
for moved constituents (such a,i:; wh-phrases), but js typically not filled at D-structure. Under
this analysis the rules of (12) are replaced by the following instantiations of the X-theory:

(14) (a) C -+ Wh- phrase C

(b) C-+ CI
(c) I -NI
(d) !-+IV

The X rules outlined in (11) and (14) are indeed sufficient for describing the phrase structure
of languages such as English. Problems arise however when attempting to account for other
languages. Specifically, these problems concern ·the order, or precedence relations. That is,
while specifiers are initial in many Inda-European languages, this generalisation does not hold
for many other languages 8 . In addition, languages vary with respect to the position of heads

8 See (Lightfoot 82) for a discussion of constituent order for a variety of languages.

CHAPTER 2. GOVERNMENT-BINDING THEORY 12

relative to their complements. For English, the heads of all categories are initial with respect to
their complements. In German however, both V and I are considered to be final [Thiersch 78]. In
general then, the dominance relationships of the rule in (11) hold, but the precedence relationships
must be taken to vary parametrically for individual languages.

It is possible then to express X-theory in even more general terms. The rules of (15a-b)
represent similar dominance relations, but permit variations in precedence to be determined by
parameters (or, as we shall see, other principles) 9 • If we let the superscripts represent the bar­
level used above, then we take arguments (i.e. sub categorized constituents) to be sister-to Xi,
i < 2, and adjuncts are sister-to X 2 10 •

(15) (a) Xi ---+ Y, Xi
(b) Xi---+ Xi, Y
(c) where: i~2,j~i,j~0.

We may take Y to be either an X or a simple lexical specifier .

2.4 0-Theory and Lexical Selection

We remarked above that lexical items may have certain selectional requirements. Specifically, they
may select, or subcategorize, for certain phrasal complements. Additionally, lexical items may
require the presence of constituents considered necessary thematic participants of the sentence.
In such cases, the required constituent is assigned a 0-role by the lexical item which selects for it.
Subcategorizati-on properties of a given head will require that constituents of a specific category
appear adjacent11 to it, and dominated by some projection of the head. This is primarily a
syntactic requirement which determines the complements of the head for the purposes of X­
theory.

0-theory concerns the thematic relations which are assigned by a lexical item. This is related
to subcategorization, in that subcategorized constituents are generally assigned 0-roles (we will
strengthen this notion below). Furthermore, a lexical item may assign an external 0-role to its
Subject12 • Consider for example the sentence John put the book on the refrigerator. Here, the
head of VP, put, subcategorizes for NP and PP complements. Additionally, the verb assigns

9 This version of X-theory is adapted from Chomsky's class notes, 1986.
10 This notion of X phrase structure differs with that of (11) in two respects: firstly, adjuncts are now sister to X 2

instead of X 1
, and secondly, the Specifier position is now a "special instance" of an adjun~t. This is somewhat

inconsistent with the literature, but is convenient for our purposes and nothing critical hinges on it.
11 In fact, the adjacency requirement may be taken to vary parametrically, as suggested by languages such as

Japanese.
12 In fact, the external 8-role is taken to be assigned by the VP, as determined compositionally by the verb and its

complements [Marantz 81].

CHAPTER 2. GOVERNMENT-BINDING THEORY 13

three 0-roles; Agent is assigned to the subject, Theme to the direct object, and Location to the
prepositional phrase.

The assignment of a 0-role to a constituent is known as 0-marking. More precisely, a con­
stituent receives a 0-role by virtue of occupying a position which is 0-marked (henceforth, 0-
position). It is a fundamental requirement that all 0-roles be assigned a.t D-structure, which
is considered to constitute a "pure" representation of the thematic interpretation. The proper
assignment of 0-roles is determined by the 0-Criterion, stated as follows:

(16) 0-Criterion: each argument bears one and only one 0-role, and each 0-role is assigned to
one and only one argument.

Subcategorized elements are considered to be directly B-ma.rked. 1n addition , we observed
above that the subject position may be indirectly 0-marked. This indfrect 0-marking is generally
considered to be mediated through I. If we further assume that the 0-criterion applies at ea.ch
syntactic level of representation, then movement may never be to a &-position, since this would
result in a 0-role being assigned to two arguments (i.e. the D-structure argument which must
have vacated the position, and the element which is moved to the position).

The Projection Principle in effect generalizes the notion of selectional requirements across
each level of syntactic representation. Specifically, it is stated as follows13:

(17) The Projection Principle:
(j) Subcategorizable positions are 0-marked by the governing head, at each syntactic level
of representation (i.e. D-structure, S-structme, and LF).
(ii) 0-marked positions must be represented categorially at each syntactic level of represen­
tation.

The Projection Principle is fundamental to GB theory, as it constrains the mapping between
each level of syntactic representation. As a result of imposing this general well-formedness con­
dition, the Projection Principle has as one of its consequences the theory of empty categories.
That is, when an element is moved from its D-structure position, that position must remain in
some sense even though it is not filled by any lexical constituent. To account for this, a phrasal
constituent of the same category as the moved element remains in the vacated position, domi­
nating a trace which is co-indexed with the moved element. Note that movement or raising to
object position is now prohibited by the Projection Principle and IJ-criterion, since the raised
constituent would receive two 0-roles14 •

While the Projection Principle stipulates that direct 0-marking is entailed by subcatego­
riza.tion, indirect 0-marking is clearly not. The assignment of a 0-role to subject is in no pre­
determined sense obligatory but rather is determined purely by the 0-marking properties of the

13 This statement of the Projection Principle differs slightly from the formulation in (Chomsky 81a), but is essen­
tially the same in both spirit and function.

14 There have been recent claims that raising to object is indeed possible, and that the 8-criterion should be
restated. For discussion of this see (Pullum et al. 88) and (Massam 85].

CHAPTER 2. GOVERNMENT-BINDING THEORY 14

head. So, while raising to object is not possible, raising to subject sometimes is, as the following
example illustrates:

(18) (a) It seems [cP that John likes Mary].
(b) J ohni seems [IP ei to like Mary].

While seems does select for a propositional complement, it does not 0-mark the subject
position. In (18a) the non-referential, pleonastic element "it" is inserted to fill the position. This
permits (18b) to be generated, where John moves from the subject position of the embedded
clause (where it receives its 0-role), to the non-0-marked subject position in the matrix clause
(known as a 0-position).

The Extended Projection Principle introduces the additional stipulation that every clause
must have a subject. This is necessary just in the case where the verb does not select for a
subject, as was observed in (18). That is, the sentence Seems that John likes Mary is ruled
ungrammatical by the Extended Projection Principle.

2.5 Movement

The shift from rules to principles has permitted the generalisation, indeed trivialisation of the
transformational component. While past approaches posited numerous transformational rules,
such as that for passive illustrated in (4), the more recent tact has been to propose the singular
operation Move-a:. Move-a: essentially says move anything, anywhere. The possibility of over
or incorrect application of this operation is ruled out by the principles of GB. In short, these
principles dictate when movement is possible, necessary, or prohibited.

We have introduced the notion of chains as a representation of arguments in terms of their
"history of movement". More precisely, a chain consists of a tail (its D-structure position) and
a head (its S-structure position). By virtue of the 0-criterion, each chain is assigned exactly
one 0-role, and this must be to the tail of the chain. The chain may also contain intermediate
positions, represented by traces, through which the argument moved on the way to its destination,
S-structure position.

Despite the general nature of the Move-a: operation, the types of movement possible are rather
severely constrained by the principles. As Chomsky observes, there are essentially two types of
movement: substitution and adjunction. We are concerned here primarily with substitution which
has the following general properties [Chomsky 86a]:

(19) (a)
(b)
(c)

(d)

There is no movement to a complement position.
Only x 0 can move to a head position.
Only X can move to a specifier position.

Only x 0 and X are visible to Move-a:.

CHAPTER 2. GOVERNMENT-BINDING THEORY 15

The 0-criterion clearly accounts for (19a), while (19b-c) would appear to follow from the
Structure Preserving Hypothesis [Emonds 76]. The constraint of (19d) is simply stipulated, but
seems intuitively desirable.

In English and German, the head-to-head movement of (19b) typically involves the categories
V and I. As we shall see in Chapter 3, this type of movement is responsible for have-be raising
and Subject-Aux Inversion (SAi) in English, as well as for the so-called verb-second phenomena
in German.

We have observed that movement must always be to a 0-position. In addition, we can make
the general distinction between argument positions (A-positions) which may receive a 0-role,
and non-argument positions (A-positions) which may not. The subject is therefore always an A­
position, but not necessarily a 0-position. In general, any individual application of Move-a may
be from an A-position to an A-position (henceforth, A-movement) or from an A or - position to
an A-position (A-movement). A-movement is to a subject position (SPECJP) and is generally
determined by Case theory, as we shall see in Section 2. 7. An instance of A-movement would be
movement of a wh-phrase to the SPEC, GP position.

2.6 Government

The phrase structure of X -theory permits us to describe certain structural relationships between
constituents. Central to GB theory is the notion that many of its principles prescribe certain
locality constraints on the relations between items in the tree. That is a given principle defines
a domain which _is local with respect to the constituent that principle concerns.

The most prominent, and indeed fundamental of these structural domains is that of govern­
ment. Government is itself defined in terms of the less restrictive notion of m-command. We
take these to be defined as follows 15 :

(20) m-command: a m-commands f3 iff every maximal projection dominating a dominates /3.

We may now define government as follows:

(21) government: a governs (3 iff
(i) am-commands /3, and
(ii) a is a head (i.e. x 0) , and
(iii) {3 m-commands a

The theory of Government plays a central role in determining the distribution of empty
categories. Specifically there are two types of empty categories: traces whkh occupy the posi­
tions which have been vacated by movement, and PRO, which is a phonetically null pronominal

15 These definitions have been adapted from a variety of sources in the current literature.

CHAPTER 2. GOVERNMENT-BINDING THEORY 16

anaphor. The basic well-formedness condition for empty categories is known as the Empty Cat­
egory Principle (ECP), which states that all traces must be properly governed. This might
be extended, to include the observation that PRO must be ungoverned. This Extended ECP
[Chomsky 82] can be stated simply as follows:

(22) Extended ECP: If a is an empty category, then

where,

(i) a is trace iff it is properly governed
(ii) a is PRO iff it is ungoverned.

(23) Proper Government: a properly governs f3 iff
a governs /J, (a a lexical X 0) or
a locally A-binds /J

Where the notion of locally A-bound, entails that the empty category (henceforth, ec) be
bound by an A position which is "not too far away".

In general then, if an empty category is governed, it is a trace, and if not it is PRO. We
ma,y also assume that PRO may only appear in subject position, since the object position is
necessarily governed by its subcategorizing head. To see how the ECP applies, consider the
following sentences:

(24) (a)
(b)

Whyi does Barry want [PRO to be a rocket scientist] ti ?
Whoi does Barry want [t'i [ti to be a rocket scientist]] ?

In (24a) we see that the embedded subject ec is ungoverned, and therefore must be PRO.
In (24b) however, we see that the subject ec is locally bound by t', which is in the SPEC,CP
position (an A-position). The subject ec of (24b) is therefore properly governed, and must be a
trace.

2. 7 Case Theory

Case theory concerns the assignment of Case to noun phrases, and plays an important role in
determining their distribution. While Case may be realized morphologically, NP's are consid­
ered to receive Case, regardless of their morphological status. In English, morphological case is
rather impoverished, generally distinguishing only the nominative, accusative and genitive form
of pronouns such as he/him/his, we/us/our and the wh-pronouns who/whom/ whose (although
this distinction between who and whom is disappearing). German, on the other hand, maintains
a fairly rich case system, in which the nominative, accusative, dative, and genitive forms of most
NP's are distinguished (although not always uniquely). Case theory, however, is not concerned
with such phenomena, which appear to vary widely among languages, but rather with the more
general assignment of abstract Case.

CHAPTER 2. GOVERNMENT-BINDING THEORY 17

The fundamental requirement of Case theory is that every NP receive (abstract) Case. An
NP receives Case by occupying a position to which Case is assigned. Specifically, a position is
assigned Case if it is governed by a Case-assigner. For English the ase assigning categories are
generally taken to be V, P and I. The ability for V and P to assign Case must additionally be
speciii.ed in the lex.icon. If a lexical item can assign Case, it is said to be transitive, otherwise
intransitive. In addition , I is a Case-assigner just in case it has the feature [+TNS]16 • The
fundamental principle of Case theory, the Case Filter, is stated as follows:

(25) Case Filter: *NP, where NP is phonetically realized and has no Case.

Chomsky has suggested that th.is requirement can be re-formula'ted in terms of chains (see
[Chomsky 81a.], Ohapte.r6). That is Case theory requires that every chain be assigned Case
exactly once. Consider for example the sentences below:

(26) (a)
(b)
(c)
(d)

* It appears [JP John to like Mary].
John; appears [LP e, to like Mary].
It appears [cp that John likes Mary].
* John appears [cp '(that) e; liies Mary].

The Case Filter rules (26a) as ungrammatical, since John is not assigned Case (l is untensed).
This can however be rendered grammatical by moving John to the subject position of the tensed
matrix clause, as in (26b). This results in the forma.tion of the chain (John ei). This is gram­
matical since the chain receives a 0-role at ei, and Case is assigned to John. If the embedded
clause is tensed, as in (26c), then its subject need not mov . Indeed, movement of the matrix
subject is prohibited since the resulting chain would be assigned Case twice, as shown in (26d)17

There are however instances when the subject of an untensed clause does not need to move.
Consider,

(27) (a)
(b)

I believe [IP John to like Mary].
I believe [cP that John likes Mary].

As we would expect, (27b) is gramma.Llcal much as (26c) is. How then can we explain the
grammaticality of (27a.)? The solution adopted here is to assume that government may take place

across the maximal projection IP (=S). The recent position on this is to assume that if X is
goveim d, so is its specifier , SPEC, KP and its h•ad, 0 (Chomsky 86a]. Therefme, since believe
governs the IP , the subje t SP EC, IP , jg governed and thus can be Case-marked. This permits
the matrjx verb to Case-marJc the subject of the embedded clause, rendering (27a) grammatical.
The difference then between the verbs believe and appear, is that believe is transitive, permitting

16 Another point of view is to consider AGR a Case-assigner, not I(+TNS], since AGR is present (or, rich) only
for I[+TNS].

17 For other accounts of the ungrammaticality of (26d), see (Chomsky 81a]

CHAPTER 2. GOVERNMENT-BINDING THEORY 18

it to assign Case, while appear is not. This process is generally referred to as Exceptional Case
Marking (ECM)18 .

As a final example, consider the following set of sentences:

(28) (a) I want [IP John to like Mary].
(b) I want very much [cP for John to like Mary].
(c) * I want [cP that John like(s) Mary].

At first glance, (28a) would suggest that want behaves similarly to believe. Examination of
(28b) however has led to the analysis that want selects for CP with a for complementizer. The for
acts as a preposition, able to assign Case to the embedded subject. While for may /must delete
when adjacent to the verb, it must be present when there are intervening elements (behaving
similarly to the that complementizer). An additional observation is that sentences with believe
can be passivised, while those with want cannot.

It has been proposed that Case theory may also play a significant role in determining the so­
called free and fixed word order properties of languages. The Case Adjacency Principle (CAP)
[Stowell 81] requires that NP's be "string adjacent" to their Case-assigners. The invocation of
this principle is taken to be determined by a parameter of variation for individual languages.
Consider the following English and German examples:

(29) (a) The boy will put the book on the table.
(b) * The boy will put on the table the book.
(c) Der Junge wird das Buch auf den Tisch le gen.
(d) Der Junge wird auf den Tisch das Buch legen.

We may explain the ungrammaticality of (29b), by assuming that the CAP is in effect for
English. Additionally, we may take the relative free word (or constituent) order of German to
indicate that the principle does not apply in this language. We will not pursue this matter here,
but simply note it as a principled solution to determining such properties of language.

2.8 Bounding Theory

The previous sections have outlined how principles constrain possible landing sites for movement.
These constraints are imposed primarily by the 0-criterion, the Projection Principle, and Case
theory. Bounding theory constrains movement directly by prohibiting a constituent from being
moved "too far" in a single hop. Additionally, the theory imposes certain island constraints,
where islands are taken to be domains out of which no constituent can be moved.

An early approach was to specify these constraints individually. Consider for example the
following island conditions proposed in [Ross 67]:

18 Previous analysis suggested that believe-type verbs could somehow delete the Snode, leaving only an S, which
was a non-barrier to government (Chomsky 81a].

CHAPTER 2. GOVERNMENT-BINDING THEORY 19

(30) Complex NP Constraint (CNPC): No element in an S dominated by an NP, may be
extracted from that NP:

* Whoi do [s you like [NP the book that John gave to ti]]

(31) Wh-Island Constraint (WhIC): No element contained in an indirect question, S, may
be moved out of that S:
* Whatj do [s you wonder [8 whoi [s ti bought ti]]]

(32) Sentential Supject Condition (SSC): No element may be extracted from an S, if that
Sis a (sentential) subject:

* Whoi did [s [Np [s that she dated ti]] bother you]

We can summarize these constraints by requiring that <P not be related 19 to 'I/; in the following
contexts:

(33) CNPC:
WhIC:
SSC:

.. • <P · · • [s • · • [NP · •· 1P · ..
•· • </> •.. [s . • • [s . . . 'I/; .•.
... </> ... [s ... [NP ..• [s ... 'I/; ...

In an attempt to capture these constraints in a principled fashion, Chomsky introduced the
Subjacency Condition [Chomsky 73], a formulation of which is stated below:

(34) Subjacency: A singular application of Move-a may not cross more than one bounding
node. Th.at is, cp may not be related to 'I/; in the following context:

... <P • .. [o . .. L6 . .. 'Ip ...
where a and /3 are bounding nodes.

Additionally, it is necessary to impose the condition of Strict Cyclicity on the operation of
Move-a (Chomsky 73]. This condition may be stated as follows:

(35) Strict Cycle Condition: Once Move:a applies across a cyclic node /3, no future applica­
tion of Move-a may be applied so as to solely affect a subdomain of /3.

This condi tion essentially requires that Move-a be applied in a strictly "bottom-up" manner.
While the notion of cyclic node has been defined in a variety of ways, we take it to be any maximal
projection, following (Williams 7 4].

Under this notion of Subja,cency, the bounding nodes for English were generally taken to be
NP and S. As we can see, these choices for bounding nodes account for all the island constr~nts
in (33). The choice of bounding nodes was however shown to be subject to parametric variation

19 We take "related" to include the antecedent-trace relationship of a moved constituent and its trace.

CHAPTER 2. GOVERNMENT-BINDING THEORY 20

across languages, such as Italian where evidence suggested the bounding nodes were NP and S
[Rizzi 82].

The Subjacency condition is not sufficient however, to account for all possible island effects.
Consider for example the following sentences:

(36) (a) Whoi did you read [a book about ti] ?
(b) * Whati did you read [a book under t;] ?

While (36a) is perfectly grammatical, (36b) is not, with the intended reading: What was
the book that you read resting under ? . To account for this phenomena, Huang proposed the
Condition on Extraction Domain [Huang 82], which can be stated as follows:

(37) Condition on Extraction Domain (CED): A phrase a may be extracted out of a
domain /3 only if /3 is properly governed.

The formulation of proper government adopted was assumed to exclude adjuncts. If we take
book to optionally select for an "about" PP, then extraction out of the PP is possible, as in (36a)
(since the PP will be properly governed). Extraction of the locative PP adjunct in (36a) is ruled
ungrammatical by the CED principle, since the PP is not properly governed20 •

· In an attempt to account for both the CED and Subjacency with one principle, Chomsky
has proposed the concept of barriers [Chomsky 86a]. The work has been an attempt to recast
the principles of government and bounding in terms of this more general notion. We restrict our
discussion here to the account of Subjacency developed by Lasnik and Saito, which is a revision of
that suggested PY Chomsky. We take the definition of barrier to be as follows [Lasnik et al. 88a]:

(38) barrier: a is a barrier for /3 iff:

where,

(i) a is a maximal projection,
(ii) a is not L-marked, and
(iii) a dominates /3.

(39) L-marking: a is L-marked by /3 iff /3 is directly 0-marked by a.

In addition, we follow Lasnik and Saito in assuming that VP can be L-marked by I, but that
IP cannot be L-marked by C. With these notions defined, we can now restate Subjacency as
follows:

(40) Subjacency: /3 is Subjacent to a if for every I a barrier for /3, the maximal projection
immediately dominating I dominates a.

20 Note, this requires that the government domain be determined by the first (i.e. lowest) X 2 node. In the present
system however, we assume m-command to be determined by the "collective" set of X 2 nodes (i.e. the highest
node of the phrase).

CHAPTER 2. GOVERNMENT-BINDING THEORY 21

To see how Subjacency now applies consider the following sentences taken from the examples
above21 :

(41) (a)
(b)
(c)
(d)
(e)

* Whoi do [-r you Uke the book(,. OP; that [1 John gave ti tj]]]?
* What; do [,. you wonder whoj [..., tj bought ti]] ?
* Whoi did (..., [,, that she dated ti] bother you] ?
Who, did [...,. you read a book about ti] l ?
* What; did [..., you read a. book [7 under t;]] ?

The I symbol has been used to indicate those maximal projections which are barriers. That is,
those phrases which are not L-marked. In each case, our new formulation of Subjacency accounts
for the phenomena of each of the other approaches outlined above. Notice that in (41d}, book
is considered to subcategorize (optionally) for an about PP. The PP is therefore L-marked, and
not a barrier. In (41e) however, the under PP is simply an adjunct, and therefo.,:: not L-marked,
making a barrier. In this case, the antecedent for t appears outside the first X dominating 'Y,
thus violating the Subjacency condition.

21 We follow linguistic convention in using OP to represent an empty operator - a phonetically null wh-pronoun.

Chapter 3

Representations and Analysis

In this chapter we will outline the system of representations adopted for the lexical and syntactic
components of the system. The lexicon specifies the properties of words known to the system.
The section discussing syntax will outline how the X phrase structures are represented, and we
also present the syntactic analysis of English and German which has been adopted in this work.

3.1 The Lexicon

The lexicon constitutes the vocabulary of the system. It is comprised primarily of two compo­
nents: 1) a database of lexical entries, known as the dictionary, and 2) morphological information
for constructing·the regular inflected forms of the dictionary entries. A lexical entry can contain
basically three types of information:

(42) Morphological: Agreement features such as person, number, gender, and the tense
and participle forms for verbs.

Syntactic: Primarily subcategorization information, properties of transitivity, and
any other features affecting syntax.

Semantic: We restrict this to 0-marking properties of lexical items.

For our purposes, the syntactic and semantic information is effectively merged. That is,
subcategorization information is considered to indicate the direct 0-marking properties of lexical
items, and indirect 0-marking properties (i.e. of the subject) are specified by a simple binary
feature. No attempt is made here to actually assign thematic roles to constituents, rather we
observe only the syntactic requirements that this would impose.

3.1.1 The Dictionary

The format of the dictionary is similar to that of [Sharp 85), where entries are represented as
Prolog facts, or unit clauses, of the following form:

22

CHAPTER 3. REPRESENTATIONS AND ANALYSIS 23

(43) dict(Language, Category, Word, Lexicallnfo).

Language simply specifies the language of the entry, and for our purposes may be instantiated
as follows:

(44) Language = eng English
ger German

Category indicates the lexical category for the entry. Additionally, a category may be
parametrized, to permit subcategorization of a specific form or feature. The parameters may
also assist in specifying and restricting possible phrase structure configurations. Category may
take on the following values:

(45) Category= n(Case)

v(TNS/Form)

p(Type)

i(TNS)
c(Lev /Type)

d

Word is the lexical item itself.

Noun, with a Case parameter (for German)
Case = "nom" (nominative), "ace" (accusative),
11datn (dative).
Verb, with TNS (tense) and Form (participle):
TNS = "tns(+)" (tensed)or "tns(-)1' (untensed)
Form = ''part(pres)" (present participle) or
"part(past)" (past participle).
Preposition, where Type = "loc" (locative),
"dh" (directional), "tem" (temporal),
"des" (descriptive).
Inf!., with TNS parameter, similar to verbs.
Complementizer, where
Lev = "mat" (root clause), or
"emb" (embedded clause), and ,
Type = 'sent'' (sententjal complement) or
"rel" (relative clause).
Determiners, specifiers to noun phrases.

Lexicallnfo is actually a list stmcture, containing all the morphological and syntactic in­
formation which is specific to the lexical entry. The list may contain the follow information
structures:

CHAPTER 3. REPRESENTATIONS AND ANALYSIS

(46) Lexicallnfo = ftr(Ftr List)

subcat(Frame)

theta(±)

irr(List)

root(Word)
english(Eng)
german(Ger)
pl(Plural)
aux(±)

Morphological and inflectional
features, contained in FtrList.
Subcategorization frame, where
Frame is a list of subcategorized categories.
Indicates whether the verb 6-marks the subject,
theta(+) (yes), or theta(-) (no).
A list of irregular forms for
the entry.
The root, if the entry is irregular.
Specifies the English lexical equivalent.
Specifies the German lexical equivalent.
Specifies an irregular plural form.
Marks an auxilliary verb,
aux(+) (auxilliary), aux(-) (main).

The set of features contained in the ftr construct are drawn from the following:

(47) FtrList = per(Per)
num(±)
gen(Gen)
wh(±)
case(Case)
proper(±)

num(N,G,C)

Person, per(l), per(2), per(3).
Number, num(+) (plural), num(-) (singular).
Gender, gen(m) (masc.) gen(f) (fem.) or gen(n) (neut.).
Wh-item, wh(+) (e.g. who) or wh(-).
Case, case(X), X = nom, ace, or dat.
Indicate if a noun is proper,
proper(+) (proper), proper(-) (common).
Represent the triple of number, gender, and
Case, used for determiner forms (German only).

24

To reduce the size of entries, and the redundancy of information, default feature sets can be
specified for the individual categories of a language. When the entry for a word is retrieved, the
default FtrList of the category is consulted for any information not present in the entry itself.
Defaults may be specified as follows:

(48) defaults(Language, Category, DefFtrList).

The defaults for the present system appear at the beginning of the lexicon .for each language
(Cf. Appendix G).

3.1.2 The Morphology

Any given lexical item may have a variety of "surface" forms. That is, nouns have a plural form,
determiners may vary according to Case, number, and gender (for German, specifically), and
verbs may be tensed or appear in participle forms. Often, these forms can be constructed from

CHAPTER 3. REPRESENTATIONS AND ANALYSIS 25

the root word, by applying specific morphological rules1 • An obvious example is the addition of
"s" for the plural form of~. noun, or the addition of "ed" for the simple past of a verb. If the
various forms of a lexical entry can be constructed through the application of some predetermined
operations for that language, the item is said to be regula1·. If these rules fail to apply to a given
item, then it is irregular. Consider the plural form of "woman", which is not "womans", as our
pluralisation rule would suggest, but rather "women".

While the present system performs only limited morphological analysis, it is capable of an­
alyzing word suffixes. This permits the system to constiuct dictionary entries for the inflected
forms or regular words, thus greatly reducing the size of the lexicon. The suffix rules are specified
in the lexicon for each language, and have the following form:

(49) sufLtable(Language, Category, Infl.End, RootEnd, Features).

where,

(50) Language =
Category=
Infl.End =
RootEnd =
Features=

eng/ger
n/v/i
' '
' '
FtrList

The language for which the rule applies.
The category for which the rule applies.
The ending of the inflected form.
The ending of the root form.
The features associated with the inflected form.

The dictionary now consists of primarily two types of entries: 1) the root entries, containing
the syntactic features, and 2) entries for the irregular forms, which contain their inflectional
features, and a pointer to the root entry.

In fact, German presents a problem for the rather simple morphological analysis performed
by this system. Specifically, regular lexical items may not just vary the suffix, but also the prefix,
and possibly inner vowels. Although there may be formal schemes for deriving these variations,
they are too complex for this system and are treated as irregular occurrences.

3.2 Phrase Structure

We adopt here the version of X-theory presented at the end of Section 2.3. The rules are repeated
here for convenience:

(51) (a)
(b)
(c)

Xi-+ Y Xi
' Xi-+ Xi y
' where: i :::; 2, j :::; i, j 2: 0.

1 We a.re concerned here with generative morphology. Specifically, we account for the orthographic conventions
for representing variations in the morphology.

CHAPTER 3. REPRESENTATIONS AND ANALYSIS 26

We assume the Specifier position for all phrases appears as the first (highest and leftmost) pre­
adjunct, and that all adjuncts are sister to an X 2 node. The complements are those arguments
which are subcategorized by the head, and appear as sisters to the x 0 node or its X 1 projections.
The result is a strictly binary branching representation of X phrase structure.

