
' I

SOLVING DIAGNOSTIC PROBLEMS USING

EXTENDED ASSUMPTION-BASED TRUTH

MAINTENANCE SYSTEMS: FOUNDATIONS

by
Gregory M. Provan

Technical Report 88-10

SOLVING DIAGNOSTIC PROBLEMS USING
EXTENDED ASSUMPTION-BASED
TRUTH MAINTENANCE SYSTEMS:

FOUNDATIONS

Gregory M. Provan1

Technical Report 88-10

July 1988

Department of Computer Science
University of British Columbia

Vancouver, BC
Canada V6T 1 W5

Abstract

We describe the use of efficient, extended Truth Maintenance Systems (TMSs) for
diagnosis. We show that for complicated diagnostic problems, existing ATMSs need
some method of ranking competing explanations and pruning the search space in order
to maintain computational efficiency. We describe a specific implementation of an
ATMS for efficient problem solving that incorporates the full Dempster Shafer theory
in a semantically clear and efficient manner. Such an extension allows the Problem
Solver to rank competing solutions and explore only the "most likely" solutions. We
also describe several efficient algorithms for computing both exact and approximate
values for Dempster Shafer belief functions.

1

1The author completed this research with the support of a Scholarship from the Rhodes Trust, Oxford,
and of the University of British Columbia Center for Integrated Computer Systems Research, BC Advanced
Systems Institute and NSERC grants to A.K. Mackworth .

1 INTRODUCTION 2

1 Introduction

1.1 Diagnostic Problems

Diagnostic reasoning is the process of inferring a set of best explanations for a body of
evidence. It may be thought of as the dual to the deductive process of finding the set
D of facts derivable from a set of facts X, i.e. g(X) = D. In other words, we want
some inverse function g-1 such that g- 1(D) = X. We call such a definition of diagnosis
functional, as Dis a function of X, or in other terminology D is entailed by X, X FD.
We call a non-functional form of diagnosis consistency-based. Here, the functional or
entailment relationships do not necessarily hold: g(X) f. D, or X ~ D. Instead, we have
a weaker, consistency-based notion /(X) C><I D, meaning that D is consistent with X, i.e.
you cannot derive the negation of any clauses in D. There are well-known techniques
for the primal (deduction) problem, such as resolution ([8] etc.), but the dual techniques
are less well-researched. This g-1 (D) = X paradigm covers a wide range of problems
in Artificial Intelligence. For example, it covers as seemingly disparate areas as circuit
diagnosis and computer vision. As an example of a typical diagnostic problem, consider
the well-known circuit consisting of multipliers M1 , M2 and Ms and adders A1 and A2 , as
shown in Figure 1. The output at Fis 10 instead of 12, meaning that some combination(s)

Figure 1: Circuit with faulty components

3
A

M1

2
B Al

10

2
C Ml y

3
0

Al G
12

E MJ
3

of M1, M2, Ms, A1 and A2 is(are) faulty. There are a total of 26 = 32 combinations of
faulty components. Using a consistency-based approach, taking observations at points like
X, Y or Z narrows the set of diagnoses consistent with the observations and guides future
decisions about where to make further readings. A solution consists of a set of faulty
multipliers and adders consistent with all the observations.

1 INTRODUCTION 3

As a second example, consider the high level vision problem of generating 3D interpre­
tations from 2D line drawings. Ta.king a functional approach, the task, roughly speaking,
is to identify the objects in a scene which have caused a given pattern of lines in an image.
In a sense, the task is to "diagnose" the image as being caused by some set of objects. The
primal problem, i.e. g(X) = D, is a computer graphics problem, namely to generate a 2D
projection of a set of 3D objects in some orientation. Well-known, efficient techniques exist
for this task for any objects and orientations. The dual high level vision problem, which
we defined earlier, is significantly more difficult, and at present is limited in the type of
objects which can be identified.

There have been several approaches to diagnosis, in fields such as circuit design {[11],
[14], [12]) and medicine ([37], [42]). Two important goals of any diagnostic system are
efficiency and the ability to generate the best explanations (of which there may be multiple
interacting ones) for the observed symptoms. These two goals conflict with one another,
as the more powerful the diagnostic system (e.g. generating all explanations vs. a single
one) the more computationally expensive it becomes.

We argue that diagnostic systems are most efficient when (1) they incorporate both
numeric and non-numeric solution methods, and (2) use a heuristic decision procedure
to guide the explanation-generation (i.e. prune the number of possible partial explana­
tions), rather than enumerating all potential explanations and then optimizing over the
explanation set. Many model-based reasoning systems generate all possible explanations
before selecting the "optimal" explanations, e.g. [14], [37]. However, although the causal
approach enables a more complete description of the ca.uses for a body of evidence, it
is computationally less efficient than the evidential approach, especially if it uses binary
weights (or uncertainty representation scheme) . For complex reasoning tasks, such an ap­
proach can be computationally infeasible because of the large search space which ma.y be
generated [32]. Pruning unpromising solutions using a numerical weighting system and an
appropriate heuristic for defining "optimality" can improve efficiency and ensure that the
optimal solutions are always found.

