
THE COMPUTATIONAL COMPLEXITY OF
ASSUMPTION-BASED

TRUTH MAINTENANCE SYSTEMS
by

Gregory M. Provan

Technical Report 88-11
July 1988

Department of Computer Science

University of British Columbia

Vancouver, B.C. V6T 1W5 Canada

THE COMPUTATIONAL COMPLEXITY OF
ASSUMPTION-BASED

TRUTH MAINTENANCE SYSTEMS

Gregory M. Provan1

Technical Report 88-11

July 1988

Department of Computer Science
University of British Columbia

Vancouver, BC
Canada V6T 1 W5

Abstract

We define the complexity of the problems that the Assumption-Based TMS (ATMS)
solves. Defining the conjunction of the set of input clauses as a Boolean expression, it
is shown that an ATMS solves two distinct problems: (1) generating a set of minimal
supports (or label) for each database literal; and (2) computing a minimal expression
(or set of maximal contexts) from the set of minimal supports. The complexity of
determining the set of minimal supports for a set x of literals with respect to a set X of
clauses is exponential in the number of assumptions for almost all Boolean expressions,
even though a satisfying assignment for the literals occurring in X can be found in
linear time. Generating a minimal expression is an NP-hard problem. The ATMS
algorithms can be used with many control mechanisms to improve their performance for
both problems; however, we argue that manipulating the label set (which is exponential
in the number of assumptions) requires considerable computational overhead (in terms
of space and time), and that it will be infeasible to solve moderately large problems
without problem restructuring.

1

1The author completed this research with the support of a Scholarship from the Rhodes Trust, Oxford,
and of the University of British Columbia Center for Integrated Computer Systems Research, BC Advanced
Systems Institute and NSERC grants to A.K. Mackworth.

1 INTRODUCTION 2

1 INTRODUCTION

1.1 Background

A Truth Maintenance System (TMS) is an AI tool widely used for database updating and
consistency maintenance tasks. Examples of areas in which it has been used include qualita­
tive process theory-[10]; circuit analysis- [12]; analog circuit design-SYN [11]; temporal
reasoning [37]; and vision- [17], [4]. Despite its wide use, it is not well understood in terms
of the problems it solves, its semantics or its complexity.

The uniqueness of a TMS sterns from maintaining records of the origins of labels assigned
to database facts (dependency records), and subsequently using those dependency records to
prune the search space and perform database updating. The TMS was originally designed as
an intelligent cache and a means of expediting dependency directed backtracking ([34], [15])
during search for a consistent labelling of the fact set. Subsequent implementations (e.g. by de
Kleer [6] and McDermott [24]) extended these facilities to include maintenance of dependency
records not just for one consistent database labelling (or context) but for multiple contexts.
All implementations use dependency records to maintain consistent labellings and reduce the
updating required when new data is added to the database. Systems which do not record
dependencies must completely be rerun to ensure consistency when new data is added.

In this paper we focus on one implementation of a TMS, the ATMS. An ATMS simulta­
neously determines all minimal "solutions" given a set of clauses. The ATMS was cited [7] as
solving several drawbacks inherent in previous TMS implementations, i.e. JTMSs [22]. For ex­
ample, the ATMS almost never needs to backtrack when an inconsistency is detected, whereas
a JTMS must backtrack to recover from inconsistencies, which can be a computationally costly
operation.

However, the ATMS requires a large computational overhead relative to a JTMS. This
paper identifies and explicates such computational overheads by precisely defining the prob­
lems ATMSs solve and the worst-case complexity of those problems. We show that the ATMS
solves Boolean algebra problems defined in both theorem proving and switching theory, and
use the notation from both areas in our formalisation.

1.2 Overview

This paper is organised as follows. In Section 2, we define our notation and the tasks the
ATMS solves in terms of this notation. In Section 3 we derive the complexity results for the
ATMS tasks as defined in Section 2. We review related work in Section 4, and discuss the
impact of these complexity results on the ATMS, when viewed as a reasoning tool, in Section 5.

2 PRELIMINARIES 3

2 PRELIMINARIES

2.1 Notation

We use a propositional language which contains a finite set L of propositional symbols and
the connectives V, /\ and ., defining the connective :J (or =>) in terms of V and -, in the
usual way. A propositional literal is a propositional symbol or its negation. A clause is
a finite disjunction of propositional literals, with no repeated literals. X = {Xi, ... , Xn}
is a set of facts, which we define as the set of input clauses. Upper-case, subscripted X's
represent facts and lower-case subscripted z's represent literals. For a fact of the form
,z1 V ,z2 V ... V •Zm V x, x is called the consequent and x1 , ... , Xm the antecedents. A fact
with m = 0 is called a premise.

A TMS records dependencies among a set of clauses to maintain a consistent valuation,
or assignment of set of labels to literals and/or clauses. For the ATMS such labels consist
of sets of distinguished literals called assumptions. A literal Xi is dependent on literal x; if
the valuation of Xi changes as the valuation of x; changes. A TMS uses such dependency
information to rule out regions of the search space and to efficiently indicate necessary
database changes when contradictions are discovered.

The input to an ATMS consists of a set X = {X1 , ... , X1} of Horn-clause facts, referred
to in [6] as justifications. A Horn-clause is a clause with at most one unnegated literal. For
example, a Horn-clause Xi can be written as x1 V x2 V x 3 V ... V x1c V x, k ·?: 0. 2 We call the
conjunction of the Xi's a Boolean polynomial function3 F, i.e. F = /\i=l, ... ,1 Xi, We· note
that there may be many other polynomials F' which also compute such a partially specified
Boolean function F, where a polynomial F' computes F if F'(x) = F(x) for x E p- 1 ({t,f}).
We define the cost of F as the number of clauses in F. A minimal polynomial 1 is a
polynomial such that 1 computes F and no polynomial computing F has cost smaller than
1.4 By defining this Boolean polynomial F, we explicitly show how the ATMS can be
thought of as a means of designing an optimal circuit: given a Boolean polynomial F which
represents a circuit, the ATMS can find an optimal polynomial (or circuit) 1 using some
optimisation criterion, such as minimising the number of AND-gates.

Using the definition of [33], a prime implicate5 of a set X of clauses is a clause 1r such
that

2 We represent a fact denoting an implication, i.e. one written as z, :::, z; in the TMS literature, as z, v x;
by convention.