To represent this structure, we introduce the "/" operator to represent dominance, and use
Prolog's list notation "[...]", to indicate sisterhood and precedence. Since the phrase struc­
ture trees are strictly binary, a list must contain exactly two nodes. As a trivial example, the
representation of "'Y dominates a and (3, where a and f3 are sisters and a precedes (3" is as follows:

(52) 'Y / [a , f3]

With the representation of these structural relations defined, we will now present the choice
of representations for the nodes of the tree. The classes of nonterminal and terminal nodes
correspond to the X projections and the "lexical" nodes respectively.

There are three possible nonterminal nodes. The first is the maximal projection. This is the
highest X 2 projection for the phrase (i.e. its root)2. We will call this the phrasal node, which
has the following form:

(53) xmax(Category, ID, Features, Constraints)

where Category is the phrasal category, determined by the head. ID is a unique identifier for
the phrase, used to distinguish it from other phrases. This is used by procedures which search
the tree for a specific phrase. Features is a list of terms which indicate the features (such as
agreement) and. properties (such as 0-roles, and L-marking) assigned to the phrase. Constraints
is used in syntactic analysis, and will be discussed in Section 4.2.

The remaining non-terminals represent the intermediate X 2 and X 1 projections. These are
simply represented as follows:

(54) (a) xmax(Category)
(b) xbar(Category)

where Category is the same as that for the maximal node. Note that the X 2 maximal
projection, and the X 2 intermediate projection are distinguished by their arity.

The terminal nodes are used to represent the actual lexical items, or leaves, of the parse tree.
Specifically, they may be simple lexical specifiers or adjuncts to the head of a phrase (i.e. X 0).

For these, we adopt the follow representation: · ·

2 We introduce the notion of the maximal projection as the "highest" X 2 projection of a phrase. This is not to
suggest that there is a third X level. The distinction being made here is a purely categorial one, not typological.
In general, the maximal projection refers collectively to all the X 2 projections. For convenience however, the
features of the phrase are attached to the highest node, and it is also used as the maximal projection for
purposes of m-command and government. This differs from [Chomsky 86a], which takes the first X 2 projection
as determining the m-command domain.

CHAPTER 3. REPRESENTATIONS AND ANALYSIS

(55) (a)
(b)
(c)

where,

spec(Category, Word, Features)
adj(Category, Word, Features)
head(Category, Word, Features)

Specifier
Adjunct
Head

(56) Category
Word
Features

= the category of the lexical item.
= the lexical i tern itself.
= the list of morphological/ syntactic features of the word.

Additionally, punctuation symbols have the following representation:

(57) punc(punc,Punctuation,Mode)

where,

(58) Punctuation = "?" or "."
Mode = "ques" or "decl"

27

· · Finally, we must be able to represent empty categories (ec's), which are phonetically null, but
nonetheless present in the structure. These have the general form:

(59) e_cat(Ca.tegory, Type)

Where Category represents the category of the position occupied by the ec, and Type indicates
whether the ec is an np-trace, wh-tmce or PRO, represented as "trace(np)", "trace(wh)" and
"pro", respectively.

3.3 Transformations

In this section, we will discuss the various types of movement transformations modeled by this
system. Specifically, we will examine the basic movement phenomena as presented in Section
2.5, and the conditions unde.r which they may occur in English and German. In as much as we
are accounting for only a subset of each of these la.nguages, we also only account for a subset of
possible transformations. Specifically, these a.re head-to-head movement involving V, I and C,
wh-movement to the front of a matrix sentence (i.e. indirect questions are not handled), and NP­
movement to a Case-marked position. These a.re fundamental substitution transformations, and
no attempt is made here to account for the various types of adjunction transformations possible.

'.

CHAPTER 3. REPRESENTATIONS AND ANALYSIS 28

3.3.1 X 0-Substitution

We take X 0-Substitution to be movement of an x 0 to another head position. Within this system
we account for only two such transformations: verb-raising and inversion.

Verb-raising is the movement of V to I, when I is not lexically filled. The result of the
transformation is that the verbal element is appropriately inflected by the AGR features present
in I. Consider for example the following two sentences:

(60) (a)
(b)

Mozart (TNSpaat] compose the sonata.
Mozart composed the sonata.

In this example, the inflection of compose in (60a) is the result of moving it to the head of the
inflected I phrase. As we might expect, the same holds for German as illustrated by the following
embedded sentence constructions (recall that VP and IP are head final):

(61) (a)
(b)

dass Brigitte nach Berlin fahren (TNSpresl
dass Brigitte nach Berlin fii.hrt

Inversion is the movement ofl to C, typically in the matrix clause (at least for our purposes).
This transformation accounts for the so-called Subject-Aux Inversion (SAi) phenomena which
appears in English and German question sentences. Consider the following:

(62) (a)
(b)

The girl (TNSpres] have read the book.
Has the girl read the book?

The generation of (62b) is the result of have moving first to I, where it receives it inflection
as above, and then to C, resulting in its pre-subject position. The same occurs in German, in
the analogous sentence: Hat das Miidchen das Buch gelesen, where haben raises to the final I
position, and then moves to the head of CP, at the front of the sentence. A difference arises
between the two languages however, in that all German verbs may move to C, while in English
only auxilliaries (e.g. have and be) are permitted to invert. The result is the insertion of the
semantically null "do" element in the I position, in cases where no auxilliary is present and
inversion is required3 • This is illustrated by the following grammatical/ungrammatical examples:

(63) (a) The woman [TNSpaat] write the letter.
(b) * Wrote the woman the letter?
(c) Did the woman write the letter?

In fact, inversion is an obligatory transformation in all German matrix clauses, resulting in
the so-called verb-second phenomena, when combined with topicalisation. Additionally, it occurs
in English wh-questions, both of these constructions are discussed below.

3 In the present system, this is accomplished by simply checking to see if inversion is to take place after raising.
If so, then do is inserted if no auxilliary can be raised. For further discussion, see Section 5.3 and the raise_t1erb
predicate in Appendix E.

CHAPTER 3. REPRESENTATIONS AND ANALYSIS 29

3.3.2 X-Substitution

We take X-Substitution to include any substitution transformation involving a maximal pro­
jection. We observed iu Sect ion 2.5 that such movement may only be to a specifier position.
This may be derived from the following: a.) maximal projections may only move to positions
where maximal projection can appear (i.e. not to an x0 position) by the St;ructure Preserving
Hypothesis, and b) movement to a object position would violate the Projection Principle.

In the present treatment we are concerned primarily with two possible types of X-Substi t11tion.
The first is movement to the SPEC,IP position, known as raising to subject, and the second is
movement to the SPEC,CP position, known as movement to COMP.

Raising to subject occurs in situations where an NP must move in order to receive Case. The
two possibilities are raising of an object to subject, as in passive constructions, and raising of
subject to subject . We are concerned here only with_ the latter. Consider the following examples:

(64) (a) e [TNSpre.,] seem John to like Mary.
(b) Johni seems ti to like Mary.

In this situation, the embedded subject must move to receive Case. An additional requirement
is. that the SPEC,IP position be a 8-position so as not to violate the 0-criterion. Finally, the trace,
ti, of the embedded subject must be properly governed so as to satisfy the ECP. Movement to
Comp accounts for the movement of a wh-phrase to the front of a clause. In the case of the
matrix clause, wh-movement is usually accompanied by inversion4 • Consider the following:

(65) (a)
(b)

The boy [TNSpres] have put what on the table.
Wha.ti has the boy p1.1t ti on the table?

In this example, the auxilliary verb inverts to the pre-subject position, and the wh-phrase
moves to the front of the. sentence in the SPEC, P position. The same phenomena occurs
in Ge1·man, as in the sentence: Was hat der Junge au/ den Tisch gelegt. In fact , the verb­
second phenomena of German is the result of inversion, and movement of some topic to the
SPEC,CP position. That ls, if no wh-phrase has moved to the SPEC,CP position, then some
other constituent is topicalised, for non question sentences. This is exemplified by the following:

(66) (a)
(b)

Der Junge das Buch auf den Tisch legen haben [TNSpres],
Das BuclL hat der Junge auf den Tisch gelegt.

In this example, haben raises to I and then inverts to C. In addition, some constituent is
topicalised, in this case das Buch, resulting in the verb-second configuration of the matrix clause.

4 Except in those cases where the matrix subject is the wh-phrase.

Chapter 4

Parsing with Principles

In constructing a parser based on the principles of GB theory, a variety of approaches may be
taken. In Sharp's system [Sharp 85], possible S0 structures are generated according to X phrase
structure, and then well-formedness is determined by the principles. The principles are specified
as filters on possible S-structure configurations. If a constraint of some principle is violated, the
parser backtracks, generating a new S-structure. This process continues until the parser generates
a grammatical S-structure.

The efficiency problems of the above strategy are obvious. That is, by postponing the ap­
plication of well-formedness conditions until after the entire S-structure has been generated the
effects of backtracking are magnified. An alternative approach is to apply relevant constraints
during the parsing stage. In this way it becomes possible to block erroneous parses as early as
possible. The model adopted here is roughly illustrated in Figure 4.1.

TheECP
Principles

Subjacency

Sentence
X-bar Parser

(P.P., Parameters, Lexicon)
S-Structure

Figure 4.1: The Parsing Model

30

CHAPTER 4. PARSING WITH PRINCIPLES 31

For our purposes, we take S-structure to include a representation of the sentence's phrase
structure along with antecedent-trace relations of moved constituents (i.e. chains). In the present
system, we exclude the recovery of NP coreference (Binding theory) and the reference of PRO
(Con,trol theory).

The syntactic analysis component of the system consists primarily of two modules. Specifi­
cally these are the Parsing Module and the Constraint Module. The parsing module generates
candidate S-structures. As each phrase is completed, the constraint module is called to apply
relevant principles and constraints.

The parsing module employs an X-parser 1'esembling that developed by Sharp. That is, tl1e
"language independent" rnles of X -theory are represented in Definite Clause Grammar (DCG)
notatjon. Thls includes the basic X rules, as well as those for parsing arguments, adjuncts1

and specifiers. The actual phrase structure rules used here are an instantiation of the X-rules
presented in Chapter 2, tailored for parsing by DCG's. In addition to X-theory, the parser
uses subcategorization information projected from the lexicon, combined with the Projection
Principle, and language specific information about possible choices for adjuncts and specifiers.

The X-parser constructs phrase structure trees du.ring the derivation. The constraint module
is applied to these trees as each maximal projection is parsed in a bottom-~p fashion. The result
is .a "co-routining" of the parser and the principles , whjch ls not unlike the approach taken by
Do.rr [Dorr 87]. Furthermore, a facility is provided for passing lnformation whlch ls relevant to
constraints, up the tree. The result is that violation of a given constraint may be detected as
soon as possible, forcing the parser to backtrack at that point where the problem o curred.

In th.is chapter we will present the design , implementation, a.nd operation of both the X -parser
and the constraµit module. These lwo modules constitute the syntactic analysis component of
the system.

4.1 The Parsing Module

The purpose of the X-parser is to generate possible phrase structure representations for a given
sentence. Since we are recovering S-structure, not D-structure, K ".. theory alone is insufficient. The
parser must also be able to account for moved constituents and hypothesize empty categories.
To th.is end several elements of 0-theory are incorporated directly in the parser. Specifically, the
parser accesses sub categorization information oflexical items to drive the parsing of arguments. If
a subcat1?gorized phrase js not present, then it. is assumed to have moved, and an empty category
is inserted. Furthermore, the parser assumes that all !P's have a Subject sp~cifier. These two
features essentially capture the Extended Projection Principle. 0-marking and L-marking of
subca.tegorized constituents is also performed by the parser, but 0-marking of the subject and
enforcement of the 0-criterion are handled by the constraint module.

The parser is also provided with language specific knowledge about where possible adjuncts
and spl'.! ci.:fi ers may appear . Information concerning head position (w.r.t. arguments) is specified
for the categories of each language. Additionally, information about where moved elements may

.,

CHAPTER 4. PARSING WITH PRINCIPLES 32

appear is included. These phrase structure parameters are accessed by the parser du.ring the
parsing stage. In this way, a distinction is maintained between the "universal" X-parser and the
language specific parameters.

In the parsing module, a logic grammar is used to specify the X phrase structure rules. Logic
grammars, originally developed by Colmerauer, permit the specification of typical rewrite rules
using logical terms as grammar symbols (Colmerauer 78]. That is, grammar symbols may be
functors containing arguments. The arguments, or informants [Dahl etal. 86], may be used to
pass information via Prolog's inherent unification mechanism.

The specification of logic grammar rules is itself a specification of a parser. That is, Prolog's
underlying theorem prover can be used to derive or parse strings for the language specified.
As Prolog uses a top-down, left-to-right, backtracking theorem prover, the result is essentially
a recursive descent parser for the logic grammar 1 • In the present system we use the Definite
Clause Grammar (DCG) formalism [Pereira et al. 80], which is a restricted form of Colmerauer's
Metamorphosis Grammars (MG) [Colmerauer 78].

4.1.1 Parsing X Phrase Structure

The X phrase structure rules outlined in Sections 2.3, and 3.2, present a problem for the DCG
formalism. Specifically, they contain left recursive rules. The phrase structure template adopted
for parsing purposes is roughly the following:

(67) (a) X - Spec X 2

(b) X 2
-+ Adjuncts X 1 Adjuncts

(c) xi. -+ ArgumentsX0

(d) xi - X 0 Arguments

It is important to note that this is not assuming a three level X system. The purpose of
proposing distinct rules for (67a&b) is to permit the parsing of only one Specifier, and enforce
its phrase initial position (i.e. the highest, leftmost position, at least for English and German).
The DCG rules corresponding to (67a& b) are specified as follows:

(68)
xmax(L,C,Tree,S,NS) -->

xmax2(L,C,Tree,S,NS) -->

spec(L,C,TXmax,STree,S,Sl),
xmax2(L,C,TXmax,S1,NS),
{ agree(L,STree,BTree),gen_ID(BTree),
constraints(L,C,BTree, Tree)}.

adjunct(L,pre,C,TApost,Tree,S,Sl),
xbar(L,C,TXbar,Sl,S2),
adjunct(L,post,C,TXbar,TApost,S2,NS).

1 In fa.ct, other parsing strategies may be used in parsing logic grammars. See for example (Abramson et al. 88]
which employs the LL(k), LALR(k), and Earley parsing algorithms, among others.

CHAPTER 4. PARSING WITH PRINCIPLES 33

These define the rules for parsing the maximal and intermediate X2 projections for a language
L, of a category C. The th.ir d argument, TREE, contains the parse tree represen tation of the
current phrase. It is important to note that the parse tree does not exactly reflect the derivation
of the DCG rules used , but rather is constructed in accordance with the representations presented
in Section 3.2. The final two arguments represent the old and new lookahead lists, S and NS,
respectively.

The three Prolog calls at the end of the first rule invoke the agree, gen_ID and constmint
routines. The former ensures that the agreement relations between various elements are main­
tained (s uch as Spec/Noun and Subject/Verb agreement). The genJD predicate simply assigns a
unique identifier to the maximal projection. The latter calls the constraint module, which applies
each of the relevant GB principles to the current subtree.

The following rules correspond to those of (67c&d), used for parsing arguments:

(69)
xbar(L,C,Tree,S,NS) -->

xbar(L,C,Tree,S,NS) -->

xbar(L,C,Tree,S,NS) -->

{head_posi tion(L, C,initial) ,! } ,
xmin(L,C,Args,HD,S,Sl),
{ stack(L,initial,HD ,S 1,S2)},
arg(L,post,C,Args,HD,[],Tree,S2,NS).

{head_posi tion(L, C,final),
HD=X/head(C,_,_),
stack(_,final,head(C,W,_,F),S,R),!,
getargs(L ,head(C, W ,As,F))},
arg(L,pre,C,As,HD ,[],Tree,R,S1),
xmin(L,C,As,HD,Sl,NS).

{head_position(L,C,final),!,
poss_empty(L,C,As),
HD=X/head(C,empty,F)},
arg(L,pre,C,As,HD,[],Tree,S,NSl),
xmin(L,C,As,HD,NSl,NS).

Each rule begins by checking the head_position parameter, which determines whether the
head of a phrase is initial or final with respect to its arguments. The parameter has the following
form:

(70) head_position(L,C,Position).

where for a language L, and a phrase of category C , Position specifies t he head as being
"initial" or "final" with respect to its argumen ts. Tllis head position parameter is language
specific, anti must be set for each category f a language. W take aU categories to be initial,
except for V and I in German.

CHAPTER 4. PARSING WITH PRINCIPLES 34

The first rule, for head initial phrases, is straight forward. The head is parsed by xmin,
which returns the sub categorization frame in As. Each argument is then parsed by arg, which is
discussed in more detail below. The second two rules handle head final cases. Since the head's
subcategorization frame is necessary to parse the initial arguments, the routine gets the head by
inspecting the lookahead stack (using the stack predicate). If the head is found, then getargs is
used to retrieve the frame. The final rule handles the situation where the final head is not present,
either due to absence, or movement. The poss_empty parameter, shown in (71) specifies that a
category C for language L may be empty for the above reasons. The default subcategorization
frame, for categories such as C and I which are predictable, is stated in As.

(71) poss_empty(L,C,As).

The final two rules are used to parse the X 0 level of a phrase:

(72)
xmin(eng,C,Args,Tree,[HDIS],S) -->

xmin(L,C,Args,xbar(C)/Tree,S,S) -->

[],
{HD = head(C,W,Args,F),
poss_move(eng,c(mat/sent),C,_),
head_anal(eng,C,W ,HD,initial),
getargs(eng,head(C,W,Args,F)),
Tree= xbar(C)/head(C,empty"-),!}.
head(L,C,Args,Tree).

The first rule handles the case where a V or I element has moved to the matrix C position
(i.e. inversion), and is not present at I. The purpose of the clause is to determine what the moved
element was, so that the appropriate subcategorization information can be retrieved. The second
rule simply parses the head of the phrase as follows:

(73)
head(L,C,As,head(C,W,F))

head(L,C,As,head(Cat,W ,F))

head(L,C,As,head(C,W,F))

head(L,C,As,head(Cat,W ,F))

head(L,C,As,head(C,empty,F))

--> [Word],
{head_anal(L,C,Word,HD,initial),!,
HD = head(C,W,_,F),
getargs(L,head(C, W ,As,F))}.

--> [Word],
{head_anal(L,Cat,Word,HDJnitial),
HD = head(Cat,W,Args,F),
poss_move(L ,C, Cat,As),! } . . .

--> [head(C,W,_,F)],
{ !,getargs(L,head(C,W ,As,F))}.

--> [head(Cat,W,Args,F)],
{poss_move(L,C,Cat,As),!}.

--> D,
{poss_empty(L,C,As),!}.

CHAPTER 4. PARSING WITH PRINCIPLES 35

The first two rules parse initial heads. The first rule will parse a head, and retrieve its
subcategorization frame, used by the xbar rules. The second rule handles the case where a head
of category Cat, has moved to head of a phrase of category C. This possibility is verified by the
poss_move parameter which has the following form:

(74) poss..move(L,Cl,C2,Args).

This states that for language L, a head of category C2 may move to the head of a phrase
of category Cl. The default subcategorization frame for Cl is specified in Args. The various
possibilities for head movement must be stated for each language, as they vary from one to the
other, and are not handled in a principled fashion by the present system. The second pair of
rules are similar to the first two, with the exception that they parse final heads which have been
inserted on the lookahead stack. The final rule parses those heads which are not present, and
calls the poss_empty parameter mentioned above.

4.1.2 Parsing Specifiers, Adjuncts, and Arguments

In addition to the X rules outlined above, rules are necessary to parse the specifiers, adjuncts
arid arguments referred to by the above rules. That is, the DCG rules for the spec, adjunct and
arg non-terminals must be specified.

The rules for parsing specifiers are relatively straightforward. The first clause parses the
specifier, while the second clause permits the specifier to be absent for certain categories.

(75) . .
spec(L,C,TX,xmax(C,ID,[),Cons)/[TSpec,TX],S,NS) -->
spec(L,C,X/R,xmax(C,ID,[],Cons)/R,S,S) -->

no_spec(L,(n(_),v(_),p(_),c(mat/sent)]) :- !.

spec(L,C,TSpec,S,NS).
(], { no_spec(L ,CList),
member(C,CList)}.

The choice of specifier is set for each category of a language. In this system, we take wh­
phrases to be the specifiers for CP, and determiners for NP, in English. German is similar, with
the addition that it may take a topic as a specifier to the matrix CP. We return to the parsing
of wh-phrases and topics below.

The rules for parsing adjuncts are very similar to those for specifiers. The first rule below
handles a special case for German, where the highest verb dominated by an infinitival IP must
adjoin to the right of I. This can be illustrated by the sentence Ich versuchte dds B uch zu sehen
("I tried to see the book"), where sehen has moved to an adjoined posit ion to the right of zu 2•

Note that the remaining two rules are ordered such that the parser will first assume no adjuncts.

2 In fa.ct, this is a case where head movement is an adjunction transformation, in contrast with head-to-head
movement which is substitution. This is the only example of adjunction dealt with by the present system, and
it is incorporated only because of its obligatory application in German infinitivals.

,,

CHAPTER 4. PARSING WITH PRINCIPLES 36

This generally improves parse times, and also tends to yield preferred attachment preferences for
PP's in accordance with the Right Association principle [Kimball 73) 3

•

(76)
adjunct(ger,post,C,TX,xmax(C)/[TX,Tadj),S,S)

adjunct(L,Pos,C,X/Tree,xmax(C)/Tree,S,S)
adjunct(L,pre,C,Tree,xmax(C)/[Tadj,Tree),S,NS)
adjunct(L,post,C,Tree,xmax(C)/[Tree,Tadj),S,NS)

-->

-->
-->
-->

{C = i(tns(-)),!},
[head(v(T),W,F)],
{Tadj = head(v(T),W,F)}.
[].
adj(L,pre,C,Tadj,S,NS).
adj(L,post,C,Tadj,S,NS).

The possible choices of adjuncts in the present system are PP and CP (relative clause) adjuncts
to NP's, and PP adjuncts to VP's. The choices of specifier and adjunct possibilities appear in
Appendix C.

The rules for arguments attempt to parse each constituent in the subcategorization frame for
the head of the phrase. The rules are as follows:

(77)
arg(L,Pos,C,0,HD,ALst,T,S,S) -->

[),{build_tree(Pos,C,HD,ALst,T)}.
arg(L,Pos,C,As,HD,ALst,T,S,NS) -->

{select(L,C,As,A,NewAs)},
a_xmax(L,C,A,Tx,S,Sl),
arg(L,Pos,C,NewAs,HD,[TxlALst),T,Sl,NS).

arg(L,Pos,C,[AIArgs),HD,ALst,T,S,NS) -->
a_xmax_e(L,C,A,Tx),
arg(L,Pos,C,Args,HD,[TxlALst],T,S,NS).

The first three arguments indicate language, head position, and category. The fourth infor­
mant is the list of categories of the subcategorized constituents. The fifth and sixth arguments
represent the head of the phrase and the list of parsed arguments. The first rule is selected when
all the arguments have been parsed. It calls build_tree with the head and list of parsed arguments,
to construct the phrase structure representation which is returned in the seventh informant T.
The second rule attempts to parse an argument by calling a-1:max, and then calls arg recursively.
The select predicate is used to retrieve an argument category from the subcategorization frame.
This routine can be used to enforce the constituent order requirements for a. ~pecific language
(i.e. fixed or free). The third rule is applied if the argument is not present, and parses an
empty category using a-1:max_e. The a_xmax and a_xmax_e predicates are identical to xmax and
xmax_e except that the former perform the 0 and L-marking of the parsed phrases, since they
are subcategorized.

The following special rules are introduced to parse wh-phrases:

3 For further discussion of the RA principle and parsing, see [Pereira 85].

CHAPTER 4. PARSING WITH PRINCIPLES

(78)
wh_phrase(L,c(mat/ _),Tree,S,NS) -->

wh_phrase(L,c(emb/T),Tree,S,S) -->

{ empty_cat(L,C)},
wh_xmax(L,Cat,C,Tree,S,NS).
[],{gensym(e,ID)},
{ set_ec(L, T ,ID ,Tree)}.

37

The first rule attempts to parse a lexical wh-phrase in the specifier position of the matrix
CP. Specifically, it will try to parse any phrase that can have wh status, which is specified by
the empty_cat parameter for each language (taken to be NP and PP here). The wh_xmax rule
is similar to that for xmax with the addition of a check for wh-morphology. The second clause
will parse an empty operator as the specifier of a relative clause or a comp-trace as the specifier
of an embedded sentence. The comp-trace may be used in the construction of chains, as an
intermediate position.

Topics with verb-second are a German phenomenon, and are treated here roughly as wh­
phrases. Specifically, the topic is a constituent that has moved to the matrix SPEC,CP position,
but is not a wh-phrase (i.e. it does not have wh morphology) 4 • The rule for parsing the topic is
as follows:

(79)
topic(L,c(mat/sent),Tree,S,NS) --> { empty_cat(L,C) },

spec(L,C,TXmax,XTree,S,Sl),
xma.x2(L,C,TX.ma.x,S 1,N S),
{ add_feature([ant(+),case(_)],XTree,Tr),
agree(L,Tr ,BTree),gen_ID(BTree),
constraints(L,C,BTree,Tree)}.

Again, this is similar to the xmax rule, with the exception that the topic is marked as an
antecedent, much as a wh-phrase. This is accomplished by adding the ant(+) term to the phrase's
feature list, using the add_feature predicate.

4.2 Principles as Constraints

The X-parser uses X-theory and elements of 0-theory (notably, the Projection Principle and sub­
categorization) to generate candidate S-structures. During the course of parsing, the constraint
module is consulted for the purpose of constructing chains and verifying well-formedness. Specif­
ically, the constraint module is invoked as each maximal projection is completed, as shown in the
first clause of (68). The effect is that the constraints are applied in a bottom-up, left-to-right
manner.

4 Topicalisation phenomena in German is much more complex than the treatment here reflects. In reality, a variety
of phrasal categories may be topicalised, and the transformation is not restricted to matrix clauses. For more
discussion see [Haider et al. 85].

CHAPTER 4. PARSING WITH PRINCIPLES 38

Each principle comprises a component of the module. Here, these are taken to be the ECP,
Case theory, 0-theory and Bounding theory. Each component is constructed such that only the
subtree of the current maximal projection is accessible. That is, no information about higher,
previously parsed constituents is available5 • In this way, the constraints can be considered "local"
in a very strict sense. Specifically, a constraint may affect only the m-command domain for the
head of the current projection - a natural restriction as many of the principles are stated in terms
of government.

While the constraints may be formulated so as to require only information that is contained
in the current subtree, this can be very inefficient. The ECP for example will spend time looking
for ec's in every subtree, even when there are none present. Additionally, some mechanism is
necessary to keep track of partially constructed structures, notably chains. To deal with both
of these problems we introduce the notion of a constraint list. Specifically, these lists maintain
that information about the current subtree which is of direct relevance to the principles. That
is, once the constraint module has been applied to a phrase, it may wish to pass information up
the tree, for later consideration. The constraint lists are stored as the fourth argument of the
phrasal node, shown in (53) and repeated .here for convenience:

(SO) xmax(Category, ID, Features, Constraints)

The Constraints variable is left uninstantiated by the parser, for use by the constraint module.
The constraint module first merges the constraint lists of the immediately dominated phrases.
As each principle is applied, the list may be modified and information no longer relevant is
removed. When all the constraints have been applied, any new information may be added to
the list, and Constraints becomes so instantiated. The constraint list a.ffiliated with a phrasal
node therefore represents the "state of affairs" for that node's subtree at the conclusion of the
constraint module's application. We refer to information added to the constraint list as constraint
requests, since their purpose is to request the attention of the individual constraints. The range
of possible requests is as follows:

(81) (a) case(ID,Case)
(b) theta(ID)
(c) ec(Cat,ID,Type)
(d) ant(Type,Cat,ID)
(e) chain(Type,ID,Cat,Case,Theta,Chain)
(f) c_chain(Type,ID, Cat ,Case, Theta,Chain)

A request for Case by an NP.
A request for an external 0-role.
An ec requests an antecedent.
An antecedent requests a trace.
A partially constructed chain.
A completely constructed chain.

In each case, the ID argument is used to indicate the position of the phrase which issued
the request. That is, ID identifies the location of the NP requesting Case, the ec requesting
an antecedent, and so on. In (81c-f), Cat simply indicates the category of the individual trace,

5 Recall that the parser does employ a top-down strategy, making access to the left context theoretically accessible.
In the present system however, only the current subtree is available at each node.

