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Abstract 

We propose a logical framework for depiction and interpretation that formal­
izes image domain knowledge, scene domain knowledge and the depiction map­
ping between the image a.nd scene domains. This framework requiresthree sets 

1~iof ~ U>Ins: image axioms, scene axioms and depiction axioms. An interpretation 
of ~age is defined to be a logical model of these axioms. 

The approach is illustrated by a case study, a reconstruction in first order 
logic of a simplified map understanding program, Mapsee. The reconstruction 
starts with a description of the map and a specification of general knowledge of 
maps, geographic objects and their depiction relationships. For the simple map 
world we show how the task level specification may be refined to a provably 
correct implementation by applying model-preserving transformations to the ini­
tial logical representation to produce a set of propo'Bitjonal formulas. The imple­
mentation may use known constraint satisfaction techniques to find the set of 
models of these propositional formulas. In addition, we sketch preliminary logical 
treatments for image queries, cont ing~nt scene knowledge, ambiguity in image 
description, occlusion, complex objects, preferred interpretations and image syn­
thesis. 

This approach provides a formal framework for analyzing and going beyond 
existing systems such as Mapsee, and for understanding the use of constraint 
satisfaction techniques. It can be used as a foundation for the specification, 
design an imp ementa ion of vision and graphics systems that are correct with 
respect to the task and algorithm levels. 
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1. Introduction 

Computational vision requires, no less than any other area of artificial intel­

ligence, representations of knowledge that are complete, correct, flexible and 

efficient. In pursuit of that goal researchers have exploited a wide variety of 

knowledge representation schemes including grammars, semantic nets, programs, 

logics, schemas, rules, constraints and neural nets. McCarthy and Hayes (1969) 

proposed some adequacy criteria for knowledge representation schemes in general 

and used them to argue for a logical representation. Vision researchers have, by 

and large, ignored that suggestion. Clowes (1971) and Huffman (1971), for exam­

ple, ad!,_ocated a knowledge representation based on simple constraints in the 

scene domain, in a non-logical framework. Mackworth (1988) argued that any -
adequate representation scheme for visual knowledge should satisfy various cri------
teria of descriptive and procedural adequacy. Here we can only briefly refer to 

some of them. 

The relevant criteria of descriptive adequacy are Capacity, Primitives, Com­

position, Specialization, Subworlds, Depiction and Correctness; the relevant cri­

teria of procedural adequacy are Soundness, Completeness, Flexibility and 

Efficiency. If the generative power of the scheme is adequate then the Capacity 

criterion is satisfied. A generative scheme must be based on Primitives and it 

must provide rules for the Composition of structured objects, whose descriptions 

can be refined through Specialization. To satisfy the Subworlds criterion the 

representation scheme must, minimally, maintain the distinction between 

knowledge of the image and knowledge of the scene; otherwise, elementary 
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category errors, such as confusing a real scene edge with its depiction in the 

image, are bound to be made. Moreover, the scheme must carry information 

about the Depiction relation itself: how objects in the scene domain appear in 

the image. The task specification must be precise to determine Correctness. 

Only if the concept of an image interpretation is precisely defined can we deter­

mine if an implementation is Complete and Sound; that is, finds all and only the 

interpretations allowed by the general knowledge and a description of the partic­

ular image. A representation scheme achieves some measure of Flexibility if it 

can exploit contingent knowledge or support both image interpretation and image 

generation. Efficiency can be evaluated by complexity analyses of the task and 

proposed algorithms using measures of time, space, number of processors or com­

munication costs. Some measure of Completeness or Soundness may need to be 

sacrificed to Efficiency through the use of approximation algorithms. This paper 

provides an adequate logical framework for depiction and interpretation, and 

demonstrates its application in a simple world. 

Informally, to motivate the sceptical reader who asks "Why should I care?" 

we can only say, that to our knowledge, this is the first paper to provide a precise 

definition of the concept of an interpretation of an image. Furthermore, the 

point of much of the resulting logical manipulation is to show how the non­

procedural specification reduces to a constraint satisfaction problem (CSP). This 

is important for three reasons. First, there are well-understood algorithms for 

solving CSPs. Second, the CSP is logically equivalent to the original 

specification, so we have a correctness proof. Third, the transformation from 
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specification to CSP explains and justifies the central role that CSPs play in 

model-based vision. 



2. An Illustrative Specification: Mapsee's Sketch Maps 

As an example of how one might logically specify the knowledge base for an 

image interpretation application, we focus on Mapsee, a long term research pr<r 

ject at the University of British Columbia designed to interpret hand drawn 

sketch maps of geographical regions. 

The Mapsee project is a series of experiments in visual knowledge represen­

tation (Mulder et al., 1987). Mapsee-1 (Mackworth, 1977) used n-ary constraints 

in the scene domain and a network consistency constraint satisfaction algorithm. 

Mapsee-2 (Havens and Mackworth, 1983) adopted a schema representation of 

knowledge that was simplified and enhanced in Mapsee-3 (Mulder, 1986) and 

augmented with a hierarchical constraint satisfaction algorithm (Mackworth et 

al., 1985). These systems served as testbeds for new knowledge representation . 

techniques and as useful artifacts in their own right, for example, acting as 

knowledge sources for the interpretation of satellite and aerial imagery, and as 

prototypes for more autonomous image understanding systems. However, since 

no precise definition of the notion of an interpretation has been provided and 

since much of the knowledge is procedurally encoded and distributed, it is not 

possible to determine if these programs are functioning correctly according to a 

formal specification of the task. One purpose of this paper is to provide a 'logical 

reconstruction' of a fragment of the Mapsee project. 

For expository purposes, we considerably simplify the kinds of image and 

geographic features which Mapsee deals with, as well as the kinds of knowledge it 

uses in image interpretation. As a further caveat, we emphasize that the 
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following specification is appropriate for the world of sketch maps; other applica,. 

tions may require very different axioms and assumptions. Minimally, the princi­

pal feature which remains applicable is the definition below of just what one 

means by an interpretation of an image (namely, a model of the axioms). Having 

a formal definition allows system designers to address in their specifications and 

implementations the issues of descriptive and procedural adequacy introduced in 

Section 1. 

The user of this proposed simple Mapsee would sketch the map input using a 

mouse or data tablet. The initial map description is a set of chains, where a 

chain is a list of consecutively drawn points connected by a line segment. From 

this description the system constructs an enriched description that explicitly 

determines topologically connected spatial regions and the various relations of the 

chains and regions to be described in Section 2.1. Initially, we assume a carefully 

drawn map (with no gaps at the intended chain junctions, for example) which 

ensures a unique image description but we show, in Section 7.3, that this assump­

tion can be relaxed. 