1.2 Overview

We describe a specific implementation of a problem-solving tool, the Assumption-based
TMS (ATMS), suitable for complex diagnostic problems. This extended ATMS computes
Dempster-Shafer (DS) mass functions for hypothesised diagnoses without compromising
the semantic clarity or computational efficiency of present ATMSs, e.g. [13]. Existing
ATMSs cannot rank hypotheses since they are limited to binary truth values. The incorpo­
ration of DS mass functions allows hypotheses to be ranked and offers additional efficiency
improvements, such as the ability to prune the search space by identifying highly unlikely
partial solutions. We then show that this extended ATMS is a semantically clear system
which is more efficient than existing diagnostic uses of the ATMS, such as the General

2 PRELIMINARIES 4

Diagnostic Engine (GDE) (14] and G;MODS [21].
This paper is organised as follows. In Section 2 we introduce the terminology and

definitions used in the rest of the paper. In specific, we describe existing diagnostic uses of
the ATMS, showing the drawbacks of such systems. We then review the theoretical basis of
the ATMS and DS theory. We also discuss previous implementations of DS theory, and note
that, as opposed to this implementation of the full DS theory, all previous implementations
were of restrictions of DS theory because of the intractability of computing DS weights. In
Section 3 we describe the semantic correspondence between the ATMS a.nd DS theory. We
give a small example of how DS weights can be computed from ATMS labels. In Section 4
we briefly outline the implementation of an extended ATMS for diagnosis.

2 Preliminaries

2.1 Existing Diagnostic Uses of TMSs

Truth Maintenance Systems (TMSs) are an AI reasoning tool which have been used for
a variety of applications. We represent the input alphabet (using terminology introduced
in [38]) by a set X = {x1 , ... , xn} of propositional symbols. A propositional literal is a
propositional symbol or its negation. A TMS records dependencies among a set of facts
to maintain a consistent (set of) vaJuation(s) for the fact set as the fact set changes over
time. A fact is a propositional Horn clause consisting of a propositional literal or a finite
disjunction of propositional literals with no literal repeated, e.g. riv x2 V x3 V ... V Xk V x, k ~
0.2 A valuation is a truth assignment (believed or not believed) with respect to a given fact
set truth assignment and set of dependency records. Xi is dependent on x; if the valuation
of Xi changes as the valuation of x; changes. A TMS uses such dependency information to
rule out regions of the search space and to efficiently indicate necessary database changes
when contradictions are discovered.

There are two types of TMSs, Justification-based TMSs (JTMS) (e.g. [27], [15]) and
Assumption-Based TMSs (ATMS) (e.g. [13]). The ATMS has received the most attention
recently, and has proven to be a powerful tool for diagnosis, since it enables multiple in­
teracting diagnoses to be identified, can perform incremental diagnoses, and records the
complete problem structure, among other capabilities. One such application, GDE [14],
can simultaneously find a.11 sets of faulty circuit components which explain the observations
for circuits as in Figure 1. In GDE, the ATMS identifies hypothesised sets of circuit com­
ponents whose faulty behaviour could cause discrepancies between predicted and observed
circuit measurements. Entropy values are assigned to these faulty component sets to guide
future measurements and incrementally narrow the set of hypotheses.

Although GDE offers several advantages over previous diagnostic systems, such as its

2 We ca.n represent any fact as either Xi :) Xi or x, V xi· We use the latter method by convention.

2 PRELIMINARIES 5

domain independence and ability to identify all multiple, interacting causes, there are
several ways in which it can be improved, of which we mention two. First, a [0,1] uncer­
tainty representation scheme within the ATMS8 can allow a context pruning mechanism
to prune all but the most likely contexts. This avoids a possible combinatorial explosion
of the number of contexts caused by GDE's computation of all possible diagnoses. Such
a combinatorial explosion can occur when diagnosing complex circuits, due to the ATMS
needing to create a huge number of contexts to represent a large number of partial diag­
noses, as shown by Provan [32]. Hence, some pruning mechanism is needed to avoid this
combinatorial explosion. The binary weights in an ATMS cannot rank contexts represent­
ing partial solutions, e.g. in terms of a criterion such as "likelihood to generate a complete
solution". Second, for complex circuits computational inefficiency can occur because GDE
must repeatedly generate the current set of diagnoses (called candidates) from inconsisten­
cies in the circuit (conflict sets), a computationally expensive process. It would be better
to generate the diagnoses directly.

2.2 ATMS Review

The ATMS records dependencies in terms of a distinguished subset A~ X of literals called
assumptions. We refer to an environment E as a set of assumptions and a context C as
the set of literals derivable from the assumptions in E given the facts.

The input consists of a set X ={Xi, ... , X1} of facts, referred to in [13] as justifications.
We call the conjunction of the X, 's a Boolean polynomial function4 F, i.e. F = "•=l, ... ,1 X,.
We note that there may be many other polynomials F' which also compute such a partially
specified Boolean function F, where a polynomial F' computes F if F'(x) = F(x) for every
instantiation of x.

Assumptions are the fundamental literals with which the derivation of all other literals
are recorded. For example, in the network diagnosis problem described in Section 1.1,
assumptions can be: (1) each component is working, represented by M 1, M 2 , etc. in
Figure 1; or (2) input values, e.g. A = 3, B = 2, etc.

Facts containing an unnegated literal, e.g. x1 V Ts V x6, have an antecedent (which
can be a set of assumptions, as in x1 V x 3) justifying a consequent xs, which cannot be
an assumption. We also call a derived literal the consequent of a fact. In the network
diagnosis example, facts could be as follows:

M1 V (X = 6)

M2 V (Y = 6)
A1 V (F = 6).

3 1n GOE, the ATMS and the uncertainty representation module (which uses an entropy method) are
separate.

4 This is standard conjunctive normal form (CNF), the dual representation of traditional disjunctive
normal form {DNF) Boolean functions.

2 PRELIMINARIES 6

The first of these facts means that if M1 is working, the reading at point X in the circuit
should be 6.

The ATMS's operation consists of two distinct phases, label manipulation and inter­
pretation construction, which we describe below.