3This is standard conjunctive normal form (CNF), the dual representation of traditional disjunctive normal
form (DNF) Boolean functions.

"Defining the cost of the minimal polynomial in this way explicitly assumes that the "solution" is represented
in terms of the smallest number of clauses (in ATMS terminology assumption sets) which explain the given
evidence. There are several other ways of defining cost, such as the total number of literals (in ATMS
terminology assumptions) contained in the minimal polynomial.

5 The dual to prime implicate (in Boolean algebra) is called a prime implicant. We use the prime implicate
terminology to avoid confusion between the dual representations.

2 PRELIMINARIES 4

• X p 1r, and

• For no proper subset 1r' of 1r does X p 11"1•

€; is a support clause for x, with respect to X iff X ~ €;, x, U €; does not contain a
complementary pair of literals (i.e. both X; and x;), and X I= X j u e;. e; is a minimal
support for x, with resp ect to X iff no proper subset of €1 is a support for x; with respect to
X . In [6] the set of minimal supports for a.ny literal x1 is ref erred to as the label for x,. e (Xi)
is the set of minimal supports for x, with respect to X, ands• is the set of minimal supports
for x . We show the close relationships between support clauses and prime implicates, as
demonstrated in [33], in the next section.

2.2 A Logical Reconstruction of the ATMS

The ATMS records dependencies in terms of a distinguished subset A~ x of literals called
assumptions. We refer to an environment E as a set of assumptions and a context C as the
set of literals derivable from the assumptions in E given the facts. We assume, as in [6],
that the Problem Solver generates clauses for the ATMS and employs control mechanisms
(e.g. consumers6

) to ensure problem solving efficiency.
Assumptions are the fundamental literals with which the derivation of all other literals

are recorded. For example, consider the well-known circuit consisting of multipliers Mi, M2

and M3 and adders A1 and A2 , as shown in Figure 1. · The output at F is 10 instead of 12,

Figure 1: Circuit with faulty components

3
A

Ml

"
2

B
A1 10

C Ml
y

1

3
D Al

Ci
12

Ml

3
E

meaning that some combination(s) of M1 , M2, Ms, A1 and A2 is(are) faulty. There are a
total of 26 = 32 combinations of faulty components. Taking observations at points like X, Y
or Z narrows the set of diagnoses consistent with the observations and guides future decisions
about where to make further readings. A solution consists of a set of faulty multipliers and
adders which explain all the observations.

6 See [9] for a full description of consumere.

2 PRELIMINARIES 5

A system incorporating an ATMS, GDE [12], can simultaneously find all sets of faulty
circuit components which explain the observations for such circuits. In GDE, the ATMS
identifies hypothesised sets of circuit components whose faulty behaviour could cause dis­
crepancies between predicted and observed circuit measurements. For this network diagnosis
problem, assumptions can be:

• each component is working, represented by M1, M2, etc. in Figure 1;

• input values, e.g. A = 3, B = 2, etc.

Facts containing an unnegated literal, e.g. rivrsvx&, have an antecedent (which can be a
set of assumptions, as in x1 V x3) justifying a consequent xs, which cannot be an assumption.
We also call a derived literal the consequent of a fact. In the network diagnosis example,
facts could be as follows:

M1 V (X = 6)
M2 V (Y = 6)

A1 V (F = 6).

The first of these facts means that if M1 is working, the reading at point X in the circuit
should be 6.

The ATMS's operation consists of two distinct phases, label manipulation and interpre­
tation construction, which we describe below.

Label Manipulation: In the label manipulation phase, for each literal the ATMS main­
tains a label, which is a set of environments in which the literal can be proven. Each envi­
ronment consists of the greatest lower bound (GLB) of assumption sets. In logical terms,
each environment in the label for x, is defined in terms of a minimal support clause €Z for
x,, and is given by

e; = {/\; A; for some j I (V; A;) is a minimal support clause of X

The label for derived literals is assigned through assumption set propagation, based upon
the set of justifications for the derived literal. Assumptions typically7 have themselves in the
label. The label for derived literals is assigned by combining the labels of the antecedents of
the derived literal. In simplest terms, the label update algorithm performs a set union of the
labels. If a literal x has k justifications, and justification i has label L, = {L,1 , L,2, ... , L,m},
where each L,; is an assumption set, the label for x is given by U, U; L,;, noting that each
assumption set in the resultant label is recorded in terms of its GLB. Labels are assigned to
a derived literal by taking the set union of all combinations of labels for its antecedents and
then using subsumption to ensure the new label is represented in GLB form. Inconsistencies
are removed by identifying the inconsistent sets of assumptions (nogoods) and removing
these sets and their supersets from all labels.

7See [6], [8], [9] for cases in which this is not true.

2 PRELIMINARIES 6

For example, if we have Yi V Ts' V X5, (or x1 /\ Zs :::> Z&), and z1 and Zs have labels
{{A, B}, {B, C}} and {{A}, {D, E}} respectively, then z6 is assigned the label {{A, B},
{B, C, D, E}}.

In logical terms, the label generation algorithm actually calculates the set of prime
implicates II for X. From these prime implicates the support sets for each literal are derived.
In the switching theory literature, many methods of generating prime implicants, the dual
to prime implicates, exist. Examples include the methods by Quine and McCluskey [23),
Tison [35] and Hwang et al. [18]. Reiter and de Kleer (33] have characterised the ATMS
in terms of prime implicates and support sets, and we quote four Lemmas concerning their
relationship and refer the reader to (33] for their proofs.

Lemma 1 Suppose X is a set of clauses and Xi is a clause. If e is a minimal support
clause for Xi with respect to X, then there is a prime implicate 1r of X such that 1r n Xi -:/:, 0
and e = 1r - Xi,

Lemma 2 Suppose X is a set of clauses and Xi is a non-empty clause. If 1r is a prime
implicate for X such that Xi ~ 1r, then 1r - Xi is a minimal support clause for Xi with respect
to X.

Lemma 2 states that once the set of prime implicants have been derived, the minimal
support clauses for all the literals in X can be determined.