The task for this Mapsee is to compute the set of interpretations of the map 

as depicting a simple scene of roads, rivers, shorelines and areas of land and 

water under various assumptions about what is permitted in the scene, to be 

described in Section 2.2, and how scene objects are depicted in images, to be 

described in Section 2.3. 
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2.1. Specifying the Image Domain 

We assume that there are just two kinds of image primitives - chains and 

regions - so that the taxonomy of image objects is given by Figure 1, which pic­

torially represents the following first order formulas1: 

(V z) image-object(z) = chain(z) V region(z) 

(Vz)-i(chain(z) /\ region(z)) 

In addition there are the following relationships which may hold between 

image primitives: 

tee( c,c') - chain c meets chain c' at a T-junction, as in Figure 2(a). 

chi( c,c') chains c meets chain c' at ax-junction, as in Figure 2(b). 

bounds(c,r) - chain c bounds region r, as in Figure 2(c). 

closed( c) - chain c is a simple closed figure, as in Figure 2 ( d). 

interior(c,r) - an interior of closed chain c is region r, as in Figure 2(e). 

ezterior(c,r) - an exterior of closed chain c is region r, as in Figure 2(f). 

A given image will consist of finitely many chains and regions, together with 

finitely many instances of the above relations. Mapsee makes the following: 

1 We denote image domain predicate. u,ing lower cue charaden and acene domain predicat11 in upper case. 
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Closure Assumption {Closed World Assumption {Reiter, 1978) for the Image 

Domain) 

All image domain predicates are completely known. This closure assumption 

is logically specified by closure azioms of the form: 

{v'z)chain{z) = z = i1 V · · · V z = im 

(v' z) region{z) = z = i1 V · · · V z = 'n 

(v' z,y)tee(z,y) = (z = i1 /\ y = ii) V · · · V {z = iJ: /\ y = i!;) 

(v' z,y) bounds(z,y) = (z = i1 /\ y = iD V · · · V (z = i; /\ y = iJ) 

etc. 

where the i and i' are all constants. 

Example 2.1 

Figure 3 shows a simple hand drawn sketch map with its chains and regions 

labeled by suitable constants. The closure axioms for this image are: 

(v' z,y)tee(z,y) = (z = c2 /\ y = c1) V (z = c2 /\ y = c3) V 

(z = c• /\ y = c5) V (z = c3 /\ y = c5) 
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('v x,y) chi(x,y) = (x = C3 /\ !,' = C4) V (x = C4 A !,' = C3) 

{v' x,y) bounds( x,y) = ( x = c1 /\ 'J = r1) V (x = c2 A y= ri) V 

(x = C3 /\ y = r1) V (z = C3 A 'J = r2) V 

(z = C4 /\ 'J = r1) V (z = C4 A y = r2) V 

(z = C5 /\ y = r1) V (z = C5 A y = r2) V 

{z = C5 /\ y = r3) V (z = C5 /\ y = r3) V 

(z = C5 /\ y = ,.) 

(v' x)closed(x) = x = c5 V x = c6 

(v' z,y)interior(x,y) = (x = c6 /\ !I= r4) V {z = C5 A Y = r3) 

(v'x,y)exterior(x,y) = (x = c5 /\ y = r1) V (x = c5 A y = r2) V (x = c6 (\ y = r3) 

In addition to the closed world assumption for the image domain, Mapsee 

also makes the 

Unique Names Assumption (Reiter, 1980): 

All image primitives (i.e. the chains and regions) are pairwise distinct. In 

other words if i and i' are different constants denoting image primitives, they 

denote different image primitives. Thus, the specification of the image domain 

includes the following unique names axioms: 

ii= i' for all distinct constants i, i' mentioned in the closure axioms for chain 

and region. 
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Notice that we have been implicitly assuming suitable type constraints on 

the arguments of image predicates, e.g. that the first argument of bounds is a 

chain, and the second a region. We also want no constant mentioned in the clo­

sure axiom for chain to be mentioned in the closure axiom for region; otherwise, 

for any such constant i, both chain(i) and region(aJ would hold, contradicting the 

taxonomic axiom (v'z)-,(chain(z) /\ region(z)). 

We make these two assumptions explicit by imposing the following simple 

requirements on the above closure axioms: 

Coherence Requirements 

Cl. Each constant occurring in the closure axiom for chain is distinct from any 

occurring in the closure axiom for region. 

C2. All constants mentioned in the closure axioms for tee are mentioned in the 

closure axiom for chain. We impose this by the following image type con­

straint: 

(v' z, y) tee( z,y) :::> chain( x) /\ chain( y) 

Similarly, 

(v' z,y) bounds(x,y) :::> chain(x) I\ region(y) 

Similar axioms hold for the image predicates chi, closed, interior and ezte-

raor. 
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2.2. Specifying the Scene Domain 

We assume that the taxonomy of scene objects is given by Figure 4, which 

pictorially represents the following first order formulas2: 

('v x) SCENE-OBJECT(x) = LINEAR-SCENE-OBJECT(x) V AREA(x) 

('V z) -, (LINEAR-SCENE-OBJECT(x) I\ AREA(x)) 

(V z) LINEAR-SCENE-OBjECT(x) = ROAD(x) V RIVER(x) V SHORE(x) 

('V z) -, (ROAD(x) I\ RIVER(x)) 

(rjx) -, (ROAD(x) I\ SHORE(x)) 

(v'z)-, (RIVER(x) I\ SHORE(x)) 

(rjx) AREA(x) = LAND(x) V WATER(x) 

(v' x) -, (LAND(x) I\ WATER(x)) 

In addition to this taxonomic information, we assume the following general 

facts about the real world of roads, rivers, shorelines, land and water. 

(i) Rivers do not cross each other. 

('V x,y) RIVER(x) I\ RIVER(y) ::J -, CROSS(x,y) 

(ii) Shorelines form closed loops. 

('v x) SHORE(x) ::J LOOP(x) 

(iii) Rivers cannot form loops. 

('v x) RIVER(x) ::J -, LOOP(x) 

2 Recall our convention that scene domain predicatee are denoted by upper case characten, and image domain 
predicatee by lower cue. 



- 12 -

(iv) The inside area of a shoreline is land iff its outside is water; its inside is 

water iff its outside is land. 

('t/ z,y,z) SHORE(z) I\ INSIDE(z,y) I\ OUTSIDE(z,z) 

:::> (LAND(11) = WATER(z)) I\ ( WATER(y) = LAND(z)). 

(v) If a road or a river is beside an area then that area is land. 

(Vz,y) BESIDE(z,y) I\ (ROAD(z) V RIVER(x)) :::> LAND(y) 

(vi) Rivers flow into other rivers, or into shores. 