Label Manipulation: In the label manipulation phase, for each literal the ATMS
maintains a label, which is a set of environments in which the literal can be proven. Each
environment consists of the greatest lower bound (GLB) of assumption sets. In logical
terms, each environment in the label for Xi is defined in terms of a minimal support clause
e: for Xi, and is given by {/\; A; for some j I (VI Ai) is a minimal support clause of X},
using the definition of [38]. e. is a support clause for Xi with respect to X if X ~ ek, x, U €;
does not contain a complementary pair of literals (i.e. both X; and x;), and XI= XiU ek• e;
is a minimal support clause for x, with respect to X if no proper subset of €A: is a support
clause for x, with respect to X. A closely related type of clause, a prime implicate,6 is
defined as follows: a prime implicate of a set X of clauses is a clause 11' such that

• XI= 11", and

• For no proper subset 1r' of 11' does X I= 1r'.

The relationship . between the label (minimal support clause) for a literal x and a prime
implicate is given as follows [38]: € is a minimal support clause for x with respect to X iff
there is a prime implicate 7r for X such that X E 71" and e = r. - x.

Labels are assigned to a derived literal by taking the set union of all combinations of
labels for its antecedents and then using subsumption to ensure the new label is repre­
sented in GLB form. Inconsistencies are removed by identifying the inconsistent sets of
assumptions (nogoods) and removing these sets and their supersets from all labels.

For example, if we have x 1 V x3 V X5, and x1 and x8 have labels {{A, B}, {B, C}} and
{ {A}, {D, E}} respectively, then x6 is assigned the label {{A, B}, {B, C, D, E}}.

The ATMS explores multiple solutions simultaneously, implicitly representing each
solution with a context. A derived literal is contained in a context if the assumptions
in at least one of the environments in its label are a subset of that context. Multiple labels
for a literal x, indicate that x, is present in multiple contexts. However, this procedure does
not explicitly calculate contexts, but manipulates labels. Contexts are explicitly computed
by an interpretation construction algorithm.

Interpretation Construction: In the second phase of operation, the ATMS con­
structs the interpretations to explicitly determine the set of "solutions" or maximal con­
texts. An interpretation is the smallest set of assumptions from which all literals in the
context are derivable, and a context is maximal if it has no consistent superset contexts.

5 The dual to prime implicate (in Boolean algebra) is called a prime implicant. We use the prime implicate
terminology to avoid confusion between the dual representations.

2 PRELIMINARIES 7

In logical terminology, the ATMS computes the minimal or irredundant polynomial 1
for F. IT we call assign a unit cost to each support clause ei, then we define the cost of
F as the sum of the costs of the support clauses ei in F.6 A minimal polynomial 1 is
a polynomial such that 1 computes F and no polynomial computing F has cost smaller
than 1.

2.3 Dempster-Shafer Theory Review

Many good descriptions of Dempster-Shafer (DS) theory exist, e.g. [29], [30], [40], [43].
We state a few basic relationships, and refer the reader to the references.

In DS theory, weights are assigned to subsets as well as elements of the set of propo­
sitions. A mass function {l assigns weights to proposition (} and proposition set (or frame
of discernment) 0 subject to the following properties: {l(fJ) E [O, 1], E 11ee ll(O) = 1 and
e(0) = o.

There are two measures in DS theory which are derived from this mass function: Belief,
the degree of belief in proposition subsets from which (} can be proven:

Bel(O) = L e(cp), (1)
cp!;;II

and Plausibility, the belief in subsets that do not disprove 0:

Pls(O) = 1 - L ll(cp) = 1 - Bel(,O). (2)
cp!;;-,11

These two measures can be used as upper and lower bounds on the preference order:

VOE 0, Bel(O) :::; ll(O) :::; Pls(O). (3)

Dempster's Rule of Combination defines an updated belief function for a proposition (J

provable in terms of (Ji and O; as:

(4)

The numerator assumes independence of propositions. 7 Viewed in set-theoretic terms,
this is simply "summing" the mass functions of all sets in which (} is provable. The
denominator of Equation 4 is a normalizing term, given that DS belief is assigned only to
non-contradictory subsets.

6 There are many ways to define such a cost function. For example, we can assign the cost of each support
clause e, as the number of assumptions in e,.

7 All approaches to reasoning with uncertainty, e.g. Bayes nets, etc. must make independence assumptions
of one sort or another for computational tractability.

2 PRELIMINARIES 8

2.4 Related Implementations of Dempster-Shafer Theory

Aside from recent ATMS implementations, only restrictions of DS theory have previously
been implemented because of the computational complexity associated with computing
mass functions. The number of subsets of 0 increases exponentially with I 0 I, and the
normalizing function can sum over all of these subsets, so computing a single normalization
function can be computationally expensive. The total space necessary to compute DS belief
functions over a set of n propositions is 22

n.

Examples of such restricted implementations include work by Shafer and Logan and
by d'Ambrosio. Shafer and Logan [41) have implemented a restriction based on a proposal
by Barnett [6], as well as a restriction based on a proposal by Gordon and Shortliffe [19].
D'Ambrosio [10] has implemented a restricted form of DS theory based on the Support
Logic Programming of Baldwin [3]. D'Ambrosio attaches a simplification of the Dempster­
Shafer uncertainty bounds to ATMS labels. This approach evaluates the DS weights after
the ATMS has symbolically determined the maximal context sets. The advantages of
this approach include the ability to (1) rank solutions, (2) reason with non-independent
evidence, and (3) analyse the certainty bound of any literal from multiple perspectives (if
it exists in multiple contexts).

We extend the ATMS with DS theory in a manner similar to that of d' Ambrosio.
However, unlike d'Ambrosio's method, we use the full DS theory, base this extension upon
semantic appropriateness (of which d'Ambrosio made no mention), use a different notion
of uncertainty primitive, and discuss a more efficient implementation than that proposed
by d'Ambrosio.