CHAPTER 4. PARSING WITH PRINCIPLES 39

antecedent, or chain (i.e. PP or NP). In the case of empty categories, Type is used to indicated
if the ec is np-trace, wh-trace, or PRO. For antecedents however, Type indicates whether the
moved phrase is in an A or A position (i.e. as "a" or "abar"). For chains, Type is similar to that
for antecedents, with the additional possibility of "pro" chains. This will be discussed in more
detail below in the Section 4.2.5. In (81e&f), Case and Theta represent the Case and (} marked
position of the chain, while Chain is a list of each of the positions which make up the chain.
Each of the constraint requests will be discussed in more detail with respect to their function in
the Sections below.

4.2.1 Applying Constraints

The highest level of the constraint module involves three stages, as shown in the following Prolog
segment:

(82)
constraints(L,C,Treel,Tree2) :­

get_constraints(Treel,Cons),
satisfy _constraints(L,C, Treel ,Cons, Tree2,Constraints),
add_constraints(Tree2, Constraints).

The get_constraints predicate merges the constraint lists of each maximal projection which is
immediately dominated by the current phrase. In doing so the constraint module becomes aware
of what chains have been partially constructed, and what requests remain to be satisfied. The
satisfy_constraints predicate appli es each of the constraints to the phrase, passing Lhe revised tree
and constraint list as arguments. The Prolog code is stated simply as follows:

(83)
satisfy_ constraints(L, C, Treel ,Constra.ints,Tree3 ,N ewConstraints) :­

ecp (L C,Treel,Constraints),
case_theory(L,C Treel,Tree2,Constraints,Constraints2),
theta_theory(L,C,Tree21Constraints2 ,Tree3,Constraints3),
subjacency(L ,C Tree3 Constra.ints3,NewConstraints).

We discuss each of these constraint routines in the remaining subsections of this chapter.
The add..constraints routine generates any new constraint requests appropriate for the phrase

itself. Specifically, "case" requests are issued for each lexical NP, "ant" requests are issued for
each non e-marked argument, and "theta" requests are issued by VP's which assign an external
e-role. The "ec" requests are not added by this predicate, but are inserted into the constraint list
during parsing by the xmax_e and a_xmax_e rules. The "chain" requests are created and updated
by the subjacency routine, based on ec's.

CHAPTER 4. PARSING WITH PRINCIPLES 40

4.2.2 The ECP

The Empty Category Principle (ECP) is instrumental in licensing empty categories. From a
parsing point of view, it determines whether an empty category is a trace or PRO. We adopt the
ECP basically as stated in (22), and repeat it here for convenience:

(84) Extended ECP: If a is an empty category, then
(i) a is trace iff it is properly governed
(ii) a is PRO iff it is ungoverned.

In addition, we stated that trace was properly governed if and only if it was governed by
lexical head, or locally A-bound (see (23)). The ECP constraint deals only with those cases
where proper government is government by a lexical head, and defers those cases where a trace
may be A-bound until later. That is, it determines if an ec is a trace, by checking to see if it is
governed by a lexical item. The following specifies the appropriate Prolog code for this:

(85)
ecp(LJ(_),Tree,Constraints) :- !.
ecp(L,C,Tree,Constraints) :-

exists_ec(Constraints,Tree,ID, Type) - >
((properly_governs(L,C,Tree,xmax(Cat,ID,_,_)) - >

Type= trace(WH) ; Type= pro),
ecp(L,C, Tree,Constraints)),!.

ecp(L,C,Tree,Constraints) :- !.

exists_ec(Constraints,Tree,ID, Type) :-
member(ec(_,ID,Type),Constraints),
var(Type).

The first clause causes the constraint to ignore a subject ec, since it won't be governed by a
lexical category within the IP projection. Determination of the subject as either trace or PRO,
is decided by virtue of it being locally A-bound or not. This is not performed by the ecp routine,
but rather by the Subjacency constraint or the Case constraint, both of which are discussed
below.

The second clause captures the rest of the ECP definition, which states that if an ec is
governed by a lexical category it must be trace, and is otherwise PRO. For our purposes, the
proper_government predicate is defined strictly as government by a lexical head (i.e. N, V, A, or
P)6. In this clause, the first goal checks if there exists an empty category in the constraint list.

6 In the present system, adjectival phrases are not considered. So in fact, only N, V, and Pare taken to be lexical
heads here.

CHAPTER 4. PARSING WITH PRINCIPLES 41

Then, if the ec is properly governed7 it is marked as a trace, otherwise as PRO. Note, since PRO
can only appear in subject position, this predicate will never actually mark an ec as PRO in a
grammatical situation.

4.2.3 Case Theory

In the present system, Case theory has two effects. Firstly, it assigns Case to phonetically realised
noun phrases. That is, if a noun phrase has requested Case, it must be assigned Case by the
governing lexical item. Secondly, once an empty category has been identified as a trace (by the
ECP), Case theory is used to determine if it is an np-trace (i.e. it is not assigned Case) or a
wh-trace (Le. it is assigned Case) 8 • Note, that a subject ec of a tensed clause will not be dealt
with by the ECP constraint, but will be marked as wh-trace by the Case routine. The high-level
predicate for the Case principle is as follows:

(86)
case_theory(L,C,Treel,Tree3,Consl,Cons2) :­

case_assigner(L,C,Treel, Trans),!,
case_mark)exical(Treel,Tree2,Trans,Consl,Cons2),
case_mark_traces(Tree2,Tree3,Trans,Cons2),!.

case_theory(L,C,Tree,Tree,Cons,Cons) :- !.

The first goal, case_assigner, determines whether or not the head of the current maximal
projection is a Case assigner. If not, then the predicate trivially succeeds, and application of the
constraint is abandoned. If so, then any Case requests must be satisfied. The most crucial of
the requests is that of a lexical NP, which if not satisfied will cause the parser to backtrack. The
predicate for Case marking the lexical NP's is as follows:

7 1n the present system we take t he m-commat1d doma.in of a. gi ven licad to be everything dominated by its
highest maximal projection. This i contrary to Chomsky's lJarriers formula.Lion [Chomsky 86a], in which the
m-comma.nd domain js determined by the fir:it ma.xiroal projection dominating the head. In this way· we predict
that an ec adjunct of a lexical category is trace, and not PRO.

8 This is included in Chomsky's statement of the Generalised Empty Category Principle [Chomsky 81a) which is
stated as follows:

Generalised ECP: If a is an empty category, then
(i) a is PRO ii and only if it is ungoverned
(ii) a is trace if and only if it is propedy governed
(iii) a is a vaciable on ly if it is C11.Se-rnarketl

CHAPTER 4. PARSING WITH PRINCIPLES

(87)
case_mark_lexical(Treel,Tree3,Trans,Consl,Cons3) :-

remove(case(ID, Case), Cons 1, Cons2), ! ,
governed(xmax:(n(_) ,ID,_,_), Treel, Trans),
mark_node(ID,case(ID),Treel,Tree2),
case_mark_lexical(Tree2,Tree3,Trans,Cons2,Cons3),!.

case_markJexical(Tree,Tree,Trans,C,C) :- !.

42

If an NP dominated by the current maximal projection requires Case, then the case{ID, Case)
request will appear in the constraint list. This request indicates the location of the NP (i.e. the
node ID), and the Case requested (e.g. nominative, accusative, etc.). If the NP is governed, then
it is Case-marked. This is accomplished by adding the case{ID) feature to the NP's feature list,
using the mark_node predicate. If the NP is not governed by the Case assigner, then the routine
fails. Note that wh-phrases and topics do not issue a Case request, since their traces must by
Case-marked.

If there exists a trace in the current set of constraint requests, Case theory is used to dis­
tinguish np-trace from wh-trace, as mentioned above. The predicate for Case marking traces is
specified as follows:

(88)
case_mark_traces(Treel,Tree3,Trans,Constraints) :-

exists_trace(Constra.ints,Treel,ID,WH) ->
(governed(xmax(Cat,ID,_,_),Treel,Trans) ->

(mark_node(ID,case(ID),Treel,Tree2), WH = wh) ;
(Tree2 = Treel, WH = np)),

case_mark_traces(Tree2,Tree3,Trans,Constra.ints),!.
case_mark_traces(Tree, Tree, Trans,Constraints) :- !.

exists_trace(Constra.ints,Tree,ID,WH) :-
member(ec(Cat,ID ,trace(WH)),Constraints) ,var(WH).

The first goal checks to see if there are any traces. If there is a trace, the predicate determines
if it is governed, and if so the node is Case marked (as for lexical NP's), and the trace is marked
as a wh-trace. If the trace is not Case marked, then it is marked as an np-trace.

4.2.4 0-Theory

While 0-marking of arguments is performed by the parser, 0-marking of the subject is controlled
by the constraint module. The 0 constraint only applies at IP, and succeeds trivially for other
maximal projections. Specifically it handles two cases: that where the subject is assigned a 0-role,
and that where it is not.

The first case is implemented by the following clause:

, ,

CHAPTER 4. PARSING WITH PRINCIPLES

(89)
theta_theory(LJ(_) ,Treel,OldCons,Tree2,NewCons) :-

remove(theta(+),OldCons,NewCons),!,
Tree! = X/[Subjl,Rest),
Subjl = xma.x(_,ID,_,_)/_,
add_f eature(theta(ID) ,Subj I ,Sub j2),
Tree2 = X/[Subj2,Rest].

43

If the subject is assigned a 0-role, then the theta(+) term will be present in the constraint
list. If so, the subject position is marked as receiving a 0-role by adding the theta(ID) feature to
the subject node, where ID indicates the subject's position.

The second clause handles the situation where the subject is not assigned a 0-role, indicated
by the lack of the theta(+) term in the constraints list. This possibility is treated by the following
clause:

(90)
theta_theory(L,i(_),Tree,OldCons,Tree,NewCons) :­

\+ member(theta(+),OldCons),
Tree = X/[Subj,_],
\+ pleonastic(L,Subj),
\+Subj= _/e_cat(_,_),!,

Subj = xmax(_,ID,_,_)/_,
append([ant(a,n(_),ID)],OldCons,NewCons).

theta_theory(L,C,Tree,Constraints,Tree,Constraints) :- !.

pleonastic(eng,NP) :- get_head(NP,head(_,it ,_)).
pleonastic(ger ,NP) :- get_head(NP,head(_,es,_)).

In this case there are two possibilities: 1) the subject is a pleonastic element (e.g. it or es)9,
or 2) the subject is occupied by a referential NP which has received its 0-role elsewhere. In the
case of the former, the predicate simply succeeds. In the latter instance, the requirement that
the subject is an antecedent to an np-trace is added to the constraint list. This is done by adding
the term ant(a,n(-J,ID) to the list, where "a" indicates the antecedent is in an A-position, "n(-)"
indicates it's an NP, and "ID" specifies its location. This constraint term is described in the
following section, which discusses the implementation of Bounding theory.

4.2.5 Subjacency and Movement

In this section, we discuss the treatment of moved constituents. Specifically, this section of the
constraint module is concerned with the recovery of chains. This involves initialising chains when

9 English in fact has another pleonastic element, "there".

CHAPTER 4. PARSING WITH PRINCIPLES 44

0-marked traces are encountered, and prepending each Subjacent intermediate position to the
chain until the antecedent is found. In addition to the Subjacency principle, this routine incor­
porates elements of the ECP, Case and 0-theory. More precisely, the Case filter is verified by
ensuring that each NP chain receives Case exactly once. The 0-criterion is enforced by requiring
that each chain receive exactly one 0-role. Finally, a mechanism is introduced whereby a subject
ec of an infinitival can be determined as either np-trace or PRO, thus completing the implemen­
tation of the ECP. This is accomplished by introducing "PRO" chains, which have the effect of
determining whether or not the ec is A-bound. In the discussion that follows, we will present in
more detail how the chains are constructed, and how the above principles are incorporated.

The highest level predicate of the subjacency routine is as follows:

(91)
subjacency(L,C,Tree,OldCons,NewCons) :­

bind_traces(L,C,Tree,OldCons,Consl),
check_pro_chains(L,C,Tree,Consl,Cons2),
\+ member(barrier(ID),Cons2),
barriers(L,C,Tree,Cons2,NewCons).

· The first goal, bind_traces, controls the construction of chains. The second goal, as we shall
see, is involved in implementing the remaining portion of the ECP. The third goal ensures that
Subjacency is not violated, while the final goal determines if the present node is a barrier or not,
for "higher" applications of the constraint.

The bind_trp,ces predicate is by far the most involved. Its function is to initialise, construct,
and close chains. The first two clauses, shown in (92) handle the cases where a chain of unknown
type is present in the constraint list. These chains are created when an ec is found in a subject
position of an infinitival IP (and may be either PRO or trace). We take advantage of the idea
that if the IP is dominated by a CP, the ec may be locally A-bound, but if the IP is dominated
by a VP, the ec must be properly governed (by the V) and hence be an np-trace. As a result,
if the first node dominating the chain is a CP, then we suggest that the chain is of type "pro",
meaning it may or may not be locally A-bound. We will return to this possibility below in the
discussion of the check_pro_chains predicate. If the first node dominating the chain is a VP, then
we know the subject of the embedded IP is an np-trace, since an intervening CP node would
have caused the previous clause to be applied. In this case the chain must be an A-chain (i.e.
type is "a"). This occurs in subject raising contexts, with verbs like seems, and is handled by
the second clause.

CHAPTER 4. PARSING WITH PRINCIPLES

(92)
bind_traces(L,c(_) ,Tree OldCons ,NewCons) :-

member(chain(Type ,ID, CC, Case, Theta,List), Old Cons),
var(Type),!,
get_head(Tree,head(_,empty,_)),
Type=pro,
bind_traces(L,c(_),Tree,OldCons,NewCons),!.

bind_ traces(L, v(_), Tree, Old Cons ,N ewCons) :-
member(chain(Type,ID, CC, Case, Theta,List), 01d Cons),
var(Type),!,Type=a,set_last(trace(np),List),
bind_traces(L, v(_) ,Tree,OldCons,N ewCons) ,!.

45

The third clause shown in (93), handles the closure of chains. This occurs when the antecedent
has been reached, and added to the chain. The first goal indicates the possible relationships which
may hold between an antecedent and its chain. That is, if the antecedent is in an A-position,
so must the current head of the chain (thus forbidding movement from an A to an A position).
If the antecedent is in an A-position, then any type of chain is possible (i.e. "a", "abar", or
"p~o"). The second and third goals simply remove the antecedent and chain from the constraint
list", while the fourth sets the tail ec of the chain to wh-trace, if it was a pro-chain. Finally we
insert the completed chain, or c_chain, into the constraint list.

(93)
bind_traces(L,C,Tree,OldCons,NewCns) :-

member((At/Ct),((a/a),(abar /a),(abar /abar),(abar/pro)]),
remove(ant(At,CC,ID),OldCons,Cnsl),
remove(chain(Ct ,IDC ,CC ,Case, Th,List),Cnsl,Cns2),
(Ct= pro,set_last(trace(w h) ,List) ; true),
subjacent(ID,IDC,Tree,Cns2,Cns3),
agree_case(ID,Tree,Case,Th),
append((c_chain(At,ID,CC,Case,Th,(ant(At,CC,ID)IList])],Cns3,NewCns),!.

The following clauses handle the creation of new chains. The first creates a chain of unknown
type for the subject of an infinitival IP, as mentioned above. The second may bind an intermediate
trace to an existing, Subjacent chain via the bind_to_chain predicate. Alternatively, it will initiate
a chain for a trace in a 0-marked position. The make_chain routine is relatively .straightforward,
and the reader is referred to Appendix D, for a listing of the Prolog code.

(94)
bind_traces(L,i(tns(-)),Tree,OldCons,NewCons) :-

exists_ec(Old Cons, Tree,ID, Type) - >
make_chain(Tree,ec(Cat,ID,Type),Unknown,OldCons,Consl),

bind_traces(L,i(tns(-)),Tree,Consl,NewCons).

;

CHAPTER 4. PARSING WITH PRINCIPLES

bind_traces(L,C,Tree,OldCons,NewCons) :-
member(ec(Cat,ID,trace(T)),OldCons),!,

(bind_to_chain(ec(Cat,ID,trace(T)),Tree,OldCons,Consl);
make_chain(Tree,ec(Cat,ID ,trace(T)) ,a,OldCons,Consl)),

bind_traces(L,C,Tree,Consl,NewCons).
bind_traces(L,C,Tree,Cons,Cons) :- !.

46

The bind_to_chain predicate, shown in (95), appends intermediate traces (i.e. those traces in
SPEC,CP or SPEC,IP, 0-positions). The routine simply removes the old chain, verifies that the
intermediate trace is Subjacent, and inserts the new chain, with the new trace, into the constraint
list. The code is as follows:

(95)
bind_to_chain(ec(C,ID,trace(T)),Tree,OldCons,NewCns) :­

remove(ec(C,ID,Type),OldCons,Cnsl),
member(ChT,(a,abar,pro]),
remove(chain(ChT ,IDC,C,Cse,Th,List),Cnsl,Cns2),
subjacent(ID,IDC,Tree,Cns2,Cns3),
agree_case(ID,Tree,Cse,Th),
append((chain(ChT ,ID,C,Cse,Th,[ec(C,ID,trace(T))!List])] ,Cns3,NewCns),!.

The interesting point here is the agree_case call, which ensures that any chain is assigned
Case and a 0-role exactly once. This captures half of the 0-criterion, and part of the Case filter.
The Prolog to enforce these constraints is as follows:

(96)
agree_case(ID,Tree,Case,Theta) :-

get_subtree(ID ,Tree,xmax(C,ID,F ,Cons)/R),!,
(member(case(IDC),F),Casel=case(IDC);true),
(member(theta(IDT) ,F), Thetal= theta(IDT) ;true),!,
Case=Casel,Theta=Thetal,!.

In the above discussion, we have mentioned pro-chains. These arise from the ECP condition
which states that an ec is a trace if it is "locally A-bound". This notion is not locally determinable,
since we don't know if the ec is locally bound until an antecedent has been discovered. This
possibility arises in the case of the subject position of an infinitival IP, where ·an ec may either
be a wh-trace, or PRO. In these cases, a chain of type "pro" is created, indicating that if an
antecedent is found the ec is a trace for it, otherwise it is PRO. These chains have the lowest
priority. That is, if two chains are competing for a single antecedent, the non-pro-chain wins10 •

10 In fa.ct while this strategy works reasonably well, there do exist certain constructions which pose potential
problems. Specifically, these are known as parasitic gaps (for discussion see [Taraldsen 81], [Engdahl 83],
[Chomsky 82]}.

CHAPTER 4. PARSING WITH PRINCIPLES 47

The following code simply removes any pro-chain, if no Subjacent antecedent could be found,
and sets the tail (i.e. the base ec) to "pro":

(97)
check_pro_chains(L,C,Tree,Consl,Cons4) :­

remove(chain(pro,ID,CC,Case,Theta,List),Consl,Cons2),
remove(b arrier(ID), Cons 2, Cons3),
set_last(pro,List),
check_pro_chains(L,C,Tree,Cons3,Cons4),!.

check_pro_chains(L,C,Tree,Cons,Cons) :- !.

The barriers predicate determines if the current maximal projection is a barrier. Recall, that
Chomsky's notion of barrier is a relative one, in which 'Y is a barrier for a under certain conditions
[Chomsky 86a). In the present system however, we have adopted the definition proposed by
Lasnik and Saito, in which all non-L-marked maximal projections are taken to be barriers for
movement [Lasnik et al. 88b]. The code is represented as follows:

(98)
barriers(L,C,Tree,OldCons,NewCons) :­

is_barrier(Tree),
member(chain(Type,ID ,CC,Case,Theta,List),Old Cons),
\+ member(barrier(ID),OldCons),!,
append([barrier(ID)],OldCons,Consl),
barriers(L,C,Tree,Consl,NewCons).

barriers(L,C,Tree,Cons,Cons) :- !.

is_barrier(xmax(C ,ID ,Features,Cons) /R) :­
\ + member(l_marked,Features),!.

If the node is a barrier, that is it is not I-marked, then a barrier(ID) constraint is added to
the constraint list for each chain (where ID identifies the specific chain).

Chapter 5

Principle-Based Translation

In this chapter we present the implementation of the translation component of the system. Specif­
ically, this component translates S-structures of a "source" language into S-structures of a "tar­
get" language. To accomplish this, we capitalise on the notion of D-structure as a language
independent syntactic representation, as it is intended by the linguistic theory. In so doing, the
tra~slation component avoids the problems which arise in dealing with seemingly idiosyncratic
surface phenomena which may exist between the source and target languages.

The translation component consists of three modules. The first recovers D-structure from the
S-structure representation produced by the syntactic analysis component. The second translates
the D-structure of the source language in to that of the target language, and the third generates the
S-structure representation for the target language. This model of translation is basically identical
to that employed by [Sharp 85], and [Dorr 87] for translation between English and Spanish, and
is illustrated in Figure 5.1.

Source S-Structure Target S-Structure

Parse Generate

Source D-Structure
Translate

Target D-Structure .

Figure 5.1: The Translation Model

It is important to note that the present system performs only syntactic translation. That is,
it assumes lexical items in each language have essentially an injective mapping. The system does

48

CHAPTER 5. PRINCIPLE-BASED TRANSLATION 49

not attempt to achieve the breadth of coverage of existing machine translation (MT) systems (see
[Slocum 85] for a survey of existing systems). Rather, its purpose is to show how a principle-based
approach can greatly simplify the task, by performing translation at D-structure.

Each of the modules is called in sequence by the translate predicate specified as follows:

(99)
translate(SourceTree,TargetTree) :-

write(' Source Surface Structure:'),nl,
pretty(SourceTree),nl,
gen_deep_structure(SourceTree,SourceDeep),
trans_lexical(SourceDeep, TargetDeep,Mode),
gen_surf_structure(Mode, Target Deep, Target Tree).

The remainder of this chapter will discuss the implementation of each module.

5.1 Recovering D-structure

The recovery of D-structure from S-structure is a relatively straightforward task. Essentially it
involves "undoing", or reversing the move-a transformations which are reflected by S-structure.
Note, there is no need to employ any constraints at this stage, since the chains have already been
verified as well-formed during syntactic analysis (e.g. the Case filter and 0-criterion have been
satisfied). The predicate gen_deep_structure is therefore rather trivial, calling only one important
goal, rev_move_alpha. Both are specified below:

(100)
gen_deep_structure(SourceTree,TargetTree) :-

rev _move_alpha(SourceTree,TargetTree) ,!,
write(' Source Deep Structure: '),nl,
pretty(TargetTree) ,nl.

rev _move_alpha(S_structure,D _structure) :­
S_structure = xmax(C,ID,F,Cons)/_,
make_ trace_lists(1, Cons ,Lists),
rev _move_np (S_structure,D _structure! ,Lists),
rev _move_head(D _structure! ,D _structure),!.

The rev_mo'!!:.:alpha predicate divides the reverse transformations into two categories; the
first are moved X constituents, namely NP's and wh-phrases, and the second are moved heads,
such as verbs raising to I, and inversion to C. These reverse transformations are performed by
rev_move_np and rev_move_head respectively (these are not order dependent).

The process of moving X's to their D-structure positions is relatively straightforward. It es­
sentially involves "collapsing" the cha.ins which are recovered during syntactic analysis. Consider
the specification of rev_move_np shown below:

•,

CHAPTER 5. PRINCIPLE-BASED TRANSLATION

(101)
rev_move_np(D_str,D_str,[]) :- !.
rev _move_n p (S _str ,D _str, [Chain I Rest]) :­

extract_from_chain(Chain,SurfID,BaseID),
collapse_chain(S_str,SurfID,D_strl,BaseID),
rev _move_np(D _strl,D _str,Rest),!.

50

The first clause halts when the list of chains, the third argument, has been exhausted. The
main clause calls extract_from_chain with the first chain in the list. This predicate simply returns
the surface position of the moved constituent (i.e. the head of the chain) in Sur/ID, and the base
position, or tail, in BaseID. These two positions, along with the S-structure representation, are
passed to collapse_chain which returns a new representation, D_str1, in which the constituent
has been returned to its base position. The predicate is then called recursively until all chains
have been collapsed.

In the present system, head-movement is not recovered through the use of chains, since
movement is always to the next highest x 0 position (possibly successively). As a result, undoing
head movement is also relatively straightforward. The task here is to first find a moved head,
an_d then return it to its base position. This is performed by rev_move_head which is written as
follows:

(102)
rev_move_head(OldDstr,NewDstr) :-

find_moved_head(OldDstr ,HD ,OldDstr 1) ,!,
move_hd_base(HD,OldDstrl,NewDstr).

rev _move_head(Dstr ,Dstr).

The first goal, find_moved_head, takes an existing tree representation for the clause (OldDstr),
and looks for situations in which a head does not match the category of the phrase. If it finds
such an occurrence, it returns the head as HD, and sets the head of the phrase to empty. The
second goal then searches for the D-structure position of the head and sets it to be HD. In fact,
the only case this must deal with is inversion of V or I to C, since the parser accounts for raising
of V to I automatically1 .

5.2 Translation

The translation module, as stated earlier, is highly simplified and performs only syntactic trans­
lation. The highest level, shown in (103), simply calls trans_lex to translate the lexical items of
the source language into those of the target language.

1 That is, the X-parser will parse a. V which ha.s raised to I in its D-structure, V, position. This is relatively
straightforward since these positions are generally string adjacent in both English and German, however a more
principled approach using cha.ins would doubtlessly be preferable.

CHAPTER 5. PRINCIPLE-BASED TRANSLATION

(103)
trans_lexical(SourceDeep, Target Deep ,Mode) :­

trans _lex(SourceDeep, TargetDeep ,Mode),
write(' Target Deep Structure: 1),nl,
pretty(TargetDeep),nl.

trans_lex(SourceDeep, TargetDeep,Mode) :­
SourceDeep = xmax(C,ID,F,Cons)/R,!,
SourceDeep2 = xmax(C,ID,F ,_)/R,
trans_lexl(SourceDeep2,TargetDeep,Mode),
target(L),!,
rev_ constraints(L, C, Target Deep).

trans_lex(SourceDeep, TargetDeep,Mode) :-
trans Jexl (Source Deep, Target Deep ,Mode).

51

The trans_lex predicate simply recurses through the D-structure of the source language, calling
trans_lex1 at each maximal projection. The trans_/ex1 predicate (see Appendix E) translates each
lexical item of the phrase, and in turn calls trans_lex for each "embedded" maximal projection.
The result is essentially a top-down, left-to-right translation of the sentence. During translation,
the Mode variable also becomes instantiated. This indicates if the sentence is interrogative
("ques") or declarative ("decl"), and is used for S-structure generation, discussed in the next
section.

In addition .to translation, the trans_lex predicate also calls rev_constraints at each maximal
projection. The purpose of this is to determine which constituents of the target D-structure are
going to have to move during the generation of S-structure. The result is the construction of
chains which will be "unfolded" during generation2 • The predicate is shown below:

(104)
rev_constraints(L,C,Tree) :-

get_constraints(Tree Constraints),
subjacency(L,C,Tree,Constraints,NewConstraints),
rev _add_constrain ts(Tree,N ewConstraints).

This predicate essentially applies "in reverse" the constraint module used for parsing3 • Note
that while the translation is performed top-down, the application of constraints is done bottom­
up, as the call appears at the end of the clause. In a complete system, the application of

2 This should probably be performed in the generation component, but was included here since the D-structure
is being traversed anyway, for translation, and the application of the constraint module does not interfere.

3 In fact, if we want to remain true to the model of transformational grammar, the syntactic analysis applies the
principles in reverse, while generation applies them in the intended manner.

CHAPTER 5. PRINCIPLE-BASED TRANSLATION 52

principles would begin from scratch, applying Case theory to determine those constituents which
must move, and ensuring that none of the principles are violated during the transformation phase.
Here however, we take advantage of the similar Case marking properties of English and German.
That is, if a constituent is returned to a non Case marked position in the recovery of English
D-structure, then that position is not Case marked in the German D-structure (and vice versa).
In general, structural similarities between English and German make verification of the many
principles non-critical. Therefore, for our purposes we need only apply the Subjacency module.
This has been implemented such that it can be applied in reverse. That is, by instantiating the
D-structure argument, it will construct the chains which are to be reflected in the corresponding
S-structure. The get_constraints predicate is as described in Chapter 4, and simply merges the
constraint lists of immediately dominated maximal projections. The rev_add_constraints is the
reverse analog of the add_constraints predicate used in parsing. That is, it adds requests to the
constraint list of each X for consideration by the constraint module. The relevant code is shown
below:

(105)
rev _add_constraints(xmax(C,ID,F ,N ewCons)/R,Cons) :-

rev _new _constraints(C,xmax(C,ID,F ,Cons)/R,Consl),
append(Cons,Consl,N ewCons).

rev_new_constraints(_,xmax(C,ID,_,_)/e_cat(Type),[Cons]) :- !,
((Type = ant , Cons = ant(abar,_,ID)) ;
(Type= comp, Cons= ec(_,ID,trace(comp)));
(Type= np, Cons= ant(a1...,ID))).

rev _new_ constrain ts(_,xmax(C ,ID,_,_)/ e_ cat(_, Type), Cons) :- ! ,
((Type = trace(comp) , Cons = [ec(_,ID ,trace(comp))]);
Cons = []).

rev _new _constraints(_,xmax(C,ID,Ftr ,_) /R,[ec(C,ID ,trace(wh))]) :­
member(wh(+),Ftr),!.

rev _new _constraints(n(_),xmax(C,ID ,Ftr ,_) /R,[ec(C,ID ,trace(np))]) :­
\ + member(case(_),Ftr),!.

rev _new _constraints(_, Tree,[]).

