
An Incremental Method for Generating
Prime Implicants /Implicates

Alex Kean and George Tsiknis

Technical Report 88-16

July 29th 1988

Department of Computer Science
The University of British Columbia

Vancouver, British Columbia
Canada V6T 1 W5

Abstract

Given the recent investigation of Clause Management Syatema{CMSa} for Artificial Intelli
gence applications, there is an urgent need for an efficient incremental method for generating
prime implicants. Given a set of clauses 1, a set of prime implicants II of 1 and a clause C,
the problem can be formulated as finding the set of prime implicants for II U { C}. Intuitively,
the property of implicants being prime implies that any effort to generate prime implicants
from a set of prime implicants will not yield any new prime implicants but themselves. In this
paper, we exploit the properties of prime implicants and propose an incremental method for
generating prime implicants from a set of existing prime implicants plus a new clause. The
correctness proof and complexity analysis of the incremental method are presented, and the
intricacy of subsumptions in the incremental method is also examined. Additionally, the role
of prime implicants in the CMS is also mentioned.

1

1 Introduction

Traditionally, prime implicants have been used to perform minimization on switching circuits

[Biswas'75], [Kohavi'78], [Hwa'74], [Hwang et all'85] and [Rhyne et all'77]. In the realm of Ax

tificial Intelligence applications, the role of prime implicants has also generated a great amount

of interest. For instance, in mechanical theorem proving, [Slagle, Chang & Lee'69,'70] intro

duced the notion of prime consequence (analogous to prime implicants or prime implicates) in

consequence-finding using semantic resolution. Also, in the investigation of truth maintenance

systems, [Reiter & De Kleer'87] discussed the role of prime implicants as an alternative repre

sentation for Clause Management Systems(CMS).

In the Reasoner-CMS problem solving architecture (Reiter & De Kleer'87], the domain depen

dent Reasoner transmits propositional clauses representing its activities to the domain indepen

dent CMS. The primary function of the CMS is to compute the minimal set of support (section

8) for a given query with respect to the CMS database. In this framework, it is appropriate

and more efficient for the CMS to maintain all the prime implicants of its clauses instead of the

clauses themselves. Due to the dynamic nature of the CMS , the most complicated, computa

tionally expensive and essential operation is to update the existing database of prime implicants

each time a new clause is added. The concern for the expensive updates in CMS is our primary

motivation in finding an efficient incremental method for generating prime implicants.

Methods for generating prime implicants from Boolean expressions have been studied ex

tensively in the area of switching theory. For example, there is the consensus method [Bartee,

Lebow & Reed'62]; the well-known techniques of the Karna.ugh Map and the Quine-McCluskey

algorithm [Biswas'75, Kohavi'78]; the Semantic Resolution technique explored by (Slagle, Chang

& Lee'69,'70]; the elegant Tison's method [Tison'67] etc. It is obvious that all of the conventional

methods that generate prime implicants are applicable to the CMS update problem. However

they are inefficient simply because they are concerned with the generation of prime implicants

from an arbitrary Boolean expression. What is needed is an incremental method for generat

ing prime implicants that updates the set of prime implicants when its original corresponding

Boolean expression is modified.

More formally, given a Boolean expression en= 0 1 /\ 02 /\ ... /\On and its corresponding set

of prime implicants denoted by P I(en), then the task can be formulated as computing P I(en+1)

where Gn+1 = Gn /\ Cn+l• Obviously, PI(en+1) can be generated directly from Gn /\ Cn+l•

2

Unfortunately, this would regenerate a lot of prime implicants that have already been found

in PI(en). Ideally, we would like to generate PI(en+1) from PI(en) ACn+l• Again, generating

the set of prime implicants from PI(en) A Cn+l using the conventional methods results in a lot

of redundant computations simply because all the conventional methods do not exploit the fact

that the clauses of PI(en) are already prime.

We shall present a new algorithm for generating prime implicants from PI(en) A Cn+l • There

are two criteria for such an algorithm. First, the algorithm should not rely on canonical form1

of the formula as most of the conventional methods do except [Slagle, Chang & Lee'69,'70] and

[Tison'69]. Second, the algorithm should exploit the properties of prime implicants so that the

generation of prime implicants will be efficient.

We deem it necessary to indicate at this point that there is not much hope for a "simple"

incremental method simply because the PI operator is not monotone. More precisely, there

exist sets of prime implicants of P and S such that neither P I(P U S) ~ P I(P) U P I(S) nor

PI(PU S) 2 PI(P) U PI(S). As an example, consider P = { xy, t} and S = { t, y}, PI(PU S) =

{x,t,y} while PI(P) = P and PI(S) =Sand PI(P) u PI(S) = {xy, t,y}.

In sections 2 and 3, some preliminary definitions and Tison's Method will be introduced. In

Section 4, the incremental algorithm for generating prime implicants from P I(en) t\ Cn+l will

be discussed. The proof of correctness of the method is given in section 5. The complexity

analysis of the incremental method can be found in section 6, and section 7 describes some futher

optimizations of subsumption. The role of prime implicants in CMS is discussed in section 8

followed by the conclusions and future work in section 9.

2 Definitions

We shall begin with some definitions and notations that will be used throughout this paper. A

variable is denoted by a lowercase letter possibly subscripted(eg. x, y, z, ... , :i:1, :i:2). A literal is

a positive variable x or a negative variable x. We call x and x a pair of complementary literals.

A ~, denoted by an uppercase letter possibly with subscript, is either a conjunction of

literals (Conjunctive Clause) or a disjunction of literals (Disjunctive Ola.use) without repetition.

A conjunctive clause is represented by the juxtaposition of the literals (e.g. xyz) and a disjunctive

1Let S be a set of clauses over a set of variables V . A clause C E S is said to be in ca.nonlcal form if every
variable in V occurs in C.

3

clause is connected by the infix operator V (e.g. xvyvz). We shall refer to a clause as a conjunctive

clause unless stated otherwise. Furthermore, for simplicity, a clause is also represented by a set of

literals. If M1, M2, ... , Mk are clauses (or parts of clauses), then for convenience the juxtaposition
k

M1M2 ... Mk will represent the clause (or part of the clause) LJMi.
i=l

A Disjunctive Normal Form (DNF) formula is a disjunction of conjunctive clauses and a

Conjunctive Normal Form (CNF) formula is a conjunction of disjunctive clauses. By formula

we mean a DNF formula unless stated otherwise. The uppercase calligraphic letter possibly

subscripted (e.g . .A, B, ... , Z) will be used to denote a formula. For simplicity, a formula is also

represented by a set of clauses.

A clause A is said to ~ubsume another clause B or A~ B if every literal in A occurs

in B, i.e. A ~ B. In logical notation, a conjunctive clause A subsumes a conjunctive clause B

if I- B -+ A. For example, a I\ b subsumes a I\ b I\ c because I- a I\ b I\ c -+ a I\ b. Conversely, a

disjunctive clause A subsumes a disjunctive clause B if I- A -+ B. For instance, a V b subsumes

a Vb V c because I- a Vb -+ a Vb V c. Note that the notion of subsumption or covering in this paper

differs from the usual set covering. Intuitively, A subsumes or covers B means A incorporates B.

The subsumption or covering relation is transitive, i.e. if A covers B and B covers C, then A

covers C.

A clause C is fundamental if C does not contain a complementary pair of literals. For

example, the clause xyz is fundamental but not xyzy. Throughout this paper, all clauses will

be fundamental unless stated otherwise. Additionally, all definitions and theorems are stated in

DNF nevertheless the same notions and results are applicable to CNF by duality.

Definition 1 Let A = xA' and B = xB'. The consensus of A and B with respect to the variable

xis CS(A, B, x) = A' B' iff A' B' is fundamental.

The notion of consensus is a restricted type of resolution [Davis & Putnam'60] [Robinson'66].

The restriction is that the resolvent(consensus) must be fundamental. The semantics of fun

damentality say that a resolvent that contains a complementary pair is always true(tautology)

or false(contradiction) when the resolvent is in CNF or DNF respectively. In resolution, tau

tology or contradiction is eventually removed as a resolvent thus justifying the restriction on

fundamentality.