D'Ambrosio's approach is based upon having the DS mass function as the uncertainty
primitive, and ATMS assumptions as proposition tokens (or truth variables). Our ap­
proach more closely follows the ATMS's notion of assumption sets being the primitive data
representation; hence, DS mass function assignments to the assumption sets summarise
the "proofs" denoted by the assumption sets in terms of a single (or pair of) uncertainty
value(s).

Laskey and Lehner [23] have independently extended the ATMS with the full DS theory
in a manner more or less identical to the extension proposed here and also described in [34].
However, Laskey and Lehner do not discuss the complexity of this DS theory implemen­
tation, and their simple implementation of the computation of DS Belief functions from
ATMS labels (which we refer to as Network Reliability computation) will be intractable
for all but the simplest problems. Here, we discuss both the semantics of extending the
ATMS and the efficiency issues surrounding this extension.

Pearl [29] describes this semantic correspondence between the ATMS and DS theory
in a manner almost identical to the one presented here. He motivates this correspondence
using the analogue of a random switch, which we discuss in the next section. However, he
does not provide an implementation of an ATMS for computing DS mass functions.

3 EXTENSION OF ATMS WITH DEMPSTER SHAFER THEORY 9

3 Extension of ATMS with Dempster Shafer Theory

To enable the ATMS to rank solutions and hence improve the ATMS's diagnostic efficiency
(e.g. by pruning the search space of possible solutions), we propose assigning a [0,1]
uncertainty representation. We want to define an efficient TMS with a clear semantics for
solving diagnostic problems. It is not sufficient just to assign an uncertainty representation
without the entire system having a clear semantics, as that will obscure the decision-making
process. Moreover, introducing an arbitrary weighting system may be counterproductive
from a computational point of view, as it may make the resulting diagnostic tool less
efficient than existing TMSs.

3.1 Semantic Correspondence of the ATMS and Dempster Shafer
Theory

DS theory can be incorporated into the ATMS in a semantically clear and efficient manner
as their semantics are identical. To show the consistency of the semantics of the ATMS
and DS theory, we need to show a correspondence between

• assumptions and mass functions, i.e. Ai <=> e(Ai)-

• Assumption sets and Bel and Pls assignments, i.e. /\i Ai <=> Bel(/\i Ai), Pls(/\i Ai).

• ATMS label updating and DS updating

Assumption/mass function correspondence: De Kleer [13] defines an assumption
not as a regular literal with a truth assignment, but as a distinguished literal with a
hypothetical truth assignment. It is very simple to quantise this hypothetical truth
value using a DS mass function. Such a quantisation reflects the "confidence" with
which the truth value holds.

Pearl [29] describes this notion of quantisation using a random switch model, as
shown in Figure 2. The mass function defines the fraction of time a switch assigns
a truth value to the assumption. Hence, as in Figure 2, the switch assigns a truth
value to assumption A a fraction p of the time, and no assignment 1 - p of the time.

Assumption set/Belief and Plausibility correspondence: The ATMS can identify
the sets of assumptions from which given literals can be logically proven; hence, if a
literal x has label L = {L1, L2, Ls}, it can be proven if any assumption set L1 or
L2 or Ls is valid. The ATMS's label for a literal corresponds to the frequency with
which that literal can be proven from the initial set of assumptions, i.e. its DS mass
function can be computed from the label if a DS mass function is assigned to each
assumption.

3 EXTENSION OF ATMS WITH DEMPSTER SHAFER THEORY 10

~-1-p t Random switch

Figure 2: Random switch model for mass function assignment to ATMS assumption.

BuCuD

\
CuD

I
C D

Figure 3: Lattice depicting frame of discernment 0 = {A, B, C, D}

The DS Belief function (Bel) corresponds exactly to the ATMS label, in that the
symbolic representation of Bel(Oi) is the set of propositions from which Oi can be
proven. The plausibility function can be derived similarly, using the set of proposi­
tions which do not disprove Oi, i.e. Pls(Oi) = 1- Bel(-.Oi), Pls is a weaker notion of
provability than Bel.

We can use a proposition/assumption set lattice to provide a more intuitive notion of
this correspondence. Consider the lattice built using assumptions (or propositions)
A, B, C, D, as shown in Figure 3. Subset/superset relations are indicated by edges,
and sets of propositions by vertices. In this lattice, each vertex logically entails
vertices above it to which it is connected by an edge provided that both assumption
sets are consistent.

During interpretation construction, the ATMS constructs such a lattice, identifying
the maximal consistent assumption sets. The supersets of any inconsistent assump­
tion set are inconsistent as well. Hence the ATMS can be thought of as identifying

3 EXTENSION OF ATMS WITH DEMPSTER SHAFER THEORY 11

the consistent assumption sets to which mass is assigned in DS theory. As shown by
Zadeh [47], DS theory cannot combine conflicting evidence (i.e. assumption sets).
However, using the ATMS to identify contradictory sets of assumptions as nogoods
ensures that this problem never arises in computing DS weights.

ATMS label updating/DS updating correspondence: H the denominator of the DS
updating equation (4) is ignored, equation 4 and ATMS label updating are identical.
The denominator in equation 4 sums the mass assigned to the non-contradictory as­
sumption sets, i.e. it computes the belieffunction of 1-E Bel(confl.icting assumption sets),
which is equal to 1- E Bel(nogood set). Hence the denominator sums the mass as­
signed to the nogood database.

For this application, the denominator is irrelevant, because we want to use the DS
mass functions to rank interpretations, and not to explicitly compute the belief as­
signed to each interpretation. Ignoring the denominator provides the interpretation
ordering we want, as each interpretation would just be multiplied by the denomina­
tor.

This semantic correspondence means that the ATMS can perform most of the computa­
tional work necessary to compute DS mass functions. We discuss the additional complexity
of computing DS mass functions in Section 4.1.