The purpose of this predicate, is basically to determine possible intermediate and destina­
tion positions for moved constituents. When chains are collapsed in recovering D-structure, the
vacated S-structure positions (i.e. SPEC,CP and SPEC,IP positions) are filled by appropriate
empty phrase markers. These are interpreted by the second clause of (105). Specifically, an empty
subject position may be a destination for the head of an A-Chain, a matrix SPEC,CP may be a
landing site for a wh-phrase, and an embedded SPEC,CP may be an intermediate position (since
indirect questions are not handled). The fourth and fifth clauses find non Case marked NP's and
wh-phrases, which add the ec request to the constraint list. This has the effect of requesting that
these positions be vacated.

CHAPTER 5. PRINCIPLE-BASED TRANSLATION 53

5.3 Generating S-structures

In this section, we present the model for gener ating S-structures from D-structures in the target
language. This involves doing all the necessary transformations, and ensuring that agreement is
reflected by the morphology of relevant elements. The generation module is controlled by the
following predicate, gen_surf...structure:

(106)
gen_surf_structure(Mode, Target Deep, Target Surface) :­

target(L),set_inversion(L,Mode,Inv),
move_alpha(TargetDeep,TargetSurfacel),
raising(L,Inv,TargetSurfacel,TargetSurface2),
gen_pf(TargetSurface2,TargetSurface3),
inversion(Inv,TargetSurface3,TargetSurface4),
topicalize(L,Mode,TargetSurface4,TargetSurface),
write(' Target Surf ace Structure: ') ,nl,
pretty(TargetSurface).

: The clause is passed the D-structure representation, TargetDeep, and the mode of the sentence,
Mode. When completed, the variable TargetSurface will be instantiated with the S-structure
representation of the sentence in the target language. The first call simply instantiates Las the
target language (either I english" or 'german"), while the second sets the inversion flag, Inv,
based on L and Mode using the pararneters4 below:

(107)
set_inversion(ger ,_,yes).
set_inversion(eng,ques,yes).
set_inversion(eng,decl,no).

These parameters indicate that inversion always takes place in German (thus accounting for
"verb-second" phenomena), and inversion is performed in English questions.

The next operation is to apply the move_alpha predicate which uses the chains constructed
by translate to move the various constituents. The Prolog is shown below:

(108)
move_alpha(Deep,Surface) :-

Deep = xmax(C,ID,F,Cons)/_,
make_trace_lists(l,Cons,Lists),
move_np(Surface,Deep ,Lists).

~ In fact, there exist more principled accounts of the parametric variation which determines inversion. For further
discussion see [Davis 87].

CHAPTER 5. PRINCIPLE-BASED TRANSLATION 54

This first two goals examine the constraint list and extract relevant information from the
chains. The third goal, move_np, is responsible for actually moving the constituents, and is
specified as follows:

(109)
move_np(D_str,D_str,[]) :- !.
move_np(S_str,D_str,[ChainlRest]) :­

extract_from_chain(Chain,SurfID ,BaseID),
collapse_chain(D_strl,SurfID,D_str,BaseID),
move_n p (S _str ,D _strl ,Rest),!.

This predicate works much as the rev_move_np predicate described in the previous section.
That is, it determines the surface and base position for the constituent of each chain and then
calls collapse_chain. Here however, the D-structure argument of collapse_chain is instantiated,
and the S-structure representation is generated.

The next task is to perform verb raising. As noted in Section 5.1, the analysis performed
here is somewhat tailored to the English and German. We take raising to be an obligatory
tr~nsformation where the "highest" verb of a clause moves to the head of the dominating IP, just
incase I is empty. In this way, the first verbal element is inflected by the AGR features present in
the I node. A difference does exist between English and German however, in that only English
auxilliaries (e.g. have and be) may raise, if in version to C is to take place, while all German verbs
raise, regardless of inversion5 • As a result, this routine must be aware of whether or not inversion
is to take place, since for English, "do-support" may be required in cases where no auxilliary is
present. The main predicate for verb raising is as follows:

(110)
raising(Lang,Inv,DeepTree,Surfl'ree) :-

DeepTree = xmax(i(Tns),ID,Ftr,Cons)/[Left,Right],!,
raising(Lang,no,Left ,New L) ,raising(Lang,no,Right ,New R),
DeepTreel = xmax(i(Tns),ID,Ftr,Cons)/[NewL,NewR],
check_subject(Left,In v ,New Inv),
raisel(Lang,N ewlnv ,ID,DeepTreel,SurITree).

raising(Lang,Inv,X/[L,R],X/[NewL,NewR]) :- !,
raising(Lang,In v ,L ,New L) ,raising(Lang,Inv ,R,N ew R).

raising(Lang,lnv,X/R,X/NewR) :- !,raising(Lang,lnv,R,NewR).
raising(Lang,Inv,X,X) :- !.

Basically, this traverses the tree, until the matrix IP clause is found. Then raising is applied
to the subtrees of the clause with the inversion argument set to "no", since inversion may only

5 For a more principled account of raising, see [Koopman 84] in which the ECP is used to account for these
phenomena.

,,.
J

CHAPTER 5. PRINCIPLE-BASED TRANSLATION 55

occur in the matrix clause. The subject of the IP is then checked to make sure it's not empty.
This may revise the inversion flag, since an empty subject blocks the inversion transformation.
Then, the raisel predicate is called, and is shown below:

(111)
raise! (Lang,In v ,ID ,Deeplnfl ,S urflnfl) : -

get_head(Deeplnfl,head(I(j,empty,_)),!,
raise_ verb(Lang,Inv ,ID ,Deeplnfl,Deeplnfll, Verb),
set_head(Verb,ID,Deeplnfll,Surflnfl).

raisel(ger,Inv,ID,Deeplnfl,Surflnfl) :­
get_head(Deeplnfl,head(i(tns(-)),zu,_)),!,
raise_ verb(ger,Inv ,ID ,Deeplnfl,Deeplnfll, Verb),
Deeplnfll = Xmax/R,
Surflnfl = Xmax/[xmax(i(tns(-)))/R,Verb].

raisel(L,Inv,ID,Infl,Infl) :- !.

The fust clause ch.eeks to see if I is empty. If so, it calls raise_verb which retriev s the head
of ~he subcategorized VP (and sets its head to empty). The setJiead routine is tlien called to
instantiate the head of the IP with the verb. The second clause is not really a raising case, but
rather handles the adjunction of the highest V to the right of I in German infinitival clauses.
Again, raise_verb is called to find the verb, and then the adjunction is performed. The final case
will trivially succeed if I is lexical.

At this point, it iB convenient to apply the agreement routines to ensure that person, number,
gender, Case and tense are realised appropriately for the various phrases and lexical items. This
is performed by the gen • .pf routine, specified as follows:

(112)
gen_pf(SourceDeep, TargetDeep) :-

SourceDeep = xmax(C,ID,F,Cons)/R,
member(C,[n(_) ,c(emb /rel)]),!,
target(L),
rev _agree(L,SourceDeep, Target Deep!),
gen_pfl(TargetDeepl,TargetDeep).

gen_pf(SourceDeep,TargetDeep) :-
SourceDeep = xmax(C,ID,F,Cons)/R,!,
gen_pfl(SourceDeep,TargetDeepl),
target(L),!,
rev _agree(L,TargetDeepl,TargetDeep).

gen_pf(SourceDeep,TargetDeep) :-
gen_pfl (SourceDeep, Target Deep).

CHAPTER 5. PRINCIPLE-BASED TRANSLATION 56

This predicate traverses the tree, applying rev_agree at each maximal projection. This task
is basically performed in a bottom-up fashion by the second clause. The first clause however
applies rev_agree first in the case of NP's and relative clause CP's since the operator of the CP
must agree with the dominating NP, and this may further be used to inflect the embedded clause.
The rev_agree predicate simply calls the agree routine which is used during syntactic analysis. In
this case however, the D-structure, uninflected representation is instantiated, and the inflected
S-structure is generated.

Once the various agreement inflections have been performed, the inversion transformation is
performed, using the inversion predicate specified below:

(113)
inversion(yes,DeepTree,SurITree) :- !,

find_infl(DeepTree,SurITreel,Infl),
SurITreel = xmax(_,ID,_,_)/_,
set_head(Infl,ID,SurITreel,SurITree).

inversion(no,Tree,Tree) :- !.

The two clauses handle the case where the inversion flag is set to "yes" or "no" respectively.
In the latter case, the predicate trivially succeeds. In the case where inversion is to take place,
the find_infl routine first locates the matrix IP, and retrieves its head (setting it to empty). Then
the head of the matrix CP is instantiated, by the I (or possibly raised V) element.

The final transformation is that for topicalisation in German. This is not performed by
move_alpha, since it is done independently of the standard wh or Case motivated transformations.
Specifically, if the SPEC,CP of the matrix CP is empty, then some constituent must move to
that position. The topicalize routine is shown below:

(114)
topicalize(ger ,decl,DeepTree,SurITree) :- !,

get_topic(DeepTree,Tree,Topic),
attach_topic(Topic, Tree,SurITree).

topicalize(_,_,Tree,Tree) :- !.

The first goal examines the current tree and returns an appropriate phrase to topicalise.
In this system, the highest phrase dominated by the matrix IP is selected (Le. the subject),
although this routine could be altered to use a more sophisticated selection strategy depending
on emphasis and possibly syntactic restrictions. The final goal simply attaches the phrase to the
topic, SPEC,CP, position.

Chapter 6

Evaluation and Discussion

The preceding chapters have presented a system for natural language analysis and translation
which is based upon the principles of transformational generative grammar. Specifically, we have
presented the linguistic framework of Government-Binding theory, a system of representations,
and an implementation based upon the linguistic principles. The discussion thus far has been
primarily descriptive 1 focusing on the exposition of the tlteory, representations, and implementa­
tion.

This chapter is devoted to an evaluation and discussion of the present system. We begin with
a discussion of some general issues central to the construction of principle-based systems. We will
then turn to an evaluation of each component of the system with respect to our general design
criteria and compare ours with other principle-based systems. Finally, we discuss certain related
issues which may prove relevant in future systems.

6.1 Principle-Based Systems

Thus far we have appealed largely to intuition in use of the term "principle-based" system. We
have presented a linguistic theory which is founded upon the notion of a set of language inde­
pendent principles, in which the grammar for a specific language is characterised by instantiating
parameters of variation. This model has been proposed as a theory of linguistic competence.
That is, it attempts to capture human's innate knowledge of language.

In designing a principle-based parser, the basic goal is to construct a system which determines
syntactic well-formedness through the application of the principles of gramm<\r. The linguistic
theory is largely declarative in nature. That is, it consists of principles which act as conditions
on representations. From a parsing perspective this presents a problem: how are these "repre­
sentations" to be constructed in the first place? In solving this problem it is necessary to assign
some procedural interpretation to the declarative principles of the theory. That is, the principles
must not act only as conditions on representation, but must also contribute to the construction
of those representations.

57

CHAPTER 6. EVALUATION AND DISCUSSION 58

The degree to which principles of grammar are used procedurally or declaratively can be
a significant factor in determining the organisation and efficiency of the system. The present
system uses the principles of X-theory, and 0-theory combined with lexical selection to construct
phrase structure representations. Principles are applied to partially constructed structures to
determine their "local" well-formedness. This organisation dictates the existence of certain extra
machinery, namely the constraint lists, to allow for the incremental application of the principles.
This contrasts with Sharp's system, in which the principles of grammar are stated purely a.s
conditions on possible S-structure representations. The advantages of the more "procedural"
approach taken here, and in Dorr's system, are reflected by the improved efficiency.

An interesting alternative to using X-theory to drive parsing, is the licensing approach taken
by Abney and Cole [Abney et al. 86]. Their parser, implemented within the Actors computational
paradigm, capitalises on the licensing relationships which exist between lexical elements and
constituents. Specifically, Case and O theory are used directly to determine well-formedness and
construct representations.

In the present work we are not concerned simply with the development of a principle-based
parser, but rather the development of a parser with cross-linguistic application. In designing such
a system, the necessity of maintaining the modularity and autonomy of the various subtheories
becomes readily apparent. That is, parsers where the principles of grammar are somehow embed­
ded directly in the architecture, such as the Marcus parser [Marcus 80], seem unlikely candidates
for cross-linguistic systems. Rather, it seems that a modular approach, reflecting the linguistic
model, should be employed.

The ultimate metric with which to evaluate the system is that of linguistic fidelity. That is,
how faithful is the system to the linguistic theory. The ideal system should reproduce precisely
the same grammaticality judgements as the linguistic theory. The closer the parser design is to
the linguistic model, the more likely it is to be correct.

6.2 The Lexicon

The shift within linguistic theory from systems of rules to systems of principles has led to increased
emphasis on the lexicon. That is, properties of lexical items are projected from the lexicon and
interact with the principles of grammar in determining well-formed utterances. The most notable
examples of this are the sub categorization and 0-marking properties of lexical items. As we have
seen, lexical items may select for certain constituents so as to ensure that semantic roles are
appropriately filled. Furthermore, the possible categories for a selected constituent are generally
constrained in some way.

In the present system, 0-marking properties are not expressed in detail. That is, constituents
are not assigned explicit 0-roles such as Agent, Patient or Theme. Rather, they are simply marked
as receiving "some" 0-role. Subcategorization frames are specified, indicating the categories
of the selected complements, and by the Projection Principle they are marked as 0-positions.
Additionally, a lexical item (typically a verb) may indicate that it assigns an external 0-role to

CHAPTER 6. EVALUATION AND DISCUSSION 59

the subject position1 •

While this approach to 0-marking is sufficient for enforcing the 0-criterion and the Projection
Principle, there are clearly some problems which arise. In the first place, it may be necessary to
specify a rrumber of sub categorization frames, indicating different phrasal categories for the sa.me
selected B-role. An example taken from [Chomsky 86b] illustrates how the verb asks semantically
selects (or, s-selects) for Proposition complement, but categorially sefocts (or, c-selects)for either
an NP or clause, as follows:

(115) (a) I asked [Np the time] .
(b) I asked [cP what time it was] .

In an attempt to eliminate redundancy in specifying s-selection and c-selection, Chomsky
proposes thats-selection of some "semantic category" C e1ltails c-selection of a syntactic category
which is the "canonical structural representation" of C (i.e. CSR(C)). That is, if a verbs-selects
for a Proposition, it c-selects CSR(Proposition), whlch may be either NP or clause (i.e. OP or
IP) 2 •

For purposes of translation it seems almost certain that a richer 0-marking system will prove
necessary. Especially in more diverse languages where similar 0-roles assigned by corresponding
lexical items may be assigned to different structural positions. While the present system simply
matches structural positions, a more complete system should match 0-roles. Consider for example
the following:

{116) (a)
(b)

Er gefiillt mir.
I like him.

In this example, the Agent-role is assigned to the object position by gefallen and the subject
by like, while the Patient-rol is assigned to the subject and object position of these two verbs
respecti vely3 •

6.3 Syntactic Analysis

The syntactic analysis component accepts an input sentence and recovers an annotated S-structure
representation. That is, it recovers both phrase structure and chains. In the present system, this

1 In the present system we assume all subjects a.re NP's, thus excluding the possibility of sentential subjects.
Extending the system to include sentential subject would not however present a.ny problem.

2 There a.re instances where a. verbs-selects for a. Proposition which ma.y only be a. clause, such as wonder. That is,
I wondered what time it was is gra.mma.tica.l, but / wondered the time is not. Ca.se theory provides a. rea.sona.ble
expla.na.tion by suggesting tha.t wonder but not ask is intransitive, resulting in a. violation of the Case Filter in
the latter sentence [Pesetsky 83].

3 A literal tra.nsla.tion might equate gefallen with please, in which case He pleased me would ha.ve similar structural
9-ma.rking properties a.nd thus present no problem.

, ,

CHAPTER 6. EVALUATION AND DISCUSSION 60

component is comprised of two central modules: the Parsing Module and the Constraint Module.
The Parsing Module uses X-theory and the Extended Projection Principle to generate possible
phrase structures and predict empty categories. During parsing it projects subcategorization in­
formation from the lexicon, and accesses language specific information such as head position for
various categories, adjunct possibilities, and possible destinations for moved constituents. The
Constraint Module is invoked as each maximal projection is completed. It incorporates Case
theory, the ECP, () theory, and Subjacency and performs the dual task of constructing chains and
verifying the well-formedness of S-structures.

6.3.1 The Parsing Module

The Parsing Module employs a DCG specification of the X metarules to drive syntactic analysis.
The result is a top-down, left-to-right, backtracking parser, based on Prolog's underlying theo­
rem prover. The decision to use logic grammars was based primarily on their convenience and
perspicuity. That is, X rules are specified directly, with logical variables being instantiated with
categorial and other phrase specific information during the parsing. In addition, the top-down
parsing strategy facilitates the relatively straightforward "prediction" of empty elements4 •

This parsing strategy does however have certain drawbacks. Specifically, a top-down approach
leads to certain fundamental problems in a model where information relevant to parsing is pro­
jected from lexical items. The most obvious example of this is subcategorization information. In
the present system, when a head is encountered its subcategorization frame is accessed and used
to parse its arguments. The advantage is the prediction of traces in argument positions (i.e. if the
argument isn't present, it must have moved and left a trace). A disadvantage is that a lookahead
mechanism is r~quired in the case of head final phrases, such that the head's subcategorization
frame can be accessed to parse the pre-arguments.

The obvious solution to this is to use a bottom-up strategy where phrases are projected only
as evidence for them appears in the input. Indeed, we have already observed that the constraints
are intended to apply in a bottom-up manner. In such a system, some reduction procedure would
be called upon to attach any arguments once the verb is encountered. Note, this doesn't entail
the exclusion of logic grammars, but simply requires that some alternate parsing strategy be
employed5•

A number of existing systems employ bottom-up parsing strategies. Berwick and Weinberg
present a modified version of Marcus' deterministic LR(k) parser [Marcus 80], [Berwick et al. 84].
These parsers use finitely bounded lookahead to compute their derivations without backtracking.
The fundamental disadvantage of this approach is that the control table is language specific, in
effect pre-computing the possible surface phenomena instead of directly consulting the principles
of grammar as structures are computed. The cross-linguistic capability of their approach seems

4 This is to say that no extra machinery is required, as is typically the case with bottom-up approaches.
5 For further discussion of alternative parsing strategies for logic grammars see (Pereira et al. 87],

[Abramson et al. 88].

CHAPTER 6. EVALUATION AND DISCUSSION 61

questionable, since the tables must be completely re-calculated for a different language6• As
Barton suggests, one approach might be to introduce principles and parameters to the Marcus
framewotk, thus reducing the tables of rules [Barton 84]. In fact, Kuhns' system aims at doing
precisely this in his Prolog implementation of a principle-based parser which augments a Marcus
parser with Binding and Control theory, and chains which are used to enforce the 8-criterion
[Kuhns 86].

Another interesting approach is the assertion set parser presented in [Barton et al. 85] and
[Berwick et al. 85]. This system uses phrase markers to parse input with "information mono­
tonicity", and without lookahead. Unfortunately, not enough is known about this technique to
determine its cross-linguistic abilities, especially in head final languages.

Finally, we might pursue the use of more traditional, non-deterministk, parsing strategies.
Dorr for example uses an Earley algorithm to parse a slight expanded X rule template [Dorr 87].
In her system, the parser is co-routined with the principles so as to block the derivation of
ungrammatical structures, in a manner roughly similar to the system developed here. Pereira
gives an interesting account of how a shift-reduce parser may combined with an oracle for the
purpose of resolving attachment preferences when shift/reduce conflicts occur [Pereira 85]. This
could provide an interesting method of incorporating various performance/ processing principles
directly into the parser 7•

6.3.2 The Constraint Module

The Constraint Module operates in tandem with the Parsing Module. Its purpose is to apply the
principles of grammar to the partially constructed S-structures generated by the parser. These
principles of grammar are used to construct chains of movement and verify the well-formedness
of (sub-)structures with respect to their phrase structure and chains.

An attempt has been made in the current system to maintain the modularity of the subtheories
of grammar. To some extent this has been accomplished, however the Subjacency constraint has
amalgamated the tasks of constructing chains and verifying their well-formedness by incorporating
elements of Case and 8 theory. The design of future systems may benefit from a more modular
approach which could prove more efficient, perspicuous, and easily modifiable.

While a relatively high degree of language independence has been achieved, some "short
cuts" have been taken where English and German show similar characteristics. The most notable
example of this is the treatment of head movement which is largely stipulated in the present
system. More principled account of this phenomena in terms of chains do exist within the theory
and should be reflected by future systems (see (Koopman 84]).

The present system applies constraints to compl~ted phrases in a bottom-up fashion. This

6 Indeed, it is not entirely clear that such a parser can handle a head final language such a.s German, using
reasonably bounded lookahead.

7 Pereira demonstrates his approach using a traditional phrase structure grammar. The suitability of his approach
to an X system remains to be determined.

CHAPTER 6. EVALUATION AND DISCUSSION 62

approach is especially convenient when combined with a bottom-up parsing strategy as in Dorr's
system [Dorr 87). It is conceivable, however, that the constraints could be formulated as condi­
tions on left contexts. This is especially relevant to Prolog-based systems in which Horn clause
theorem provers may be used to parser a logic grammar (as in the present system). As Stabler
shows, it is possible to begin with a first-order logic specification of the linguistic constraints
and rewrite them as Horn clauses, assuming negation as failure [Stabler 87). Specifically, Stabler
introduces a simplified set of linguistic constraints, intended to constrain the possible derivations
of an underspecified DCG grammar. While the original formulation of the constraints assumes
the existence of an entire proof/parse tree, Stabler shows that a series of program transformations
can be invoked to produce constraints that can be applied at any point during the derivation.
The constraints are formulated so as to use a "specialised" left context derivation tree, resulting
in a much more efficient parser.

Admittedly, the feasibility Stabler's approach remains to be determined. Currently, it has
only been applied to extremely simplified constraints, with much of the burden still being placed
on a phrase structure grammar. Furthermore, the process of transforming the original linguistic
constraints into their specialised left context form has only been partially automated. The goal,
however, of creating a system which can transform some first-order specification of the linguistic
constraints into and efficient Horn clause theorem prover for parsing is an attractive one.

6.4 Translation and Generation

In the present system, the translation and generation components have been somewhat simplified.
The translation component maps D-structures from the source language to the target language by
directly translating lexical items. Additionally, some structural changes are made to account for
the head final position of V and I in German. Indeed, these configurational differences combined
the possible thematic/structural divergences observed in Section 6.2 might lead us to question
the suitability of D-structure as in "interlingual" representation for purposes of translation. As
a solution to this, Dorr has suggested the use of a lexical conceptual structure (LCS) which
represents sentence meaning through "predicate decomposition" [Dorr 88). This would entail
the development of a system to map the D-structures of a given language to and from an LCS
representation. Such an approach certainly seems necessary in the development of translation
systems for more diverse languages.

The generation component constructs S-structures from D-structures. That is, it applies the
rule Move-a, subject to the constraints imposed by the principles of grammar, .~nd their param­
eters. The present system takes advantage of certain structural similarities between English and
German in performing the generation. Specifically, it assumes similar Case-marking properties,
and landing sites for movement. The result is that only a single S-structure is generated, and
it corresponds quite closely to that of the original source language sentence. An alternative,
and likely preferable, approach would be to generate possible S-structures "from scratch". That
is, begin with a bare D-structure and apply each of the principles, so as to force and constrain

CHAPTER 6. EVALUATION AND DISCUSSION 63

possible moverneut. This strategy was employed in Sharp>s system, which will generate a set
of possible sUiface structures, which va:ry with respect to moved constituents and inflection of
embedded clauses (Sharp 85].

As mentioned earlier, this approach to translation does not displace a knowledge-based ap­
proach, but rather compliments it . By performin_g translation at D-structure, or some other
interlingual form, the task of dealing with hliosynCl'atic surface phenomena is side-stepped.
This constrasts with tlte surface-to-surface form approaches, such as that employed by McCord
[McCord 86]. The use of a surface form as the basis for trainslation entails that the transfer com­
ponent perform complex restructuring of tlie surface structure in addition to translation. The
result of McCord's approach is a relatively large set of language dependent rules, which only
apply uni-directionally.

6.5 Related Issues

In addition to the points made above, there remain a numbers of areas open for possible improve­
ment and extension of the system. In this section we will discuss two of these. The first concerns
the possibility of improving the perlormance of the system through compilation techniques, while
the second discusses the possibility of in.corporating principles of human language performance.

6.5.1 Partial Evaluation

The system as presented lrnre uses the principles of gramma:r in an on-line fashion. That is, they
are consulted d1;1.ring the parsing process. Furthermore, the principles of grammar access their
respective para.meter values in a similar on-line man..ner.

This approach has a 11umber of advantages in terms of maintaining the modular, autonomous
nature of the principles and their cross-linguistic applicability, The efficiency, however, is hindered
by the a.rilount of computation which must be performed at. pa.('se time. An obvious solution.
to this is to investigate possible techniques for "pre•co.mputing' or compiling certain aspects
or components of the parser. Within a logic pro ramming fra.mewor.k, techniques of partial
evaluation are of particular interest.

Pa.dial evaluation is the au toma.tic derivation of a specialised instance of a program8 • Con­
sider, for example, a function which computes xY, with x, y a,s parameters. This function could be
partially evalua,ted wi th respect toy= 3 to produc the specialised cubi function x3 [Ershov 82].
The partial evaluatio,o of Logic programs is facilitated by the ease with which meta-interpreters
can be developed to evaluate, and possibly resolve, Prolog clauses with respect given input values.
Additionally, a user must specify control information to llinit the exten~ to which the evaluaLion

8 For a. detailed discussion of partial evaluation and Prolog see (Pereira et al. 87]. For a more theoretical discussion
of the soundness a.nd completeness of partial evaluation in Prolog see [Lloyd et al. 87].

CHAPTER 6. EVALUATION AND DISCUSSION 64

is performed 9 •

The possibility of partial evaluating the principles of the constraints module with respect
to language specific parameters is both computationally and theoretically attractive. That is, it
could be viewed as a core grammar generator, computing a specialised, efficient, language specific
constraint module. If the control information can be specified independent of a set of language
parameters, then an entirely automatic partial evaluator can be constructed for this task. The
only major disadvantage is that a constraint module is necessary for each language in the system
(although certain non-evaluated components might still be shared).

A similar partial evaluation technique could also be used with the parsing module to construct
a (limited) set of phrase structure rules, based on the X metarules, language specific information
about possible adjuncts and their positions, and the constraints. This process basically derives
possible surface configurations ahead of time, to expedite the parsing of common structures using
pre-compiled phrase structure rules. This would in some sense constitute return to the traditional
phrase structure approach. Note, however, that the rules are constructed automatically, based
on the principles of grammar, and the number of rules can be limited as much as desired - the
constraint module will still be used to verify well-formedness at parse time.

6.·5.2 Modeling Linguistic Performance

The present system consists of a procedural model of UG applied to syntactic analysis, transla­
tion, and generation. That is, the system models the principles of grammar, a theory of linguistic
competence. A further area of interest is the construction of systems which model human linguis­
tic performance. Specifically, these systems must reflect the basic principles of human language
processing, and ldeally possess similar organisation and employ similar algorithms.

Frazier, for example, draws on some intuitions supported by evidence from Dutch (a head
final language similar to German) to suggest that principle-based systems should pre-compile the
principles of X, Case and() theory to produce a limited set of phrase structure rules [Frazier 86).
The partial evaluation process discussed above would seem particularly relevant to such a theory
of performance.

Alternatively, Pritchett suggests that the principles of grammatical theory be employed di­
rectly in a theory oflanguage processing [Pritchett 88). Specifically, he proposes a 8-Attachment
principle and a 0-Reanalysis constraint, based on the 0-criterion, which accurately predict human
processing of garden path sentences. Ultimately, he extends his theory to incorporate the entire
theory of grammar by formulating the following principle:

(117) l::-Attachment: Every principle of the syntax attempts to be satisfied at every point
during processing.