('t/ z) RIVER(x) :::> (311)RIVER(y) I\ JOINS(z,y) V 

(3 z)SHORE(z) /\ JOINS(x,z) 

Finally, we require the following axioms which restrict the scene predicates 

to scene objects only: 

Scene Predicate Type Constraint Axioms 

(''t;'x,y)CROSS(x,y) :::> SCENE-OBJECT(x) I\ SCENE-OBJECT(y) 

('v' x)LOOP(x) :::> SCENE-OBJECT(x) 

('t/ x,y)INSIDE(x,y) :::> SCENE-OBJECT(x) I\ SCENE-OBJECT(y) 

('v' x,y) OUTSIDE(x,11) :::> SCENE-OBJECT(x) I\ SCENE-OBJECT(y) 

('v' x,y)BESIDE(z,11) :::> SCENE-OBJECT(z) /\ SCENE-OBJECT(11) 

('v' x,y)JOINS(x,y) :::> SCENE-OBJECT(x) /\ SCENE-OBJECT(y) 
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2.3. Specifying the Image-Scene Domain Mappings 

In any given application, there will be relations which hold between the 

image and scene domains, for example, relations specifying how various three 

dimensional objects project onto the two dimensional image plane, or what kinds 

of scene objects are depicted by image objects. We refer to such relations as 

mappings, and represent them by a distinguished binary predicate ~( i,s) mean­

ing that image object i depicts scene object s. 

In the case of Mapsee, the following assumptions are made: 

(i) The world consists of image objects and scene objects, and these form a taxon­

omy. 

(V x) image-object(x) V SCENE-OBJECT(x) 

(Vx) .., (image-obiect(x) /\ SCENE-OBJECT(x)) 

(ii) Every image object i depicts a unique scene object which we denote by u(i). 

('v' 1) image-object(,) ::> SCENE-OBJECT(u(1)) I\ ~{i,u(a)) I\ [('v' s)~(i,s) ::> s = u(1)] 

(iii) Every scene object is depicted by a unique image object. 

(Vs) SCENE-OBJECT(s) ::> (3!a)image-object(1) /\ ~(i,s) 

Assumptions (ii) and (iii) are very strong. For example, (ii) forces the con­

clusion that a noise patch in the image depicts something real in the scene, while 

(iii) precludes occluded objects in the scene. Clearly, there are settings where 

these assumptions are unwarranted, where some of (ii), (iii) and the other image, 

scene and mapping axioms require more complex representations. We gloss over 



this issue for now but return to it briefly in Section 7.4 where we sketch a logical 

treatment of occlusion. 

(iv) Depiction holds only between image and scene objects. 

('v'i,s) A(i,s) :) image-ob;'ect(a) /\ SCENF-OBJECT(s) 

(v) Taxonomic mappings: 

Regions in the image depict areas in the scene. 

('v'i,s) A(i,s) I\ region(a) :) AREA(s) 

Chains in the image depict linear scene objects in the scene. 

('v'i,s) A(i,s) /\ chain(,) :) LINEAR-SCENF-OBJEGT(s) 

(vi) Relational mappings: 

Tee relations in the image depict join relations in the scene, and vice versa. 

Similarly, for the other image relations (Figure 2) and their corresponding 

scene relations: 

('v'ii,i2,s1,s2} A(i1,s1) /\ A(i2,s2} :) chi(i1,ii) = CROSS(si,s2) 

('v' i1,i2,s1,s2) A(i1,s1) /\ A(i2,s2) :) bounds(i1,i2) = BESIDE(s1,s2) 

(v'i,s) A(i,s) :) closed(a) = LOOP(s) 

('v' i1,i2,s1 ,s2) A(i1,s1) /\ A( i2,s2) :) interior(i1,~) = INSIDE( s1,s2) 

('v'i1,i2,s1,s2) A(i1,s1) /\ A(i2,s2) ::> exterior(i1,i2) = OUTSIDE(s1,s2) 



- 16 -

3. What Is an Interpretation? 

In general, a logical specification of the relevant knowledge and underlying 

assumptions for an image understanding application will consist of: 

(i) Image axioms: an axiomatization of the image domain 

(ii) Scene axioms: an axiomatization of the scene domain, and 

(iii) Mapping axioms: an axiomatization of the mappings between the 

image and scene domains. 

Sections 2.1, 2.2 and 2.3 provide an example of this tripartite specification, 

for the sketch map task. 

With such an axiomatization in hand, we can provide a formal definition of 

an interpretation as follows: 

An interpretation of an image is a model of the image, scene and map­

ping axioms. 

We use the term 'model' here in its strict logical sense (Mendelson, 1964) 3
• 

At this point it is appropriate to say a few words about computational 

issues. Determining the models of an arbitrary set of first order axioms is a 

wildly impractical task. To begin, it is undecidable in general whether such a set 

of formulas even has a model. Moreover, there may be infinitely many models. 

Is there anything special about vision which precludes these problems? 

8 The term 'interpretation' bu a logical meaning (Mendelson, 1004) which di.f!'eni from our use of the word. Since 
we are grounding high level viaion in '101;:k., there i1 a riak of terminological confuaion. Sinc:e 'interpretation' .is eo firmly 
entre=hed in the computational vieion literature, we chooee to continue uae of the term in thi1 paper. We emphaaiu 
that it1 uae does not refer to ib logical meaning. 
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At this stage of our research we can only speculate. The most promising 

observation is that an image is finite. There are just finitely many primitive 

image objects and relations between objects. Provided the depiction relation 

allows for just finitely many scene objects corresponding to the image primitives, 

then all quantifiers will have finite range. As we shall see, this is the case for our 

sketch map domain. Whenever this is the case, quantified formulas reduce to 

propositional ones and image interpretations are all computable. It is unclear 

just how general this observation is. Very likely a variety of vision tasks must be 

formalized before some general principles emerge regarding decidability issues. 
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4. Some Results Derivable from Mapsee's Axiomatization 

Let MAP-AXIOMS be those axioms specified in Sections 2.1, 2.2 and 2.3 for 

our simplified Mapsee domain, namely the image axioms, the scene axioms, and 

the mapping axioms. In this section, we state various logical consequences of 

these axioms which will simplify the process of computing the interpretations for 

a hand-drawn sketch map. We omit the proofs, which are contained in Appendix 

A of the Technical Report version of this paper (Reiter and Mackworth, 1987). 

Notation 

Whenever MAP-AXIOMS entails a closure formula of the form 

where the ti are all terms then I Pl denotes {(t1 ... t1' ... (tm ... t"')} , , £ I 1, , nh , 1 , , n · 

Result 1 ( Closure on image objects) 

MAP-AXIOMS F (V z)image-object(z) = . . V . {z = •1 
, E I choanl U I reg,onl 

Result 2 (Closure for .6.) 

MAP-AXIOMS F (V z,y).6.(z,y) = V (z = i A y = u(11) 
i E limage-objectl 

Result 3 (Uniqueness of all objects) 

H Im,In E limage-obiectl, 

1. MAP-AXIOMS F u(I,,J -:/= u(I,J when m ·+ n 
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2. MAP-AXIOMS p= u(I,,J -:fo In 

3. MAP-AXIOMS p= Im -:fo In when m f. n 

Result 4 (Closure for scene objects) 

MAP-AXIOMS p= ('v s)SCENF-OBJECT(s) = . . V . (s = u(1)) 
1 E j1mage-061ectl 

Result 5 (Domain closure) 

MAP-AXIOMS p= (Vx)[ V (x = i V x = u(1))] 
i E I image-object! 