4

Definition 2 GitJen a conjunctive clause Q and a DNF formula 1, Q is an implicant of 1 if

I- Q -. 1. Q is a prime implicant of 1 if Q is an implicant of 1 and there is no other implicant

Q' of 1 such that I- Q -+ Q'.

Definition 3 Given a disjunctive clause Q and a ONF formula 1, Q is an implicate of 1 if

I- 1 -+ Q. Q is a prime implicate of 1 if Q is an implicate of 1 and there is no other implicate

Q' of 1 such that I- Q' -+ Q.

In the design of switching circuits, DNF is the widely accepted representation, therefore the

notion of implicant is relevant. On the other hand, in the realm of theorem proving, CNF is the

proper representation for refutation therefore the notion of implicate is relevant [Slagle, Chang &

Lee'70]. The relationship between consensus and implicant/implicate is stated as the well-known

consensus thereom, i.e. if Q is the consensus of two conjunctive clauses of a DNF formula 1, then

Q is an implicant of 1. By duality, if Q is the consensus of two disjunctive clauses of a CNF

formula 1, then Q is an implicate of 1.

For example, let the CNF formula 1 be (x V z) /\ (y V z). The consensus of x V z and y V z is

Q = x Vy and hence, Q is an implicate of F because I- 1-+ Q. Conversely, if the DNF formula

1 is (p I\ q I\ r) V (p I\ q I\ s) then the consensus of p I\ q I\ r and p I\ q I\ s is Q = q I\ r I\ s, hence Q

is an implicant of 1 because I- Q-+ 1.

Finally, given a CNF /DNF formula 1, the set II of the prime implicates/implicants of 1

is unique and logically equivalent to 1, i.e the disjunction/ conjunction of the clauses of II is

logically equivalent to 1.

3 Tison 's Method

The notion of generalized consensus was first introduced by [Tison'67]. The motivation

was to capture a sequence of consensus operations in a unifying framework called generalized

consensus.

Definition 4 Let A = A1 V •.. V A11 be a DNF formula.

1. The variable x is a biform variable in A if x E ~ and x E A; for some i, j.

2. The variable x is a mono form variable in A if x E A; for some i and x ¢. A; for all j.

9. A literal is biform/monof orm if its variable is biform/monoform.

5

Thus by the above definition each A.= B,M, such that

B, - the conjunction of literals of A. that are biform in A

M, - the conjunction of liter a.ls of A. that a.re monoform in A.

n
Let M = I\ M, and call M = GC(A1, ••• , An) then-order generalized consensus of A if

i=l

B1 V .•. V Bn = True

holds irredundantly. Note that if A a.nd Ba.re clauses, GC(B) = B a.nd GC(A, B) = CS(A, B, z)

for some biform va.ria.ble z.

For example, let A = be/ V abc V ad, then the conjunction of the biform literals a.re b, ab

and a and the monoform literals are e/, c and d respectively. Since b V ab V a = True holds

irredundantly, that is the deletion of any B, invalidates the equation, the generalized consensus

of A is the conjunction of their monoforms e fed.

In the following we state some theorems pertaining to generalized consensus which will be used

in section 5. The proof of these theorems can be found in [Tison'67) and in [Loui & Bila.rdi'82).

Theorem 1 Let X = GC(Ti, ... , Tp) and z be a biform variable in Ti, ... ,Tp. Renumbering

clauses if neces~ary, suppose z occurs in Ti, ... , T mi x in Tn+l, . .. , Tp; and neither z nor x in

Tm+i, ... , Tn, where 1 $ m $ n $ p - 1. There exist m1
, n', Y, Z such that m < m' $ n' + 1,

n' $ n $ p-1, Y = GC(T1, ... ,Tn,), Z = GC(Tm,,• .. ,Tp) and X = CS(Y,Z,z).

This theorem ensures that every generalized consensus of order n > 2 ca.n be formed via. a.

sequence of consensus operations of order 2.

Theorem 2 If formula 1 is a set of DNF /CNF clauses then

1. each prime implicant/implicate of 1 is the generalized consensus of a subset of 1.

2. if P is the generalized consensus of a subset of 1 then P is an implicant/implicate of 1.

9. if P is an implicant/implicate of 1 then there is a prime implicant/implicate of 1 that

covers P.

The following Tison's method for generating prime implicants exploits the fact that each

biform literal will be used exactly once in the algorithm. Note that a consensus operation is

6

equivalent to a resolution step cum fundamentality test. Thus Tison's method is similar to [Davis

& Putnam'60] computing procedure for quantification theory (DPP) and [Robinson'65] resolution

procedure in propositional calculus. In resolution procedure, the search for the empty resolvent

is heavily relied on which clauses are selected and in DPP, the resolving (biform) variables play

a more important role in selecting the clauses. In the other extreme, Tison's method places the

control solely on the set of biform variables. This suggests that Tison's method is very similar

to DPP.

Given a DNF Formula 1 = A1 V ... V An, Tison's method produces a list of all prime implicants

of F.

Tison 's Method:

Step 1.0 Initially, let L be the list (A1, ... ,An)• Throughout the computation, L is a list of

implicants of 1 called the implicant list. At the completion of the computation, L is the

list of all prime implicants of 1.

Step 2.0 For each biform variable :z: in (A1, ... An) perform Step 2.1 and 2.2.

Step 2.1 For every pair of clauses A.,A; E L, add to L the consensus of A.,A; with

respect to :z: if such a consensus exists.

Step 2.2 Delete from Lall clauses Q such that there is a Q' in Land Q' covers Q.

Given the list (A1, ... ,An) of formula 1, Tison's Method generates all and only the prime

implicants of (A1, ... ,An), The proof can be found in [Loui & Bilardi'82].

4 The Incremental Method

In this section, we shall present the extended Tison's method which generates prime

implicants incrementally. Let II be the set of prime implicants of a formula 1, C be a new clause

and let the set of new implicants P I(IT U { C}) be stored in the set E. The algorithm is similar

to Tison's method with two differences: firstly, the algorithm will only perform consensus with

respect to the set of biform literals that occur in the input clause 0. Secondly, it will only perform

consensus between clauses from E and II but not within the same set E or II.

7

Incremental Prime Implicant /Implicate .Algorithm(IPIA)

Input: A set of prime implicants Il of a formula 1 and a clause C.

Output: The set :Eu Il is the set of prime implicants of Il u {C}.

Step 1.0 Initialize :E = {C}. If C is subsumed by some clause in Il delete C and STOP.

Step 2.0 For each biform variable z occurring in C do

Step 2.1 For each SE :E and PE Il such that S, P have consensus on z do

Step 2.1.1 T = CS(S, P, z)

Step 2.1.2 :E = :E u T.

Step 2.2 Delete any DE :EU Il such that there is a D' E :EU Il that covers D.

Example 4.1

We will demonstrate the algorithm by the following example. Let IT= {tzy,tyz,t:r:z,abc,abc}

of some formula 1 and the input clause C = act. Initially, the set :E contains the input clause C

and there are three biform literals in C namely a, c and t. Step 2.0 selects the first biform literal

a and Step 2.1 selects an element S E :E which is C and an element PE Il which is abc. The

resulting consensus bet of act and abc is stored in the set :E. Figure 1 illustrates this relationship,

the element act is connected to the new consensus bet, with the prime implicant abc attached to

the arc. Hence the labelled node is the element from :E and the labelled arc is the element from

n.

Figure 1.

Since there is no more consensus with repect to the biform literal a, the algorithm proceeds

by selecting the next biform variable c. Again, there is exactly one consensus as illustrated in

figure 2.

8

lit

Figure 2.

The next iteration calls for the consensus on the biform variable t. Notice that there are three

elements from :E that have consensus with respect to the bifrom literal t namely, act, bet and

abt. These elements are the nodes in the tree and hence the algorithm extends the tree in the

following sequence. The first node bet is selected and their consensus are shown in figure 3.

bt

Figure 3.