9 That is, if uncontrolled, a partial evaluator may attempt to expand or "compile-out" the original program beyond
the point of any benefit.

CHAPTER 6. EVALUATION AND DISCUSSION 65

Such a principle is compatible with the online, incremental application of principles performed
by the present system and that of Dorr's.

In fact, the above two theories may not be entirely incompatible since some degree of pre­
compilation would not necessarily conflict with Pritchett's E-Attachment principle. A more
sophisticated discussion of these and other theories of performance is beyond the scope of this
theory. We simply wish to make the point here that reconciling models of competence with those
of performance appears to be both an interesting and promising area for future research10.

1° For further discussion see [Berwick 87].

Chapter 7

Conclusions

This thesis has presented a system for syntactic analysis and translation which is based upon
the current theories of transformational generative grammar. Specifically, we have developed a
system which employs the principles of Chomsky's Government-Binding theory in parsing and
determining the well-formedness of sentences. As such, the system can be considered a procedural
model of Universal Grammar, which accesses language specific information in analysing sentences
of a particular language. Furthermore, we have shown that the cross-linguistic nature of the
system lends itself particularly well to the task of language translation.

The principle-based approach to natural language analysis represents a significant departure
from the traditional, construction-based systems. Specifically, the embodiment of universal prin­
ciples of grammar drastically reduces the necessity of specifying language specific rules. Rather,
the grammar for an individual language can be stated as a compact set of parameters and lan­
guage specific information.

The current system accounts for a significant subset of German and English grammars. Specif­
ically, a large set of substitution transformations are handled, including subject raising and A­
movement. The system will handle a variety of constructions, including embedded sentences,
relative clauses, and adjunct PP's. Notable omissions of the system include passive and subjunc­
tive forms, adjectival phrases, and adjunction transformations. Finally, the system has excluded
the theories of Binding and Control and the PF and LF levels of representation which would be
necessary for a complete implementation of the linguistic model.

The translation and generation components of the present system have been simplified in
favour of the syntactic analysis component. The incremental application of the principles dur­
ing parsing represents a significant improvement in overall efficiency relative to· Sharp's system.
Specifically, the use of constraint lists provides a convenient method for constructing chains and
enforcing constraints. The modular nature of the system suggests that extending the coverage of
the system, and introducing new languages should be relatively straightforward.

Principle-based approaches to the design of natural language systems are becoming increas­
ingly popular. Most of these systems, however, are suited to the analysis of an individual language.

66

,.

CHAPTER 7. CONCLUSIONS 67

Specifically, only two multi-lingual systems have been previously constructed, namely those of
Sharp and Dorr [Sharp 85], [Dorr 87]. Both of which handle English and Spanish. The present
work has presented a system for the analysis of English and German which constitutes further
evidence that the development of a parser with cross-linguistic application is indeed feasible. In
addition we have shown that modularity and incremental constraint application are fundamental
to the efficient design of such systems.

The construction of principle-based systems is relevant to a number of disciplines. As a
model of the human language faculty, such systems are of direct interest in linguistics and cog­
nitive science. Indeed, sophisticated systems may prove to be valuable testbeds for revisions or
extensions of the theory. Additionally, principle-based approaches provide efficient, elegant, and
robust techniques for natural language analysis, translation and generation within the fields of
computational linguistics and artificial intelligence.

Bibliography

[Abney et al. 86]

[Abramson et al. 88]

[B~rton 84]

[Barton et al. 85]

[Berwick 87)

[Berwick et al. 84]

[Berwick et al. 85]

[Chomsky 5 7)

[Chomsky 65]

[Chomsky 73]

Steven Abney and Jennifer Cole. A Government-Binding Parser. unpub­
lished manuscript, MIT, 1986.

Harvey Abramson, Matthew Crocker, Brian Ross, and Doug Westcott.
Towards a Logic Based Expert System for Compiler Development. In
PLILP'BB Proceedings, Institut National de Recherche en Informatique et
en Automatique, Orleans, France, 1988.

G. Edward Barton. Toward a Principle-Based Parser. AI Memo 788, MIT
AI Laboratory, Cambridge, Massachusetts, 1984.

G. Edward Barton and Robert C. Berwick. Parsing with Assertion Sets
and Information Monotonicity. In Proceedings of the International Joint
Conference on Artificial Intelligence, pages 769-771, IJCAI, Los Angeles,
1985.

Robert C. Berwick. Principle-Based Parsing. Technical Report 972, MIT
AI Laboratory, Cambridge, Massachusetts, June 1987.

Robert C. Berwick and Amy S. Weinberg. The Grammatical Basis of
Linguistic Performance. Current Studies in Linguistics, The MIT Press,
Cambridge, Massachusetts, 1984.

Robert C. Berwick and Amy S. Weinberg. Deterministic Parsing and
Linguistic Explanation. AI Memo 836, MIT AI Laboratory, Cambridge,
Massachusetts, June 1985.

Noam Chomsky. Syntactic Structures. Mouton, The Hague, 1957.

Noam Chomsky. Aspects of the Theory of Syntax. MIT Press, Cambridge,
Massachusetts, 1965.

Noam Chomsky. Conditions on Transformations. In S. R. Anderson and
P. Kiparsky, editors, A Festschrift for Morris Halle, Holt, Rinehart and
Winston, New York, 1973.

68

BIBLIOGRAPHY 69

[Chomsky 81a] Noam Chomsky. Lectures on Government and Binding. Foris Publications,
Dordecht, 1981.

[Chomsky 81b] Noam Chomsky. Principles and Parameters in Syntactic Theory. In Nor­
bert Hornstein and David Lightfoot, editors, Explanation in Linguistics,
chapter 2, pages 32-75, Longman, London, 1981.

[Chomsky 82] Noam Chomsky. Some Concepts and Consequences of the Theory of Gov­
ernment and Binding. Linguistic Inquiry Monograph Six, The MIT Press,
Cambridge, Massachusetts, 1982.

[Chomsky 86a) Noam Chomsky. Barriers. Linguistic Inquiry Monograph Thirteen, The
MIT Press, Cambridge, Massachusetts, 1986.

(Chomsky 86b] Noam Chomsky. Knowledge of Language: Its Nature, Origin and Use.
Convergence Series, Praeger, New York, 1986.

[Clocksin et al. 81] W.F. Clocksin and C.S. Mellish. Programming in Prolog. Springer Verlag,
2nd edition, 1981.

[Colmerauer 78] Alain Colmerauer. Metamorphosis Grammars. In L. Bole, editor, Lecture
Notes in Computer Science, Springer Verlag, 1978.

(Dahl etal. 86] Veronica Dahl, Charles Brown, Michel Boyer, T. Pattabhiraman, and Di­
ane Massam. Mechanizing Expertise in GB Theory. LCCR TR 86-10,
LCCR, Simon Fraser University, Burnaby, B.C., Canada, 1986.

(Davis 87] Henry Davis. The Acquisition of the English Auxilliary System and its
Relation to Linguistic Theory. PhD thesis, University of British Columbia,
Vancouver, Canada, 1987.

[Dorr 87] Bonnie Dorr. UNITRAN: A Principle-Based Approach to Machine Trans­
lation. Master's thesis, MIT, Cambridge, Massachusetts, 1987.

[Dorr 88) Bonrue Dorr. A Lexical Conceptual Approach to Generation for Machine
Translation. AI Memo 1015, MIT, Cambridge, Massachusetts, December
1988.

[Emonds 76] Joseph Emonds. A Transformational Approach to English Syntax. Aca­
demic Press, New York, 1976.

[Engdahl 83] Elisabet Engdahl. Parasitic Gaps. Linguistics and Philosophy, 6(1):5-34,
1983.

[Ershov 82] A. P. Ershov. Mixed Computation: Potential Applications and Problems
for Study. Theoretical Computer Science, 18(1):41-67, 1982.

BIBLIOGRAPHY

[Frazier 86]

70

Lyn Frazier. Natural Classes in Language Processing. unpublished
manuscript, MIT, 1986.

[Haider et al. 85] Hubert Haider and Martin Prinzhorn, editors. Verb Second Phenomena in
Germanic Languages. Publications in Language Sciences, Foris, Dordecht,
1985.

[Hogger 84] Christopher J. Hogger. Introduction to Logic Programming. Volume 21 of
APIC Studies in Data Processing, Academic Press, London, 1984.

[Hornstein et al. 81] Norbert Hornstein and David Lightfoot. Introduction. In Norbert Horn­
stein and David Lightfoot, editors, Explanation in Linguistics, chapter 1,
pages 9-31, Longman, London, 1981.

[Huang 82] C.-T. James Huang. Logical Relations on Chinese and the Theory of Gram­
mar. PhD thesis, MIT, Cambridge, Massachusetts, 1982.

[Kimball 73] John Kimball. Seven Principles of Surface Structure Parsing in Natural
Language. Cognition, 2(1):15-47, 1973.

[Koopman 84] Hilda Koopman. The Syntax of Verbs. Faris, Dordecht, 1984.

[Kuhns 86] Robert J. Kuhns. A PROLOG Implementation of Government-Binding
Theory. In 11th International Conference on Computational Linguistics,
pages 546-550, The International Committee on Computational Linguis­
tics, Bonn, West Germany, August 1986.

[Lasnik et al. 88a] Howard Lasnik and Mamoru Saito. forthcoming, 1988.

[Lasnik et al. 88b] Howard Lasnik and Juan Uriagereka. A Course in GB Syntax: Lectures
on Binding and Empty Categories. Current Studies in Linguistics, MIT
Press, Cambridge, Massachusetts, 1988.

[Lightfoot 82] David Lightfoot. The Language Lottery: Towards a Biology of Grammars.
MIT Press, Cambridge, Massachusetts, 1982.

[Lloyd 87] John W. Lloyd. Foundations of Logic Programming. Springer-Verlag, sec­
ond edition, 1987.

[Lloyd et al. 87] John W. Lloyd and Joseph C. Shepherdson. Partial Evaluation in Logic
Programming. Technical Report CS-87-09, University of Bristol, December
1987.

[Marantz 81] A. Marantz. On the Nature of Grammatical Relations. PhD thesis, MIT,
Cambridge, Massachusetts, 1981.

BIBLIOGRAPHY 71

[Marcus 80] Mitchell P. Marcus. A Theory of Syntactic Recognition for Natural Lan­
guage. The MIT Press Series in Artificial Intelligence, The MIT Press,
Cambridge, Massachusetts, 1980.

[Massaro 85] Dianne Massaro. Case Theory and the Projection Principle. PhD thesis,
MIT, Cambridge, Massachusetts, 1985.

[McCord 86] Michael C. McCord. Design of a Prolog-Based Machine Translation Sys­
tem. In Ehud Shapiro, editor, Third International Conference on Logic
Programming, pages 350-374, London, U.K., July 1986.

[Pereira 85] Fernando C. N. Pereira. A New Characterization of Attachment Pref­
erences. In David R. Dowty, Lauri Karttunen, and Arnold M. Zwicky,
editors, Natural Language Parsing, chapter 9, pages 307-319, Cambridge
University Press, Cambridge, England, 1985.

[Pereira et al. 80]

[Pereira et al. 87]

[Pesetsky 83]

[Pritchett 88]

[Pullum et al. 88]

(Rizzi 82)

[Ross 67]

[Sharp 85)

(Slocum 85)

Fernando C.N. Pereira and D.H.D. Warren. Definite Clause Grammars for
Language Analysis. Artificial Intelligence, 13:231-278, 1980.

Fernando C.N. Pereira and Stuart M. Shieber. Prolog and Natural­
Language Analysis. CSLI Lecture Notes, Center for the Study of Language
and Information, Stanford, California, 1987.

D. Pesetsky. Paths and Categories. PhD thesis, MIT, Cambridge, Mas­
sachusetts, 1983.

Brad Pritchett. Garden Path Phenomena and the Grammatical Basis of
Language Processing. Language, September 1988.

Geoffrey K. Pullum and Paul M. Postal. Expletive noun phrases in sub­
categorized positions. Linguistic Inquiry, 19(4), 1988.

Luigi Rizzi. Issues in Italian Syntax. Foris, Dordrecht, 1982.

John R. Ross. Constraints on Variables in Syntax. PhD thesis, MIT,
Cambridge, Massachusetts, 1967.

Randall M. Sharp. A Model of Grammar Based on Principles of Gov­
ernment and Binding. Master's thesis, University of British Columbia,
Vancouver, Canada, October 1985.

Jonathan Slocum. A Survey of Machine Translation: Its History, Cur­
rent Status, and Future Prospects. Computational Linguistics, 11(1):1-17,
1985.

BIBLIOGRAPHY 72

[Stabler 87) Edward P. Stabler. Logic Formulations of Government-Binding Principles
for Automatic Theorem Provers. Cognitive Science Memo 30, University
of Western Ontario, London, Ontario, June 1987.

[Sterling et al. 86) Leon Sterling and Ehud Shapiro. The Art of Prolog. The MIT Press Series
in Logic Programming, The MIT Press, Cambridge, Massachusetts, 1986.

[Stowell 81) Timothy Stowell. Origins of Phrase Structure. PhD thesis, MIT, Cam­
bridge, Massachusetts, 1981.

[Taraldsen 81) K.T. Taraldsen. The Theoretical Interpretation of a Class of Marked
Extractions. In A. Belletti, L. Brandi, and L. Rizzi, editors, Theory of
Markedness in Generative Grammar, Proc.e.edings of the 1979 Glow Con­
ference, pages 475-516, Scuola Normale Superiore, Pisa, 1981.

[Thiersch 78) Craig Thiersch. Topics in German Syntax. PhD thesis, MIT, Cambridge,
Massachusetts, 1978.

[vRiemsdijk etal. 86] Henk van Riemsdijk and Edwin Williams. Introduction to the Theory of
Grammar. Current Studies in Linguistics, The MIT Press, Cambridge,
Massachusetts, 1986.

[Wexler et al. 80]

[Williams 74]

Ken Wexler and Peter Culicover. Formal Principles of Language Acquisi­
tion. MIT Press, Cambridge, Massachusetts, 1980.

Edwin Williams. Rule Ordering and Syntax. PhD thesis, MIT, Cambridge,
Massachusetts, 1974.

Appendix A

Example Translations

This appendix illustrates the execution of the system on a number of example sentences from
both English and German. The system was written in Quintus Prolog V2.2, under BSD UNIX
4.2 on a Sun 3 at the University of British Columbia. A complete listing of the Prolog source is
presentented in the following appendices .

. : The source language is specified using the "language" command, followed by the language
abbreviation (e.g. "language ger"). The target language is set automatically. Once the sentence
is parsed, the S-structure form is displayed, wit;h the various traces (i.e. np-# , wh-#, op-# and
comp-#) shown coindexed with their an tecedent. Additionally, PRO is shown. The D-structure
of the source sentence is then displayed with the cha.ins "collapsed" and head-movement undone.
Finally, once translation has been performed, the D-structure and S-structure representations in
the target language are printed. Note, capitalisation and accents are not handled by the present
system.

(1) >>>language eng.
>>>I have seen the book.
Source Surface Structure: i have see the book.
Source Deep Structure: i have see the book.
Target Deep Structure: ich das buch sehen haben.
Target Surface Structure: ich habe das buch gesehen.

(2) >>>Have the boys seen the girl?
Source Surface Structure: have the boy see the girl?
Source Deep Structure: the boy have see the girl?
Target Deep Structure: das junge das madchen sehen haben?
Target Surface Structure: haben die jungen das madchen gesehen?

(3) >>>What did the girl see on the table?
Source Surface Structure: what-1 do the girl see wh-1 on the table?

73

,,

APPENDIX A. EXAMPLE TRANSLATIONS

Source Deep Structure: the girl see what-1 on the table?
Target Deep Structure: das madchen was-1 sehen auf das tisch?
Target Surface Structure: was-1 sah das madchen wh-1 auf den tisch?

(4) >>>What will the woman put on the table?
Source Surface Structure: what-1 will the woman put wh-1 on the table?
Source Deep Structure: the woman will put what-1 on the table?
Target Deep Structure: das frau was-1 auf das tisch legen werden?
Target Surface Structure: was-1 wird die frau wh-1 auf den tisch legen?

(5) >>>Have you seen the books that the girls put on the table?

74

Source Surface Structure: have you see the book op-1 that the girl put wh-1 on
the table?
Source Deep Structure: you have see the book that the girl put op-1 on the table?

Target Deep Structure: sie das buch das madchen das-1 auf das tisch legen sehen
haben?
Target Surface Structure: haben sie die buchen die-1 das madchen wh-1 auf den
tisch legte gesehen?

(6) >>>I believe that the girl tried to put the book on the table.
Source Surface Structure: i believe that the girl try PRO to put the book on
the table.
Source Deep Structure: i believe that the girl try PRO to put the book on the
table.
Target Deep Structure: ich dass das madchen dass PRO das buch auf das tisch legen
zu versuchen glauben.
Target Surface Structure: ich glaube dass das madchen PRO das buch auf den tisch
zu legen versuchte.

(7) >>>What do you believe the boy has put on the table?
Source Surface Structure: what-1 do you believe comp-1 the boy have put wh-1
on the table?
Source Deep Structure: you believe comp-1 the boy have put what-1 on the table?

Target Deep Structure: sie comp-1 dass das junge was-1 auf das tisch legen haben
glauben?
Target Surface Structure: was-1 glauben sie comp-1 dass der junge wh-1 auf den
tisch gelegt hat?

(8) >>>language gar.

APPENDIX A. EXAMPLE TRANSLATIONS

>>>Ich habe das Buch gesehen.
Source Surface Structure: ich-1 haben wh-1 das buch sehen.
Source Deep Structure: ich-1 das buch sehen haben.
Target Deep Structure: i have see the book.
Target Surface Structure: i have seen the book.

(9) >>>Haben Sie die Frau gesehen?
Source Surface Structure: haben sie das frau sehen?
Source Deep Structure: sie das frau sehen haben?
Target Deep Structure: you have see the woman?
Target Surface Structure: have you seen the woman?

(10) >>>Was hat der Junge auf den Tisch gelegt?
Source Surface Structure: was-1 haben das junge wh-1 auf das tisch legen?
Source Deep Structure: das junge was-1 auf das tisch legen haben?
Target Deep Structure: the boy have put what-1 on the table?
Target Surface Structure: what-1 has the boy put wh-1 on the table?

(11) »>Ich glaube dass der Junge die Frau gesehen hat.

75

Source Surface Structure: ich-1 glaub~n wh-1 dass das junge das frau sehen haben.

Source Deep Structure: ich-1 dass das junge das frau sehen haben glauben.
Target Deep Structure: i believe that the boy have see the woman.
Target Surface Structure: i believe that the boy has seen the woman.

(12) >>>Was glauben Sie dass der Junge auf den Tisch gelegt hat?
Source Surface Structure: was-1 glauben sie comp-1 dass das junge wh-1 auf das
tisch legen haben?
Source Deep Structure: sie comp-1 dass das junge was-1 auf das tisch legen haben
glauben?
Target Deep Structure: you believe comp-1 that the boy have put what-1 on the
table?
Target Surface Structure: what-1 do you believe comp-1 that the boy has put vh-1
on the table?

Appendix B

Parsing Module

% ------------------------% Section: Parser
%
% .Paradigm: parse(Language,Source, Tree).
% · Language: Source language { english,german}.
% Source: Input sentence to be parse.
% Tree: The parse derivation tree.
%
% Description: .. This predicate controls parsing of the input
% string. It first computes the lookahead stack of final
% heads (bupdcg), and then calls the DCG rules which parse
% the input according to the X-bar phrase structure rules.
%. _______________________ _

parse(L ,String, Tree)
bupdcg(L,String,XbarList,S),
xmax(L,c(mat/ sent), Tree,S,[],XbarList,[]).

%. _______________________ _

% bupdcg/ 4: The predicate constructs a lookahead stack of all final heads.
% This stack is used during parsing to recover the subcategorization · ·
% frames of final heads. The second clause also "undoes" the adjunction
% of a verb to the right of "zu".

bupdcg(L,0,0,[]) :- !.
bupdcg(ger,[zujRest],[HDIXRest],[Top,HDIStack])

76

APPENDIX B. PARSING MODULE

head_anal(ger,Cat,zu,HD,final),
bupdcg(ger,Rest,XRest ,[ToplStack]).

bupdcg(L,[Word jRest] ,[HDIXRest],[HDI Stack])
head_ana.1(1,Cat,Word IID ,final),
bupdcg(L,Rest,XRest,Stack).

bupdcg(L,[WordjRest],[WordjXRest],NS) :­
head_anal(L,C,Word,HD,initial),
bupdcg(L,Rest,XRest,NS),
poss_move(L, Cat ,C ,_).

bupdcg(L,[LexltemjRest],(LexltemjXRest],Stack)
bupdcg(L,Rest,XRest,Stack).

%. _____ _ _ _ _ _ ___ _________ _

% head_anal/ 5: Call the morpher to determine if the word is in the lexicon.
% Determine if the word is a phrasal head, what its category is,
% it subcategorization frame, and its position (final/ initial).

he~d_anal(L,Cat ,Word,head(Cat Word,As,Features),Pos)
morph(L,Word,Cat,Root,Features) ,
is_head(Cat),
getargs(L,head(Cat,Word,As,Features)),
head_position(L,Cat,Pos).

is_head(C) member(C ,(n(_),v(_) ,p(_) ,c(_) ,i(_)]).

% _______ ___________ ____ _

% The DCG rules to parse according to X-bar theory.

% ·------ ------------ - - ---
% xmax(L, C, Tree,S,NS): parses the Specifier and Adjuncts of a phrase, and
% also verifies the features of Tree match those subcategorized for.

xmax(L,C,XTree,S,NS)

xmax_e(L,C,Tree)

--> spec(L,C,TXmax,STree,S,Sl),
xmax2(L,C,TXmax,S1,NS),
{ agree(L,STree,BTree) ,gen_ID(BTree),

constraints(L,C,BTree,XTree) }.

--> [],
{ empty_cat(L,C),
Treel = xmax(C,ID,0,[ec(C,ID,T)])/e_cat(C,T),

77

APPENDIX B. PARSING MODULE

xmax2(L,C,Tree,S,NS)

agree(L,Treel, Tree),gen_ID(Tree) }.

--> adjunct(L,pre,C,TApost,Tree,S,Sl),
xbar(L,C,TXbar,S1,S2),
adjunct(L,post,C,TXbar,TApost,S2,NS).

% ______________________ _

% xbar(L, C, Tree,S,NS): parses the Arguments and Head of a phrase, depending
% on the order {head initial/ final parameter). In the case of a final
% head, 'stack' is called to examine the lookahead list and retrieve
% the subctegorization information.

xbar(L,C,Tree,S,NS)

xba.r(L,C,Tree,S,NS)

xbar(L,C,Tree,S,NS)

--> {head_position(L,C,initial),!},
xmin(L,C,Args,HD,S,Sl),
{ stack(L,initial,HD ,S 1,S2)},
arg(L,post,C,Args,HD,[],Tree,S2,NS).

--> {head_position(L,C,final),
HD=X/head(C,_,_),
stack(_,final,head(C,W,_,F),S,R),!,
getargs(L,head(C,W ,As,F))},
arg(L,pre,C,As,HD,[],Tree,R,Sl),
xmin(L,C,As,HD,Sl,NS).

--> {head_position(L,C,final),!,
poss_empty(L,C,As),
HD=X/head(C,empty,F) },
arg(L,pre,C,As,HD,[l,Tree,S,NSl),
xmin(L,C,As,HD,NSl,NS).

% ______________________ _

% stack{L,Pos,Head,OldStack,NewStack): Maintains the lookahead of final
% heads. This is used to retrieve their subcategorization frames.

stack(_,final,head(C,W,As,F),S,R) :­
reverse(S,[head(C ,W ,As,F)JRest]),
reverse(Rest,R),!.

stack(eng,initial,xbar(c(_))/head(C, W ,F),S,[head(C,W ,As,F)J S])
\+ C = c(_),!.

stack(ger,initial,X/head(C,W,F),[head(C,W,As,F)JR],New) :-

78

APPENDIX B. PARSING MODULE

reverse(R,Rl) ,reverse([head(C ,W ,As,F)IRl],N ew),!.
stack(_,initial,_,S,S) !.

% _ _ _ _ _______ __________ _ _

% xmin(L, C,Args, Tree,S,NS): parses the head of a phrase either as a lexical
% head (which has possibly moved from its base generated position) or
% as an empty head {if the category permits the head to be absent/moved).

xmin(eng,C,Args,Tree,[HDIS],S) - -> 0,
{HD = head(C,W,Args ,F),
poss_move(eng,c(mat / sent),C,_) j

head_anal(eug,C ,W ,HD ,initial) ,
getargs(eng,head (C, W ,Args,F)) ,
Tree = xba.r(C)/head(C,empty1...),!}.

xmin(L,C,Args,xbar(C)/Tree,S,S) --> head(L,C,Args,Tree).

head(L,C,As,head(C,W,F)) --> [Word],
{head_anal(L,C,Word,HD,initial),!,
HD = head(C,W,_,F),
getargs(L,head(C,W,As,F))}.

head(L,C,As,head(Cat,W,F)) --> [Word],
{head_anal(L,Cat,Word,HDJnitial),
HD = head(Cat,W,Args,F),
poss_move(L,C,Cat,As),!}.

head(L,C,As,head(C,W,F)) - - > [head(C,W ,_,F)] ,
{ !,get args(L ,head(C, W ,As,F))}.

head(L,C,As,head(Cat,W,F)) --> [head(Cat,W,Args,F)],
{poss_move(L,C,Cat,As),!}.

head(L,C,As,head(C,empty,F)) --> 0,
{poss_empty(L,C,As) ,!} .

% ______ _ _ __________ _ _ _ _ _

% The following are the general rule for Adjunct and Specifier productions.
% These refer to the language specific choices for possible adjuncts
% and specifiers.

spec(L,C,TX,xroax C)D ,Q,Cons)/[TSpec,TX],S,NS) -->
spec(L,C,X/R,xmax(C ID ,(],Cons)/R,S,S) -->

no_spec(L,[n(_),v(_),p(_),c(mat/sent)]) :- !.

spec(L,C,TSpec,S,NS).
[],{ no_spec(L,CList),

member(C,CList)}.

79

APPENDIX B. PARSING MODULE

adjunct(ger,post,C,TX,xmax(C)/[TX,Tadj],S,S) --> {C = i(tns(-)),!},
[head(v(T),W,F)],

adjunct(L,Pos,C ,X/Tree,xmax(C) /Tree,S ,S)
adjunct(L,pre,C,Tree,xmax(C)/[Tadj,Tree],S,NS)
adjunct(L,post,C,Tree,xmax(C)/[Tree,Tadj],S,NS)

-->
-->
-->

{Tadj = head(v(T),W,F)}.
[].
adj(L,pre,C,Tadj,S,NS).
adj(L,post,C,Tadj,S,NS).

%, ___ _________ _ _ _ _____ __ _

% topic: parses a topic in the SPEC, GP position of a German root clause.

topic(L,c(mat/sent),Tree,S ,NS) --> {empty_cat(L,C)},
spec(L,C,TXmax,XTree,S,Sl),
xmax2(L,C,TXmax,Sl,NS),
{ add_feature([ant(+),case(_)],XTree,Tr),
agree(L,Tr ,BTree),genJD(BTree),
constraints(L,C,BTree,Tree)}.

%, _ _ _____ _ ___ _ _ _ _ _ ______ _

% wh_phrase: parses wh-phrases in the SPEC,CP position of root and relative
% clauses.

wh_phrase(L,c(mat/ _),Tree,S,NS) --> { empty_cat(L,C)},
wh_xmax(L,Cat,C,Tree,S,NS).

wh_phrase(L,c(emb/T),Tree,S,S) --> [],{gensym(e,ID)},
{ set_ec(L,T ,ID,Tree) }.

wh_xmax(L,Cat,C,XTree,S,NS) --> spec(L,C,TXmax,STree,S,Sl),
xbar(L,C,TXmax,Sl,NS),

set_ec(_,sen t ,ID,

{ wh_agree(L,Cat,STree,BTree),
gen_ID(BTree),
constraints(L,C,BTree,XTree)}.

xmax(C ,ID,[agree(_,_,_,_)], [ec(C ,ID, trace(comp))])/ e_ cat(C, trace(comp))).
set_ec(eng,rel,ID,
xmax(n(_),ID,[agree(_,_,_,_),wh(+)],[ant(abar,n(_),ID)])/e_cat(n(_),operator)).