The derivation of the prime implicates II = {1r1 , ... , 1r1} enables the polynomial F to be
represented in terms of the prime implicates, i.e. Fn = Ai ,ri, using the following lemma:

Lemma 3 For a set X of clauses, X and its set of prime implicates II are logically equivalent
in the sense that if xi EX, then II F x,, and if xi E II, then X F xi,

In the terminology of this paper, Fn computes F.
H we restrict the clauses for which we determine minimal support clauses to literals, then

the prime implicates can be derived from the minimal support clauses or vice versa, which
is not true in general.

Lemma 4 Suppose X is a set of clauses and z is a literal. e is a minimal support clause
for X with respect to X i!J there is a prime implicate 1r for X such that z E 7r and e = 1r - z.

A major difference between the ATMS and other methods of generating prime implicates
is that the ATMS generates them incrementally. That is, if it computes the set of prime
implicates II for X, it can use this set II to compute the new set of prime implicates as
new clauses are introduced to produce a new clause set X' :) X. We now explain in more
detail how this is done. Consider adding a new clause X1: whose consequent is a derived
literal of the original set of literals x. In de Kleer's terminology, assumption set propagation
is conducted on this literal using the new clause xi, and the new label is compared with

2 PRELIMINARIES 7

the existing label. By this comparison8 a complete and minimal label is constructed. By
complete we mean each environment which should be present in the label is actually there.
By minimal we mean that no two environments in the label are supersets of one another.
If there are any changes to the existing label for literal x, the effects of these changes are
propagated throughout the label set for all literals which are affected by the label updating
of x.

For example, consider the following set of clauses, which we represent both as implications
and in typical clausal form:

X1 /\ A1 :::) X2 X1 V A1 V X2
X2 I\ A2 :::) Xs X2 V A2 V X3
x1 I\ As :::) X4 riv As v x,.
X4 I\ A,. :::) X5 X4 VA,. V X5

X3 I\ A& :::) X5 X3 V A5 V X5

Additionally, x1 and X6 are premises.
The support sets (or labels) for the literals x2, xs, x 4 and x5 are given by:

I LITERAL I LABEL

X2 {A1}
Xs {A1,A2}
X4 {As}
X5 { {As, A,.} , {A1, A2, A5}}

Consider what happens when a nogood corresponding to the conjunction of x2 and x 3 is
discovered. This nogood consists of the conjunction of the labels for x2 and x3 , i.e.

nogood - (Ai) I\ (A1 I\ A2)
(Ai I\ A2)

All supersets of the nogood are removed from the labels of all literals. Hence, x3 will now
have no label, since its old label is a nogood. The new support sets (or labels) for the literals
x2 , x3 , x 4 and x5 are given by:

l LITERAL I LABEL I
X2 {A1}
Xs {}
X4 {As}
X5 {As,A,.}

8See [6] for full details.

2 PRELIMINARIES 8

If the clause x2 V A 6 V x4 is added, a nogood is created since both x.,, and x 4 have support.
This nogood consists of the conjunction of the labels for x4 and ~' i.e.

nogood - (As) A (A1 A A6)
- (A1 A As A A6)
- {A1, As, A6} in alternative format.

No labels are affected by this nogood.
Now, if another new clause whose consequent is x 4 is added, i.e. rs V A7 V x4 , the label

for x 4 now becomes {{As}, {A1 }}. The revised label set is

I LITERAL I LABEL

X2 {A1}
Xs {}
x.,, {{As}, {A1}}
X5 { {As, A.,,}, {A.,,, A1}}

As stated by de Kleer [6], the task of the ATMS labelling procedure is to guarantee the
consistency, completeness and minimality of the label set (support clauses) of each literal
with respect to the literals. This is ensured by generating the set of minimal support clauses
for each literal in x.

The ATMS explores multiple solutions simultaneously, implicitly representing each so­
lution with a context. A derived literal is contained in a context if the assumptions in at
least one of the environments in its label are a subset of that context. Multiple labels for a
literal Xi indicate that Xi is present in multiple contexts. However, this procedure does not
explicitly calculate contexts, but manipulates labels. Contexts are explicitly computed by
an interpretation construction algorithm.

Interpretation Construction: In the second phase of operation, the ATMS constructs
the interpretations to explicitly determine the set of "solutions" or maximal contexts. An
interpretation is the smallest set of assumptions from which all literals in the context are
derivable, and a context is maximal if it has no consistent superset contexts or no supersets
(when all assumptions are consistent).

In logical or switching theory terminology, the ATMS computes the minimal polynomial
1 for F, using the set of prime implicates which comprise Fn, To outline how this ter­
minology relates to ATMS problems, we give two examples of the correspondence between
minimal polynomial and "solutions".

• In fault diagnosis using GDE [12], there is a correspondence between the system com­
ponents and circuit behaviour. Specifically, hypotheses consisting of non-functioning
sets of components can explain the observed output of the electrical circuit. Given
the set of all possible readings of circuit behaviour, the hypotheses, loosely speaking,

3 ATMS COMPLEXITY RESULTS 9

"cover" (in set covering terms) the actual readings of circuit behaviour. x• corre­
sponds to a largest set of components which are not faulty, or represented as its dual,
a smallest set of faulty components (candidates). GDE identifies all such candidates.
The minimal polynomial consists of a disjunction of assumption sets, each of which is
a conjunction of assumptions. Each assumption set identifies a candidate.

• In the figure recognition task described in [29], the task is to identify instantiations of
complete figures (and of almost-complete figures) from a set of rectangles randomly
arranged in a scene. In this domain, a given set of rectangles may overlap in such a
way to correspond to a complete puppet. x• corresponds to a largest set of rectangles
which can be interpreted as a complete or almost-complete puppet figure. Similar
to the previous example, each conjunction of assumptions in the minimal polynomial
corresponds to a complete, minimal interpretation of a puppet figure.

ATMS Facilities:
We summarise the facilities offered by the ATMS as follows:

Label maintenance: The ATMS generates and maintains a consistent label set for each
database literal, given changes to the database.

Query processing: The ATMS can answer the query: identify the label. set for literal x?

Solution maintenance: The ATMS can simultaneously generate all minimal solutions (i.e.
the minimal polynomial) and then incrementally update this solution set.