Result 6 (Closure for linear scene objects and areas) 

1. MAP-AXIOMS p= ('v s)LINEAR-SCENF-OBJECT(s) = V (s = u(i)) 
i E jchainj 

2. MAP-AXIOMS p= ('t/ s)AREA(s) = V (s = u(1)) 
i E iregionl 

Result 'T ( Closure for Scene Domain Relations) 

1. MAP-AXIOMS p= ('vx,y)JOINS(x,y) = V (x = u(a) A y = u(i')) 
(i,i~ E lteel 

2. MAP-AXIOMS p= ("ijx,y)CROSS(x,y) = V (x = u(1) A y = u(i')) 
(i,ii E lch11 

3. MAP-AXIOMS p= ('vx,y)BESIDE(x,y) = V (x = u(a) /\ y = u(i1) 
(i,i~ E jbound•I 

4. MAP-AXIOMS p= (v'x)LOOP(x) = V (x = u(a)) 
i E lcloaedl 

5. MAP-AXIOMS p= ('v x,y)INSIDE(x,y) = V (x = u(a) A y = u(i')) 
(i,i1 E !interior! 
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6. MAP-AXIOMS I= ('t/ z,y) OUTSIDE(z,y) = V (z = u(a) /\ y = u(i1) 
( i,i? E I u:teriori 

5. Sbnplifying MAP-AXIOMS 

We now show how the results of the previous section allow us to systemati­

cally eliminate from consideration many of the axioms of MAP-AXIOMS. This 

in turn will considerably simplify the task of determining all interpretations of an 

image, as we shall see in Section 6 below. 

Let STh1P-AXIOMS consist of the following groups of formulas: 

Sl. The closure axioms for tee, chi, bounds, closed, interior, exterior, chain and 

region of Section 2.1, augmented by the closure formulas for image-object, 

t::,., SCENF-OBJECT, LINEAR-SCENF-OBJECT, AREA, JOINS, 

CROSS, BESIDE, LOOP, INSIDE and OUTSIDE, derived in the previous 

section. 

S2. Unique names formulas of Result 3, together with the domain closure for­

mula of Result 5. 

S3. (i) For i E limage-objectl, 

..., ROAD(,) 

-, RIVER(,) 

..., SHORE(,) 

..., LAND(a) 

..., WATER(,) 
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(ii) Fors E !AREAi, 

-, RIVER(s) 

-, ROAD(s) 

-, SHORE(s) 

LAND(s) V WATER(s) 

-.LAND(s) V .., WATER(s) 

(iii) For s E ILINEAR-SCENE-OBJEC'ri, 

-, LAND(s) 

-, WATER(s) 

(iv) For s E ILOO.Pj, 

ROAD(s) V SHORE(s) 

-, ROAD(s) V -iSHORE(s) 

-, RIVER(s) 

(v) For s E ILINEAR-SCENE-OBJEC11 - ILOOPI, 

ROAD(s) V RIVER(s) 

.., ROAD(s) V -, RIVER(s) 

-, SHORE(s) 

S4. The following groups of formulas: 

(i) For (x,y) E I GROSSI, 

-, RIVER(x) V -, RIVER(y) 

(ii) For (x,y,z) such that x E ILOOPI, (x,y) E IINSIDEI and 

(z,z) E IOUTSID£1, 

SHORE(x) ::> (LAND(y) = WATER(z)) 
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(iii) For (x,y) E !BESIDE! and x (/. !LOOP!, 

LAND(y) 

For (x,y) E !BESIDE! and z E ILOOPI, 

ROAD(z) ::, LAND(y) 

(iv) For z E ILINEAR-SCENE-OBJEC'J1 - !LOOP!, 

RIVER(z) ::> [ V RIVER(y)] 
hl(z.r) e !JOINS! ud ., ~ !LOO.Pl} 

V ( V SHORE(z}] 
{~(z,z) E !JOINS, and z E !LOOP!} 

Proposition 1 

MAP-AXIOMS and SIMP-AXIOMS are logically equivalent. 

Proof: 

See Appendix B of the Technical Report version of this paper (Reiter and 

Mackworth, 1987}. 

In the next section we show how SIMP-AXIOMS may be used to compute 

interpretations of sketch maps. 
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6. Determining the Interpretations of a Map 

It remains to compute the interpretations of a hand-drawn sketch map, 

which means, by the definition of Section 3, computing all models of MAP­

AXIOMS, hence of SIMP-AXIOMS. All such models share the following proper­

ties: 

1. Suppose jimage-objectl = {ii, .. ,,i,J. By the domain closure and unique 

names formulas of S2, the universe of any such model consists of 2 n pairwise 

unequal elements. ff we denote the elements of this universe corresponding 

to i1, ... ,in, u(i1), ••• ,u(i,J by themselves, then all models of SIMP-AXIOMS 

share the same universe {i1, ••• ,in,u(i1), .•• ,u(i,J} of pairwise unequal elements. 

2. The closure formulas of S1 completely characterize their predicates. Accord­

ingly each predicate with a closure axiom has the same extension in all 

models of SIMP-AXIOMS, and these extensions are known to us a priori. 

For example, I BESIDE'i is the extension of the predicate BESIDE common to 

all models of SIMP-AXIOMS. 

The only predicates lacking closure formulas are ROAD, RIVER, SHORE, 

LAND and WATER. Thus, the models of SIMP-AXIOMS can differ from one 

another only in the extensions they assign to these predicates. It follows that the 

only formulas of SIMP-AXIOMS we need consider in computing these models are 

those of S3 and S4. Moreover, these are quantifier-free formulas, so the problem 

reduces to determining the set of all propositional models of a set of formulas of 

the propositional calculus. While this is in general an NP-hard problem, at least 

it is decidable and various algorithms are known (Bibel, 1981; Purdom, 1984; 
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Mackworth, 1987}. 

We illustrate the result of this calculation with the example sketch map of 

Figure 3. 

Example (The map of Figure 3) 

All models share the same universe { c1, ... ,c6,r1, ... ,r4,C1, ... ,C6,Ri, ... ,R.,} where 

Ci and R; denote u( ci) and u( r;) respectively. Table 1 summarizes the extensions 

common to all these models of the predicates with closure formulas in S1. 