% ______________________ _

% arg: uses the subcategorization frame of a head to parse its arguments. If

80

APPENDIX B. PARSING MODULE

% the argument is not present, a trace is inserted. 'a_xmax' parses
% a lexical argument, 'a_xmax_e' parses a trace.

arg(L,Pos,C,0,HD,ALst,T,S,S) -->
[],{build_tree(Pos,C,HD,ALst,T)}.

arg(L,Pos,C,As,HD,ALst,T,S,NS) -->
{select(L,C,As,A,NewAs)},
a_xmax(L,C,A,Tx,S,Sl),
arg(L,Pos,C,NewAs,HD,[TxlALst],T,Sl,NS).

arg(L,Pos,C,[AIArgs],HD ,ALst,T ,S,NS) - - >
a._xmax_e(L,C,A,Tx),
arg(L ,Pos,C, rgs,RD,[TxlALst],T ,S,NS).

arg(L,Pos,C,({A}IArgs],HD,ALst,T,S,NS) -->
arg(L,Pos,C,Args,HD,ALst,T,S,NS).

a._xmax(L,Cat,C,XTree,S,NS)

a._xmax_e(L,Cat,C,Tree)

--> spec(L,C,TXmax,STreel,S,Sl),
xmax2(L,C,TXmax,S1 NS),
{ agree(L,STreel,BTreel),gen_ID(BTreel),
BTreel = xmax(_,ID,_,_)/Rest,
l_mark(Cat,BTreel,BTree2),
t_ma.rk(Cat,ID,BTree2,BTree),
constraints(L,C,BTree,XTree)}.

--> xmax_e(L,C,Treel),
{l_mark(Cat,Treel,Tree2),
t_mark(Cat,ID,Tree2, Tree)}.

% ______________________ _

% poss_move(Language,Cat1,Cat2,Args): A head of Cat2 can move from its base
% generated position to the head of Catl. The default arguments of
% Catl are Args.

poss_move(L,C,C,_).
poss_move(L,c(mat/sent),i(tns(+)),[i(tns(+))]).
poss_move(L,c(mat/sent),v(nil/tns(+)),[i(tns(+))]).

%. ______________________ _

% poss_empty(Language, Cat,Args): The head of Cat can be empty due to
% absence/ movement. The default arguments of Cat are Args.

81

APPENDIX B. PARSING MODULE

poss_empty(L,i(tns(+)),[v(nil/tns(+))]).
poss_empty(L,c(emb/rel),[i(tns(+))]).
poss_empty(eng,c(emb /sent),(i(_)]).
poss_empty(ger,c(emb/sent),(i(tns(-))]).
poss_empty(eng,c(mat/sent),(i(tns(+))]).
poss_empty(ger,v(T),_).

% ______________________ _

% empty_cat(Language, Category): Category is a legal empty category for Language.

empty_cat(L,n(_)).
empty_cat(L,p(_)).

%. ______________________ _

% build_tree/ 5: constructs and appropriate binary tree for the X-bar level
% of a phrase (e.g. the head and its arguments.)

build_ tree(post, C ,HD ,ArgTrees ,xmax(C) /Pair) :-
. reverse(ArgTrees,ATs),make_pairs(post,C,HD,ATs,Pair),!.

build_tree(pre,C,HD,ArgTrees,xmax(C)/Pair) :-
make_pairs(pre,C ,HD ,ArgTrees,Pair) ,!.

make_pairs(Pos,C,xbar(C)/HD,0,HD) :- !.
make_pairs(Pos,C,HD,[AIAs],Pair) :-

pair(Pos,C,HD ,A,P),make_pairs(Pos,C,xbar(C) /P,As,Pair),!.
pair(post,C,HD,A,[HD,A]) !.
pair(pre, C,HD,A,[A,HD]) :- !.

% -----------------------% select(L,C,As,A,NewAs): determine if Chas fixed/free order arguments for
% language L, and selects arguments from As appropriately. For
% the present system, we assume both English and German to be fixed
% order, for efficiency purposes.

select(L,C,As,A,NewAs) :-
order(L,C,Order),!,
select(Order ,As,A,N ew As).

select(free,As,A,NewAs) :­
append(L,[AI R] ,As),
append(L,R,NewAs).

select(fixed,[AINewAs],A,NewAs) !.

82

APPENDIX B. PARSING MODULE

order(eng,_,fixed) .
order(ger ,_,fixed).

%, _ _ _ _ _ _ _______ _ _ ____ _ _ _ _ _

% l_mark: L-marks all subcategorized constituents (except IP by GP).

l_mark(c(_),Tree,Tree) :- !.
l_mark(_,Treel,Tree2) !, add_feature(l_marked,Treel,Tree2).

%, ___ _ _ _ _ _ _ ___ _ _ _ _ _ _ _ _ ___ _

% t_mark: Theta marks all arguments, except GP & IP do not theta-mark
% their arguments.

t_mark(c(_),_,Tree,Tree) :- !.
t_mark(i(_),_,Tree,Tree) :- !.
t_mark(_,ID,Treel,Tree2) !, add_feature(theta(ID),Treel,Tree2).

!f6 · ----- - - - - - --- - ----------% addJeature: adds a given feature, or list of features to a phrasal node.

add_feature(Feature,Tree,Tree) :- var(Feature),!.
add_f eature([FI Flist] ,xmax(C ,ID ,F 1, Cons)/ R ,xmax(C ,ID ,F2, Cons) /R)

append([FIFlist] ,Fl,F2).
add_feature(Feature,xmax(C,ID,Fl,Cons)/R,xmax(C,ID,F2,Cons)/R)

append((Feature],Fl,F2).

% _______ _ _ ___ _______ _ _ _ _ _

' .,

' .,

% agree(L,SurfTree,DeepTree): verify that the agreement relations hold for
% Sur/Tree, and construct a "canonical" (uninftected) DeepTree for
% purposes of translation. The feature list of DeepTree receives the
% 'agree(Tns,Per,Num/ Gen, Case)' feature to keep track of inflection.

agree(Language,SurITree,BaseTree) :-
case_agree(S urITree, Case),
SurITree = xmax(C,_,_,_)/_,
agreel(Language,C,SurITree,BaseTreel,Tns,Per,NumGen,Case,wh(-)/Proper),
add_feature([Proper ,agree(Tns,Per ,N umGen,Case)] ,BaseTreel,BaseTree),!.

%, _______________________ _

83

APPENDIX B. PARSING MODULE

% wh_agree: verify agreement and wh-status of wh-phrases.

wh_agree(Language,Cat,SurfTree,BaseTree) :-
SurfTree = xmax(C,_,_,_)/_,
(Cat = c(emb/rel),Proper = proper(+),!,C=n(_) ; true),
agreel(Language,C,SurfTree,BaseTreel,Tns,Per,NumGen,Case,wh(+)/Proper),
add_feature((wh(+),ant(+),Proper],BaseTreel,BaseTree2),
add_feature(agree(Tns,Per ,N umGen,Case),BaseTree2,BaseTree) ,!.

%. _______________________ _

% rev_agree: similar to 'agree', but the Deep Tree is instantiated and the
% inflected surface tree is constructed (subject to agreement). Used
% for generation purposes.

rev_agree(L,Target,NewTarget) :-
Target = xmax(C,ID,F,Cons)/ _,
case_agree(Target,Case),
(member(agree(Tns,Per NumGen,Case),F);true),!,
agreel(L 1C,NewTarget,Target,Tns,Per,NumGen,Case,Wh).

case_agree(xmax(n(Case),_,_,_)/R,N Case) !,Case=NCase.
case_agree(xmax(_,_,_,_) /R,Case) !.

%. ______________________ _

% The following predicates are used by the three agree predicates above.
% agreel: Traverses the tree, calling agree2.
% agree2: Enforces agreement relations between constituents, and
% calls 'agree_terminal' for lexical items.
% agree_terminal: Accesses morphological information to determine the
% agreement features of lexical items.

agreel(L,C 1X/[LS,RS},X/[LB,RB)1Tns,Per1NumGen,Case,Wh.)
agree2(L,C,LS,LB,T11s,Per,NumGen,Case,Wh),
agree2(L,C,RS,RB,Tns,Per,NlllllGen,Case,Wh).

agr el(L1C,X/RS,X/RB Tns Per,NumGen,Casa,Wh) :­
agree2(L,C ,RS,RB ,Tns,Per ,N um Gen,Ca.se,Wh).

agree2(L,i(tns(+)),Xmax,Xmax,Tns,Per,NumGen,Case,Wh)
Xmax = xmax(v(nil/tns(+)),_,F,_)/R,!,
member(agree(Tnsl,_,_,_),F),

84

APPENDIX B. PARSING MODULE

(Tnsl = Tns ; Tnsl = -),!.
agree2(L,i(_),Xma.x Xmax T11s,Per,NumGen,Case,Wh)

Xma.x = xmax(n(nom),_,F,_)/R,!,
member(agree(_,Per,NumGen,_),F).

agree2(L,c(emb / rel),Xmax,Xmax Tns ,Per ,N um Gen,Case, Wh)
Xmax = xmax(n(_),_,F ,_)/R,!,
member(agree(_,Per,NumGen,_),F).

agree2(L,c(mat/sent),Xmax,Xmax,Tns,Per,NumGen,Case,Wh)
Xmax = xmax(i(_),_,F,_)/R,!,
member(agree(ITns,Per ,N umGen,_),F),
(ITus = Tns ; true),!.

agree2(L,n(_),}Cmax Xmax Tns,Per, um en,Case,Wh)
Xmax = xmax(c(emb/rel)l-,F,_)/R,!,
Wh = WR/proper(-),
member(agree(_,_,NumGen,_),F).

agree2(L,C,Xmax,Xmax,Tns,Per,NumGen,Case,Wh)
Xmax = xmax(_,_,_,_) /R.

agr.ee2(L,C,X/[LS,RS],X/[LB,RB],Tns,Per,NumGen,Case,Wh)
agree2(L,C,LS,LB,Tns,Per,NumGen Case,Wh),
agree2(L,C,RS,RB,Tns,Per,NumGen,Case,Wh).

agree2(L,C,X/RS,X/RB,Tns,Per,NumGen,Case,Wh) :­
agree2(L,C,RS,RB,Tns,Per,NumGen,Case,Wh).

agree2(L,C,XS,XB,Tns,Per,NumGen Case Wh) :­
agree_terminal(L,XS,XB,CaL Features),
extract_features(Cat,Features,Tns,Per,NumGen,Case,Wh).

agree_terminal(L ,S urITerm,B aseTerm,Cat,Features)
member(Node,[spec,head adj]),
SurITerm = .. [Node,Cat,empty,Features],
BaseTerm = .. (Node,Cat,empty,Features],!.

agree_terminal(L,SurITerm,BaseTerm,C,F) :­
member(Node [spec1head adj]),
(var(BaseTerm),Sut.ITerm= .. [Node, Word,_],BaseTerm= .. [Node,C,R.oot,F];
var(SurITerm),BaseTerm= .. [ode,C,Root,_],SurITerm= .. [Node,C,Word,F]),!,
morph(L,Word,C,Root,F),
get_cat_features(L,C,F).

agree_ terminal(L ,S urITerm,B aseTerm ,nil ,Features)
(var(SurITerm), terminal(BaseTerm);
var(BaseTerm),terminal(SurITerm)),!,
SurITerm = BaseTerm.

85

APPENDIX B. PARSING MODULE

get_cat_features(L,v(Form),Features) :- !,
v _features(L,Features,Form).

get_cat_features(L,_,_) !.

% _______________ ___ ____ _

% extractJeatures: retrieve relevant features from the dictionary entry.

extract_features(d,Features,Tns,Per,Num/Gen,Case,wh(W)/proper(-))
ext_ftr(wh(W),Features),
ext_ftr(num(Num,Gen,Case),Features).

extract_features(p(_),Features,Tns,Per,Num/Gen,Case,wh(W)/Proper)
ext_ftr(w h(W),Features).

I .,

I .,

extract_features(n(_),Features,Tns,Per,Num/Gen,Case,wh(W)/proper(P)) :- !,
ext_ftr(wh(N),Features), (wh(N)=wh(W);(wh(N)=wh(-),\+P=(-))),!,
ext_ftr(per(Per) ,Features),
ext_ftr(num(Num),Features),
ext_ftr(gen(Gen) ,Features),
ext_ftr(case(Case) ,Features),
ext_ftr(proper(P),Features).

extract_features(v(_),Features,Tns,Per,Num/Gen,Case,Wh) :- !,
ext_ftr(tns(Tns) ,Features),
ext _ftr(per(Per) ,Features),
ext_ftr(num(N um),Features).

extract_features(i(_) ,Features,Tns,Per ,N um/ Gen,Case, Wh)
ext_ftr(tns(Tns) ,Features),
ext_ftr(per(Per),Features),
ext_ftr(n um(N um) ,Features).

extract_features(_,_,Tns,Per,Num/Gen,Case,Wh) :- !.

ext_ftr(Ftr,Features) :-
member(ftr(Flist),Features),!,
mem her(Ftr ,Flist).

I .,

86

Appendix C

Language Parameters

% _______________________ _

% Section: Phrase Structure Parameters
%
% Description: This section contains the language specific choices for
% possible specifiers and adjuncts. In addition the head_position
% parameter is specified for· the various categories of each
% language. % _______________________ _

% _______________________ _

% General rule to parse simple lexical items as specifiers.

spec(L,C,spec(Cat,W ,F),S,S) --> (W],
{ specifier(L,C,Cat),
mor_ph(L,W Cat,R,F)}.

% ------------------------% Parse punctuation as an adjunct to root GP.

adj(L,post,c(mat/sent),Tree,S,S)-->
adj(L,post,c(mat/sent),Tree,S,S)-->

['. '],{Tree = punc(punc,'. ',decl)}.
['?'],{Tree= punc(punc, 1 ? 1 ,ques)}.

% _______________________ _

% Section: English Configuration
%
% The following define the specific phrase structure rules for: English

87

APPENDIX C. LANGUAGE PARAMETERS

spec(eng,c(T),Tree,S,NS)
spec(eng,i(_),Tree,S,S)
spec(eng,i(_),Tree,S,S)

adj(eng,post,n(_),Tree,S,NS)
adj(eng,post,n(_),Tree,S,NS)
adj(eng,post,v(T),Tree,S,NS)

specifier(eng,n(_) ,d).

head_posi tion(eng,_,initial).

--> wh_phrase(eng,c(T),Tree,S,NS).
--> xma.x(eng,n(nom),Tree,0,0),
--> xma.x_e(eng,n(nom),Tree).

--> xmax(eng,p(_),Tree,S,NS).
--> xmax(eng,c(emb/rel),Tree,S,NS).
--> xmax(eng,p(_),Tree,S,NS).

% All heads are initial.

%_. - - ------- --- ------- ----
% Section: German Configuration
%
% The following define the specific phrase structure rules for: German

spec(ger ,c(mat/ sent), Tree,S ,NS)
spec(ger ,c(T), Tree ,S ,NS)
spec(ger,i(_),Tree,S,NS)
spec(ger ,i(_), Tree,S ,S)

adj(ger,pre,v(_),Tree,S,NS)
adj(ger ,post,n(_) ,Tree,S ,NS)
adj(ger,post,n(_),Tree,S,NS)

specifier(ger ,n(_) ,d).

head_posi tion(ger ,n(_) ,initial).
head_posi tion(ger, v(_) ,final).
head_posi tion(ger ,aJni tial).
head_posi tion(ger ,p(_) ,initial).
head_posi tion(ger ,i(_) ,final).
head_posi tion(ger ,c(_) ,initial).

-->
-->
-->
-->

-->
-->
-->

topic(ger,c(T),Tree,S,NS).
wh_phrase(ger,c(T),Tree,S,NS).
xmax(ger,n(nom),Tree,S,NS).
xma.x_e(ger,n(nom),Tree).

xmax(ger,p(_),Tree,S,NS).
xmax(ger,p(_),Tree,S,NS).
xmax(ger ,c(emb /rel),Tree,S,NS).

88

Appendix D

Constraint Module

% ________________________ _

% Section: Constraints
%
% . Paradigm: constmints(Language, Category, Tree).
%
% Description: This module evaluates the constraints, as appropriate for
% the Category. The action is as follows:
% 1. Determine the constraint list, based on the immediately
% dominated X-max nodes, and the properties of the current node.
% 2. Satisfy all constraints possible; if there is a definite
% violation then fail (force a re-parse).
% 3. Return the new list of constraints, to be passed up the tree.
%. ________________________ _

constraints(L,C,Treel,Tree2)
get_constraints(Treel,Cons),
satisfy_constraints(L,C,Treel,Cons,Tree2,Constraints),
add_constraints(Tree2,Constraints).

% ________________________ _

% get_constraints(Tree, Constraints}: search the tree for all the maximal
% projections dominated by Tree, gets their constraint lists and
% merges them.

get_constraints(xmax(C,ID,F ,Cons)/R,Cons)
get_constraints(X/[L,R),Cons) :- !,

\ + var(Cons),!.

89

APPENDIX D. CONSTRAINT MODULE

non_ terminal(X),
get_constra.ints(L,CL),
get_constra.ints(R, CR),
append(CL,CR,Cons),!.

get_constraints(X/Y,Cons) :- !,
non_terminal(X),
get_ constra.ints(Y, Cons),!.

get_constraints(X,[]) terminal(X).

terminal(Term) :-
Term = .. (PredL],
member(Pred,[e_cat,head,spec,adj,punc]),!.

non_terminal(Node) :-
Node = .. (XBARIJ,
member(XBAR,[xmax,xbar]),!.

gen JD(xmax(C,ID ,F ,Cons) /R)
gensym(C,ID),!.

%. ______________________ _

% add_constraints(Tree, Constraints): determines if any new constraints should
% be added for the current tree (note: some are also added during the
% satisfy constraint phase).

add_constraints(xmax(C,ID,F ,Cons)/R,Constraints)
new_ constrain ts (C ,xmax(C ,ID ,F, Cons)/ R,N ewCons),
append(Constraints,N ewCons,Cons),!.

new _constraints(n(Case),xmax(n(_) ,ID,F ,Cons) /R,[case(ID ,Case)])
\ + member(ant(+),F),!.

new_constraints(C,xmax(Cat,ID,F,Cons)/R,[ant(abar,Cat,ID)]) :­
member(ant(+),F),!.

new _constraints(v(_) ,Tree,[theta(X) J)
get_theta(Tree,X),!.

new _constraints(Cat, Tree,[]) !.

get_theta(Tree,X) :­
get_head(Tree,head(C,W ,F)),
member(theta(X),F),!.

get_theta(_,+) :- !.

90

APPENDIX D. CONSTRAINT MODULE

%. _____________ ___ _ _ ______ _

% satisfy_constraints(Language, Cat, Tree, Constraints,NewConstraints): applies
% the principles of Government-Binding theory to the current set of
% constraints for Tree. Each principle determines its own applicability
% (if it doesn't apply, it will trivially succeed).

satisfy_constraints(L,C,Treel,Constraints,Tree3,NewConstraints)
ecp(L,C,Treel,Constraints),
case_theory(L,C,Treel,Tree2,Constraints,Constraints2),
theta_ theory(L, C, Tree2, Constraints2, Tree3, Constraints3),
subjacency(L,C,Tree3,Constraints3,NewConstraints).

%. ____________________ ____ _

% ecp(L, C, Tree, Constraints): if there exists an empty category in Constraints,
% then if it is properly governed its 'trace', otherwise its 'PRO'.
% (in fact, this avoids subjects, so never determines PRO).

ecp(L ,i(J,Tree Constraints) :- !.
ecp (L,C,Tree Constraints) :-

exists_ec(Const raints ,Tree,ID ,Type) - >
((properly:..governs(L,C,Tree,xmax(Cat ,ID)..1_)) - >

Type = trace(WH) ; Type = pro),
ecp(L,C, Tree,Constraints)),!.

ecp(L,C,Tree,Constraints) :- !.

exists_ ec(Constraints ,Tree,ID, Type)
member(ec(_,ID , Type), Constraints),
var(Type).

% ___ _______ ______________ _

% case_theory(Language, Cat, Cons1, Cons2): case theory has two applications,
% 1. To mark lexical (non-wh) NP's with case, and fail if it
% cannot (Case Filter).
% 2. To determine if a given trace is an np- trace or wh- trace.
% First we determine if Cat is a case assigner for Language, and then
% do (1) case_mark_lexical, and (2) case_mark_traces above.

case_theory(L ,C,Treel,Tree3,Consl,Cons2)
case_assigner(L,C,Treel,Trans), !,

91

APPENDIX D. CONSTRAINT MODULE

case_mark_lexical(Treel,Tree2,Trans,Consl,Cons2),
case_mark_traces(Tree2,Tree3,Trans,Cons2),!.

case_theory(L,C,Tree,Tree,Cons,Cons) !.

% ---- ----- ------ --- --- - ---% case_mark_lexical(Tree,Cons1,Cons2): every case request in Cons1, must
% be governed in Tree , else Case Filter applies (ie. Fail).

case_mark_lexical(Treel,Tree3,Trans,Cons11Cons3) :-
remove(case(ID 1Case),Consl,Cons2),!,

governed(xmax(n(_),ID,_,_),Treel,Trans),
mark_node(ID,case(ID), Treel,Tree2),
case_marl(Jexical(Tree2,Tree3,Trans,Cons2,Cons3),!.

case_mark_lexical(Tree,Tree,Tra.ns,C,C) !.

% ·--- -------- - ----- --- - - ---
% case_mark_traces(Tree, Constraints): if there exists a trace in Constraints,
%-. of unknown type (wh/np), then if it is governed in Tree its a
% · wh-trace, otherwise i·ts an np- trace.

case_mark_traces(Treel, Tree3, Trans ,Constraints)
exists_trace(Constraints,Treel,ID,WH) ->

(governed(xmax(Cat,ID,_,_),Treel,Trans) ->
(mark_node(ID,case(ID),Treel,Tree2), WH = wh)
(Tree2 = Treel , WH = np)),

case_mark_traces(Tree2,Tree3,Trans,Constraints),!.
case_mark_traces(Tree, Tree, Trans, Constrain ts) !.

exists_trace(Constraints,Tree,ID,WH) :-
member(ec(Cat,ID,trace(WH)) ,Constraints),var(WH).

%. _ ___ __________________ __ _

% theta_theory: if a verb theta marks it's subject, the theta(+) constraint
% is removed, and the new Tree, with theta- marked subject, is returned.
% If at IP there is a theta (-) constraint, then the subject is not · ·
% theta-marked, but it must be a antecedent for a a-chain (or 'it').

theta_theory(L,i(_),Treel,OldCons,Tree2,NewCons)
remove(theta(+),OldCons,NewCons),!,

Treel = X/[Subjl,Rest],

92

APPENDIX D. CONSTRAINT MODULE

Subj! = xmax(_,ID,_,_)/_,
add_feature(theta(ID),Sub jl,Subj2),
Tree2 = X/[Subj2,Rest].

theta_theory(L~(_) ,Tree,OldCons, 'Iree,N ewCons)
\+ member(theta(+),OldCons),
Tree = X/[Subj,J,
\+ pleonastic(L,Subj),
\+ Subj = _/e_cat(_,_),!,

Subj = x:max(_,ID ,_,_)/_,
append([an t(a,n(_) ,ID)] ,OldCons,NewCons).

theta_theory(L,C,Tree,Constraints,Tree,Constraints) !.

pleonastic(eng,NP) :- get_head(NP,head(_,it,_)).
pleonastic(ger ,NP) get_head(NP ,head(_,es ,_)).

%, _____ __________________ _

% subjacency(Language, Cat, Tree, OldConstraints,NewConstraints): This
% predicate constrols the construct of chains, and applies the
% · Subjacency principle to determine their well- formedness.

subjacency(L,C,Tree OldCons,NewCons) :­
bind_t races(L ,C,Tree Old Cons,Consl),
check_pro_chai ns(L, C,Tree,Consl,Cons2),
\+ member(barrier(ID),Cons2),
barriers(L,C,Tree,Cons2,NewCons).

% bind all traces.

% no barriers remain.
% add new barriers if any.

% _ _ _____________________ _

% check_pro_chains(L, Cat, Tree, OldConstraints,NewConstraints): if a pro-chain
% is present, and there is no antecedent available, the the original
% empty category must have been PRO, and is set accordingly.

check_pro_chains(L,C,Tree,Consl,Cons4) :-
remove(chain(pro,ID ,CC,Case, Theta,List),Consl,Cons2),
remove(barrier(ID), Cons2, Cons3),
set_last(pro,List),
check_pro_chains(L,C,Tree,Cons3,Cons4),!.

check_pro_chains(L,C,Tree,Cons,Cons) !.

% ·------------------------
% barriers(L, Cat, Tree, OldConstraints,NewConstraints): if the current node is

93

APPENDIX D. CONSTRAINT MODULE

% a barrier (ie, not l-ma,rked), then it becomes a barrier to any
% chains which it dominates.

barriers(L,C,Tree,OldCons,NewCons)
is_barrier(Tree),
member(chain(Type,ID,CC,Case,Theta,List),Old Cons),
\+ member(barrier(ID),OldCons),!, % not already a barrier.
append((barrier(ID)],OldCons,Consl),
barriers(L,C,Tree,Consl,NewCons).

barriers(L,C,Tree,Cons,Cons) :- !.

is_barrier(xmax(C ,ID ,Features,Cons) /R)
\ + member(l_marked,Features) ,! .

set_last(Type,[ec(C,ID,Type)I[]]) :- !.
set_last(Type,[AIY]) !,set_last(Type,Y).

% current node is not l- marked.

% ____ _ _________ ___ _ _____ _

% ·bind_traces(Language, Cat, Tree, OldConstmints,NewConstraints): this
% attempts to either close a chain, by prepending an antecedent to
% it (clause 1) or extend a chain, by prepending a trace to it
% (clause 2}.

bind_ traces(L ,c(_), Tree, 0 ld Cons ,N ewCons)
mem her(chain(Typ e,ID, CC, Case, Theta,List), Old Cons),
var(Type),!,
get_head(Tree,head(_,empty,._)),
Type=pro,
bind_traces(L,c(_),Tree,OldCons,NewCons),!.

bind_ traces (L, v(_), Tree, 01d Cons ,N ewCons) :-
member(chain(Type,ID ,CC,Case, Theta,List),Old Cons),
var(Type),!, Type=a,set_last(trace(np),List),
bind_traces(L,v(_),Tree,OldCons,NewCons),!.

bind_traces(L,C,Tree,OldCons,NewCns) :-
member((At/Ct),[(a/a),(abar /a),(abar /abar),(abar/pro)]),
remove(ant(At,CC,ID),OldCons,Cnsl),
remove(chain(Ct,IDC,CC,Case,Th,List),Cnsl,Cns2),
(Ct=pro,set_last(trace(wh),List) ; true),
subjacent(ID,IDC,Tree,Cns2,Cns3),
agree_case(ID,Tree,Case,Th),

94

APPENDIX D. CONSTRAINT MODULE

append((c_cha.in(At,ID,CC,Case,Th,(ant(At,CC,ID) !List])] ,Cns3,NewCns),!.
bind_traces(L,i(tns(-)),Tree,OldCons,NewCons) :­

exists_ec(OldCons,Tree,ID ,Type) ->
make_cha.in(Tree,ec(Cat ,ID1Type),Unknown,OldCons,Consl),

bind_traces(L~(tns(-)),Tree,Consl,NewCons).
bind_traces(L,C,Tree,OldCons,NewCons) :-

member(ec(Cat,ID ,trace(T)),OldCons),!,
(bind_to_chain(ec(Cat,ID ,trace(T)) ,Tree,OldCons,Consl);
make_chain(Tree,ec(Cat,ID , trace(T)) ,a,OldCons,Consl)),

bind_traces(L,C,Tree,Consl,NewCons).
bind_traces(L,C, Tree,Cons,Cons) !.

% _ _ _ _ _ _______ _ _ _ _ _ _ _ _ ___ _

% bind_to_chain(Trace, Tree, OldConstraints,NewConstraints): finds a trace,
% and a chain, makes sure they are subjacent, and prepends the
% trace to the chain, and puts the new chain in NewConstraints.

bind_to_chain(ec(C ,ID,trace(T)), Tree,OldCons,N ewCns)
remove(ec(C,ID,Type),OldCons,Cnsl), % get the empty cat.
member(ChT,(a,abar,pro]),
remove(cha.in(ChT,IDC,C,Cse,Th,List),Cnsl,Cns2), % get the chain.
subjacent(ID,IDC,Tree,Cns2,Cns3), % are they subjacent?
agree_case(ID,Tree,Cse,Th), % only one theta role.
append([chain(ChT ,ID ,C,Cse,Th,[ec(C,ID,trace(T))!List])],Cns3,N ewCns),!.