3 ATMS COMPLEXITY RESULTS

We now examine the complexity of the problems underlying the ATMS. We shall prove
several NP-completeness and NP-hardness results. To show a problem to be NP-complete,
we must show that it is in NP, and that an NP-complete problem transforms to this problem
in polynomial time. Loosely speaking, NP-hard problems are a.t least as hard as NP-complete
problems, but not provably in NP. An example of an NP-hard problem is the optimisation
version of a well-known NP-complete problem, the Travelling Salesman problem [25].

We derive the ATMS complexity result by defining ATMS processing as solving the
following two problems:

Generation of minimal supports: Given a set X of facts (i.e. Horn clauses), determine
the set of minimal supports a• for the set x of literals in X.

Interpretation Construction: Given the set of minimal supports a• for x with respect
to a fact set X, find the minimal polynomial 1.

We now examine the complexity of each of these problems in turn.

3 ATMS COMPLEXITY RESULTS 10

3.1 Minimal Supports

To define the complexity of the minimal supports problem, we need the following lemmas:
First, we show that computing the existence of a minimal support clause e for a literal

x with respect to a set of clauses Xis as easy as computing the satisfiability of X.

Lemma 5 X is unsatisfiable ijJ the only prime implicate is the empty clause □ .

Proof: ==> Suppose X is unsatisfiable. Hence X F □ and hence we can choose □ as
an implicate, since it satisfies the definition of implicate. But since □ subsumes all other
clauses, it is not only a prime implicate, but the only prime implicate.

<== Suppose □ is the only prime implicate. By definition, X F □ , and hence X is
unsatisfiable. ■

From this lemma we have an obvious corollary:

Corollary 1 X is satisfiable ijJ :3 a non-empty prime implicate.

We can now prove the following Lemma concerning existence of minimal support clauses
using Lemma 1:

Lemma 6 :3 a minimal support clause e for a literal x with respect to a set of facts X, such
that e u X is a non-empty prime implicate of X, iff X is satisfiable.

Second, the time complexity of determining satisfiability of a set of Horn clauses is given
by Lemma 7 [14].

Lemma 7 A satisfying assignment of valuations to the literals in a set X of Horn clauses
can be determined in O(n) time.

Using these complexity results, we can show the linear complexity of determining the
existence of a set of minimal support clauses with respect to a set X of Horn clauses.

Theorem 1 (Set of Minimal Supports) Determining if there exists a set of minimal
supports for a set x of literals with respect to a set X of Horn clauses is of O(n) complexity.

Proof: By Lemma 6, a set of supports for X exists iff X is satisfiable. This means
that determining the existence of a set of minimal supports for X is as hard as determining
if X is satisfiable. Determining the satisfiability of X is O{n), and hence determining the
existence of minimal supports for X must be O(n). ■

However, even though finding if there exists a set of minimal support is of linear com­
plexity, we can show that actually generating the set of minimal supports s• (or prime

3 ATMS COMPLEXITY RESULTS 11

implicates IT(X)) is intractable. This is because there can be an number of minimal support
clauses (prime implicates) exponential in the number n of literals for a set X of input clauses.

First, for the propositional case we quote worst-case bounds on the number of prime
implicates generated by a Boolean expression F, expressed both in terms of the number of
variables and the number of clauses in F.

Lemma 8 describes the worst-case upper bounds on the number of prime implicates, ex­
pressed in terms of the number n of variables in the Boolean expression:

Lemma 8 In the worst case, the number of prime implicates in a Boolean expression con­
taining n variables is bounded by

Proof: See [5].

Lemma 9 describes the worst-case upper bounds on the number of prime implicates, ex­
pressed in terms of the number m of clauses in the Boolean expression:

Lemma 9 In the worst case, the number of prime implicates in a Boolean expression con­
taining m clauses is bounded by

Proof: See [5].

Lemmas 8 and 9 express worst-case results, but Theorems 2 and 3 are much stronger
results. as they provide upper and lower bounds for almost all Boolean expressions.1° For
computing IT(X), the following complexity result has been shown.

Theorem 2 Generating the set of prime implicates IT(X) with respect to a set X of proposi­
tional clauses is of complexity exponential in the number n of literals for almost all proposi­
tional expressions F.

Proof: From a result by Kuznetsov [20], the number of prime implicates in a minimal
expression for almost all Boolean expressions F defined over n variables, is 0(2"). More
specifically, as a constant C:n -+ 0, it is bounded by

(l- £n)2"
log n ioglog n

:s I IT*(X) I <
log n logiog n'

jln the original paper, this lemma is stated in terms of finding bounds for a function f(k), for k 2: 1,
where f(k) is defined by f(k) = max{II(F): Fis in DNF with k conjuncts}. Whether Fis CNF or DNF is
irrelevant to the worst-case bounds derived.

10 A property is said to hold for almost all the functions of the a lgebra of logic if the proportion of functions
of n variables which do not satisfy this property (among all the functions of n variables) tends to zero when
n - co. See [38] for details.

3 ATMS COMPLEXITY RESULTS 12

where II*(X) denotes the collection of prime implicates in :F, as distinct from II(X), which
denotes the collection on prime implicates in Fn.

By definition of :F, I II*(X) I :5 I II(X) I :5 I r(X) 1- Hence, since I II(X) I= 0(2n),
then I f(X) I= 0(2n). To ensure minimality of each prime implicate in IT*(X), all implicates

1 E f(X) must be tested for primality, which will require 0(2n) time. ■

This theorem states that almost all expressions have the same order of growth as for the
most complex expression. From the previous results, it is simple to show that:

Theorem 3 (Set of Minimal Supports (Computation)) Generating the set of minimal
support clauses for a set x of literals with respect to a set X of clauses is of complexity
exponential in the number n of literals for almost all propositional expressions F.

Proof: Generating Il(X) is 0(2n). Given II(X), 2*(X) can be computed in time ~
0(2n)_ll Hence, generating 3*(X) is 0(2n). ■

Theorem 3 states that almost all Boolean expressions must have a number of minimal sup­
port clauses exponential in the number of literals. Hence, for almost all problems, determining
a 0(2n) set of prime implicates will take 0(2n) time and storing such a set of prime implicates
will take 0(2n) space.

Note that the ATMS represents the minimal support in terms of a subset of the literals,
the set of assumptions. Hence, the complexity results for the ATMS must be expressed in the
number n of assumptions.