Next, the second node a1it is selected and the resulting consensus are illustrated by the tree

shown in figure 4.

Figure 4.

Finally, the node act is selected and their corresponding consensus are shown in figure 5.

9

Figure 5.

Notice that there are no subsumptions among them therefore the set Eull after the completion

of the algorithm is the set of all prime implicants of Il u {O}. The detailed execution of the

algorithm for this example is tabulated in appendix A.

This example illustrates that the execution of the incremental algorithm can be represented

by a tree whose root is the clause O, with every arc labelled by a clause in Il and every node

(except the root) labelled by the consensus of its parent and its associated arc label. Such a tree

is called the consensus tree generated from Il U {O} and is denoted by OTree(Il,O).

The biform variables of O can be processed by the Step 2.0 of the incremental algorithm

in any desired order. Thus at Step 2.0, a specific order is selected and the algorithm proceeds

according to this order. We shall call such a selected order the O-variable order. Additionally,

the execution of Step 2.0 with respect to the i-th variable in the chosen O-variable order, i.e. all

the consensus operations with respect to the i-th variable, is called stage i (or i-th stage) while

the sets Ei and ~ denote the sets E and Il at the end of stage i.

5 Correctness Proof

The following results are presented for DNF formulae and implicants only. The same results hold

for CNF formulae and implicates by duality. First we prove the following lemma.ta.

Lemma 1 Let II be a set of prime implicants of a formula 1. Any generalized consensus of a

subset of II is covered by a clause in IT.

Proof: Let P be a generalized consensus of a subset of IT. By theorem 2, Pis an implicant of

Il and therefore, there exists a prime implicant P' of Il that covers P. Since II is a set of prime

implicants therefore P' E IT. D

Lemma 2 Given a aet of prime implicanta 11 = {Pi, ... ,Pn} of a formula 1 and a clauae

C = z1 ••• Xk, The aet of prime implicanta of 11 U { O} can be generated uaing Tiaon's Method by

considering only the bi/ orm literals that occur in C.

Proof: Let v1, .. ,,vm,x1, ... ,xk be all the biform literals that occur in nu {O} such that

each biform literal x,, 1 ::; i ::; k occurs in O and each biform literal v;, 1 ::; j ::; m does not

occur in O. The key observation is that Tison's Method is correct independent of the ordering

in which the biform literals are considered in Step 2.0 (of Tison's Method). Thus if we adopt

the ordering v1, ... , Vm, z1, ... , z k and after the biform literals v1, ... , Vm have been used by Step

2.0 in Tison's Method, there are no new clauses generated nor old ones being deleted. This is

simply because any pair of clauses considered for consensus so far, that is a pair of clauses that

contain biform literal v;, must come from the set 11. Since 11 is a set of prime implicants, their

consensus must be covered by another prime implicant PE 11 by lemma 1. Consequently only

the biform literals z1, ... , z1c that occur in O can contribute to generating new prime implicants

and subsuming old ones. 0

A direct consequence of this lemma is the following corollary.

Corollary 1 Let 11 be a aet of prime implicanta of a formula 1 and C = z1z2 ... Xk a clauae. If

T is a generalized consensus of a subset of 11 U { O} such that .!Q!!!£ of its biform variables do not

occur in C, then T is subsumed either by a clause in ITU { O} or by a generalized consensua of a

subset of ITU {O} all of whose biform variables occur in C.

Proof: Assume that Tison's method has been used as described in lemma 2. The correctness

of Tison's method ensures that at termination there is a clause T' that covers T. But T' is either

a clause of 11 U { O} or it has been generated by a sequence of consensus operations with respect

to the biform variables in O (by lemma 2). In this case T' is a generalized consensus of clauses

in 11 U { O} in which all the biform variables occur in O. D
The previous lemma and corollary justifies Step 2.0 in the incremental algorithm where only

the biform literals z1, ... , Xk can contribute to generating new prime implicants and subsuming

old ones.

Lemma 3 Let C = z1x2 . . . xk be a clause, 11 a set of prime implicants of a formula 1 and

{Pi, ... , Pn} a subset of 11 such that T = GC(P1, ... , Pn, 0) exists. 1/ the inputs to the incre

mental algorithm are 11 and C, then at completion there is a T' in :Ek U IT1c that covers T.

11

Proof: According to corollary 1, we only need to prove the lemma for subsets of II U {O}

whose biform variables are among x1, ... , Xfc. Let P1, ... , Pn, 0 be such a subset and t, 0 S t S k

be the smallest natural number such that all the biform variables of Pi, ... , Pn, 0 are among

x1 , ... , x1• We shall prove by induction on t such that at stage t and subsequent stages, the set

I:, U II, contains a clause that covers T.

If t = 0 then n = O, T = GO(O) = 0 and I:0 = {O}. Hence O in Eo covers T.

Suppose t ~ 1 and the statement is true for any natural number < t. Renumbering the

clauses if necessary, suppose that Xt occurs in P1, ... , Pm, Xt occurs in ~+1, •.. , Pn and neither

x, nor Xt occurs in P m+l, ... , ~, where O $ m $ l $ n - 1. By theorem 1, there exist m', I', Y, Z

such that m < m' $ l' + 1, I' $ I $ n - 1, Y = GO(O, P1, ... ,P,,), Z = GO(Pm,, ... ,Pn) and

T = OS(Y,Z,xt) = (Y - {xt}) U (Z - {rt}).

We want to show that at the end of stage t there is a clause in Et U IIt that covers T. By the

inductive hypothesis the set Et-l U IIt-l at stage t - 1 contains a clause Y' that covers Y and a

clause Z' that covers Z.

1. If Xt ¢ Y' then Y' covers T and similarly if Xt ¢ Z' then Z' covers T.

2. Assume that Xt E Y' and Xt E Z'.

(a) Evidently, Z' simply cannot be in I:t-l, otherwise Z' will be the result of a sequence

of consensus of O and some clauses from II with respect to variables in {xi, ... , Xt-1},

Consequently Xt is in Z'. Since zt is also in Z', this contradicts the fact that Z' is

fundamental.

(b) HY' E I:t-1 and Z' E IIt-1 then at stage t, T' = OS(Y', Z', x,) = Y' -{x,} uZ' -{x,}

in :r:, covers T.

(c) If both Y' and Z' are in IIt-1 then by lemma 1 there is a T' in IIt-1 and obviously in

Ilt that covers OS(Y',Z',xt) which in turn covers T.

Furthermore, since covering is transitive, if T' E Ei U IIi covers T at stage i, then for any

j ~ i, the set E; U II; also contains a clause that covers T. □

In the proof, cases (a), (b) and (c) justify Step 2.1 in the incremental algorithm saying that

we need only to consider consensus of a clause S from I: and another clause P from II. We never

consider the consensus of two clauses from I: and never need to consider two clauses from II.

12

Theorem 3 (Correctness) Let IT be a set of prime implicants of a formula 1 and C = x1 ••• x1c

a clause. After the completion of the incremental algorithm with input 11 and C, the set E1c U 111c

contains all and only the prime implicants of 11 U { C}.

Proof: All. Let P be a prime implicant of 11 U {C}. By theorem 2, P = GO(~) for some

subset ~ of 11 U { C}. IT~ is a subset of 11 alone, then by lemma 1 there is a clause P' E IT that

covers P. Since P' is deleted only when there is another clause in EU IT that covers it, therefore

at termination E1c U l11c contains a clause that covers P simply by the transitivity of covering.

On the other hand, if C E ~ then by lemma 3, E1c U Ilk contains a clause that covers P. In both

cases, since Pis a prime implicant, the only cover for P is itself, consequently PE Ek U l11c,

Only. Let PE E1cUl1k and by theorem 2 and lemma 3, Pis an implicant of IIU{O}. Assume

that P is not a prime implicant hence there is a prime implicant P' that covers P. By the

previous part, P' E E1c U II1c, consequently Pis deleted at Step 2.2 in the incremental algorithm,

therefore P ¢ Ek U l11c, D

6 Complexity Analysis

The present section is devoted to the issues concerning the complexity of the incremental algo

rithm. We concentrate on the worst case time complexity only, which is calculated in terms of

the number of consensus and subsumptions performed.