3.2 Computing Dempster Shafer Belief Functions

The ATMS can be extended with DS theory quite simply. To each ATMS assumption
Ai assign a DS mass function e(Ai), Then use the ATMS to symbolically compute the
labels for all the literals. Similar to the ATMS's removal of contradictory sets (nogoods)
from all contexts as an essential part of its processing, DS theory can assign belief only
to non-contradictory subsets, i.e. it "removes" mass assigned to contradictory subsets.
That is, the numerator of equation 4 assumes non-conflicting subsets. Hence, 8 is not
provable for subsets which have a non-null intersection with contradictory subsets. In
the ATMS implementation, nogoods must be explicitly accounted for in computing DS
Belief functions. This is done by assigning belief in the numerator of equation 4 only to
subsets with null intersections with nogoods (i.e. conditioning on the consistent sets), and
using a normalisating function, the denominator of equation 4, to renormalise all Belief
assignments given that no mass is assigned to nogoods. Hence, the Belief assigned to any
proposition (literal) is given by:

The un-normalised DS mass function for any literal x can be computed from its label
as follows. We discuss these computations more fully in Section 4. To provide an intuitive
understanding, we give the simplest algorithm, described in terms of ATMS labels and
Belief functions.

3 EXTENSION OF ATMS WITH DEMPSTER SHAFER THEORY 12

1. Compute a Boolean expression from the label: .C, = {L1 V L2 V L3}, where each
L, = /\1; A1; for the set of k assumptions.

2. Account for nogoods

Bel(x) - Bel[.C,(x) 1-,nogood]
Bel[.C,(x) n -,nogood]

Bel[-,nogood]
Bel[.C,(x)] - Bel[.C,(x) n nogood]

1 - Bel [nogood]

Alternatively, if we use the relation

e(A n B) = e(A) + e(B) - e(A u B),

we obtain

B l(1
-, d) _ Bel[.C,(x) U nogood] - Bel[.C,(x)]

e x nogoo - B l[d] , 1 - e nogoo

which is Dempster's Rule of Conditioning.

(5)

(6)

3. Convert the Boolean expression 5 or 6 into a form such that all the L, are mutually
exclusive or independent, which we call MEI (mutually exclusive/independent) form.

4. Convert the Boolean expression into an expression representing a Dempster-Shafer
mass function, using the intersection formula

(7)

and union formula

(8)

5. Substitute mass functions for the A. 's to calculate the mass function for x.

Note that in Steps 1 to 4 we manipulate Boolean expressions. We refer to steps 3 and 4
as a Network Reliability computation, and show several more efficient algorithms, as well
as some approximation algorithms, for this computation in Section 4.

3 EXTENSION OF ATMS WITH DEMPSTER SHAFER THEORY

3.2.1 Examples

Example 1:
Consider a following example without nogoods: the set of clauses is

Xi

Xe
Xi I\ Ai => X2

X2 I\ A2 => Xs
xi I\ As => x,
X4 I\ A, => Xs

x2 I\ x, I\ As => xs

riv Ai v x2

~v A2 v xs
xi V As V x,
X4 VA, V Xs

x2 V x;. V As V xs

The masses assigned to the assumptions are:

I ASSUMPTION I MASS I
Ai .5

A2 .7
As .8
A4 .6
As .9
A6 .4

The labels the ATMS assigns to the literals are:

I LITERAL I LABEL

X2 {Ai}
Xs {A1, A2}
X4 {As}
Xs { {As, A4}, {A1, As, As}}

13

The computation of the Boolean expressions for (and hence Belief assigned to) these
labels is trivial except for the expressions for xs, which we now show:

Bel(xs) - Bel ({{As, A,}, {Ai, As, As}})
Bel((As I\ A,) V (Ai I\ As I\ Ai;))
Bel(As I\ (A, V Ai I\ Ai;))

- e(As)Bel(A, V Ai I\ As)
e(As)(e(A,) + e(Ai)e(Ai;) - e(Ai)e(A,)e(As))

The Belief assigned to the literals is:

3 EXTENSION OF ATMS WITH DEMPSTER SHAFER THEORY 14

I LITERAL I BELIEF I
X2 .5

X3 .35

X4 .8
X5 .62

Example 2:
Consider the introduction of a new clause x2 I\ Ae => ~, such that e(Ae) = 0.4. Since

x 4 and z.- both are in the same context, a nogood is formed:

Nogood - .C(xe) I\ .C(Te)
{As}/\ {Ai, As}
{A1, As,A6}

The new assignment of Belief to literals is:

I LITERAL I BELIEF I
"nogood" .16

X2 .4
Xs .28
X4 .76

X5 .15

Example 3:
Suppose instead that the clause X4 I\ A1 => Xs such that e(A1) = 0.4 is introduced.

Similar to Example 2, a nogood {As, A1 } is created and the revised Belief assignment is
given by

I LITERAL I BELIEF I
"nogood" .32

X2 .50

Xs .35
X4 .71
X& .55

For this application, we are primarily interested in determining the mass assigned to
partial solutions (i.e. interpretations), so that only the most likely partial solutions will be
explored. This will enable the Problem Solver to reduce the number of assumptions, and
thus reduce the size of the problem solved by this extended ATMS. This can be done, for
example, by (1) deferring the exploration of contexts of low likelihood to produce complete
solutions, and (2) "ignoring" certain assumptions which are not members of the current
contexts8

, effectively reducing the size of the search space.
8 One method is to garbage collect these assumptions along with other useless assumptions, as described

in [13].