Consider a worst-case example of the exponential complexity of the set of minimal support,
the parity problem. First the parity problem is defined as given in [9]: For an expression F of
n variables { x1, ... , Xn}, each of which can take on Boolean values, the parity of F is 1 if there
is an odd number of variables set to 1, and 0 if there is an even number set to 1. The goal is
to find an F with parity 1. Parity is defined recursively, calling Pi the parity for all variables
up to and including variable Xi, Hence, if an implication like (Pi-t = 0) A (xi= 1) :J (Pi= 1)
is written as (Pi-t = 0) V (xi= 1) V (Pi= 1), one obtains the boundary condition

P-t = 0,

and for i = 1, ... n,

(Pi-1 = 0) V (xi= 1) V (Pi= 1),
(Pi-t = 1) V (x; = 0) V (p; = 1),

(Pi-t = 0) V (x; = 0) V (p; = 0),

(Pi-t = 1) V (x; = 1) V (p; = 0).

This gives a total of 4n + 1 input Horn clauses based on n variables x1 , ... , Xn in addition to
n + l added variables p0 , ... , Pn• Given this set of input clauses, it has been shown that:

11 At present results are known only for queries q which are unit literals of conjunctions of literals. However,
for this proof all that is necessary is an upper bound.

3 ATMS COMPLEXITY RESULTS 13

Lemma 10 Let F be the parity function with n variables. Then even though a satisfying
assignment can be found for F in 0(n) time, a minimal expression F consists of 2n-l prime
implicates of length n each.

Lemma 10 was first proven by Lupanov [21]. It has been cited in the AI literature by
::VIcAllester [39], and discussed by de Kleer [9]. This Lemma states that there can exist an
expression F with size 0(n) such that any minimal expression F which computes F must
have O(2n-l) size.

An obvious corollary is:

Corollary 2 Generating the set of minimal support clauses for the parity problem is of com­
plexity exponential in the number n of components.

Proof: As shown in Lemma 10, there are 2n-l implicates for the parity problem. Deter­
mining the set of prime implicates takes exponential time, as each implicate must be tested
against the 2n- 1

- 1 other implicates to ensure minimality. ■

for this problem (and for others like it), it is impossible to know a priori which clauses
generated by a prime implicate (or prime implicant) algorithm are prime. In fact, for the
parity problem all are prime.

Obviously, parity is a worst-case example. However, Theorem 3 is a strong result and says
that not only do there exist problems like parity with a set of minimal support clauses of
size 0(2n-l) , but it also states that almost all problems will still be 0(2n-l), where n is the
number of ATMS assumptions.

As an example, consider the circuit diagnosis problem solved by GDE. Here, the size of
the problem could be defined in terms of the sum of the number of circuit components and
the number of circuit input/ output values. An obvious question to explore is how the number
of assumptions \Al relates to other measures of the "size" of the problem.12 If \Al is much
smaller than the size of the problem then these results will be less compelling. However, if \Al
is larger than the size of the problem then the results will be very compelling.

In the circuit analysis domain as defined in GDE, assumptions include

• proper functioning of each circuit component, such as W Ai, W A2 , WM1 , ••• , and

• values measured at various positions in the circuit, such as VF, Va, ...

The complexity of this problem is 0(2n), where n is the number of assumptions made
(IA I). In this case the number of assumptions made is at least as large as the size of the
problem. This means that there are strict limitations on the size of circuits GDE can analyse,
unless other methods are used, such as hierarchical analysis of the circuit, etc.

; 2The size of a problem is an attempt to define the number of components into which the problem can
be broken down, and relate this to number of assumptions and other propositional literals the ATMS must
manipulate. For the circuit analysis domain, a simple estimate of size is the number of components in the
circuit, or the sum of the number of components and the number of measurement points.

3 A.TMS COMPLEXITY RESULTS 14

Note that a Justification-Based TMS (specifically B-JTMS or LTMS) can find a satisfying
assignment (if one exists) for the parity problem in O(n) time. ATMS label manipulation
introduces a significant computational overhead with respect to a JTMS, as it must generate
a number of minimal support clauses exponential in the number of literals, irrespective of
computing any satisfying assignment.

The ATMS stores the entire label set to avoid recomputing it every time it is needed.
However, we can show that incrementally updating the label set given a new clause is as
computationally expensive in the worst case of computing the label set from scratch. More
precisely, 13

Corollary 3 Given the set of minimal support clauses 3* for a set x of literals with respect
to a set X of clauses, and a new clause Xnew with some literals Xnew (/. x, generating the set
of minimal support clauses for the set x U Xnew of literals with respect to the set XU Xnew of
clauses using 3* is of exponential complexity in the worst case.

Hence, storing the set of minimal support clauses (labels) does not improve the efficiency
of label updating; what it does facilitate is 0(1) query processing of label sets for literals.

3.1.1 Interpretation Construction

The Interpretation Construction problem was defined as:

Interpretation Construction (Optimisation)
INSTANCE: A set of minimal supports 3*(X) for x with respect to a clause

set X.
OBJECTIVE: Derive a minimal expression F which computes F = Ai Xi?

This is an optimisation problem, as we are finding an expression of minimal cost. Optimi­
sation problems contain decision problems as sub-problems. Consider the Travelling Salesman
Problem (TSP) [16). In an instance of TSP the input is a set of n cities and the distances
between every pair of cities. A tour is a closed path that visits every city exactly once. A de­
cision problem for the TSP is to discover if there exists a tour of length :S k for some constant
k. The decision problem has a yes/no answer. The optimisation problem is to find the tour
of minimal length. Obviously, to find a tour of length k*, the decision version of TSP must be
solved for all values of k :S k*.

In formulating the problem solved by a monotonic JTMS [22), we -see that it can be roughly
stated as determining the satisfiability of a set X of clauses. This JTMS satisfiability task thus
finds any solution, i.e. it solves the equivalent of the Decision problem. In contrast, ATMS
Interpretation Construction (IC) finds the minimal expression (or all maximal solutions),
which we will show to be harder than finding any solution (the decision problem).

\Ve begin by looking at the decision problem, which we define as:

13 A similar result has also been shown by Kean and Tsiknis [19].

3 ATMS COMPLEXITY RESULTS

fnterpretation Construction Decision:
I~STA CE: T he set 3*(X) of m minimal supports for a set x of literals with

respect to clause set X, and an integer k ~ m.
QUESTION: Does there exist a Boolean expression F of cost ~ k?