For the rest of this section we assume that the input to the algorithm consists of the set of

prime implicants IT of a formula 1 and the clause C = x1x2 ••• Xk, where x,, 1 $ i $ k are distinct

literals. Moreover the cardinality of 11 is assumed to be jIIj = n. First we prove the following

lemma.

Lemma 4 Each clause P E II is used in at most one stage of the incremental algorithm.

Proof: Let P E 11 and if P used in more than one stage, P should contain more than one

literal complementary to some x1• We assume that P = x, 1 ••• x,1M where i 1 $ i 2 $ • • • $ i1 and

1 $ i; $ k for 1 $ j $ l, and Mis the monoform of P with respect to 0.

At each stage m, 1 $ m $ k, every clause in E contains at most the literals Xm, Xm+i, ... ,x11,.

P cannot be used at any stage m < i1 simply because it does not have consensus on Xm with

any clause in E, i.e. P contains more than one pair of complementary literals with respect to

13

any clause in :E. Obviously, P also cannot be used at any stage m > ir because there is no

complementary literal. Evidently, P may only be used at stage m = ir. D

The following theorem estimates the complexity of the algorithm.

Theorem 4 Given a set of prime implicants II of a formula 1 and a clause C, the incremental

algorithm requires at most O((j)2k) operations {consensus and subsumptions), where n = IIII and

k is the number of biform variables in C.

Proof: We assume that every literal z1, ... , z11: in O is a biform literal. Let II,, 1 ~ i ~ k,

be the set of the clauses of II used at the stage i and III,I = n,. Firstly, we will calculate the

maximum number of consensus operations required. If m,, 1 ~ i ~ k, denotes the maximum

number of clauses in :E, at the end of the stage i then

and

for 2 ~ i ~ k. Consequently, at most O(n1n2, • • n11:) new clauses have been generated at the

end of k-th stage. Since each clause is generated by one consensus operation, the upper bound

O(n1n2 • • • nk) also represents the maximum number of consensus operations required by the

algorithm. Furthermore, by assuming that every clause in II is used at some stage, then by

lemma 4 we have

or with equal distributuion,

n · = ~ for 1 < i < k ' k' - -

AB a result, the number of the consensus operations, as well as the number of clauses in :E, is at

most O{(I)").

The number of required subsumption operations can be easily estimated by observing that

every clause in :E should be checked for subsumption against every other clause in :E, i.e. 0 ((I)2"),

as well as against every clause in II, i.e. O{n(I)"). Consequently, the number of subsumptions

performed is at most

14

ff log n > k~i log k, a relation that is true in most applications, then the overall time complexity

of the algorithm is simply O((t)2k). D

The last result shows that the algorithm is exponential in time. Many optimizations are

applicable here (more on section 7) but they cannot reduce the complexity class of the algorithm

mainly because the time complexity of the problem itself is exponential. More precisely, given a

set of prime implicants II of a formula 1 and a clause O, the number of the prime implicants of

II U { O} is potentially exponential on the size of II [Chandra & Markowsky'78], as illustrated in

the following example.

k

Example 6.1 Let C = a1 ... ak and II= U II,. For each i, 1 ~ i ~ k, II,= {a,s11 1 ••• ,a,s,m}
i=l

and s,;, 1 ~ i ~ k, 1 ~ j ~ m, are new pairwise distinct variables, different from any a,,
1 ~ i ~ k.

Evidently, II is a set of prime implicants since neither consensus nor subsumption exists among

any pair of its clauses. Moreover, the only subsets of II U { O} that have generalized consensus

are the subsets { P1 , ... , Pk, C} of size greater than one that contain O and each P, E IT,. Hence

every such consensus G = GC(Pi, ... , Pk, C) neither subsumes nor is subsumed by any other

clause in II U { O} and other existing consensus simply because the monoform of G comprises

of new pairwise distinct variables that are not compatible for subsumption. Consequently, G

constitutes a new prime implicant of II U { C} and the total number of new prime implicants of

II U {O} is (m + l)k or in O-notation, if n = mk = IIII, then we obtain O((-Vk).

7 Subsumption and Optimization

In section 5, theorem 3 indicates that subsumption is a necessary operation in order to guarantee

the correctness of the incremental algorithm. Unfortunately, performing subsumptions for a set

of clauses can be quite expensive. Natually one would question whether the total number of

subsumptions can be reduced and still preserve the correctness. In this section we will explore

some optimizations of subsumption and reveal some interesting properties of subsumptions in

the incremental algorithm.

The alert reader will notice that during the stages of the incremental algorithm, each SE~

can potentially have consensus with a set of P E II with respect to the same biform literal. As

seen in section 4, this feature can be illustrated as a subtree of a consensus tree (CTree) in which

15

the parent node is labelled with the clause S, and the set of branches is labelled with each prime

implicant I'; respectively. Furthermore, their corresponding consensus nodes S; are attached at

the end of the arcs as brothers.

One property of subsumption in this subtree is that whenever a consensus S; covers the

parent node S, this consensus Si will cover all of its brothers 81, ... , S;-1, 8;+1, ... , Sn, This

local property does save some consensus operations in the average case because as soon as S is

subsumed by some Si, no further consensus need be performed for S. Also note that this property

is not a necessary condition for the incremental algorithm since Step 2.2 will eventually detect

the subsumption. Assuming E and IT as defined in the previous section, we have the following

lemmata.

Lemma 5 Given an SEE and Pi, ... ,Pn E IT. Let S1, ... , Sn be their corresponding consensus

where S; = CS(S, P;, x), 1 ~ i ~ n. If S; covers S then S; covers Si, ... ,Si-1, 8;+1, ... , Sn,

Proof: Let S = xM, and Pi = xM1, ... , Pn = xMn where x and x are the biform literals and

M,, M1, ... , Mn are all monoforms. Thus their corresponding consensus are 81 = M,M1, ... , S; =
M,M;, ... ,Sn = M,Mn, Assume that S; covers S hence M,M; ~ M, or simply S; = M,.

Therefore S; covers M,M1, ... ,M,M;-1, M,Mi+l, ... ,M,Mn, D

Example 7.1 Let S = xtlvw and let P1 = xvw, P2 = xyw and P3 = xupw. Their corresponding

consensus are shown in the following tree. Notice that the consensus tlvw covers the parent xtlvw

and subsequently, covers tlvyw and tlvpw.

Figure 6.

A similar observation can be made with regard to subsumption across different S; that have

consensus with the same prime implicant P within the same stage. Given a set of parents

81, ... , Sn E E and a prime implicant P E IT. Their corresponding consensus are Sf, ... , S~

where each s: = CS(S;, P,x). If there exists an Si that covers P, then this Si covers S{, ... ,s;_1

, S} +1, ... , S~. Again, this local property says that if the prime implicant P E IT is subsumed,

16

then P can be deleted immediately. Since the same prime implicant P potentially can have

consensus with many Bi within the same stage, the deletion of P as soon as it is subsumed will

on average save some consensus operations. This property is also not a necessary condition for

the incremental method because Step 2.2 will eventually delete P as well as S/, i E {1, ... ,j -

1,j+l, ... ,n}.

Lemma 6 Given S1 , ... , Sn E I:: and a prime implicant P E Il. Let S{, ... , S~ be their cor

responding consensus where Sf = OS(Si, P, x), 1 ~ i ~ n. If S1 covers P then S} covers

S{, ... ,SJ_1, 8}+1, ... ,S~.

Proof: Let P = xMp and S1 = xM1, ... ,Sn = xMn where x and x are biform literals

and Mp, M1, ... , Mn are all monoforms. Their corresponding consensus are S{ = MpM1, ... ,

s1 = MpM;, .. . , S~ = MpMn, Assume that s1 covers P hence MpM; ~ Mp or simply s1 = Mp,

Therefore S} covers MpM1, ... , MpM;_1, MpM;+1, ... ,S~ = MpMn, D

Example 7.2 Let P = xab and let S1 = xa, S2 = xu and Ss = xw. Their corresponding con

sensus are shown in the following trees. Notice that the consensus ab covers the prime implicant

xab and subsequently, covers abu and abw.