4 IMPLEMENTATION ISSUES-NETWORK RELIABILITY COMPUTATION 15

4 Implementation Issues-Network Reliability Com-
putation

4.1 Complexity Considerations

Up to the identification of the label set and of the set of interpretations (i.e. the minimal
polynomial 1), the computational efficiency of our method relies on the ATMS being
able to avoid significant regions of the search space. Provan, in [31] and [33] shows that,
in the worst-case, the problem of label generation is of exponential complexity, and the
interpretation construction problem is NP-hard.

On top of this, computing the DS mass function either from the ATMS label set s• or
from the minimal polynomial 1 is of complexity exponential in the number of literals in
the Boolean polynomial F. This problem, referred to as the Network Reliability problem,
has been studied extensively.

From this summary of the complexity of the sub-problems of computing DS Belief
functions using the ATMS, we see that it is necessary to solve two (and possibly three)
problems of exponential worst-case complexity, label generation, interpretation construc­
tion (which is not necessary) and network reliability. Hence, using the ATMS to compute
DS Belief functions encounters an exponential worst-case complexity similar to that which
has prevented implementation of the full DS theory up until now. If one is using the
ATMS already, DS Belief functions may be computed or approximated efficiently, given
an efficient network reliability algorithm.

The difficult part of the network reliability problem is transforming a DNF Boolean
function F into mutually exclusive/independent (or series/parallel) form, or some equiv­
alent form from which the DS weights can be simply computed. The actual assignment
of DS mass functions to assumptions and computation of mass functions once F is in the
appropriate form is trivial.

Since we are interested only in relative ranking of interpretations, we have designed
the system to efficiently compute approximate solutions using heuristics which maintain
the relative ranking (with respect to DS masses) of the interpretations. Consequently, by
determining approximate rather than exact solutions to the network reliability problem,
the system avoids the intractability associated with computing the exact solution.

We now briefly review the Network Reliability problem, and show the approximation
we use.

4.2 Network Reliability

In describing the Network Reliability problem, we need to introduce some graph-theoretic
notation, such as that defined in any text on graph theory, e.g. [46]. This is because
many network reliability solution methods are based on exploiting the properties of the

4 IMPLEMENTATION ISSUES-NETWORK RELIABILITY COMPUTATION 16

underlying graph. In making these· definitions we show the equivalence of the graph­
theoretic and logical descriptions of the problem.

We can consider the Boolean function F as defining a graph 9 (V, E) composed of
vertices V and edges E. More precisely, a Boolean literal Xi corresponds to an edge
Ei, and a logical connective (v, A) corresponds to a vertex that joins two or more edges
between the corresonding components as follows: a/\ connecting two literals (or clauses)
corresponds to an edge connecting two vertices (or vertex sets) in series, and a V connecting
two literals (or clauses) corresponds to an edge connecting two vertices (or vertex sets)
in parallel. The direction of the edges corresponds to the direction of implication for the
clauses.

Further, we assume each edge is associated with a statistically independent random
variable with only two possible states, functioning or not functioning. An event is a state
assignment to literals or an instantiation of variables, such as x1 to Xn-l functioning and
Xn not functioning. There are 2n possible events. We assign to each edge a [O, 1] weight,
e : E ~ [O, 1], which is the probability that the edge functions properly. This probability
corresponds to the weight assigned to the ATMS assumption that the edge represents. We
will refer to a system as a set of clauses which can be thought of as a graph or a Boolean
polynomial.

A path consists of a set of connected edges. We call e a path between v~rtices s and t in
the event that all edges in the path are functioning. A minimal path is a path the deletion
of any edge of which renders the path disconnected. A circuit is a closed path. A subgraph
9' (V', E') of 9 (V, E) is a graph such that V' ~ V and E' ~ E. A graph is connected if it
has at least one path between every pair of vertices. A cutset of a graph 9 is a subgraph
of 9 the removal of any edge (or vertex) of which renders 9 disconnected. In the following
we refer only to edge cutsets, as we are concerned only with models in which edges fail.9

A tree T is a subgraph with no circuits. A max-tree T• is a tree consisting of I V I -1
edges. The order of a vertex is the number of edges incident on it. The order of a graph
is the order of a vertex if all vertices have the same order, of the average of the orders of
all vertices. A p-graph is a subgraph 9' (V', E') of 9 (V, E) such that each e E E' is on a
path from a source vertex s to a terminal vertex t. For example, the simplest p-graph is
an s - t path. An acyclic p-graph is a p-graph with no cycles.

The reliability R(s, t) is the probability that an s - t path exists, and we define this
version of the reliability problem as follows:

Reliability Problem: Given a graph 9 (V, E) and a probability assignment e to E, com­
pute the probability that a functioning path exists between two distinguished vertices s
and t.

We note that there are many other graph-theoretic definitions of reliability, such as:

• the reliability between a distinguished vertex s and a set K ~ V, s ft. K, of vertices,

9 Reliability models in which vertices, or both edges and vertices fail have also been explored.

4 IMPLEMENTATION ISSUES-NETWORK RELIABILITY COMPUTATION 17

Table 1: Correspondence between Boolean and Network Reliability forms

I Boolean Form I Network Reliability Form I
Xi (1 - e(xi))
Xi e(xi)
A arithmetic product
V arithmetic sum

• the reliability between all pairs of vertices.

The reliability problem defined here is NP-hard [4]. The complexity of other definitions
of the reliability problem has been examined in [44], [5], [36] and [4]. In general, all
reliability problems, except for a few special cases, are NP-hard in the worst-case.

4.3 Relation of the ATMS to Graph Theory /Network Reliability

In this section we outline the relationship between the problem we compute with the ATMS
and the network reliability problem. We use the labels for the literals (as generated by the
ATMS) to compute the DS Belief function, which is a reliability measure.