15

ATMS Interpretation Construction Decision is now proven to be NP-complete by trans­
forming an NP-complete problem, SET COVERING (cf. [16]) into the Interpretation Con­
struction (IC) problem.

SET COVERING is defined as follows [16]:

Set Covering
INSTANCE: A family Z = {Z1 , ... , Zm} of subsets of a finite set of variables

F = {Vi, ... , Vn}, and an integer k ~ m.
QUESTION: Is there a subfamily J{ of Z containing k sets such that J{ covers

V. i.e. UvieK Vi = V?

The theorem derived is:

Theorem 4 (Interpretation Construction Decision) ATMS Interpretation Construction
Decision is NP-complete.

Proof: First, it must be shown that Interpretation Construction (IC) (the decision version)
is in NP. It is simple to design an algorithm which can guess an expression F' of cost ~ k for
F and can check in polynomial time whether F' computes F.

Second, a transformation from set covering to Interpretation Construction (IC) is outlined.,
A polynomial transformation f(V, Z, k) from SET COVERING to IC is required, where SET
COVERING is defined by V, k and Z, and IC defined by (x, 2*, k). The transformation
J(V.Z.k) = (x,3*,k) is as follows:

From each subset Zi construct a prime implicate 1ri(X) such that ¼ E Zj iff Xi E 7rj(X).
By Lemma 4, if x is a literal, then there is a minimal support clause for x such that 1r(x, X) =
{ x} U((x, X). By this construction, for every½ E Z; there exists a minimal support set 2;(X)
such that Xi is supported by ~J(xi,X) = 1ri(x,X) - {x}. In addition, we call the expression
F l - I\ - .

- l\i 11 t•

It is easy to see that f(V,Z,k) constructs (x,2*,k) in polynomial time from V, k and Z.
Now. it is to be shown that .:3 a Boolean expression F' of cost ~ k which computes F if

and only if (V, Z, k) has a cover I{~ Z such that I J{ I= k ~ n.
===} : Suppose (x,2*, k) has an expression F of cost ~ k, and every literal in F has

support. Thus, there exists a set II of k prime implicates such that every literal Xi occurring
in F has support. Hence, every Vj E V is in the cover I{ by the construction. Thus, J{ is a
set cover for V such that I J{ I~ n.

¢=: Suppose (V, Z, k) has a set cover I{ ~ Z such that I J{ I~ n. Then every½ E V
occurs in some subset Zi· By our construction, this means that every every Xi occurring in F
has support, in which case from (x, 2*, k) .:3 a corresponding set of prime implicates II' such
that .:3 an expression F' of cost ~ k and F 1 = /\j:1r;en' 7rj. ■

-l RELATED WORK 16

However, the actual implementation of IC is even more complicated., as it discovers a
minimal expression rather than any expression of cost ~ k.

\Ve show that the complexity of the IC problem is given by Theorem 5.

Theorem 5 ATMS Interpretation Construction is NP-hard.

Proof: The decision version of IC is NP-complete. The full IC problem is no easier than
the decision version of the problem. It cannot be proven that IC is in NP. We show this as
follows. Assume that there exists a minimal expression with cost m'". There is no shorter
certificate for a yes instance verifying that this expression indeed has minimal cost other than
a listing of all other Boolean expressions with cost ~ m•. (The decision version of the problem
can be used as a subroutine to test if the expression cost is ~ m"'.) The number of Boolean
expressions can be as large as 2n- 1 , so this certificate cannot be checked in polynomial time.
Hence. IC is NP-hard. ■

4 RELATED WORK

To our knowledge, the only other studies of ATMS complexity are those of Dechter [13] and
Brown et al. ([2], [3]). Dechter uses a Constraint Satisfaction formulation of the ATMS to
examine the size of the label set. Dechter also analyses the size of this label set under various
restrictions, such as when the constraint graph formed by the clauses input to the ATMS
forms a tree.

Brown et al. formulate a Boolean-lattice-theoretic model of truth maintenance. In [2] they
analyse the computational complexity of this abstract model. This model is more general, and
because of this greater degree of generality is more computationally intractable than the one
we propose. In contrast, we define the complexity of the actual problems the ATMS solves,
and not of an abstraction of those problems.

There are several related problems, primarily in diagnostic reasoning, which are receiving
considerable attention, and whose complexity has been defined. Closely related to the inter­
pretation construction problem we investigate is the Generalized Set Covering approach used
to solve Diagnostic Problems by Reggia et al. ([30], [31], [32]) and the Hypothesis Assem­
bly approach of Allemang-et-al [l]. This set covering approach is essentially identical to the
ATMS's approach. The ATMS's process of polynomial minimisation corresponds to Reggia's
identification of the irredundant covers. Reggia's SET COVERING problem is finding a min­
imal cover for a collection of n subsets of a set of facts from a subcollection of k ::; n of these
subsets, and an irredundant covering is the set of minimal set covers. The NP-completeness
of the set cover problem underlying this approach has been noted in both (31] and [l].

\Vi thin switching theory /Boolean algebra there are many versions of the ATMS prime
implicate and interpretation construction algorithms. Examples include the Boolean min­
imisation methods of Quine and McCluskey [23], Tison (35] and Hwang et al. [18]. The
complexity of such -approaches has been studied in, for example, [36]. The main difference
with these approaches is that they assume a fixed database, whereas the ATMS assumes labile

5 DISCUSSION 17

databases (due to exogenous, i.e. IE, input), and hence uses incremental prime implicate and
minimal polynomial algorithms.

5 DISCUSSION

5.1 The Problem of Encoding in the ATMS

The parity problem described in Section 3.1 emphasises what we call the ATMS's "problem
of encoding". By this we mean the difficulty of using the problem solver to find an encoding,
or means of defining input clauses, assumptions and consumers, of the specific problem which
ensures efficiency. For example, de Kleer in (9] provides a method of avoiding the combinatorial
behaviour of the ATMS in solving the parity problem by generating solutions incrementally,
i.e. reverting to JTMS-style problem solving. We note however that one big problem with this
"solution" is that the ATMS generates a label set exponential in the number of database literals
n. This solution stops the generation of an exponential number of solutions; i.e. incremental
solution generation stops the interpretation construction process from generating all solutions
simultaneously. There is no way to stop the generation of the full (exponential) label set.