Figure 7.

After observing these local properties of subsumption, naturally one would question whether

there exists some global properties of subsumption that allow some reduction in the number of

subsumptions. Ideally, one would be willing to sacrifice a constant amount of time to preprocess

the set of clauses such that the expensive subsumptions of Step 2.2 in the incremental algorithm

could be replaced by lemma 5 and 6 - hereafter called local subsumption check - and still

preserve the correctness of the algorithm.

For this reason, we now examine the prospect of precomputing an ordering of the biform

literals in O such that it is sufficient to replace Step 2.2 in the incremental algorithm by the

local subsumption check. Unfortunately, the following counter-example shows that the local

17

subsumption check is insufficient. That is to say, no matter what the ordering of the biform

literals, there exists subsumptions not detected solely by lemma 5 and 6.

Example 7.3 Let O = acd and II= {axy,ap,c:z:,cpq}.

The biform variables of C are a and c. Figure 8 shows the tree that is generated by the

algorithm when the ordering a, c is followed. The reader can notice that the clause dpq in one

subtree subsumes adpq in the other subtree and neither lemma 5 nor lemma 6 detects this.

cd

Figure 8: Example 7.3 with ordering a, c.

On the other hand, if the ordering c, a is used, the new tree shown in figure 9 also exhibits

a subsumption. across subtrees, i.e. the clause dxy in one subtree subsumes the clause cd::r:y in

another subtree and similarly, no local subsumption check detects this either.

ad

cdp

Figure 9: Example 7.3 with ordering c, a.

The above counter-example indicates that in general, no C-variable order will satisfy our

goal in replacing Step 2.2 by the local subsumption check. Nevertheless there are cases in which

certain orderings are preferable over the others. Recall that the input to the algorithm consists

of a set of prime implicants II and a clause O.

18

Initially, suppose there is a clause PE II such that 0S(0,P,x) = 01 and 01 subsumes 0 for

some variable x that occurs in O. Let x be the first biform variable in the ordering according

to step 2.0. By lemma 5, the whole subtree are subsumed and 01 becomes the new root of the

consensus tree and the stage that corresponds to x terminates immediately.

This process which can be repeated as long as the above condition holds for the new root is

called root optimization. When a stage is reached such that no further root optimization can be

applied, the incremental algorithm is resumed with the new root as input clause and the remain

ing biform variables with respect to O. While each root optimization is relatively inexpensive

(O(log n) where n = !III with a suitable indexing scheme), it may account for a significant over

all saving. More precisely, if O contains k biform variables and m root optimizations can be

performed, where m :S k, the complexity of the algorithm is reduced to O((I)2(k-m)).

Finally, there is the case where subsumption occurs among clauses introduced at different

stages. We claim that if the algorithm performs local subsumption checking, the only subsumption

that might exist (and must be examined) at the end of each stage are subsumptions among the

new clauses generated at that stage. In other words, if local subsumption has been checked,

there is no subsumption among the clauses that have been generated at different stages. The

optimization the above claim suggests is called inter-stage optimization. We feel that it will serve

the reader better if we first present the optimized algorithm and give the proof of the above claim

afterwards. The optimized algorithm is similar to the original one but, it incorporates the root

optimization, the local subsumption check and the inter-stage optimization.

Optimized IPIA

Input: A set of prime implicants II of a formula 1 and a clause 0.

Output: The set :E U II is the set of prime implicants of II u { O}.

Step 1.0 Root optimization.

Step 1.1 Delete any DE II U {O} such that there is a D' E II U {O} that subsumes D.

Step 1.2 If O has been deleted, STOP.

Step 1.3 If there is a clause PE II such that 0S(0, P, x) = 0 1 for some biform variable z

in 0 and 0 1 subsumes 0 then set 0 = 0 1 and repeat Step 1.0.

Step 2.0 Set E = {O}.

19

Step 3.0 For each biform variable x in C do

Step 3.1 Set "£_Children= 0.

Step 3.2 For each clause S in E do

Step 3.2.1 Lemma 5: If CS(S, P, x) = S' for some P E II and S' subsumes S then

delete S from I: and set S_Children = {S'}

else set S_Children = {CS(S,P,x) IP E II}.

Step 3.2.2 Lemma 6: Delete any D E S_Children U II such that there is a D' E

S_Children u II that subsumes D.

Step 3.2.3 Add the remaining S_Children to "£_Children.

Step 3.3 Delete any DE !:_Children such that there is a D' E !:_Children that subsumes

D (subsumption among children of the same parent need not be checked).

Step 3.4 Add the remainder of !:_Children to E.

Step 1.0 in the optimized algorithm corresponds to the root optimization discussed in this

section. Steps 3.2.1 and 3.2.2 perform the local subsumption check while Step 3.3 takes into

account the inter-stage optimization and its correctness is assured by the following lemma.

Lemma 7 Whenever control reaches the end of step 9. 9 of the optimized algorithm, no subsump

tion relation ezists between any two clauses in "£_Children U I:.

Proof: We assume that at Step 2.0, C = x1z2 ... z1e, for each Xi, 1 $ i $ k, is a biform literal

and the C-variable order in which the biform variables are considered at Step 3.0 is x1, z2, ... ,x1:,

Again by stage i we mean the execution of Step 3.0 with respect to Zi,

We will now prove the lemma by induction on stage i, 1 $ i $ k. For i = 1, all the clauses

in !:_Children come from the same parent. Therefore, at Step 3.2 all the subsumptions among

them and their parent have been eliminated.

Assume the lemma is true for any stage < i. Suppose at the end of the i-th stage there exist

two clauses A and B in !:_Children U I: such that either A subsumes B or B subsumes A. A

and B cannot both be in E since this contradicts the inductive hypothesis. Furthermore, neither

A and B can both be in !:_Children because if this were the case, one of them would have been

deleted at Step 3.3.

20

Assume, without loss of generality, that A E E_Ohildren and B E E. In this case, B =
x,xi+1 ... x1cM2 and there exist A' E E and P E IT such that A' = x,x,+1 ... x1cM1, P = x, F Ms

and A= OS(A',P,x,) or A= xi+1xi+2 ... x1cM1Ms; where, F ~ {x,+1, .. ,,x1c} and M;n

{x,, x,+1, ... , x1c} = 0 for j = 1, 2, 3.

Note that at stage i any clause in E contains at least x,x,+1, .. XJc. Consequently, B can not

subsume A since x, EB but x, ¢ A. On the other hand, if A subsumes B then M1Ms ~ M2,

which implies that M1 ~ M 2 and A' subsumes B. If A' and B are different clauses, then this

contradicts the inductive hypothesis; otherwise, B is eliminated at Step 3.2.1. D

Theorem 5 (Correctness of the Optimized IPIA) Gi1Jen a set of prime implicants IT of a

formula 1 and a clause O, After the completion of the Optimized !PIA, the set E1c U IT1: contains

all and only the prime implicants of IT U { O}.

Proof: Theorem 5 is a direct consequence of theorem 3, lemma 5, 6 and 7. D

The complexity of the optimized algorithm is O((1)2k) where n = IITI and k is the number

of the biform variables of O that survive the root optimization. Obviously, the new algorithm

is in the same complexity class with its predecessor although its average complexity is expected

to be lower than the average complexity of the previous algorithm. The explosion in complexity

comes from the fact that at each stage, the same clause in IT is used with many clauses in E to

generate consensus which may get deleted later at Step 3.3.