We have already shown how a Boolean polynomial F defines a graph. Now, we outline
the graph-theoretic equivalent of the labels. But instead of the label, we will use a closely­
related type of clause, the prime implicate. A label is just another means of representing
a prime implicate II, and II is the representation necessary to compute the DS Belief
function (or reliability). Using the notion of prime implicate defined in Section 2.2, it can
be shown that the set of prime implicates for F, II (X), defines a set of paths through g.
If F is expressed in DNF, the set of prime implicants for X is equivalent to the cut sets
for the corresponding graph.

The prime implicates contained in the minimal polynomial 1 are non-unique and hence
are equivalent to a non-unique minimal path set. The use of a stronger minimisation
criterion, that of s-coherent irredundancy, can produce a unique minimal polynomial. An
s-coherent polynomial is a polynomial consisting of prime implicates containing negated
literals only.10 An a-coherent irredundant polynomial lac is unique and hence defines
the unique minimal path set. If lac is in DNF, it defines the unique minimal cut sets.
Hence lac defines a graph consisting of only and all the minimal paths, and is the minimal
representation of the graph for the purposes of computing the network reliability. That
is, 1,c and the equivalent system reliability formula are termwise identical; the operations
necessary to convert 1.c (in CNF) to a network reliability formula are given in Table 1.

10See [9] for a full definition.

4 IMPLEMENTATION ISSUES-NETWORK RELIABILITY COMPUTATION 18

Similar to there being a number of prime implicates exponential in the number of
literals or clauses, the number of s -t path-/cutsets is an exponential function of IV I and
IEI,

We use this subset of correspondences to illustrate how the graphical and logical meth­
ods are just two different ways of looking at the same problem. We now examine methods
of obtaining a Boolean polynomial equivalent to 1.c•

4.4 Methods of Solving Network Reliability Problems

The Network Reliability problem has been studied extensively in the literature. Several
methods have been developed for computing network reliability. The computational ap­
proaches fall into three categories of techniques:

1. Path/cutset enumeration methods

2. Pivotal factoring/decomposition

3. Topological decomposition.

Each approach simply ensures that conditional dependencies are taken care of in the
reliability computation. For example, the path/ cutset enumeration apprdach ensures that
no pair of paths/cutsets have an overlap (i.e. must not share a sub-path), which would
make the pair conditionally dependent. The pivotal decomposition method ensures that
no event (in this case an edge) is double-counted by expanding the reliability fromula
R(s, t) based on on two disjoint events, an edge working R(s, t I E;) and it not working
R(s, t IE;), as shown in Equation 13. We discuss each of these techniques in turn.

4.4.1 Path/Cutset Enumeration

The path/cutset enumeration methods begin with the (minimal) set of paths/cutsets, and
expand them so that they are conditionally independent. The two expansion methods used
are:

1. Inclusion/ exclusion

2. Sums of Disjoint products

We note that the input to algorithms based on these methods, minimal paths/cutsets,
corresponds to the set of prime implicates/implicants.

The reliability of ans - t path R(s, t) is given by the sum of the probabilities that the
r paths betweens and t, (e1, ... ,e,.) exist:

,.
R(s, t) - e(U et),

k=l

..

4 IMPLEMENTATION ISSUES-NETWORK RELIABILITY COMPUTATION 19

Enumerating the minimal cutsets of a graph is equivalent to enumerating the minimal
paths, by Menger's Theorem (see [46]). We note that for any graph ,9(V,E), there are
2IEI-IVl+2 possible paths between any nonadjacent pair of nodes; for large graphs, the
number of paths or cutsets is very large.

The cutset-based reliability of ans - t path R(s, t) is given by

N

R(s,t) = 1- P(LJ C!,t), (9)
i=l

where C!,t is the event that all edges fail in the i-th prime cutset and N is the total
number of prime cutsets with respect to nodes sand t. As in the computation of R(s, t) by
path enumeration, each cutset must be conditionally independent. For a graph ,9(V, E),
the order of the number of cutsets is 2IVl-2, as compared to 2IEI-IVl+2 paths. For graphs
with average degree ~ 4, I E I> 2 I V I and 2IEI-IVl+2 > 2IVl- 2, i.e. there are more paths
than cutsets. Hence, for such graphs enumerating the cutsets is more efficient.

Inclusion/exclusion (IE)
This method is based on the following simple expansion of parallel and series links:

• parallel links are computed using

• and series links using

Given a path set (Gi, ... , Gr), the reliability is given by

r r

R(,9) I:e(t'i)- I:I:e(eie;) + ... (10)
i=l i=l i<i

Here R(.9) means the general network reliability given a any network measure, i.e.
not necessarily a measure such as an s - t path. We note that this way the technique
demonstrated in Section 3.2.1. As shown by equation 10, the terms alternate in sign, with
the terms with - signs being the double-counted terms. An example of this enumeration
technique is [22].

Sum of Disjoint Products (SDP)
This method is based on expanding all parallel paths using the following formula:

(11)

4 IMPLEMENTATION ISSUES-NETWORK RELIABILITY COMPUTATION 20

Figure 4: Bridge network: Example of a non-MEI formula
Xz

Thus, for a system with s paths, we obtain

(12)

This method generates s terms for s path sets, but takes exponential time to generate
each term in the worst case. We note that an SDP reliability formula contains fewer terms
than the equivalent IE formula for all but the smallest systems, and for large systems is a
factor of 10 smaller.

This technique was first explored by Fratta and Montanari [17], and then improved
upon by Grnarov et. al [20] and Abraham (1]. The Abraham method has since been
improved by Locks [24] and Beichelt and Spross [7].