Surprisingly, no mention is made about this problem of encoding in any literature on the
ATMS, even though most ATMS users have to face this problem. We do not address this
issue here, but raise it as an important topic in ATMS research, and use the parity problem as
demonstration of how this encoding problem can occur. In brief, the moral is that one needs
a good encoding to ensure efficiency of the ATMS.

This analysis also provides some intuition into how often a good encoding will be important
in solving moderately large problems. de Kleer [9] divides the problem domain into three types
of problems: problems with (1) many solutions, all of which are required; (2) one solution; and
(3) many solutions, few of which are required. He claims that the ATMS has an advantage
over a JTMS on class (1), an ATMS may be more efficient for class (2) dependent on the
particular problem. and the standard ATMS approach must be reformulated for class (3).

\Ve argue in [40) that there are few situations in which all solutions to a given problem
are required, or can be efficiently computed. Hence, the main class of problems for which an
AT1!fS is most efficient does not arise very often. Moreover, we argue that the encoding of the
problem for both classes (2) and (3) is crucial for ATMS efficiency. An ATMS can simulate
a JTMS, but unless a special encoding is used (such as the encoding for parity described in
[9]) an ATMS will have a significantly larger overhead with respect to a JTMS. Moreover, this
analysis has shown that almost all problems are as computationally difficult for the approach
taken by an ATMS as parity, and almost all problems hence will require special encoding to
ensure efficiency.

5.2 Complexity Results

The complexity results for the ATMS pertain to the problem of "compiling" the database X
(as defined by Reiter and de Kleer [33)) into the support set for each database literal, and

5 DISCUSSION 18

performing Interpretation Construction to compute the minimal Boolean expression F. All
Boolean minimisation methods known to the author which can accept a general expression
F compute II(X) first, and from II(X) compute F. It has not been proven that Boolean
minimisation entails computation of II(X), although no other general methods are known.
Reiter and de Kleer [33] justify the computation of the support set by demonstrating the many
uses of 3*(X). Any algorithm which computes 3*(X) must compute II(X) (by Lemma 4),
and for such algorithms the complexity results derived here hold. The complexity results do
not hold for algorithms which compute the minimal expression directly from F, and do not
compute the set of minimal support.

These complexity results are quite negative and show the ATMS to be a computationally
expensive general-purpose reasoning tool for almost all problems. However, such complex­
ity results are not solely because of inherent design flaws in the ATMS, but also because
intractability in the worst case is inevitable with any reasoning tool which determines all
minimal supports for database literals.

This paper shows that the ATMS incurs significant computational overhead in providing
the features which it does, such as constant-time query processing, almost no backtracking
and simultaneous generation of all minimal interpretations. The first source of overhead, the
average-case exponential time and space requirements associated with label (or minimal sup­
port set) generation, is unavoidable. Since the ATMS ensures generation of the complete label
set, this label set will be of size exponential in either the number of literals (assumptions) or
clauses in the database. This is a significant computational overhead to pay for constant-time
query processing. Moreover, it raises the question of whether such a tradeoff is warranted,
given that a JTMS will provide similar truth maintenance facilities at a fraction of the com­
putational overhead. ·with a Horn-clause database over n literals and 0(n) clauses, a JTMS
can identify a solution in linear time, answer queries restricted to a single context in constant
time with O(n2

) space requirements, and update its database in O(n) time.
The second source of overhead, the simultaneous identification of all minimal solutions,

is valuable for many problems, but is an NP-hard problem. Various control mechanisms
may be employed. to improve the efficiency of this stage of processing, e.g. sequential solution
generation, as discussed above. However, they cannot circumvent the inherent intractability of
the problem. Provan [26] has identified parameters which govern the search space expanded in
interpretation construction, as well as a simple high-level visual recognition problem for which
the interpretation construction process is exponential. This study indicates the existence of a
range of problems for which the use of the ATMS to generate all minimal solutions is infeasible
because of a combinatorial explosion during interpretation construction.

Given this intractability, one obvious question which arises is: Are there ways of designing
T:vISs to avoid intractability as much as possible? If the same functions are required (e.g.
maintenance of the complete label set for all literals, simultaneous computation of all minimal
solutions), such intractability is inherent in the problem. The ATMS already incorporates
many methods (including heuristics) to improve efficiency. For example, the ATMS uses bit­
vector representations to speed up the set operations it frequently performs. It also has several
modes of operation, the default mode being the most efficient, but having the least deductive

REFERENCES 19

power. For example, it can run in a mode which includes one-of-disjuncts or of arbitrary (i.e.
not necessarily Horn) propositional clauses. More deductively powerful modes (such as the
two just listed) can be invoked, but only as the situation demands, as they slow down the
ATMS. de Kleer [8] describes these facilities in greater detail. The unavoidable fact is that
the problems being solved are inherently exponential or NP-hard.

One alternative is to relax the type of solutions which are being searched for. If approximate
solutions are adequate, the efficiency of the ATMS can be significantly improved. For example,
Provan ((28] , (27]) describes a method of assigning to ATMS assumptions weights so that only
the "most likely" partial interpretations are explored, thus enabling the Problem Solver to
reduce the search space through a form of best-first search.

Another alternative is to relax the level of dependency recording in the ATMS; namely,
to maintain a restricted label set, thus avoiding the inherently exponential time and space
requirements of the full label set. This, as well as other means of improving efficiency, are
currently being studied.

Acknowledgements: Mike Brady, Johan de Kleer, Rina Dechter and Bill McColl all
contributed useful comments.

References

(l] D. Allemang, M.C. Tanner, T. Bylander, and J. Josephson. Computational complexity
of hypothes is assembly. In Proceedings of the Inte rn ational Joint Conference on Artifi cial
In telligence, pages 1112- 11 17, 1987.

[2] D. Benanev, A.L. Brown and D.E. Gaucas. An Algebraic Foundation for Truth Main­
tenance. In Proceeding.s of the Int ernational Joint Conference on Artificial Intelligence,
pages 973-980, 1987.

[3] D. Benanev, A.L. Brown, and D.E. Gaucas. Reason maintenance from a lattice-theoretic
point of view. Technica l report, General Electric Co., 1987.