It remains to determine all models of S3 and S4 which, for this example, are 

the following groups of formulas: 

S3(i) For i E {c1, ... ,c6,r1, ... ,r4}, 

.., ROAD(,) 

-, RIVER(,) 

-, SHORE(,) 

-, LAND(,) 

-, WATER(,) 

(ii) For s E {R1,··•,R4}, 

-, RIVER(s) 

-, ROAD(s) 

-, SHORE(s) 

LAND(s) V WATER(s) 

-, LAND(s) V -, WATER(s) 
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PREDICATE EXTENSION PREDICATE 

tee (c2,c1), (c2,c3), (c4,c5), (c3,c5) 

chi ( c3,c4), ( c4,c3) 

bounds ( c1,r1), ( c2,r1), ( c3,r1), ( c3,r2), 

( C4,r1), ( C-4, r2), ( C5,r1), ( C5,r2), ( C5,r3), 
(c6,r3), (c6,r4) 

.6. (c1,C1), (c2,C2), (c3,G3), (c4,G4), (cs,05), 

(c6 ,C6), (r1,R1), (r2,R2), (r3,R3), (r4,R4) 

LINEAR-SCENE-OBJECT 01, 0 2, 0 3 , 0 4 , 05, 0 6 

JOINS ( 0 2,01), ( 0 2,03), ( 0 4,05), ( 03,Cs) 

CROSS ( 0 3,04), ( 04,03) 

BESIDE ( C1,R1), ( C2,R1), ( C3,R1), ( C3,R2), ( 04,Ri), 
( C4,R2), ( Cs,R1), ( Cs,R2), ( C5,R3), ( 06,Ra), 
( C6,R4) 

LOOP ~,ls 

INSIDE ( C6,R4), ( Cs,Ra) 

OUTSIDE (C5,R1), (C5,R2), (C6,R3) 

SCENE-OBJECT C , C , G , G , G , G. , R , R , R , R 

Table 1. The Interpretations of Predicates with Closure Formulas 



(iii) For s E { Ci, ... , Ce} 

-, LAND(s) 

-, WATER(s) 

(iv) For B E { 05,Ce} 

ROAD(s) V SHORE(s) 

-, ROAD(s) V -, SHORE(s) 

-, RIVER(s) 

(v) For s E { 0 1, ••• ,04} 

ROAD(s) V RIVER(s) 

-, ROAD(s) V -, RIVER(s) 

-, SHORE(s) 

- 26 -

S4 (i) -, RIVER( 03) V -, RIVER( C4) 

(ii) SHORE(C5) :::) LAND(R3) = WATER(R1) 

SHORE(C5) :::) LAND(R3) = WATER(R2) 

SHORE(Ce):::) LAND(R4) = WATER(R3) 

(iii) LAND( R1) 

LAND(R2) 

ROAD( C5) :) LAND(R1) 

ROAD( C5) :) LAND(R2) 

ROAD( 0 5) :) LAND(R3) 

ROAD( Ce) :::) LAND(R3) 

ROAD( C6) :::) LAND(R4) 

(iv) RIVER( C1) :) false 
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RIVER( 0 2) ::> RIVER( 0 1) V RIVER( 0 3) 

RIVER( 03) :::> SHORE( Cs) 

RIVER( 04) :::> SHORFX., Cs) 

After a certain amount of simplification (which would require a propositional 

theorem prover in general) we obtain the following equivalent set of formulas: 

S3(i) - as above. 

For s E {R1, ••• ,R4}, 

, RIVER(s) 

, ROAD(s) 

, SHORE(s) 

LAND(R1) 

LAND(R2) 

-, WATER(Ri) 

, WATER(R2) 

Fors E{R3,R4} 

LAND( s) V WATER( s) 

, LAND(s) V -, WATER(s) 

S3(iii) - as above. 

S3(iv) - as above. 

For s E { 0 2, ••• ,04} 

ROAD(s) V RIVER(s) 

, ROAD(s) V -, RIVER(s) 



, SHORE(s) 

ROAD(C1) 

, RIVER( 01) 

, SHORE(C1) 

S4{i) - as above. 

SHORE( Cs) :) WATER(R3) 
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SHORE(C6) :::> LAND(R4) = WATER(R3) 

ROAD( Cs) :::> LAND(R3) 

ROAD(C6) :::> LAND(R3) 

ROAD(C6) :::> LAND(R_.) 

RIVER( 0 2) :::> RIVER( 0 3} 

RIVER( 03) :::> SHORE( Cs) 

RIVER( c,) :::> SHORE( Cs) 

It is a simple but tedious matter to determine all propositional models of 

these formulas; there are six of them, as summarized in Table 2. This means 

there are six possible interpretations of the original image. 
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PREDICATE EXTENSIONl EXTENSION2 EXTENSION3 

ROAD C1, C2, C3, C4, Cs, C6 C1, C2, C3, C4, Cs C1, C2, C3, C4 

RIVER 

SHORE Ce Cs, C6 

LAND R1, R2, R3, R4 R1, ~' R3 R1, R2, R4 

WATER R, R?. 

PREDICATE EXTENSION4 EXTENSIONS EXTENSION6 

ROAD Ci, C2, C3 C1, C2, C4 C1, C4 

RIVER C4 C3 C2, C3 

SHORE Cs, Ce Cs, C6 Cs, C6 

LAND R1, R2, R4 R1, R2, R4 R1, R2, R4 

WATER R~ R~ R'A 

Table 2. The Six Interpretations of The Map of Figure 3. 
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The problem of determining all propositional models of these formulas can 

be formulated as a classical constraint satisfaction problem ( CSP) (Mackworth, 

1987) in two different ways. First, the problem of satisfiability of a propositional 

conjunctive normal form formula, SAT, is a CSP in which each atom is a variable 

with domain { true,false} and each clause is a constraint on the values of the 

atoms in the clause. In an alternative formulation, there are ten variables 

{ C1, ... ,C6,R1, ... ,R4}. For the variables { C1, ... ,C6} the domain of possible values is 

{ROAD,RIVER,SHORFJ'J; for the variables {R1, ... ,R4} the domain of possible 

values is { WATER,LAND}. Each propositional formula corresponds to a con­

straint ( either unary, binary or ternary) on the sets of possible values allowed for 

the variables mentioned in the formula. Although, in general, CSP's are NP-hard 

there are several efficient approximation algorithms that may be useful. Network 

consistency approximation algorithms have been developed and used extensively 

in the Mapsee project (Mulder et al., 1987). 

In connection with implementing an image interpretation system, notice that 

the general form of SIMP-AXIOMS of Section 5, specifically the formula groups 

S3 and S4, strongly suggests the use of a relational database system (Maier, 

1983). Predicates like CROSS, LOOP etc. can be naturally viewed as relations, 

and I GROSSI, !LOOP! etc. as their corresponding relational tables. For computa­

tions involving these tables, we can use the relational algebra which was designed 

specifically for the manipulation of such tables (Maier, 1983, Chapter 2). For 

example by appealing to the join operator of the relational algebra, the formula 

group S4(ii} may be expressed as: 
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For (z,y,z) E ILOOJ>I t><l 1,1 (IINSIDEI t><1 1,1 IOUTSID£1), 

SHORE(x) ::> LAND(y) = WATER(z) 

where lXl i,j indicates that the join is taken over the i-th and j-th columns of the 

first and second operands respectively of the join operator.4 

By appealing to relational database systems in this way, · computational 

vision can exploit the efficient storage, retrieval, and special purpose hardware of 

current and future data.base technologies. This can be especially important for 

vision applications since the relational tables obtained from complex images are 

likely to be quite large. 

In connection with databases and vision, it is interesting to note that Bibel 

(1987) proposes solving constraint satisfaction problems by means of the rela­

tional algebra. As we have just seen, SIMP-AXIOMS leads to a constraint satis­

faction problem whose solution yields all interpretations of a sketch map. We 

therefore have the prospect of relational databases playing a major implementa­

tion role in high level vision. 