It would be of great advantage if there were a way to detect in advance which consensus

are bound to be deleted. Alas, such a test will inevitably have the same complexity as the

generation of the consensus and subsumption check. Consider two clauses S1 and S2 in E at

stage i such that S1 = x,x,+1 ... x1cM1, S2 = x,x,+1 ... x1cM2 and have consensus with the clause

P = x, F Ms, where F, M1, M2, Ms are as in the proof of lemma 7. In this case OS (S1, P, x,)

subsumes OS(S2, P, x,) iff M1Ms ~ M2Ms. Since M1 ~ M2 and M2 ~ Mi the subsumption

relation among the two consensus cannot be detected by considering S1 and S2 alone. A similar

argument can be made for the case in which different clauses in IT are used. AB a concluding

remark, we would like to point out that as a consequence of the above observation, there is not

much hope for further optimization of the incremental algorithm.

21

8 Clause Management System(CMS)

In this section, we will outline how the incremental method is used in the Clause Management

System environment. Throughout this section, a formula will denote a CNF formula and a clause

will denote a disjunctive clause. In [Reiter & De Kleer'87], a problem solving environment consists

of a domain dependent Reasoner and a domain independent Clause Management System(CMS).

The Reasoner occasionally transmits a clause (it may be a First Order formula) that describes

some of its activities. The CMS records this clause as a propositional clause (different atomic

formulae correspond to different propositional variables) if it is fundamental, i.e. not tautologous;

otherwise the CMS discards it. In addition, the Reasoner can query the CMS whenever is

required. The query consists of a propositional clause G and the CMS must respond with every

minimal clause S such that S V G is a fundamental logical consequence of the clauses so far

transmitted to the CMS by the Reasoner, i.e. the CMS database. Such a clause Sis called the

minimal fundamental support for G with respect to the CMS database.

There are many applications using the Reasoner-CMS architecture. For example, [Reiter

& De Kleer'87] present how abductive reasoning can be accomplished in the CMS paradigm

and how searching among alternatives in the search space can be facilitated by the CMS . In

addition, [De Kleer & Williams'87] demonstrate the use of Reasoner-ATMS (a special kind of

CMS) architecture in diagnositic reasoning.

We will illustrate the Reasoner-CMS cooperation by an example taken from [Reiter & De

Kleer'87]. Consider a reasoning system with knowledge base KB and assume that the Reasoner

in its attempt to prove g has discovered that

KB I= p/\q/\r-+g

KB I= -ip /\ q -+ g

KB I= -iq I\ r -+ g.

Thus, the Reasoner transmits to the CMS the clauses pVqVrV g, pVqV g and qVrV g. Suppose

now that the Reasoner is interested in finding the minimal explanation for g. By quering the

CMS with g it obtains the minimal support for g namely {p V q, F}. This in turn implies that a

minimal explanation for g is either p I\ q or r since KB I= p I\ q -+ g and KB I= r -+ g.

Definition 5 Let :E be a set of clauses and G a single clause. A clause S is a fundamental support

{ or support) for G with respect to :E if

22

9. S U G is fundamental.

A clause S is a minimal fundamental support (or minimal support) for G with respect to E if S

is a support for G and there is no other support S 1 for G such that p S' -+ S.

Note that the definitions of support and minimal support differ from the corresponding defini

tons given in [Reiter & De Kleer'87] in two respects. Firstly, we insist that a support clause S

for G must have a.n additional property namely, SU G is fundamental. Secondly, the minimality

is defined with respect to a different ordering among the clauses. According to [Reiter & De

Kleer'87], if A and B a.re clauses, A ~ B iff every literal in A is also in B. According to our

definition, A ~ B iff FA-+ B. Consequently given a clause G, any trival support S for G, i.e.

SU G is a tautology, is not considered as a minimal support. The set of trivial supports for G,

i.e. all tautologies that include G, can be easily generated by the Reasoner, therefore the OMS

database should not include the rather large set of trivial supports.

It can be shown that the set of minima.I supports for a query G can be computed trivially

from the set of prime implicates of the OMS data.base [Reiter & De Kleer'87] [Tsiknis & Kean '88].

More formally, if E denotes the OMS database and G is the query clause, then the set of support

for G, A(E, G) is defined as

A(E, G) = {P - G I PEP I(E) and P n G =/:- 0 and PUG is fundamental},

and the set of minimal support for G is defined as

r(E,G) ={SI s E A(E,G) and no S 1 E A(E,G) covers S}.

Since the set P I(E) and E are logically equivalent, the OMS may choose to represent the set

E as it is, the Simple-DB approach, or with a little more effort and memory compute and retain

the set P I(E) on-the-fly, the PI-DB approach.

Under the Simple-DB approach, the OMS stores the set of clauses transmitted by the Reasoner

in its database without any alteration. Updating the OMS 's database Eis trivially simple, that

is E = EU G. Nevertheless the query processing is extremely expensive merely because the set

PI(E), A and r must be computed for every different query G. Note that computing the set

23

P I(E) is most expensive. Fortunately once the set P I(:E) is available, the set ~ and r can be

computed very efficiently by using special indexing and ordering schemes on P I(E).

Naturally, the PI-DB approach is aimed at minimizing the expensive computation of the set

PI(E) by computing it incrementally. Thus under the PI-DB approach, the CMS stores the set

of prime implicates of the clauses it has received so far, in contrast with the Simple-DB approach.

When a new clause L is transmitted by the Reasoner to the CMS , the CMS computes and stores

PI(E UL) using the incremental method described in this paper. AB a consequence, the query

processing for minimal support can be achieved very efficiently while updating the CMS database

is also relatively efficient using the incremental algorithm.

In the actual modelling of a Reasoner-CMS architecture, one must be cautious about the

tradeoff between the Simple-DB and PI-DB approaches. If the CMS task is to perform large num

bers of updates, then the Simple-DB approach is superior simply because updates in Simple-DB

approach take constant time. Conversely, if the CMS task is heavily related to query processing,

that is computing minimal support, then the Simple-DB approach will require exponential time

to compute the set of P I(E) and also exponential space to store the set of P I(E) in order to

allow the computation of the minimal set of support. In contrast, the PI-DB approach requires

only linear time and space in query processing with respect to the size of the Pl-DB database.

It is important to note that the size of the Pl-DB database can be exponential, that is the

number of prime implicates is potentially exponential (Chandra & Markowsky'78]. Consequently,

the PI-DB approach potentially needs exponential space to store the prime implicates, but this

is also the case for the Simple-DB approach each time a query is processed. The difference is

simply that the Simple-DB does not retain the exponential space after it is used but requires

heavy recomputation whenever it is needed and conversely, the PI-DB approach uses exponential

space but recomputation is kept to a minimum.

In a future paper, we study the full extent of the Reasoner-CMS architecture and show that all

the theorems in (Reiter & De Kleer'87] hold modulo fundamentality. Additionally, we argue that

the PI-DB approach is more suitable for CMS in both question-answering and explanation-based

problem solving environments (Tsiknis & Kean'88].

24

9 Conclusions

We have presented an incremental algorithm for generating prime implicants/implicates of a set

of clauses. We have prove the correctness of this algorithm and analyzed its complexity. Although

the incremental algorithm can be used to generate the prime implicants/implicates of a given

set of clauses by incrementally considering one clause at a time, nevertheless it is best suited for

situation where new clauses are frequently added over the period in consideration. Moreover,

this algorithm, in contrast with previous algorithms for the minimization of Boolean functions

domain, does not rely on a canonical form representation of the clauses. This latter feature makes

it attractive for many applications in Artificial Intelligence like Truth Maintenance Systems, etc.

Subsequently, we have discussed some optimizations for the original algorithm and presented

the optimized IPIA. Unfortunately, the worst case complexity of the new algorithm is identical

to the old one's, while its average complexity is expected to be lower. This was expected mainly

because the problem of generating prime implicants itself is intractable.

In the last section we briefly explained how a Clause Management System {OMS) can be built

by employing the incremental algorithm. This is just one of several applications that can exploit

the algorithm. Other possible applications using the incremental algorithm are incremental the

orem proving, generalized dignostic reasoning (or hypothesis generation) and a general system

for nonmonotonic reasoning. In [Tsiknis & Kean'88] we elaborate more on the OMS as well as on

some of its applications. Finally, we believe that for nonmonotonic reasoning system, a similar

incremental method for detecting and resolving inconsistency is vitally important and we include

this among the issues for future research.