[-1] J. Bowen and J. ;-..fayhew. Consistency 1-faintenance in the REV graph Environment.
Te hnical Report AIVRU 020, University of Sheffield , 1986.

[5] A.K. Chandra and G. Markowsky. On the Number of Prime Implicants. Discrete Math­
ematics, 24: 7-11, 1978.

[6] J. de Kleer. An Assumption-based TMS. Artificial Intelligence Journal, 28:127-162, 1986.

[7] J. de Kleer. Choices Without Backtracking. In Proceedings of the American Association
for A ttificial Intelligence, pages 79-85, 1984.

(S] J. de Kleer. Extending the ATMS. Artificial Intelligence Journal, 28 :163-196, 1986.

[9] J. de Kleer. Problem Solving with the ATMS. Artificial Intelligence Journal, 28:197-224,
1986.

REFERENCES 20

[10] J. de Kleer and J. Brown. A Qualitative Physics Based on Confluences. Artificial Intel­
ligence Journal, 24:7-83, 1980.

[11] J. de Kleer and G. Sussman. Propagation of Constraints Applied to Circuit Analysis.
Circuit Theory and Applications, 8, 1980.

[12] J. de Kleer and B. Williams. Diagnosing Multiple Faults. Artificial Intelligence Journal,
32:97-130, 1987.

[13] R. Dechter. A Distributed Algorithm for the ATMS. Technical Report R-109, UCLA
Department of Computer Science, 1988.

[1 4] \V.F. Dowling and J. H. Gallier. Linear-time Algorithms for Testing the Satisfiability of
Propositional Horn Formulae. Journal of Logic Programming, 3:267-284, 1984.

[15] J. Doyle. A Truth Maintenance System. Artificial Intelligence Journal, 12:231-272, 1979.

[16] :\LR. Garey and D.S. Johnson. Computers and Intractability. Freeman, 1979.

[17] :\1. Herman and T. Kanade. Iner mental Reconstruction of 3D Scenes from Multiple,
Complex Images. Artificial Intelligence Journal, 30:289-341, 1986.

[18] H. Hwang and D. Chao. A New Technique for the Minimization of Switching Functions.
In Proc. IEEE Southeastcon 1985, pages 299-304, 1985.

[19] A. r· ean and G. Tsiknis. An Incremental Method for Generating Prime Impli-
cants/ Implicates. Journal of Symbolic Logic, to appear, 1989.

[20] V. Kuznetsov. On the Low r Estimate of the Length of the Shortest Disjunctive Normal
Forms for almost all Boolean Functions. Veroiatnostnye Metody v. I<ibernetike, 19:44--!7,
1983.

[21] O.B. Lupanov. On the Realization of Functions of Logical Algebra by Formulae of Finite
Classes Formulae of Limited Depth) in the Basis •, +, -. Problemy Kiber-netiki, 6, 1965.

[:22] D. :\kAllester. Reasoning Utility Package User's ~1anual. Technical Report AIM-667,
:\1IT AI Laboratory, 1982.

[23] E.J. McCluskey. Minimization of Boolean Functions. Bell System Technical J., 35:1417-
1-±44. 1956.

[:2~] D. :vlcDermott. Contexts and Data Dependencies: A Synthesis. IEEE Transactions on
Pattern Anaiysis and Machin e Intelligence, 5(3):237-246, 1983.

'.:2-3] C.H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms and Com­
plexity. Prentice-Hall, NJ, 1982.

[26] G. Provan. Complexity Analysis of Multiple-Context TMSs in Scene Representation. In
Proceed·ings of the American Association for Artifi'cial Intelligence, pages 173-177, 1987.

[:27] G. Provan. Solving Diagnostic Problems Using Extended Truth Maintenance Systems.
Techn.icaJ Report 88-10, University of British Columbia, Department of Computer Sci­
ence, 1988.

REFERENCES 21

[28] G. Provan. Solving Diagnostic Problems Using Extended Truth Maintenance Systems. In
Proceedings of the European Conference on Artificial lnteiligence, pages 547- 552 1988.

[29] G. Provan. The Visual Constraint Recognition System (VICTORS): Exploring the Role
of Reasoning in High Level Vision. In Proc. IEEE Workshop on Computer Vision, pages
170-175, 1987.

[30] J.A. Reggia D.S. Nau, and P.Y. Wang. Diagnostic Expert Systems Based on a Set
Covering Model. Int. J. Man-Machine Studies, 19:437-460, 1983.

[31] J.A. I eggia, D.S. Nau. and P.Y. Wang. A Formal Model of Diagnostic Inference. I.
Problem Formulation and Decomposition. Information Sciences, 37:227-256, 1985.

[:32] J.A. Reggia, D.S. Nau, and P.Y. Wang. A Formal Model of Diagnostic Inference. IL
Algorithmic Solution and Applicat ion. Information Sciences, 37:257-285, 1985.

[33] R. Reiter and J. de Kleer. Foundations of Assumption-bru.ed. Truth Maintenance Systems:
Preljminary Report. In Proceedings of the American Association for rtificial Intelligence,
pages 183-188, 1987.

[34:] R. Stallman and G. Sussman. Forwii.rd Reasoning and Dependency Directed Backtracking
in a 'ystem for Computer-aided Circuit nalysis. Art ificial Intelligence Journal, 9:135-
196. 1977.

[35] P. Tison. Generalization of Consensus Theory and Application to the Minimization
of Boolea.n Functions. IEEE Transactions on Electronic Computers, EC-16(4):757-764,
1977.

[:36] I. \Vegener. The Complexity of Boolean Functions. John Wiley and Sons, 1987.

[:37] B. \Villiams . Doin ,. Time: Putting Qualitativ Reasoning on F'i.r.mer Ground. In Proceed­
ings of the mericcm Association for rtificiaJ Intelligence, pages 105-112, 1986.

[38] Y.I. Zhuravlev. Set-theoretical Methods in the Algebra of Logic. Problemy Kibernetiki,
s, 1982.

[39] D. McAllester. A Widely Used Truth Maintenance System. unpublished Technical Report,
\1IT AI Laboratory, 1985.

[-!OJ G. Provan. An Analysis of Model Minimisation Methods of Computing AI Theories.
Technical Report to appear, University of British Columbia, Department of ornput, r
Science, 1989.