' The readv unfamiliar with the relational algebra can ,afely ignore thil example. The important point i1 that the 
relational algebra provid• operaton fer manipulat~ relational tabla and that th- have been implemented and optim­
ized in current relational databue ,yatema. 
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7. Some Additional Features of this Framework for Depiction 

We have emphasized that a logical foundation for high level vision provides 

a rigorous definition for the concept of an interpretation of an image. We have 

also demonstrated how logic can be used to refine a logical specification of an 

interpretation task to an algorithmic realization of this task. There are, however, 

other important advantages of a logical perspective. We sketch some of these 

here. 

7 .1. Incorporating Contingent Knowledge 

In our axiomatization of hand-drawn sketch maps, the scene axioms of Sec­

tion 2.2 reflected general knowledge of the scene domain. These axioms were 

fixed in advance and, with the help of the other axioms, were refined to the 

groups of propositional formulas S3 and S4 of Sll\.1P-AXIOMS. These formulas 

are used to determine all interpretations of a given image. 

It often happens, however, that contingent knowledge is available about a 

particular scene. Such knowledge is not universal to all scenes, nor can it be anti­

cipated in advance. For example, we may know a priori something about the 

geographic region depicted by a particular sketch map, perhaps that the area 

contains a river with two tributaries, and it flows into a shore. This item of con­

tingent knowledge is an additional constraint on the possible interpretations of 

the map, and must be exploited in computing these. The particular fact has the 

following logical representation: 
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(3r,s) RIVER(r) I\ SHORE(s) I\ JOINS(r,s) I\ 

(3 r1,r2) RIVER(r1) I\ RIVER(r2) I\ r1 -=/= r2 /\ 

JOINS(r1,r) I\ JOINS(r2,r). 

Conceptually, to accommodate this new information, we need only add it to 

MAP-AXIOMS and find all models of the resulting formulas. Computationally, 

because MAP-AXIOMS must be refined to SIMP-AXIOMS, the contingent 

knowledge must similarly be refined. For the example at hand, it is straightfor­

ward to carry out this refinement using the methods referred to in Section 5. We 

obtain the formula 

V [RIVER(r) I\ SHORE(s) I\ 
(,,,) E IJOJNSI 

V RIVER(r1) I\ RIVER(r2)] 
{(ri,r~lr1 f r2 and (ri,r) E IJOJNSJ and (r:i.r) eJJO/N.S1} 

This can be added to SIMP-AXIOMS, and interpretations computed as before. 

It is clear in general how contingent knowlege can be accommodated by a 

logical approach to high level vision, at least conceptually. One merely augments 

the axiomatization with the contingent facts. The interpretations of an image 

are the models of the enlarged axiom set. Computationally realizing this 

approach is another matter entirely. Such contingent scene knowledge must be 

transformed in exactly the same way as general scene knowledge as a first step in 

computing the interpretations, and these transformations must be algorithmically 

determined. For our simple sketch map world, specifying these transformations 

would be relatively straightforward, although we have not done so in this paper. 

For more general settings, the problem of automatically accommodating 



contingent knowledge remains a future research topic. 

7.2. Querying an Image 

In many applications one is not concerned with finding some or all interpre­

tations of an image. Rather, one is concerned with determining whether some 

property of the scene is depicted in a given image. For example, in our map 

world, we might wish to know whether part of what the image depicts is a road 

leading to a shore. Formally, this query is 

(3 r,s} ROAD(r) /\ SHORE(s) /\ JOINS(r,s). 

In general, a query Q can be any formula. If AXIOMS is a set of formulas 

formalizing the application under consideration, the query has answer "yes" pro­

vided it is true in all interpretations of the image, i.e. provided 

AXIOMS F Q. 

Q has answer "no" provided it is false in all interpretations of the image, i.e. pro­

vided 

AXIOMS F -, Q. 

Otherwise, its answer is "possibly", which is to say it is true in some, but not all 

interpretations of the image. 

One approach to answering a query is to compute all interpretations of the 

image, then determine the truth values of Q in each such interpretation. The 

obvious problem with such an approach is that it is completely bottom up; the 

query does not participate in the computation of interpretations. If answering 



the query requires just a few image properties, or involves only a small local 

region of the image, we can hope to do better than a generate and test algorithm. 

The natural approach is to invoke a theorem prover, which attempts to derive 

one or both of Q and -, Q using AXIOMS as premises. Notice, however, that 

just as was the case for accommodating contingent knowledge, the axioms to be 

used for image interpretation will be some refined version of the original 

specification. In our map world, SIM:P-AXIOMS is such a refinement of MAP­

AXIOMS. The example query above would also have to be similarly refined to 

the equivalent 

V ROAD(r) I\ SHORE(s) 
(,,,} e IJOINSI 

prior to a theorem proving computation with SIM:P-AXIOMS as premises. More­

over, the theorem to be proved should be instrumental in guiding the search for 

its proof, so some mechanism will be required analogous to the set of support 

strategy in resolution theorem proving (Wos et al, 1965), or top down derivations 

in Prolog (Kowalski, 1979). Since one can expect that this final theorem proving 

task will frequently be propositional, it is likely to appeal to constraint satisfac­

tion techniques. In this case, we shall require mechanisms whereby the theorem 

actively guides the search for solutions to a constraint satisfaction problem. 

Finally, when the answer to a query is "possibly", we shall normally want to 

determine those image interpretations in which the query is true. All these issues 

remain totally unexplored in the vision setting. 



7.3. Accommodating Ambiguity in hnage Descriptions 

Ambiguity arises in vision in two fundamentally different ways. First, a 

well-specified image, for example the sketch map in Figure 3, may have multiple 

scene interpretations. This scene ambiguity is reflected in the fact that the 

image, scene and mapping axioms may have multiple models (six in the case of 

Figure 3). Second, the image itself may have multiple descriptions. Here we deal 

with this possibility. 

The image axioms of Section 2.1 for our map world formalize the assumption 

that our information about the image is complete; the closure axioms state that 

we know all and only the instances of image relations like tee and bounds, while 

the unique names axioms provide complete information about the equality rela­

tion. This assumption of complete information is a gross simplification. 