% --- ---------- - - ---- - - ---% make_chain(Trace, OldConstraints,NewConstraints): if the trace couldn't be
% attached to a chain, then it must start a new chain.

make_chain(Tree,ec(C,ID ,Type),Cl1Type ,OldCons,NewCons) :-
\+ var(Type), Type = trace(T), \+ var(T), T = comp,
remove(ec(C,ID ,Type),OldCons,NewCons), !.

make_cha.in(Tree,ec(C,ID,Type),ChType ,Ol.dCons ,NewCons) :-
remove(ec(C,ID,Type),Old ous,Consl), % remove the ec
agree_case(ID,Tree,Case,Theta),
append([chain(ChType,ID ,C,Case,Theta,[ec(C ,ID ,Type)])] ,Consl,NewCons),!.

sub jacent(IDtrace,IDchain,Tree,OldCons,N ewCons) :­
remove(barrier(IDchain),OldCons,N ewCons) ,!.

sub jacent(IDtrace,IDcha.in, Tree, Cons,Cons).

95

APPENDIX D. CONSTRAINT MODULE

% --------------------- --% agree_case: ensure that a chain receives Case and a Theta role exactly once.

agree_case(ID,Tree,Case,Theta) :-
get_subtree(ID,Tree xm.a.x(C,ID,F,Cons)/R),!,
(member(case(IDC),F),Casel=ca.se(IDC);true),
(member(theta(IDT),F),Theta.l=theta(IDT);true),!,
Case=Casel Theta=Thetal ,!.

%. ______________________ _

% governs(Language, Cat, Tree,Node): first determines is Cat is a governor
% for Language, and then calls 'governed' to see if Node is governed
% by the head of the current maximal projection.

governs(L,C,Tree,Node) :-
governor(L,C),!,
governed(Node,Tree,trans(-)).

governor(L,C) :- governor_list(L,List),!,member(C,List).
governor_list(_,[n(_),v(_),a,p(_),i(tns(+))]).

% -----------------------% properly_governs(Language, Cat, Tree,Node): first determines is Cat is a
% proper governor for Languages, and then calls 'governed' to see
% if Node is governed by the head of the current maximal projection.

properly _governs(L, C, Tree,N ode)
proper_governor(L,C),!,
pgoverned(N ode, Tree).

proper_governor(L,C) :- pg_list(L,List),!,member(C,List).
pg_list(_,(n(_) ,v (_) 1p (_)]).

pgoverned(xmaxCID ._,_) ,xmax.(C,IDG ,F ,Cons) /R)
pgovernedl (ID ,IDG xmax(C,IDG,F,Cons)/R),!.

pgovernedl(ID,IGD,X/[L,R]) :-
(L = xmax(C)/T ; R = xmax(C)/T),!,
pgovernedl(ID,IDG,xmax(C)/T).

pgovernedl(ID,IGD,X/[L,R]) :-

96

APPENDIX D. CONSTRAINT MODULE

(L = xbar(C)/T ; R = xbar(C)/ T),!,
governedl(ID ,IDG,X/[L,R],trans(+)) .

% ______________________ _

% governed(Node, Tree): determines if Node is governed by the head of
% the current maximal projection, which is the root of Tree.

governed(xmax(_,ID1-,J,xmax(C,IDG F,Cons)/R,Tra.ns) :-
governedl(ID,IDG,xmax(O,IDG,F,Cons)/R,Trans),!.

governed1(ID ,IDG,x:ma...x.(_,ID,_,_) /_,T.rans) :- !.
governedl(ID,IDG,x.max(C,IDX,_,J/_,trans(+)) :- \+IDX=IDG,\+C=i(tns(-)),!,fa.il.
governedl(ID,IDG,X/[L,R],Trans) :- !

(governedl(ID,IDG L,Trans) i governedl(ID,IDG,R,Trans)).
governedl(ID,IDG,X/Y,Trans) :-

governedl (ID,IDG,Y,Trans).

% ______________________ _

% . . case_assigner: determines if the head of the phrase is a case- assigner.

case_assigner(L,v(_) ,T.ree,trans(+)) :­
get_head(Tree,hea.d(_,._,Features)),
member(trans(+) ,Features),!.

case_assigner(L,C,Tree,trans(-)) :­
case_assigner(L, C), ! .

case_assigner L,c(emb/sent),Tree trans(+))
get_head(Tree,head(_, Word,_)),
member(Word,[for,empty]),!.

case_assigner(_, v(_)).
case_assigner(_,p(_)).
case_assigner(_,i(tns(+))).

% ______________________ _

% mark_node: find the phrase labeled ID and mark its feature list with
% the term Mark.

mark_node(ID ,Mar k,xma.x(C ,ID ,F 1,Cons) /R,xma.x(C,ID ,F2, Cons) /R)
append([Mark] ,Fl ,F2).

mark_node(ID,Mark,X/[L,R],X/[Ll,Rl]) :- !,
((mark_node(ID,Mark,L,Ll),R=Rl) ;

I .,

97

, ,

APPENDIX D. CONSTRAINT MODULE

(ma.rk_node(ID,Mark ,R,Rl),L=Ll)).
mark_node(ID,Mark)(/R,X/Rl) :- !,

mark_node(ID ,Mark,R,Rl).
mark_node(ID,Mark,X) :- !,fail.

% ____________________ _

% get_subtree: find (and return) the phrase labeled ID.

get_su btree(ID ,xma.x:(C ,ID ,F, Cons) /R,xma.x:(C ,ID ,F ,Cons) /R) :- !.
get_subtree(ID,X/[L,R],Subtree) :- !,

(get_subtree(ID ,L,Subtree) ; get_subtree(ID,R,Subtree)).
get_subtree(ID,X/R,Subtree) :- !,

get_subtree(ID ,R,Subtree).
get_subtree(ID,R,Subtree) :- !,fail.

98

..

Appendix E

Translation Module

% ________________________ _

% Section: Translate
%
% .Paradigm: translate(SourceTree, Target Tree) .
%
% Description: This section is responsible for translating the parse
%
%
%
%
%
%
%
%
%

tree for the source input, into the target language. The high
level predicates are called as follows:

1. gen_deep_structures: this produces the source
D-structure, applying move-alpha in reverse.

2. trans_lexical: converts source lexical items into
their inflected, target equivalents. The result is
the D-structure for the target language.

3. gen_surf_structures: generates surface structures
for the D-structures of the target language.

%. _______________________ _

translate(Source Tree, Target Tree)
write(1 Source Surf ace Structure: 1

) ,nl,
pretty(SourceTree),
gen_deep_s tructure(SourceTree,SourceDeep) 1

trans_lex.ical(SourceDeep, Ta rget Deep ,Mode),
gen_surf_structure(Mode,Ta.rgetDeep,TargetTree).

% ________________________ _

% gen_deep_structure(SurfaceTree,DeepTree): collapses all chains, returning

99

APPENDIX E. TRANSLATION MODULE

% moved constituents to their base generated positions. Heads which
% have moved to Comp (through inversion), are also returned to their
% base positions.

gen_ deep _structure(S ourceTree, Target Tree)
rev _move_alpha(SourceTree,TargetTree),!,
write(' Source Deep Structure: '),nl,
pretty(TargetTree).

% _______________________ _
% rev_move_alpha: is essentially applying move- alpha in reverse.
% It first calls rev_move_np, and then rev_move_head.

rev _move_alpha(S_structure,D _structure) :-
S_structure = xmax(C,ID,F,Cons)/ _,
make_trace_lists(1,Cons,Lists),
rev _move_np(S _structure,D _structurel,Lists),
rev _move_head(D _structurel ,D _structure),!.

%, _______________________ _

% rev_move_np: each NP/ PP which is the head of a chain is moved back to its
% base-generated position.

rev_move_np(D_str,D_str,[]) :- !.
rev_move_np(S_str,D_str,[Cha.injRest])

extract_from_cha.in(Cha.in,SurfID ,BaseID),
collapse_chain(S_str,St1rfID ,D _str l ,BaseID),
rev _move_np(D _strl,D _str,Rest),!.

extract_from_cha.in(ecl(_,[SurfID !Rest)) ,S urfID ,BaseID)
reverse(Rest, [B aseID IJ), !.

% _______________________ _

% collapse_chain(S-str,SID,D-str,BID): move an element whose S-Str po~itition
% is SID to its D-str position specified by EID. This predicate is ·
% bi-directional (either S-str/ SID or D-str/ BID may be specified).

collapse_chain(X/[L,R),SurfID,X/[NewL,NewR),BaseID)
R=xmax(C,SurfID,_,_)/_,leave_ec(X,R,NewR),
move_to_base(R,B aseID ,L ,New L), ! .

100

APPENDIX E. TRANSLATION MODULE

collapse_chain(X/[L ,R),SurfID ,X/[NewL,NewR),DaseID)
L=xmax(C,SurflD ,_,_)/_,leave_ec(X,L,NewL),
move_to_base(L,BaseID,R,NewR),!.

collapse_chaln(X/[L,R],SurfID,X/[NewL,NewR],BaselD)
collapse_chain(L,Su.rfID ,NewL,BaseID),
collapse_chaln(R,Sui-fID ,NewR,BaseID) ,!.

collapse_chain(X / R,SurfID ,X/N ew R,B aseID) :-
colla_pse_ cha.in(R,S urfID ,N ewR,BaseID),!.

collapse_chain(X,_,X,_) !.

I .,

% ·----------------------
% move_to_base: returns a phrase to its Base position (at BaseID).

move_to_base(Ant,BaseID,X/[L,R],X/[L,NewAnt]) :­
R=xmax(C,BaseID,_,J/_,set_features(R,Ant,NewAnt),!.

move_to_base(Ant,BaseID,X/[L,R],X/[NewAnt,R]) :­
L=xmax(C,BaseID,_,J/_,set_features(L,Ant,NewAnt),!.

mo.ve_to_base(Ant,BaseID,X/[L,R],X/[NewL,NewR]) :- !,
move_to_base(Ant,BaseID ,L,N ew L),
move_to_base(Ant,BaseID,R,NewR),!.

move_to_base(Ant,_,X,X) :- !.

leave_ec(X,xmax:(Cat,ID ,F ,Cons)/ _,xmax(Cat,ID ,_,_) /e_cat(Type))
x_node(X,C,_) ->
((C = c(emb/rel), Type = ant) ;

(C = c(mat/sent),Type = ant) ;
(C = c(emb/sent),Type = comp)
(C = i(J, Type = np)).

set_features(xmax(C,BID,Bftrs,BCons)/X,xmax(C,AID,Aftrs,ACons)/R,
xmax(C,BID,NewFtrs,[])/R) :-

\+ var(X), % Surface to Base.
(\+ member(case(_),Aftrs),append((wh(+)],Aftrs,NewFtrs)

Aftrs = NewFtrs),!.
set_features(xmax(C,BID ,Ftrs,BCons)/X,xmax(C,AID ,Ftrs,_)/R,

xmax(C ,BID ,Ftrs,_) /R)
var(X), % Base - > Surface.
X = e_cat(C,trace(wh)).

101

APPENDIX E. TRANSLATION MODULE

%. _____________________ _

% rev_move_head(OldDstr,NewDstr): heads which have been moved by have/be
% raising or inversion are also returned to their base positions.

rev_move_head(OldDstr,NewDstr) :­
find_moved_head(OldDstr ,HD ,OldDstr 1),!,
move_hd_base(HD ,0 ldDstrl,N ew Dstr).

rev _move_head(Dstr ,Dstr).

find_moved_head(Dstr ,head(C2,W ,Ftrs),N ewDstr)
Dstr = xmax(Cl,ID,F,Cons)/R,
get_head(Dstr ,head(C2,W ,Ftrs)),
\+ W = empty,
\+ Cl = C2,!,
set_head(head(c(mat/ sent),empty,[]),ID,Dstr ,New Dstr).

move_hd_base(head(i(_) ,do,_),OldDstr ,N ewDstr)
OldDstr = xmax(i(_),ID,F ,_)/ _,
get_head(OldDstr,head(C,empty,._)),!,
mernber(agree(Tns,_,_,_),F),
adjust_ vp(tns(Tns),OldDstr ,New Dstr).

move_hd_base(head(C, W ,F) ,OldDstr ,New Dstr)
OldDstr = xmax(C,ID,_,_)/_,
member(C,[i(_),v(_)]),
get_head(OldDstr ,head(C,empty i..)),!,
set_head(head(C,W,F),ID,OldDstr,NewDstr).

move_hd_base(HD,X/[L,R],X/[NewL,NewR]) !,
move_hd_base(HD ,L ,New L),
rnove_hd_base(HD ,R,N ew R).

rnove_hd_base(HD,X/R,X/NewR) :- !,
move_hd_base(HD ,R,N ew R).

move_hd_base(HD,X,X) :- !.

adjust_vp(Tns,VP,VP) :-
VP = xmax(C,_,_,_)/_,
\+ member(C,[i(_),v(_)]),!.

adjust_vp(Tns,OldVP,NewVP) :-
OldVP = xmax(v(uil/tns(-)),ID,F,_)/_,!,
get_head(OldVP ,head(C,W,Ftr)),
set_head(head(v(nil/tns(+)),W,Ftr),ID,OldVP,VPl),

102

APPENDIX E. TRANSLATION MODULE

adjust_tns(Tns,VPl,NewVP).
adjust_vp(Tns,X/[L,R],X/[NewL,NewR])

adjust_vp(Tns,L,NewL),
adjust_vp(Tns,R,NewR).

adjust_vp(Tns,X/R,X/NewR) :- !,
adjust_vp(Tns,R,NewR).

adjust_ vp(Tns,X,X) !.

' .,

% _ _ ____ ___ ___ ___ _____ ___ _

% trans_lexical(SourceDeep, TargetDeep,Mode): translates each lexical item from
% the source language to that of the target language. At phrasal nodes
% feature aggreement is forced, producing the inflected (surface) form.
% Constituents are also re- ordered for the target language.

trans_lexical(SourceDeep,TargetDeep,Mode) :-
trans_lex(SourceDeep, TargetDeep,Mode),
write(, Target Deep Structure: ,),nl,
pretty(TargetDeep).

trans Jex(S ourceDeep, Target Deep ,Mode)
SourceDeep = xm ax.(C,ID,F,Cons)/R,!,
SourceDeep2 = xmax(C,ID,F,_)/R,
transJexl(SourceDeep2,TargetDeep,Mode),
target(L),!,
rev_constra.ints(L,C,TargetDeep).

trans_lex(SourceDeep,TargetDeep ,Mode) :­
trans_lexl (SourceDeep I TargetDeep ,Mode).

trans_lexl(X/[L,R],Tree,Mode) :-
X = .. [xmax,CatL],
(x_ba.r(Cat,L) ; x_bar(Cat ,R)),!,
list_args(X/[L,R],Argli st ,Head,Mode),
order_args(Cat,Arglist,Ordered),
x_node(X ,Cat,Pos)
(Pos=init ial ,Position=post ; Pos=final,Position=pre),
build_tree(Position,Cat,Head,Ordered,_/ As),
Tree = X/As.

trans_lexl(X/[L,R],X/[NL,NR],Mode)
trans_lex(L ,NL,Mode),
trans_lex(R,NR,Mode).

' .,

103

APPENDIX E. TRANSLATION MODULE

trans_lexl(X/R,X/NewR,Mode) :- !,
trans_lex(R,N ew R,Mode).

trans_lexl(e_cat(C,operator),head(C,das,_),Mode) !.
trans_lexl(head(c(emb /rel),_,_),head(c(emb /rel),empty,_),Mode) target(ger).
trans_lexl(head(c(emb /sent),_,_) ,head(c(emb /T) ,dass,_) ,Mode) :- target(ger).
trans_lexl(head(c(emb /T),_,_),head(c(emb /T),that,_),Mode) target(eng).
trans_lexl(HD,NewHD,Mode) :-

HD =·· (Pred,C,W,F],
mem her(Pred,(head,spec,adj]) ,! ,
trans_word(C,W,F,NewW,NewF),
NewHD = .. [Pred,C,NewW,NewF],!.

trans_lexl(Punc,Punc,Mode) :-
Punc = punc(punc,_,Mode),!.

trans_lexl(X,X,Mode) :- !.

trans_ word(Cat,empty,SFtr ,empty,_) !.
trans_ word(c(emb /sent) ,_,F ,New W ,_) :-

(target(ger) ,New W =dass) ; (target(eng),NewW=that),!.
trans_word(c(emb/rel),_,F,NewW,_) :-

(target(ger),NewW=empty) ; (target(eng),NewW=that),!.
trans_word(Cat,SWord,SFtr,TWord,_) :-

(member(english(TWord),SFtr);member(german(TWord),SFtr)),!.

%. ______________________ _
% list_args(Tree,ArgList,Head,Mode): the arguments of a head (ie those sister
% to x-bar) are returned as a list, along with the Head & Mode (if
% applicable).

list_args(X/[L,R],(N ew LI Rest],Head,Mode)
x_node(X,C,_),x_bar(C,R),!,
trans_lex(L ,New L,Mode),
list_args(R,Rest,Head,Mode).

list_args(X/[L,R],[N ew RI Rest] ,Head,Mode)
x_node(X,C,_),x_bar(C,L),!,
trans_lex(R,N ew R,Mode),
list_args(L,Rest,Head,Mode).

list_args(Head,0 ,HD,Mode) :­
trans_lex(Head,HD ,Mode).

%, ______________________ _

104

APPENDIX E. TRANSLATION MODULE

% order_args(Category,ArgList,OrderedArgs): accepts a list of arguments and
% reorders them as appropriate for a given category. Currently this
% simply moves accusative NP's next to the head.

order_args(Cat,A.rgs,OrdA.rgs) :-
remove(x:max(n(acc),ID,F,C)/R,Args,NewA.rgs),!,
append(NewArgs,[xmax(n(acc),ID,F,C)/R],OrdArgs).

order_args(Cat,Args,Args) :- !.

order_cons(X,NL,NR,NR,NL)
x_node(X,Cat,Pos),
((x_bar(Cat,NL),Pos=final);
(x_bar(Cat,NR),Pos=initial)) ,!.

order_cons(X,NL,NR,NL,NR) !.

x_node(Node,C,Pos) :-
Node = .. (Xbar,CIJ,member(Xbar,[xmax,xbar]),
target(L),head_position(L,C,Pos).

x_bar(C,xbar(C)/ _) !.

%. _______________________ _

% rev_constrainst(Language, Category, Tree): apply the appropriate constraints
% in reverse. Essentially, this routine uses 'subjacency' to determine
% where Wh- phrases and caseless NP's should be moved.

rev_constraints(L,C,Tree) :-
get_constraints(Tree,Constraints),
subjacency(L,C,Tree,Constraints,NewConstraints),
rev _add_constraints(Tree,N ewConstraints).

rev _add_constraints(xmax(C ,ID ,F ,N ewCons) /R,Cons)
rev _new_ constrain ts(C ,xmax(C ,ID ,F, Cons)/ R, Cons 1),
append(Cons,Consl,NewCons).

rev _new _constraints(_,xmax(C ,ID,_,_)/ e_cat(Type),[Cons])
((Type = ant , Cons = ant(abar,_,ID)) ;

(Type = comp , Cons = ec(_,ID,trace(comp))) ;
(Type = np , Cons = ant(a,_,ID))).

' .,

rev _new_constraints(_,xmax(C,ID,_,_)/e_cat(_,Type),Cons) :- !,
((Type = trace(comp) , Cons = (ec(_,ID ,trace(comp))]);

105

APPENDIX E. TRANSLATION MODULE

Cons = []).
rev _new_constraints(_,xmax(C,ID,Ftr ,_)/R,[ec(C,ID,trace(wh))])

member(wh(+),Ftr),!.
rev _new _constraints(n(_),xmax(C,ID,Ftr ,_)/R,[ec(C,ID,trace(np))])

\ + member(case(_) ,Ftr) ,!.
rev _new _constraints(_,Tree,[]).

% _______________________ _

% gen_surf_structure(Mode,DeepStructure,SurfaceStructure): generates a
% surface structure for the target language by applying Move-alpha
% and certain language specific transformations.

gen_surf_structure(Mode, Target Deep, Target Surface)
target(L) ,set_in version(L ,Mode,In v),
move_alpha(TargetDeep, Target Surface 1),
raising(L,Inv,TargetSurfacel,TargetSurface2),
gen_pf(TargetSurface2, Targets urface3),
in version(In v, Targets urface3, Target S urface4),
topicalize(L,Mode,TargetSurface4,TargetSurface),
write('Target Surface Structure: '),nl,
pretty(TargetSurface).

% - -----------------------% move_alpha: moves non case-marked NP's and wh-phrase, according to the
% chains constructed during translation.

move_alpha(Deep,Surface) :-
Deep = xmax(C ,ID ,F, Cons)/_,
make_trace_lists(l,Cons,Lists),
move_np(Surface,Deep ,Lists).

move_np(D_str,D_str,[]) :- !.
move_np(S_str,D_str,[ChainJRest])

extract_from_chain(Chain,SurfID,BaseID),
collapse_chain(D_strl,SurfID,D_str,BaseID),
move_np(S_str,D_strl,Rest),!.

%_· -----------------------
% raising(Lang,Inv,DeepTree,SurfTree): if head of !NFL is empty, then the

106

APPENDIX E. TRANSLATION MODULE

% next highest verb is raised to that position {where is receives its
% TNS,PER,NUM features). In English, if inversion is to take place,
% then the verb raised must aux(+}, otherwise do-support is required.

raising(Lang,lnv ,DeepTree,Surfrree) :-
Deep Tree = xma.x(i(Tns) 1ID 1Ftr Cons)/[Left,Right],!,
raising(Lang,no,Left 1New L),raising(Lang,no,Right,N ew R),
DeepTreel = xma.x(i(Tns),ID,Ftr ,Cons)/ [NewL,NewR],
check_subject(Left,In v ,N ewlnv),
raisel(Lang,Newlnv,ID,DeepTreel,Surflree).

raising(Lang,Inv ,X/[L R],X/[NewL,NewR]) :- !,
raising(Lang,Inv ,L ,New L) ,raising(Lang,Inv ,R,N ew R).

raising(Lang,lILv ,X/R X/N wR) :- !,ra.ising(Lang,Inv,R,NewR).
raising(Lang,Inv,X,X) :- !.

raisel(Lang,Inv,ID,Deeplnfl,Surflnfl.) :-
get_head(Deepinfl,head(i(_),empty,_)),!,
raise_ verb(Lang,Inv ,ID,Deeplnfl,Deeplnfll,Verb),
set_head(Verb,ID ,Deepinfll,S urflnfl).

raisel(ger,Inv,CD,Deepinfl.,Surtin.fl) :­
get_head(Deepinfl head(i(tns(-)),zu,_)),!,
raise_ verb(ger ,Inv ,ID ,Deeplnfl,Deepinfll, Verb),
Deeplnfll = Xmax/R,
Surfinfi = Xmax/(xmax(i(tns(-)))/R,Verb].

raisel(L,Inv ,ID,Infi,Infl) !.

% -----------------------% raise_verb: retrieve the head of the VP, and set the head of the phrase
% to empty. For English, do support is performed if inversion is
% to take place.

raise_ verb(Lang,Inv ,IDinfl,Tree,Tree,Verb)
Tree = xmax(i(_),ID,_,._)/_,
\ + ID = IDinfl,!.

raise_verb(Lang,Inv ,IDinfl,Deep VP,SurfVP,Verb)
DeepVP = xmax(v(_),ID,_,_)/_,!,
get_head(Deep VP,head(v(F),V ,Ftr)),
((Lang = ger ; Inv = no ; aux(Lang,V)) ->

(set_head(head(v(F),empty,_),ID,DeepVP,SurfVP),
Verb = head(v(F),V ,._)) ;

107

APPENDIX E. TRANSLATION MODULE

(Lang = eng , lnv=yes) ->
(set_head(head(v(nil/tns(-)),V,_),ID,Deep VP,SurfVPl),
adjust_tns(tns(-),SurfVPl,SurNP),
F = Form/Tns,Verb = head(i(Tns),do,_))).

raise_verb(Lang,Inv,IDinfl,X/[L,R],X/[NewL,NewR],Verb) !,
raise_ verb(Lang,Inv ,IDinfl,L,New L,Verb),
raise_ verb(Lang,Inv ,IDinfl,R,New R,Verb).

raise_verb(Lang,Inv,IDinfl,X/R,X/NewR,Verb) :- !,
raise_verb(Lang,Inv,IDinfl,R,NewR,Verb).

raise_verb(Lang,Inv,IDinfl,X,X,Verb) :- !.

aux(L,V) :- morph(L,V,v(_),R,Ftr),!,
member(aux(+),Ftr).

check_subject(xmax(C,ID,F,Cns)/e_cat(_,_),_,no) !.
check_sub ject(_,Inv ,Inv).

adjust_tns(tns(T),xmax(C,ID,F,Cns)/R,xrnax(C,ID,NewF,Cns)/R) -
remove(agree(Tns,Per,NumGen,Case),F,Fl),
append([agree(T,Per,NumGen,Case)],Fl,NewF),!.

set_head(HD ,ID ,xmax(C,IDX,F ,Cons) /R,xmax(C,IDX,F ,Cons)/R)
\+ ID == IDX,!.

set_head(HD,ID,X/[L,R],X/[NewL,NewR])
set_head(HD ,ID ,L ,New L),
set_head(HD,ID,R,NewR),!.

set_head(HD,ID,X/R,X/NewR) :- !,
set_head(HD,ID,R,NewR),!.

set_head(HD ,ID ,head(_,_,_) ,HD) !.
set_head(HD,ID,X,X) !.

I .,

% ·--------- -------- - -----
% inversion(Language,Mode,Deep'lree,SurfTree): simply moves the head of the
% matrix INFL to head of COMP. This must apply after raising.

inversion(yes,DeepTree,SurITree) :- !,
find_infl(DeepTree,SurITreel,lnfl),
SurITreel = xmax(_,ID,_,_)/ _,
set_head(Infl,ID ,S urITree 1,S urITree).

inversion(no,Tree,Tree) :- !.

108

APPENDIX E. TRANSLATION MODULE

find_infl(Xma.x,InflMa.x,Infl) :-
Xma.x = xmax(i(tns(+)),ID,_,_)/_,!,
get_head(Xmax,Infl),
set_head(head(i(tns(+)),empty,_),ID,Xmax,InflMax).

find_infl(X/[L,R],X/(N ew L,N ew R] ,Infl) :- !,
((find_infl(R,N ew R,Infl),L=N ew L)i
(find_infl(L,NewL,Infl),R=NewR)).

find_infl(X/R,X/NewR,Infl) :- !,
find_infl(R,N ew R,Infl).

set_inversion(ger ,_,yes).
set_inversion(eng,ques,yes).
set_inversion(eng,decl,no).

% ---- --- --------- -------% gen_pf(SourceTree, Target Tree): after move-alpha has applied to wh-phrase
%. . and verbal heads, traverse the tree and generate the appropriate
% · surface forms for agreement.

gen_pf(SourceDeep,TargetDeep) :-
SourceDeep = xmax(C,ID,F,Cons)/R,
member(C,(n(_),c(emb /rel)]),!,
target(L),
rev _agree(L,SourceDeep, TargetDeepl),
gen_pfl(TargetDeepl,TargetDeep).

gen_pf(SourceDeep,TargetDeep) :-
SourceDeep = xmax(C,ID,F,Cons)/R,!,
gen_pfl(SourceDeep, TargetDeepl),
target(L) ,! ,
rev _agree(L,TargetDeep 1,TargetDeep).

gen_pf(SourceDeep,TargetDeep) :­
gen_pfl(SourceDeep,TargetDeep).

gen_pfl(X/[L,R],X/[NewL,NewR])
gen_pf(L,NewL),
gen_pf(R,N ew R).

gen_pfl(X/R,X/NewR) :- !,
gen_pf(R,NewR).

gen_pfl(X,X) :- !.

' .,

109

APPENDIX E. TRANSLATION MODULE

%. ______________________ _

% topicalize(Language,Mode,DeepTree,SurfTree): if Mode is Declarative then
% find a Topic in DeepTree, and attach it to Comp. (German only).

topicalize(gei ,decl,Deep Tree,S urfTree) :- ! ,
get_topic(DeepTree,Tree,Topic),
attach_topic(Topic,Tree,SurITree).

topicalize(_,_, Tree, Tree) !.

% ______________________ _

% get_topic(DeepTree,SurfTree, Topic): finds the first constituent under
% lnfl in DeepTree, then returns it as Topic, and Sur/Tree has an
% ec where the topic was.

get_topic(Treel, Tree 2, Topic) :-
Tree! = X/[Topic,R],
x_node(X,i(tns(+)),_),!,
leave_ec(X,Topic,EC),
Tree2 = X/[EC,R].

get_topic(X/[L,R],X/[NewL,NewR],Topic) !,
((get_topic(L,NewL,Topic),R=NewR) ;
(get_topic(R,NewR,Topic),L=NewL)).

get_topic(X/R,X/NewR,Topic) :- !,
get_ topic(R,N ew R, Topic).

attach_topic(Topic,X/Rest,Tree) :-
Tree = X/[Topic,xmax(c(mat/sent))/Rest].