Acknowledgement

We are indebted to Michael Loui for introducing Tison 's Method to us and Ashok Chandra

for pointing out the complexity on the number of prime implicants. We are also very grateful to

Alan Mackworth, Wolfgang Bibel and Paul Gilmore for their comments and criticism. Finally,

Jane Mulligan for her courageous effort in proof reading the paper.

25

References

[Blswas'75] Nripendra N. Biswas, "Introduction to Logic and Switching Theory", Gordon and
Breach Science Publishers, 1975.

[Bartee, Lebow & Reed'62] Thomas C. Bartee, Irwin L. Lebow and Irving S. Reed, "Theory
and Design of Digital Machines", McGraw-Hill Book Company, 1962.

[Chandra & Markowsky'78) Ashok K. Chandra and George Markowsky, "On the Number of
Prime Implicants", Discrete Mathematics 24, 1978, pp 7-11.

[Davis & Putnam'60) Martin Davis and Hilary Putnam, "A Computing Procedure for Quan
tification Theory", Journal of ACM, Volume 7, 1960, pp 201-215.

[De Kleer'86) Johan De Kleer, "An Assumption-based TMS", Artificial Intelligence 28 (1986),
pp 127-162.

[De Kleer & Willlams'87) Johan De Kleer and B.C. Williams, "Diagnosing Multiple Faults",
Artificial Intelligence 32 (1987), pp 97-130.

[Hwa'74) H.R. Hwa, "A Method for Generating Prime Implicants of a Boolean Expression",
IEEE Transactions on Computers, June 1974, pp 637-641.

[Hwang et all'85) Hee-Yeung Hwang, Dong-Sub Chao and Michael E. Valdez, "A New Tech
nique for the Minimization of Switching Functions", Conference Proceedings, IEEE South
eastcon'85, 1985, pp 299-304.

[Kohavi'78) Zvi Kohavi, "Switching and Finite Automata Theory", Second Edition, McGraw
Hill Book Company, 1978.

[Loui & Bilardi'82] Michael C. Loui and Gianfranco Bilardi, "The Correctness of Tison's
Method for Generating Prime Implicants", Report R-952, UILU-ENG 82-2218, Coordi
nated Science Laboratory, University of Illinois at Urbana-Champaign, Febuary 1982.

[Reiter & De Kleer'87) Raymond Reiter and Johan De Kleer, "Foundations of Assumption
Based Truth Maintenance Systems: Preliminary Report", Proceeding of AAAl-87, Seatle,
Washington, 1987, pp 183-188.

[Rhyne et all'7'T) V. Thomas Rhyne, Philip S. Noe, Melvin H. McKinney and Udo W. Pooch,
"A New Technique for the Fast Minimization of Switching Functions", IEEE Transactions
on Computers, Vol. C-26, No. 8, August 1977, pp 757-764.

[Robinson'65) J.A. Robinson, "A Machine-Oriented Logic Based on the Resolution Principle",
JACM 12, 1965, pp 23-41.

[Slagle, Chang & Lee'69] J.R. Slagle, C.L. Chang and R.C.T. Lee, "Completeness Theorems
for Semantics Resolution in Consequence Finding", Proceeding of IJCAl-69, Washington,
D.C., 1969, pp 281-285.

[Slagle, Chang & Lee'70) J.R. Slagle, C.L. Chang and R.C.T. Lee, "A New Algorithm for
Generating Prime Implicants", IEEE Transactions on Computers, Volume C-19, Number
4, April 1970.

26

[Tlson'67) P. Tison, "Generalized Consensus Theory and Application to the Minimization of
Boolean Functions", IEEE Transaction on Electronic Computers, EC-16, 4, August 1967,
pp 446-456.

[Tsiknis & Kean'88) George Tsiknis and Alex Kean, "Clause Management Systems(CMS)",
in preparation, 1988.

[Quintus Prolog] Quintus Prolog User's Guide Version 1.0, March 1987.

27

10 Appendix A

Incremental Prime Implicant /Implicate Algorithm(IPIA)

Input: A set of prime implicants 11 of a formula 1 and a clause C.

Output: The set EU 11 is the set of prime implicants of 11 U {C}.

Step 1.0 Initialize E = {C}. If O is subsumed by some clause in 11 delete O and STOP.

Step 2.0 For ea.ch biform variable :,; occurring in O do

Step 2.1 For each SEE and PE 11 such that S, P have consensus on:,; do

Step 2.1.1 T = OS(S, P, x)
Step 2.1.2 E =Eu T.

Step 2.2 Delete any DEE U 11 such that there is a D' EE U 11 that covers D.

Example 4.1: Let C = act and let 11 = { txy, lyz, txz, abc, abc} and the output of the
algorithm is

Eu 11 = { acu,acyz,aczy,abxz,
abyz,aozy, bcxE,bcyz,
bc:tfl ,abt ,bct,act,
l:ty, t'f/E, ln, abc, abc}.

II I Step I Biform I s I p I CS I E I 11 II
0 1.0 - - - - act txy, tyz, txz, abc, abc
1 2.0 a - - - act txy, tyz, lxz, abc, abc
2 2.1 a act abc - act txy, tyz, tu, abc, abc
3 2.1.1 8, act abc bet act txy, tyz, lxz, abc, abc
4 2.1.2 a act abc bet bct,act txy, ty:, tu, a1ic, 7Ibc
5 2.2 8, act abc bet bct,act lxy, tyz, lxz, abc, abc

II I Step I Biform I s I p I CS I E I 11
6 2.0 c - - - bct,act txy,tyz,txz,abc,abc
7 2.1 c act abc - bct,act txy, tyz, txz, abc, abc
8 2.1.1 c act abc abt bct,act txy, tyz, txz, abc, abc
9 2.1.2 c act abc abt abt,bct,act txy, tyz, tu, abc, abc

10 2.2 c act abc abt abt,bct,act lxy,tyz,txz,abc,abc

28

II

II Step I Biform I s I p I CS I E I II II
11 2.0 t - - - abt,bct,act txy, lyz, txz, abc, abe
12 2.1 t bet txy - abt,bct,act txy,tyz,txz,abc,abc
13 2.1.1 t bet txy bcxy abt,bct,aet lxy,tyl,txz,abc,abc
14 2.1.2 t bet txy bcxy bcxy ,abt ,bet ,act tx'y,tyz,lxz,abc,abc
15 2.2 t bet txy bcx'fi bcxy,abt,bct,act txy, tyl, tu, abc, abc

Step Biform s p cs E II
16 2.1 t bet tyz - bcxy ,abt ,bet ,act txy, lyz, tu, abc, abc
17 2.1.1 t bet tyz bcyz bcxy,abt,bct,act txy,tyz,txz,abc,abc
18 2.1.2 t bet tyz bcyz bcyz,bcxy,abt,bct txy, tyz, tu, abc, abc

act
19 2.2 t bet t'fjz bcyz bcyz ,bcx'f} ,abt ,bet txy,tyz,txz,abc,abe

act

II Step I Biform I s I p I CS I E In II
20 2.1 t bet txl - bcfll ,bcx'fl ,abt ,bet lxy, tyl, t-n, abc, abc

act
21 2.1.1 t bet txz bcxz bcyz ,bcxy ,abt,bct txy,tyz,txz,abc,abc

act
22 2.1.2 t bet lxz bcx? bcfz,bcyz ,bexy,abt tzy, tyz, lxz, abc, abc

bct,act
23 2.2 t bet txi bcxi bcxz ,bcyz ,bcxy ,abt txy, tyz, tu, abc, abc

bct,act

29

II I Step I Biform I s I p I CS I E I II II
24 2.1 t abt fay - bcU,bcfll,bcxy,abt txy, tyl, tu, abc, c!bc

bct,act
25 2.1.1 t abt tx'fl alixy bcU,bcfll,bcxy,aot fay, tyl, tu, abc, abc

bct,act
26 2.1.2 t abt fay abxy abxy,bcxz ,bcyz ,bcxy txy, tyl, tu, abc, abc

abt,bct,act
27 2.2 t abt txy abxy abxy,bczz,bcyz,bcxy tzy, tyl, tu, abc, abc

a"6t,bct,act

II I Step I Biform I s I p I CS I E I II II
28 2.1 t abt tyz - abzy ,bc:d ,bcyz ,bcx'y tx'y, tyz, txz, abc, abc