Consider Figure 5 where the result of imperfect segmentation or careless 

drawing leaves open the possibility of a tee or a chi in the image. This setting 

can easily be represented by the image axiom 

Of course, we now lose the closure axioms for tee and chi. This in turn leads to 

the loss of closure axioms for JOINS and CROSS which will have repercussions 

for the simplifications of MAP-AXIOMS derived in Section 5. Exploring the 

consequences of such ambiguities in the image description remains an open prob­

lem. 
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Figure 6 illustrates a more interesting example of ambiguity in an image 

description, because it affects the treatment of the equality relation. The ques­

tion is whether to treat chains c1 and c2 as a single continuous chain, in which 

case r1 and r2 must be distinct regions, or as two separate chains, in which case 

r1 and r2 are identical regions. We adopt the convention that c1 -:- c2 means that 

c1 and c2 define a single continuous chain i.e. that this single chain has two 

different names. Similarly with respect to the regions r1 and r2• This setting can 

now be formalized as follows: 

(V z) region(z) = x = r1 V z = r2 

Notice that closure axioms for chain and region are preserved. The unique names 

axioms of Section 2.1 are not preserved. Specifically, the image axioms do not 

contain the unique names axioms c1 i= c2 and r1 i= r2• In settings like this, 

where the full set of unique names axioms must be abandoned, an equality rea­

soner will be necessary for computing image interpretations. The consequences 

for vision of incomplete information about the equality relation remains an open 

problem. 

It is precisely with respect to the specification of incomplete information that 

logic excels as a representation language. While the consequences of such 
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incomplete axiomatizations may be far from obvious, there can be no question of 

just what it is about an image that is being formally specified. This is particu­

larly important when the image description is ambiguous. 

'1 .4. Occlusion 

To this point our sketch map world admits only two dimensional scenes. 

For example, MAP-AXIOMS precludes occlusion. This results from the mapping 

axiom 2.3(iii): 

('Ifs) SCENE-OBJECT(s):::) G!s) image-object(,) I\ A(i,s). 

To see why, consider Figure 7 which depicts a bridge passing over what might be 

a river or a road occluded by the bridge. If R denotes this occluded road or river, 

then A ( c1 ,R) and A ( c2,R); since c1 i= c2 the uniqueness property of the above 

mapping axiom is violated. 

To accommodate occlusions of this kind we must relax the above mapping to 

('Its) SCENE-OBJECT(s) :::) G ,)image-ob;'ect(,) I\ A(i,s). 

One consequence of this is that we lose the unique names formulas 

u(I,,J i= u(I,J when m i= n for scene objects (see the proof of Result 3(i)). But 

as we are about to see, this price must be pa.id anyway in order to properly for­

malize occlusions of this kind. 

Following the approach of the previous section, if a linear scene object is 

occluded so that its image contains two distinct chains c1 and c2, we adopt the 

convention that u( ci) = u( c2) means that the two chains depict one and the same 
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scene object. Equivalently, o( c1) and o( c2) are two different names for the same 

scene object. With respect to Figure 7, o( c1) = o( c2) means that there is a single 

scene object depicted by the two chains c1 and c2• We can formalize bridge 

occlusions by the following scene axiom: 

('v' b,si,s2,li,l2) BRIDGE(b,si,s2) I\ JOINS(l1,s1) I\ JOINS(l2,s2) 

:::, 11 = '2 /\ (ROAD(l1) V RIVER(l1)) 

Here, BRIDGE(b,s1,s2) means that bis a bridge with sides s1 and s2• 

Notice that this axiom forces us to abandon unique names for scene objects 

(Result 3(i)), much as the representation of ambiguous image descriptions of the 

previous section led to the rejection of some unique names for image objects. 

Notice also that the centrality of the equality relation for a proper treatment of 

occlusion is not unique to our analysis. Whenever Guzman's (1968) SEE pro­

gram uses the back-to-back T's heuristic to link two regions in an image of a 

polyhedral scene it is, in effect, declaring that those regions depict a single sur­

face. 

We do not presume to have solved the occlusion problem. Also there may 

well be other reasons for weakening the mapping axiom 2.3(iii). Many scene 

objects may not appear at all in the image because they are at the wrong scale, 

outside the frame of the map, inappropriate to the theme of the map or are 

totally occluded by, for example, a legend. The ramifications of abandoning 

unique names for image and scene objects requires exploration, as does the weak­

ening of the mapping axiom 2.3(iii). What does emerge clearly is the centrality 



- 39 -

of the equality relation for reasoning about and representing occlusion. 

7 ,5. Complex Objects 

In our treatment of sketch maps, we have considered only simple scene 

objects like roads and rivers, that is, objects with no component parts. Most 

vision settings involve complex objects consisting of aggregations of components 

which in turn may have components, etc. This observation has motivated the 

designers of several vision systems to incorporate composition hierarchies for the 

definition of complex objects (Brooks, 1981; Havens and Mackworth, 1983; Tsot­

sos, 1985). 

We indicate how such complex objects may be treated in our logical setting. 

As an example, consider the concept of a river system which informally is a maxi­

mal collection of interconnecting rivers at least one of which flows ·into a shore­

line. As in most treatments of composition in the vision literature, we appeal to 

a predicate PART-OF(z,y) meaning that object z is a component of the more 

complex object y. 

1. Every river r is part of a unique river system which we denote by p(r): 

(Vr) RIVER(r) :::> RIVER-SYSTEM(p(r)) I\ PART-OF(r,p(r)) I\ 

(VY) RIVER-SYSTEM(y) I\ PART-OF(r,y) :::> y = p(r). 

2. Properties of a river system: 

('y'z) RIVER-SYSTEM(z) :::> [(VY) PART-OF(y,z) :::> RIVER(y)] I\ 

[(Vr,p) RIVER(r) I\ PART-OF(p,z) I\ JOINS(r,p) :::> PART-OF(r,z)] 
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/\ [(3a,z) SHORE(s) /\ PART-OF(z,x) /\ JOINS(z,s)] 

3. Equality of river systems: 

('v x,y) RIVER-SYSTEM(x) /\ RIVER-SYSTEM(y) 

:::> x = y = [(\f p) PART-OF(p,x) = PART-OF(p,y)] 

The introduction of complex objects into our sketch map world necessitates 

a number of minor changes to the axiomatization of Section 2. First, the scene 

domain taxonomy must be expanded to that of Figure 8. Second, all references 

to the predicate SCENE-OBJECT in Section 2 and the subsequent analysis must 

now be replaced by the predicate SIMPLE-SCENE-OBJECT. In all other 

respects, the image interpretation process remains the same, with one exception. 

When the axioms for river systems are taken into account, there may be fewer 

interpretations of an image. This is not too surprising since adding axioms may 

eliminate models. For example, under MAP-AXIOMS the image of Figure 9 has 

an interpretation in which RIV ER( C1) and RIVER( C2), but the first two axioms 

above for river systems preclude this interpretation. 5 

In this section we have merely sketched how complex objects may be accom­

modated in a logical framework for depiction. The details of their logical 

representation, such as the axiomatization of RIVER-SYSTEM and PART-OF, 

remain to be worked out, as are algorithms for using such axioms in the interpre­

tation process. 

6 We omit the proof of ttlil, although it ii ■traightforward. The proof make■ u■e oC the tUDnomy of Figure 8. It 
al■o requir• unique name■ axioma oC the form p(s) =/, a(y) i.e. that complu acene object■ are different than aimple ecene 
object■. 



7 .6. Characterizing Preferred Interpretations 

On our account of high level vision, scene ambiguity is a purely logical pro­

perty; multiple interpretations of an image arise from multiple models of the 

corresponding task axiomatization. The fact is, however, that frequently humans 

are unaware of all or even some of the ambiguities inherent in an image; certain 

interpretations are preferred over others. 