110

Appendix F

Morphological Analyser

% _______________________ _
% Section: Morphological Analyzer
%
% .Paradigm: morph(Language, Word,Category,Root,Features).
% Language: Source language { english,german}.
% Word: The source word to be morphed.
% Category: Lexical category {n,v,a1p,i1c1 d}.
% Root: The Word's root, and
% Features: The syntactic features of the word.
%
% Description: This section is responsible for morphological analyses
% and dictionary lookup of lexical items. Language and either Word
% or Root must be specified, Category is optional.
% The < morph> predicate first checks if the entry is already in
% the lexicon, if not it performs a suffix analysis based on the
% assumption that the item is not irregular. The predicate has
% been written so that if Word is instantiated, Root+Features is
% returned, and vice versa.
% _______________________ _

morph(L,Word,punc,punc(Word),O) member(Word,[1
• ','?' ,' ! ']),!.

morph(L,Word,Cat,Root,Data) :-
\+ atom(Word),var(Root), !, fail.

morph(L,Word,Cat,Root,Data) :­
direction(Word ,Root ,forward),
dict(L,Cat,Word,Fl),

111

APPENDIX F. MORPHOLOGICAL ANALYSER

remove(root(Root) ,F 1,F2),
get_root_features(L,Cat,Root,RF),
remove_ftr(RF ,New RF),
append(F2,NewRF,Datal),
set_defaults(L,Cat,Datal,Data).

morph(L,Root,Cat,Root,Data) :­
direction(Root,Root,forward),
dict(L,Cat,Root,Datal),
\+ member(root(_),Datal),
set_defaults(L ,Cat,Datal,Data).

morph(L,Word,Cat,Root,Data) :­
direction(Word ,Root ,forward),
suff_table(L,Cat,Suff,End,Sfeat),
suffanal(Word, Cat,Suff,End,Root),
get_root_features(L,Cat,Root,RF),
adjust_ftr(RF ,Sfeat,Datal),
set_defaults(L ,Cat ,D atal ,Data).

morph(L,Word,Cat,Root,Data) :-
. direction(Word,Root,backward),

dict(L,Cat,Root,Datal),
\+ member(root(_),Data.1),
mem her(irr(List) ,Data!),!,
member(IrrWord,List),
dict(L,Cat,IrrWord,Data2),
set_defaults(L,Cat,Data2,Data).

direction(Word,Root,forward).
direction(Word,Root,backward) var(Word),atom(Root).

%. ______________________ _

% The following predicates are used to extract features, and construct new
% feature lists for "created" lexical items.

remove_ftr(Ftr ,New Ftr) :-
(remove(ftr(_) ,Ftr ,New Ftr) ;Ftr= New Ftr), ! .

adjust_ftr(RF ,Sftr ,Data) :-
(remove(ftr(Rftr),RF ,New RF);Rftr= O ,New RF=RF),!,
def_merge(Rftr ,Sftr ,N ewftr),
append([ftr(N ewftr)] ,New RF ,Data),!.

112

APPENDIX F. MORPHOLOGICAL ANALYSER

get_root_features(L,Cat ,Root,Features) :­
dict(L ,Cat,Root,Features),
\+ member(root(_),Features).

set_defaults(L,Cat,OldFeatures,N ew Features) -
(remove(ftr(OldFlist),OldFeatures,Ftrs);
Ftrs = OldFeatures,OldFlist = 0),

defaults(L,Cat,Defaults),!,
def_merge(Defaults,OldFlist ,New Flist),
append((ftr(N ew Flist)] ,Ftrs,N ew Features),!.

def_merge((] ,Features,Features) :- !.
def_merge((DFIR),Features,(DFINewFeatures]) :­

nul_feature(DF,NF),
\ + member(NF ,Features),
def_merge(R,Features ,New Features).

def..merge([_IR),Features,New Features) :-
. def_merge(R,Features,N ew Features).

nul_feature(F,NulF) :-
F = .. (PIArgs),
nul_args(Args,N ulArgs),
NulF = .. (PINulArgs).

nul_args(D,D) :- !.
nul_args([WIX),[YIZ])

nul_args(X,Z).

%. ___ ___________________ _

% suffanal: Finds possible suffix/root combinations. (Either Word or Root
% may be instantiated.)

suffanal(Word,Cat,Suff,End,Root)
atom(Word) ,var(Root),
process(Word, Wlist),
process(S uff ,Slist),
match(Wlist,Slist,PRroot),
reverse(PRroot,Proot),
name(End,Endlist),

113

APPENDIX F. MORPHOLOGICAL ANALYSER

append(Proot ,Endlist ,Rootlist),
name(Root,Rootlist) ,!.

suffanal(Word,Cat,Suff,End,Root)
var(Word),atom(Root),
process(Root,Rlist),
process(End,Endlist),
match(Rlist,Endlist,BRlist),
reverse(BRlist,Blist),
name(Suff,Slist),
append(Blist,Slist, Wordlist),
name(Word, Wordlist) ,!.

% ______________________ _

% Determine the subcategorization frame (arguments) of a given head.

getargs(L,head(C,W,As,RF)) :­
member(subcat(_),RF),!,
member(subcat(Args),RF),
convert_to_list(Args,As).

getargs(L,head(C,W,[],F)) :- !.

convert_to_list([AIAs],[AIAs]) !.
convert_to_list(A,(A]) !.

% ______________________ _

% get_head: retrieves the head of the current subtree.

get_head(xmax(C,ID,_,_)/R,Head) :-
get_headl(ID ,xmax(C,ID,_,_) /R,Head).

get_headl(ID,head(C,W,F),head(C,W,F)) :- !.
get_headl(ID,xmax(_,IDX,_,_)/R,_) :- \+ ID = IDX,!,fail.
get_headl(ID,X/[L,R],Head) :-

(get_headl(ID ,L,Head);get_headl(ID ,R,Head)).
get_headl(ID,X/L,Head) :-

get_headl(ID,L,Head).

% ______________________ _

% Determine the participle form and tense of the verb, for purposes
% of subcategorization.

114

APPENDIX F. MORPHOLOGICAL ANALYSER

v_features(L,F,Form/Tns) :- !,
get_ftr(F ,Ftr),
get_form(Ftr ,Form),
get_tns(Ftr ,Tns).

get_ftr(F,Ftr) :- member(ftr(Ftr),F),!.
get_ftr(F ,[]) :- \ + member(ftr(Ftr),F),!.

get_form(F,part(Form)) :- member(part(Form),F),!.
get_form(F,nil) :- \+ member(part(Form).,F),!.

get_tns(F,tns(-)) :- member(tus(-),F),!.
get_tns(F,tns(-)) :- \+ member(tns(X),F),!.
get_tns(F,tns(+)) :- member(tns(X),F),\+ X = ,_, I , ..

%--------------------~-
%. Utility routines used by morpher only.

match(Wlist,0 ,Wlist).
match([L IWlist],[LISlist],Root) :- match(Wlist,Slist,Root).

process(' ',[]).
process(Term,List) :-

name(Term,Listl)
reverse(Listl ,List),!.

get_ftr(OldFeat,Feat Rest) :­
a.ppend(ftr(Feat),Rest,OldFeat),!.

get_ftr(R,[],R) :- !.

115

Appendix G

The Lexicon

% ___ _________________ _

% Section: Suffix Table (English)
%
%· .Paradigm: suff_table (Language, Category, InflEnd, RootEnd, Features).
% · Language: Language of source { eng,ger}.
% Category: Lexical category { n,v}.
% InflEnd: The inflected ending.
% RootEnd: The ending of the root form.
% Featur-es: Features to be added by the inflection.
%, ____________________ _

suff_table(eng,n(_),ies,y,[num(+)]).
suff_table(eng,n(_),ves,f,[num(+)]).
suff_table(eng,n(_),ves,fe,[num(+)]).
suff_table(eng,n(_),s,' ',[num(+)]).
suff_table(eng,n(_),es,' ',[num(+)]).
suff_table(eng,v(_), 1 1

,' ',[tns(pres),per(l)]).
suff_table(eng,v(_),' ',' ',[tns(pres),per(2)]).
suff_table(eng,v(_),' ',' ',[tns(pres),per(3),num(+)]).
suff_table(eng,v(_),ies,y,[num(-),per(3),tns(pres)]).
suff_table(eng,v(_),s,' ',[num(-),per(3),tns(pres)]).
suff_table(eng,v(_),ied,y,[tns(past)]).
suff_table(eng,v(_),ed,e,[tns(past)]).
suff_table(eng,v(_),ed,' ',[tns(past)]).
suff_table(eng,v(_),ed,e,[part(past),tns(-)]).
suff_table(eng,v(_),ed,' ',[part(past),tns(-)l).

116

APPENDIX G. THE LEXICON

suff_table(eng,v(_),en,e,[part(past) ,tns(-)]).
suff_table(eng,v(_),en,' 1 ,[pa.rt(past),tns(-)]).
suff_table(eng,v(_))ng,e,[part(pres)]).
suff_table(eng,v(_))ng,' ' ,[pa.rt(pres)]).

defaults(eng,n(_),[per(3),num(-),gen(_),wh(-),case(_),proper(-)]).
defaults(eng,d,[num(_,_,_),wh(-)]).
defaults(eng,p(_),[wh(-)]).
defaults(eng,v(_),(tns(-),per(_) 1num(_),aux(-),trans(+)]).
defaults(eng,i(J,[tns(+),per(_),num(_)]).
defaults(eng,Cat,[]).

%. ___________________ _
%
% Section: Lexicon (English}
%
% Paradigm: dict{L,Cat, Word,{ftr([tns(T),gen{G},num(P),per(N),part(F),wh{M)J},
%_. irr{[F1,F2, ... j),pastpart(F),prespart(F},
% · pl(PF},proper(M),pro(M}, root(RF),subcat(Frame)]}.
%. ___________________ _

%% ______ _
%% Nouns
%%
dict(eng,n(_),book,(german(budt)]).
diet(eng,n(_) ,boy,[pl(boys),german(junge)]).
diet(eng,n(_),b oys,[ftr([num(+)]),root(boy)]).
diet(eng,n(_),girl [german(madchen)]).
diet(eng,n(_) ,table,[germa.n(tis ch)]).
diet(eng,n(_),woman,[pl(women),germa.n(frau)]).
diet(eng,n(_), woroen,[ftr([nu_m(+)]) ,root(woman)]).
diet(eng,n(_),i,[ftr([case(n_om),per(1)]),proper(+),german(ich)]).
diet(eng,n(_),me,[ftr([case(ace) per(l)]),root(j)]).
dict(eng,n(_),we,[ftr([case(nom),num(+),per(l)]),proper(+),german(wir)]).
diet(eng,n(_),us,(ftr([case(acc),num(+),per(l)]),root(we)]).
diet(eng,n(_),you,(ftr([per(2)]),proper(+),german(sie)]).
diet(eng,n(_) ,he,[ftr([case(nom)]) ,proper(+) ,german(er)]).
diet(eng,n(_),him,[ftr([case(ace)]),root(he)]).
diet(eng,n(_),she,[ftr([case(nom)]),proper(+),german(sie)]).
diet(eng,n(_) ,her ,(ftr([case(ace)]),root(she)]).

117

APPENDIX G. THE LEXICON

diet(eng,n(_),it,[german(es)]).
di ct(eng,n(_), what,[ftr((w h (+),proper(+)]) ,germ an(was)]) .
dict(eng,n(_),which,[Itr([wh(+),proper(+)]),german(das)]).
dict(eng,n(J,who,(ftr([wh(+),proper(+)]),german(wer)]).
%% ______ _
%% Verbs
%%
diet(eng,v(_),put,[subcat([n(ace),p(loc)]),irr([putting]),

german(legen)]).
diet(eng,v(_),put,[ftr((part(past),tns(-)]),root(put)l).
diet(eng,v(_),put,[ftr([tns(past)]),root(put)]).
diet(eng,v(_) ,putting,[ftr([part(pres),tns(pres)]),root(put)]).

diet(eng,v(_) 1seei[subcat((n(ace)]),irr([seen,saw]),pastpart(seen),
german(sehen)]).

diet(eng,v(_) ,seen,[ftr([part(past),tns(-)]),root(see)]).
diet(eng,v(_),saw ,[ftr([tns(past)]),root(see)]).
diet(eng,v(_),try,[subcat(c(emb/sent)),irr([tried]),

german(versuchen)]).
diet(eng,v(_),gi ve (subcat([n(_),p(dir)]),in([gave])]).
diet(eng,v(_) ,ga.ve,[ftr([tns(past)]),root(give)]) .
diet(eng,v(_),believe,[subcat(i(tns(-))),subcat(c(emb/sent)),

irr([believedl),german(glaub n)]).
diet(eng,v(_) ,believed ,[ftr([part(pa.st)])1root(believe)]).
diet eng,v(_) ,seern,[ftr([trans(-)]),su bc<~t(i (tns(-))),subcat(c(emb/sent)),

theta(-),german(sheinen)]).
diet(eng,v(_),want,[subcat(c(emb/sent)),pastpart(wanted),

irr([wanted]) ,germ an(mogen)]) .
dict(eng,v(_),have [subcat(v(part(past) /tns(-))),aux(+),irf([has]),

german(haben)]).
diet(eng,v(_),ha.s,[ftr([tns(pres) ,per(3),nu.m(-)]),root(have)]).
diet(eng,v(_),be,[subcat(v(part(pr s)/tns(-))) aux(+),gennan(sein)]).
dict(eng,v(_),beenJftr(fpart(pa.~t)]) ,sub at(v(part(pres)/tns(-))),

german(sein)]).
diet(eng,v(_),being,[ftr([part(pres)]),sub cat(v(part(pres)/tns(-))),

gerrnan(seiI1))).
diet(eng,v(_),is,[ftr((tns(pres) ,per(3),n um(-)]),root(be)]).
diet(eng,v(_) ,am,[ftr([tns(pres),per(1),num(-)]) ,root(be)]) .
dict(eng,v(_),are,[ftr([tus(pres),n um(+)]),root(be)]).
clict(eng,v(_) ,are,[fLr([tns(pres),per(2)]),root(be)]).

118

APPENDIX G. THE LEXICON

diet(eng,v(_),was,[ftr([tns(past),per(3),num(-)]),root(be)]).
diet(eng,v(_),was,[ftr([tns(past),per(1),num(-)]),root(be)]).
diet(eng,v(_),were,[ftr([tns(past),num(+)]),root(be)]).
diet(eng,v(_) ,were,[ftr([tns(past) ,per(2)]),root(be)]).
%% ______ _

%% Modals
%%
dict(eng~(tns(-)),to,[ftr([tns(-)]),subcat(v(nil/tns(-))),german(zu)]).
dict(eng;(tns(+)),will,[ftr([tns(fut)]),subcat(v(nil/tns(-))),german(werden)]).
dict(eng;(tns(+)),do,[subcat(v(nil/tns(-))),aux(+),german(nil)]).
diet(eng;(tns(+)),do,[ftr([tns(pres),per(l),per(2)]),root(do)]).
diet(eng;(tns(+)),do,[ftr([tns(pres),per(3),num(+)]),root(do)]).
diet(eng;(tns(+)),does,[ftr([tns(pres),per(3),num(-)]),root(do)]).
diet(eng~(tns(+)),did,[ftr([tns(past),per(_),num(_)]),root(do)]).
%% ______ _

% % Prepositions
%%
diet(eng,p(dir),to,[subcat(n(ace)),german([nach])]).
diet(eng,p(loc),on,[subcat(n(ace)),german(auf)]).
diet(eng,p(_),where,[ftr([wh(+)]),german(wo)]).
%% -------
%% Complementizers
%% .
diet(eng,c(emb/ _),that,(subcat(i(tns(+))),german(<lass)]).
diet(eng,c(emb/ _),for ,[ftr([tns(-)]),subcat(i(tns(-))),german(denn)]).
%% ______ _
% % Determiners
%%
diet(eng,d,the,[german(das)]).
diet(eng,d,a,[ftr([num(-)]),german(ein)]).
diet(eng,d,what,[ftr([wh(+)]),german(welches)]).
dict(eng,d,which,[ftr([wh(+)]),german(welches)]).
diet(eng,d,every,[ftr([num(-)]),german(jede)]).

% ___________________ _

% Section: Suffix Table (German)
%
% Paradigm: suff_table (Language, Category, lnfiEnd, RootEnd, Features).
% Language: Language of source {ger,ger}.
% Category: Lexical category {n,v}.

119

APPENDIX G. THE LEXICON

%
%
%

InflEnd:
RootEnd:
Features:

The inflected ending.
The ending of the root form.
Features to be added by the inflection.

%. ____________________ _

suff_table(ger ,n(_),en,' e 1 ,[num(+)]).
suff_table(ger,n(_),en, 1 ',[num(+)]).
suff_table(ger,v(_),en,' 1 ,[part(past)]).
suff_table(ger,v(_),' ', 'n 1 ,[per(l),num(-),tns(pres)]).
suff_table(ger,v(_),' 1

,' ',[per(2),tns(pres)]).
suff_table(ger ,v(_),' ',' ',[num(+),tns(pres)]).

defaults(ger,n(_),[per(3),num(-),wh(-),gen(_),case(_),proper(-)]).
defaults(ger ,d,[wh(-)]).
defaults(ger,p(_),[wh(-)]).
defaults(ger,v(_),[tns(-),per(_),num(_),trans(+)]).
defaults(ger,i(_),[tns(+),per(_),num(_)]).
de{aults(ger ,Cat,[]).

%. ____________________ _

% Section: Lexicon (German)
%
% Paradigm: dict(L, Cat, Word,{ftr([tns(T)1num(PG,C)1per(N)1part(F)1wh(M)J),
% irr({F1,F21 ••• }),pastpart(F)1prespart(F},
% pl(PF) 1proper(M)1pro(M),root(RF},subcat(Frame)j).
% ---------------------
%% ______ _
%% Nouns
%%
dict(ger ,n(_) ,ich,[ftr([case(nom) ,per(1)]) ,proper(+),irr([mich,mir]),

english (i)]).
dict(ger ,n(_) ,mich,[ftr([case(ace) ,per(l)]),root(ich)]).
dict(ger ,n(_) ,mir ,[ftr([case(dat),per(1)]),root(ich)]).
dict(ger ,n(_),sie,[ftr([case(nom),case(ace),per(2)]),proper(+) ,irr([ihnen]),

english(you)]).
dict(ger ,n(_),ihnen,[ftr([case(dat),per(2)]),root(sie)]).
dict(ger ,n(_),sie,[ftr([case(nom),case(ace)]) ,proper(+),irr([ihnen]),

english(she)]).
dict(ger ,n(_) ,ihr ,[ftr([case(dat)]),root(sie)]).

120

APPENDIX G. THE LEXICON

dict(ger ,n(_) ,er ,(ftr([case(nom)]) ,proper(+) ,irr([ihn,ihm]),
english(he)]).

dict(ger ,n(J,ihn,(ftr([case(ace)]),root(er)]).
diet (ger ,n(J ,i hm ,[f tr([ca,se(dat)]) ,root (er)]).
dict(ger,n(_),wir ,[ftr([case(nom) 1per(1),n.um(+)]),proper(+),irr([uns]),

english (we)]).
dict(ger,11(_),uns,[ftr([per(1),num(+) 1case(ace),case(dat)]),root(wir)]).
dict(ger ,n(_) ,b uch,[ftr([gen(n)]);english(book)]).
clict(ger ,n(_)Junge,[ftr((gen(ro)]),english(boy)]).
dict(ger ,n.(_) ,madchen,[ftr((gen(n))) ,english(girl)]).
cllct(ger ,n(_),tisch,[ftr([gen(m)]),english(table)]).
dict(ger ,n(_) ,fraQ,[ftr([gen(f)]) ,english(woman)]).
dict(ger ,n(_),es,[english(es))).
dict(ger,n(_),wa.s,(ftr([case(nom),case(acc),proper(+),wh(+)]),irr([wem]),english(what)]).
dict(ger,n(_),wem,(ftr((case(da.t),propel'(+),wh(+)]),root(was)]).
clict(ger,n(_),wer,(ftr([ca.se(nom),proper(+),wh(+)]),irr([wen,wem]),english(who)]).
clict(ger ,n(_),wen,[ftr([case(ace) ,proper(+), wh(+)]),root(wer)]).
dic.t(ger,n(_),wemj[ftr([case(dat),proper(+),wh(+)]),root(wer)l).
dlct(ger,n(_),das,[ftr((wh(+),proper(+))ntun(-),gen(n),case(nom),case(acc)]),

irr([das,der die,det1,dem)) ,english(w hlch) 1).
dlct(ger,n(_),der,[ftr([wh(+),proper(+),num(-),gen(m),ca.se(nom))),root(das)]).
dict(ger,n(_),der ,[ftr([wh(+),proper(+),mun(-),gen(f),case(da.t)]),root(das)]).

· dict(ger,n(_),die,[ftr([wh(+),proper(+),nu_m(-),gen{f),case(nom),ca.se(acc)]),root(da.s)]).
dict(ger,n(_),die,(ftr([wh(+),proper(+),num(+),gen(_),case(nom),ca.se(a.cc)J) 1root(das)]) .
dict(ger,n{_),den,[ftr((wh(+),proper(+),num(-),gen(m),case(acc)]),root(das)]).
dict(ger,n(_),den,[ftr((wh(+),proper(+),num(+),gen(_)>case(acc)l),roo't(das)]).
dict(ger,n(_),dem,[ftr([wh(+),proper(+),mun(-),ca.se(dat),gen(m),gen(n)]),root(da.s)]).
%% ______ _
%% Verbs
%%
dict(ger v(_),legen,[subcat([n(ace),p(loc)]),

irr([lege,legen ,legt ,lag,lagen ,gelegt]) ,english(put)]).
dict(ger, v(_)Jegt ,[ftr([per(3) ,tns(pres)]) ,root(legen)]).
diet (ger l V(_))egte ,[ftr(lnum(-) tns(pa.st m I r.OQt (le gen)]),
dict(ger ,v(_))egten,[ftr([nuro(+),tns(pa.st)]),root(legen)'!).
dict(ger ,v(_),gelegt, [ftr([pa.rt(past)]) 1root(legen)l).
dict(ger, v(_) 1sehen,[su bcat([n(ace)]) ,english(see)]).
dict(ger, v(_) ,siehti{ftr([per 3), tns(pres)]) ,root(sehen]) .
dict(get I v(_),sah,(ftr([num(-),tns(past)]),root(sehen)]).
dict(ger, v(_) ,sahen,[fu([num(+),tns(past)1),root(sehen)]).

121

APPENDIX G. THE LEXICON

clict(ger, v(_) ,gesehen,(ftr((part(past)]) ,root(sehen)]).
dict(ger ,v(_) ,gehen,(suhcat((n(ace),n(dat)]),english(give)]).
dict(ger ,v(_) ,giht,[ftr((per(3),tns(past)]),root(gehen)]).
dict(ger ,v(_),gah,(ftr((num(-),tns(past)]),root(gehen)]).
dict(ger, v(_),gahen,[ftr((num(+),tns(past)]),root(gehen)]).
dict(ger, v(_) ,gegehen,(ftr((part(past))),root(gehen)]).
dict(ger,v(_),glauhen,(suhcat(i(tns(-))),suhcat(c(emh/sent)),english(helieve)]).
dict(ger, v(_) ,glau ht ,(ftr((per(3),tns(pres)]) ,root(glauhen)]).
dict(ger ,v(_),glauhte,[ftr((num(-) ,tns(past)]),root(glauhen)]).
dict(ger,v(_),glauhten,(ftr([num(+),tns(past)]),root(glauhen)]).
dict(ger ,v(_) ,geglauht,(ftr((part(past)]) ,root(glau hen)]) .
dict(ger,v(_),versuchen,[suhcat(c(emh /sent)),english(try)]).
dict(ger, v(_), versucht,(ftr([per(3) ,tns(pres)]),root(versuchen)]).
dict(ger ,v(_),versuchte,[ftr([num(-),tns(past)]),root(versuchen)]).
dict(ger, v(_) ,versuchten,[ftr([num(+), tns(past)]) ,root(versuchen)]).
dict(ger, v(_), versucht ,[ftr([part(past)]),root(versuchen)]) .
dict(ger,v(_),sheinen,[suhcat(i(tns(-))),suhcat(c(emh /sent)),english(seem)]) .
dict(ger, v(_) ,sheint,[ftr([per(3), tns(pres)]) ,root(sheinen)]).
dict(ger, v(_) ,gesheint ,[ftr([part(past)]) ,root(sheinen)]) .
dict(ger ,v(_),sein,(suhcat(v(_)),aux(+),english(he)]).
dict(ger, v(_);st,(ftr((tns(pres),per(3),num(-)]),root(sein)]).
dict(ger ,v(_) ,bin,[ftr((tns(pres),per(l),num(-)]),root(sein)]).
dict(ger, v(_) ,sind,[ftr((tns(pres),num(+)]),root(sein)]).
dict(ger, v(_) ,sind,(ftr((tns(pres) ,per(2)]) ,root(sein)]).
dict(ger,v(_),war (ftr([tns(past),per(3),num(-)]),root sein)]).
dict(ger,v(_),gewesen [ftr([tns(past),per(l),num(-)]),root(sein)]).
dict (ger ,v(_),hahen (sub cat(v(part(past) / tns(-))),aux(+),english(have)]) .
dict(ger , v(_) ,haben,(ftr((tns(pres),per(2),num{_)])t1"oot(haben)]) .
dict(ger ,v(_) ,haben [ft r([tns(p res) per(_) ,num(+)]),root(haben)]) .
dict(ger v(_) 1habe,[ft r([tns(pres) ,per(1),num(-)]) ifoot(haben)]).
dict (ger,v(_),hat,[ftr (rper(3),tr1s(pres),uum (-)]),root haben)l).
%% ______ _
%% Modals
%%
dict(ger ,i(tns(-)) ,zu,[ftr([tns(-)]),sub cat(v(nil/tns(-))),english(to)]).
dict(ger ,i(tns(+)) ,werden,[subcat(v(nil/tns(-))),english(will)]) .
dict(ger ,i(tns(+)), werden,[ftr([tns(fut) ,per(2),nu1n(_)]) ,root (werden)]) .
diet (ger ,i(tns(+)) , werden, [f t r ([tns (fu t) ,per(_) ,num(+)]) ,root (werden)]).
dict(ger,i(tns(+)),werde,[ftr([tns(fu t) per(l) ,nu.m(-)]),root(werden))) .
dict(ger,i(tns(+)),wird,[ftr([tns(fut),pel'(3) ,nu.m(-)]) ,root(werden)]) .

122

APPENDIX G. THE LEXICON

%% -------
%% Prepositions
%%
dict(ger ,p(dir) ,zu,[su beat(n(_)) ,english(to)]) .
clict(ger ,p(loc),a.uf,[subcat(n(_)) ,engfuh (on)]),
dict(ger ,p(loc) in,[su bcat(n(J),english(in)]) .
dict(ger,p(_),wo,[ftr([wh(+)]),engli.sh(where)]).
%% ______ _
% % Complementizers
%%
dict(ger ,c(emb/ _),dass,[subcat(i(_)),english(that)]).
dict(ger ,c(emb/ _),denn,[ftr([tns(-)]),subcat(i(T)),english(for)]).
%% Determiners
%%
dict(ger ,d,das,[irr([der ,das ,die,den,dem]),english(the)]).
dict(ger,d,das,[ftr([num(- ,n,nom),num(-,n,acc)]),root(das)]).
dict(ger,d,der,[ftr([num(- ,m,nom),num(- ,f,dat)]),root(das)]).
dict(ger,d,die,[ftr([num(-,f,nom),num(-,f,acc),num(+ ,....,nom),num(+,...,ace)]),

· root (das)]).
dict(ger,d,den,[ftr([num(- ,m,acc),num(+,_,acc)]),root(das)]).
dict(ger,d,dem,[ftr([num(- ,m,dat),num(-,n,dat)]),root(das)]).
dict(ger ,d,ein,[irr([ein ,einer ,eine,einem,einen]),english(a)]).
dict(ger,d,ein,[ftr([num(-,n,nom),num(-,n,acc),num(-,m,nom)]),root(ein)]).
dict(ger ,d,einer ,[ftr([n um(- ,f,dat)]) ,root(ein)]).
dict(ger,d,eine,[ftr([num(- ,f,nom),num(- ,f,acc)]),root(ein)]).
dict(ger ,d,einen,[ftr([num(- ,m,acc),num(+,_,ace)]),root(ein)]).
dict(ger ,d,einem,[ftr([num(- ,m,dat),num(- ,n,dat)]) ,root(ein)]).
diet(eng,d,welches,[ftr([wh(+),num(_,_,_)]),english(which)]).

123