abt,bct,act
29 2.1.1 t abt tyz abyz abx'y,bcxz ,bcyz ,bcx"fj fay, tyz, txz, abc, abc

abt,bct,act
30 2.1.2 t abt tTfi abyz abyl,abxy,bcfi,bcf/l tzy, tyl, tu, abc, 7ibc

bcxy,abt,bct,act
31 2.2 t a6t t"fjz abijl abyl ,abxy ,bcu ,bcfll lxy, tyl, tu, abc, ?Ibc

bcxy,a"6t ,bet ,act

II Step I Biform I s I p I CS I E I II II
32 2.1 t abt txz - abyz,abxy,bcxz,bcyz l:z:y, tyz, txz, abc, abc

bcxy ,abt ,bet ,act
33 2.1.1 t abt txz abxz abyz,abx'y,bcu,bcyz txy, tyz, lxz, abc, abc

bcxjj,abt,bct,act
34 2.1.2 t abt tff ab:n abn,abyl,abxy,bcn tx'fl, tyl, tzl, abc, 'ab"l!

bcyz,bcx"fj,abt,bct
act

35 2.2 t abt lxz abxz abxz,abyz,abx'fj,bc:z:z tx'fj, tyz, t:z:z, abc, abc
bcyz ,bcx"fj ,abt ,bet
act

30

II I Step I Biform I s I p I CS I E I 11 II
36 2.1 t act fay - abxz ,abyz,abxy,bcxz txll, tyl, tn, abc, abc

bcyz ,bcxy,abt,bct
act

37 2.1.1 t act fay acxy abxz ,abyz ,abxy ,bcxz lxy, tyz, txz, abc, abc
bcyz,bcxy,abt,bct
act

38 2.1.2 t act txy acxy acxy,abxz,abyz,abxy txy, tyz, lxz, abc, abc
bcxz ,bcyz ,bcxy ,abt
bct,act

39 2.2 t act txy acxy acxy,abxz,abyz ,abxy txy, tyz, lxz, abc, abc
bcxz ,bc'flZ ,bcxll ,a];t
bct,act

II Step I Biform I s I p I CS I E In II
40 2.1 t act tyz - acxy,abxz ,abyz ,abxy txy, tyz, txz, abc, abc

bcxz ,bcyz ,bcxy,abt
bct,act

41 2.1.1 t act tyz acyz acxy,abxz,abyz ,abxy lxy,lyz,txz,abc,abc
bcxz,bcyz,bcxy,abt
bct,act

42 2.1.2 t act tyz acyz acyz ,acxy,abxz ,abyz txy,tyz,lxz,abc,abc
abxy,bcxz ,bcyz ,bcxy
abt ,bet ,act

43 2.2 t act tyz acyz acyz ,acxy ,abxz ,abyz lxy, tyz, lxz, abc, abc
abxy,bcxz ,b"cfjz,bcxy
a];t,bct,act

II Step I Biform I s I p I CS I E I 11 II
44 2.1 t act txz - acyz,acxy,abxz,abyz txy,tyz,txz,abc,abc

abxy,bcxz ,bcyz ,bcxy
abt,bct,act

45 2.1.1 t act txz acxz acyz ,acxy,abxz,abyz txy, tyz, txz, abc, abc
abxy,bcxz ,bcyz,bcxy
abt,bct,act

46 2.1.2 t act txz acxz acfi ,acyz ,acxy ,abxz txy, tyz, txz, abc, abc
abyz,abx"fi,bcxz,bcyz
bcxy,abt,bct,act

47 2.2 t act txz acxz acxz ,acyz ,acxy ,abxz txy,tyz,lxz,abc,abc
abyz ,abxy,bcxz ,bcyz
bcxy,abt,bct,act

31

11 Appendix B

/•~~=--:ma.---·•~•••----·n:n::::zrmnr-==s••m•rm•••--------• /
!•-
!•- Program:
/•• Author :
/•a Date
/•• Routine:
!•
!•-System:
I•·

Incremental Prime Implicant Algorithm (IPIA).
Alex Kean and George Tsiknis
March 1988
ipia(Goal, PI, NewPI).

Quintus Prolog Release 2.2 (Sun-3, Unix 3.6)
Copyright (C) 1987, Quintus Computer Systems, Inc.

·- compile(library(basics)).
·- compile(library(lists)).
·- compile(library(sets)).

11.1 Consensus

·•I
• •/
• •/
=•/
=•I
=•I /
-•I

/•---=a.a::z=-=••-•----•mar..-u:zr-.--•--~~---=....,=====-rm..-:zrren·n:::rr:z"-===-*/
/•• CONSENSUS program:
/• .. css(Clause1, Clause2, Consensus, Biform).
!•
!•
!•
!•-

- The consensus of 11 Clauses1" and
11 Clauae2" with respect the the biform
literal 11Biform11 is 11 Consensus 11 •

••/
••I
""'*I ... /
••/
••/

/ • ~-=:nr::nn:=::cc~--~ca:=-=....,.=•--:ma•a=rm•maa:::s.m-m:sr::n:n:n:aia:a•~•/

polar(+X,-X). polar(-X,+X).

complement(-Literal,Clause) ·- select(+Literal,Clause,_).
complement(+Literal,Clause) ·- select(-Literal,Clause,_).

resolve(L1,L2,Resolvent,X) ·-
polar(X,Y),
select(X,L1,IntL1),
select(Y,L2,IntL2),
union(IntL1,IntL2,Resolvent).

fundamental(P) :
select(C,P,IntP),
complement(C,IntP), I, fail.

fundamental(_) .

css(C1,C2,P,X) :
resolve(C1,C2,P,X),
fundamental(P).

32

11.2 Subsumption

/*= SUBSUMPTION program:
I*• eubeumption(Set_of_Claueee, New_Set).
I*·

eubsumption([], []).
subaumption([X],[X]).
subsumption(List,NewList) ·-

select(C1,List,List1),
select(C2,List1,List2),
subsume(C1,C2,C),
subsumption([CIList2],NewList).

subsumption(List,List).

subsume(C1,C2,C1) ·- subset(C1,C2).
subsume(C1,C2,C2) ·- aubset(C2,C1).

11.3 Main Algorithm

/•w•rm•--m• -••---•------a;rm•••m••--•m:a'am•rm--•~--·•m*/
/*• Incremental Method: ipia(Goal, PI, NewPI). •*/
I*• - Goal is a fundamental clause. ••/
I*= - PI is a set of prime implicants. ••/
I*• - NewPI is the set of prime implicants of ••/
/•• PI U {Goal}. • •/
/•m••~--------m•••m•m•a.rm:m:m-.:-=-•••--••m•·••w•• •• /

for_each_pi(Biform, Goal, Sigma, [ResolventlNewRes])
select(PI, Sigma, IntSigma),
css(Goal, PI, Resolvent, Biform),
for_each_pi(Biform, Goal, IntSigma, NewRes).

for_each_pi(_,_,_,[]).

for_each_si(Biform, [GoallTail], Sigma, NewRes) ·
for_each_pi(Biform, Goal, Sigma, Real),
for_each_si(Biform, Tail, Sigma, Res2),
union(Res1, Res2, NewRes).

for_each_si(_,_,_ , []).

for_each_biform([], OldRes, _, OldRes).
for_each_biform([BiformlBTail], OldRes, Sigma, NewRes) ·-

for_each_si(Biform, OldRes, Sigma, IntRes),
union(IntRes, OldRes, TempRes),
subsumption(TempRes, Res),
for_each_biform(BTail, Rea, Sigma, NewRes).

ipia(Goal, Sigma, PI) :
for_each_biform(Goal,[Goal],Sigma,NewSi),
union(NewSi,Sigma,IntSi),
subsumption(IntSi ,PI).

33