In this paper we have not addressed the important problem of characterizing 

preferred interpretations. At this level one can expect domain specific probabilis­

tic information to be significant, as well as psychological data. It is possible that 

purely logical considerations will be relevant. For example, certain preferred 

interpretations may satisfy suitable extremal properties with respect to the space 

of all possible image interpretations. Such extremal properties arise in various 

formalizations of nonmonotonic reasoning (Reiter, 1987). In fact, since nonmono­

tonic reasoning is primarily concerned with plausible inferences, it is likely to 

play an important role in characterizing preferred (i.e. plausible) interpretations 

in vision. 

Whatever considerations turn out to be relevant for characterizing preferred 

interpretations, we believe that a theory of high level vision must provide an 

account of all possible interpretations, not simply the psychologically preferred 

ones. In other words, it must provide a competence as well as a performance 

theory. 
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7. 7. Graphics Applications 

Although we have concentrated on the task of interpreting images, the vision 

problem, the logic of depiction can equally well be applied to the task of generat­

ing images, the graphics problem (Mackworth, 1983). One of the criteria of pro­

cedural adequacy is flexibility: the capacity of a knowledge . representation 

scheme to support analysis and synthesis (Mackworth, 1987b). 

If we adopt the simple axioms of Section 2.3 then, based on the assumption 

that each scene object is depicted by a unique image object, we can postulate a 

function t(s) satisfying the axiom: 

tjs SCEN~OBJECT(s) ::> image-obiect(t(s)) I\ A(t(s),s) 

/\ [(tfa)A(i,s) ::> i = t(s)]. 

Coordinate frame transformations including metrical constraints on the scale, 

location and orientation of image and scene objects can be specified by the depic­

tion relation A(i,s) or, equivalently, by the function t(s). 

To generate an image of a scene, one computes all models of the general 

image, scene and mapping axioms and the particular scene description. If the 

scene description is consistent (internally and with respect to the general axioms) 

and denotes a unique scene then it is well-specified in the sense that it is neither 

anomalous nor ambiguous. In that case there would be but one model of the 

axioms which would specify a unique image. 

One of the advantages claimed for logic-based systems such as Prolog is that 

there is often an element of "reversibility" in the definition of predicates: one 



can sometimes interchange the roles of input and output variables ( Clocksin and 

Mellish, 1981). However, in practice, one finds that Prolog programs are usually 

designed to exploit a particular direction of procedural interpretation. The anal­

ogy carries through to the logic of depiction. Just as we manipulated the axioms 

to support an efficient interpretation process, one would have to manipulate the 

axioms to support an efficient generation process. Although the knowledge base 

may have been optimized for a particular direction of use, these optimizations are 

model-preserving, which ensures that the same knowledge underlies image 

interpretation and generation. This guarantees, for example, that interpretation 

and generation are correct inverses of each other with the qualification, of course, 

that interpretation is, in general, a one-to-many mapping, and generation is 

many-to-one. 

Using this approach, there are advantages for building user-computer inter­

faces. If an applications program is manipulating a database of objects a graphi­

cal display representing a view of those objects could be maintained by a separate 

system built on the principles outlined here. While the user actually interacts 

with the graphical description in the image domain both the user and the appli­

cations program can interpret the effects of each other's graphical actions in the 

scene domain. 

Without changing the scene domain rules one can easily change the image 

formatting and object depiction rules. For example, if the applications program 

and the user are manipulating sets and set inclusion relationships then a scene 

configuration could be depicted as a conventional tree (as in Figure 4) or the user 
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may prefer to use Venn diagram conventions based on containment of closed 

regions (Wong, 1986). The separation of the image, scene and mapping 

knowledge encourages the design of modular and correct graphics systems that go 

beyond device independence to image domain independence. 

'1.8. Beyond Mapsee 

Many of the advantages of the logical framework discussed in Section 7 sug­

gest that we can go beyond a reconstruction of some aspects of Mapsee. The 

extant Mapsee implementations cannot incorporate contingent knowledge, allow 

efficient responses to image queries, accommodate ambiguous image descriptions, 

deal sensibly with occlusion or generate maps; although, Mapsee-3 does deal well 

with complex objects. The framework presented here may prove to be a founda­

tion for building better image-based systems. 
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8. Conclusion 

We are far from having presented a completely adequate framework for dep­

iction and image interpretation; however, we have outlined a formal treatment of 

a task level theory of model-based vision. General knowledge of the image 

domain, the scene domain and the depiction mapping can be expressed in first 

order logic with equality. An interpretation of a particular image is a logical 

model of the general knowledge and a description of that image. This perspective 

provides a purely logical account of scene ambiguity. It also provides a task level 

formulation of the interpretation problem. This specification is refined, through 

model-preserving transformations, to the equivalent problem of determining the 

satisfiability of a set of propositional formulas to which known constraint satisfac­

tion algorithms can be applied. 

This approach provides a framework for analyzing existing vision systems by 

a process of logical reconstruction. It also shows, for significant task domains, 

how to design and implement vision systems that are correct with respect to both 

the task and algorithm levels. The modular separation of the knowledge into 

three sets of axioms encourages portability and generality in the application of 

this framework for depiction to other domains. Consider, say, the task of inter­

preting diagrams of combinational logic circuits. Many of the image axioms will 

be unchanged. The generic classification of the axioms (namely, Taxonomy, Clo­

sure, Unique Names, Coherence and Type Constraints, Disjointness of Image and 

Scene Objects, Uniqueness of Depiction, Taxonomic Mapping and Relational 

Mapping) will survive. In any application, the foundation (namely, the definition 
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of an interpretation as a model of an axiomatic formulation) will remain secure. 

In many applications, the methods used to transform to propositional form and 

the use of CSP techniques will, we hypothesize, still be appropriate. To that 

extent the framework is independent of the particular task a.nd axiomatization 

exploited here as an example. Moreover, it apparently has applications in intelli­

gent computer graphics as well. 

We have also sketched logical approaches to the problems of contingent 

scene knowledge, image queries, ambiguity in image descriptions, occlusion a.nd 

complex objects. These a.nd many other issues of descriptive and procedural ade­

quacy remain to be explored in depth. 
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Figure 1. An image domain taxonomic hierarchy 



Relation Example 

(a) tee(c,c') 

(b) chi(c,c') 
C 

r 
(c) bounds(c,r) 

C 

bounds(c,r) 

(d) closed(c) C 

(e) interior(c,r) 
C 

(f) exterior(c,r) 
C r 

exterior( c, r) 
C 

Fiaure 2. Relations in the imaae domain 



Figure 3. A sketch map 
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Figure 4. A scene domain taxonomic hierarchy 
I 

f 
I 

I. 



Figure 5. An image with two possible descriptions 

Figure 6. A broken chain? 



Figure 7. An occluding bridge 
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Figure 8. An expanded scene domain taxonomy 



Figure 9. Two rivers? 