4.4.2 Pivotal Decomposition/Factoring

This method can be used for any graph (formula), and is especially useful for graphs
(formulae) which ca.n not be reduced to a set of series/parallel (MEI) paths, such as that
representing the bridge network shown in Figure 4. This method is based on the factoring
theorem, which "factors out" edges in a graph by conditioning on such edges. Thus, it
conditions on the functioning of some edge E; such that

R(s,t) = p,R(s,t IE;) + (1- Pe)R(s,t IE;), (13)

where Pe is the probability that edge E; is functioning. H we use this method to create
an MEI graph from a non-MEI graph, we choose an edge which prevents enumeration of
MEI paths. Edge Es in Figure 4 corresponds to the edge which reduces the graph to MEI
form using the factoring theorem.

We note that the input to this method is either a graph or Boolean formula, i.e. it
does not need the set of minimal paths or cutsets. An examples of this technique is (28].

4 IMPLEMENTATION ISSUES-NETWORK RELIABILITY COMPUTATION 21

4.4.3 Topological Decomposition

Topological decomposition is a method introduced by Satyanarayana and Prabhakar [39)
which reduces a graph g to its p-acyclic subgraphs. The system reliability can be computed
directly from the set of p-acyclic subgraphs, due to the direct correspondence between reli­
ability formula and p-acyclic subgraphs. This method is related to the Inclusion/Exclusion
method, but it generates only the noncanceling terms of equation 10. Hence, it is more
efficient than IE with respect to the number of terms generated as it generates only half
the terms of equation 10. This algorithm is based on domination theory (see [2], [45]), and
an explanation of it is beyond the scope of this paper.

4.4.4 Applying Exact Methods

Given that the ATMS has already computed the (minimal) prime implicates, we use net­
work reliability methods based on path/ cutset enumeration or pivotal factoring, since their
input can be a set of prime implicates. The path/cutset enumeration methods can use
either the prime implicates IT (from which the ATMS labels are derived) or the minimal
prime implicates IT• (derived from the minimal polynomial 1). We now briefly discuss the
tradeoff involved in using IT or IT•.

IT rr is used, the ATMS must convert IT to IT•, which is an NP-hard problem. In
generating the reliability formula R(9), there is an exponential increase in the number of
terms. In this ca.se I R(9) I= 0(21n•1).

IT IT is used, the ATMS does not need to convert IT to IT•. However, typicalJy I II l~I
IT• I, and the resultant reliability formula will contain significantly more terms, and be
more computationally expensive to compute. We have yet to determine which approach
is more efficient in general.

In general, of the Path/Cutset methods, SDP algorithms are more efficient than IE
algorithms because fewer terms are generated. Locks [25] has shown that the revised
Abraham method is the best SDP algorithm known to date. No detailed comparisons of
algorithms based on Path/ Cutset and Pivotal Decomposition/Factoring methods exist, to
the author's knowledge.

We also advocate using restrictions wherever they are applicable to reduce the com­
putational complexity. For example, in the case of hierarchical evidence, the algorithm
of Shafer and Logan [41] can be used, giving a complexity only linear in the number of
elements of 9, instead of exponential for the general case of non-hierarchical evidence.

4.4.5 Approximation Methods

To avoid the exponential complexity associated with computing exact reliability formulae,
various approximation methods have been proposed. We outline a few approximation
methods based on path/cutset enumeration methods, since these are the methods which

4 IMPLEMENTATION ISSUES-NETWORK RELIABILITY COMPUTATION 22

most concern us, given that these methods can accept prime implicate input (i.e. use the
ATMS labels).

One such approximation method is based on tree-enumeration technique of Fu [18]. Fu
set Prob(Tt) to be the probability that tree Tt exists, and for edge set {E1, ... , E, },

Prob(Tt) = IT fl;•
; such that E;ET;"

Hence the reliability of graph g is approximated by

ITI
Prob(9) ~ L Prob(Tt).

i=l

For the trees we substitute the minimal paths (prime implicates) ei, ... , c, contained
in the minimal polynomial 1 to obtain an upper bound U - Prob(9) for the reliability
expression Prob(9) as given by Equation 10. This method ignores inter-path conditional
dependencies, and its inaccuracy is dependent on the degree of such dependencies. Using
this method, it can be shown that

r

u - Prob(9) ~ L Prob(ci) = det(M RM'), (14)
i=l

where M is the node incidence matrix of 1, R is the diagonal edge reliability matrix, and
M' is the transpose of M. In many cases both M and R are sparse, and so sparse matrix
methods can be used to speed computations further.

Similarly, a lower bound can be obtained as

r r

L - Prob(9) = L Prob(ci) LL Prob(eie;), (15)
i=l i=l;<i

These bounds can be improved by including more terms from the expansion given by
Equation 10, as (14) corresponds to the first RHS term of (10). The extent of the expansion
determines the accuracy of the approximation. Using this IE expansion method, Fong and
Buzacott [16] describe algorithms for improving the bounds given by (14) and (15) through
similar partial expansions of (10).

Alternatively, the set of prime implicates in conjunction with the prime implicants can
be used to obtain upper and lower bounds on R(g), as noted by Chu and Apostola.kis [9].
If we order the set of prime implicates as II = {Iii, II2 , ... , Ilu}, and the prime implicants
as r = {r 1,r2 , ••• ,r0 }, R(.9) can be bounded by:

(16)

5 CONCLUSIONS 23

where n indicates a product and U indicates a sum. The drawback of this method for this
ATMS application is that it entails computation of r, which is non-trivial.

Chu and Apostolakis also describe several other bounds on R(9) based on II and
r. Provan [35] and Locks [26] also detail several reliability bounds. We note that the
evaluation of the bounds described here (e.g. in terms of accuracy and increased efficiency
over exact values), and the determination of better bounds is still an open research issue.

In general, the choice of approximation technique is dependent on how close the approx­
imation is required to be to the exact value, and to some extent on problem characteristics.
At present, we are using the bounds given by (14) and (15), primarily because of their
computational simplicity and because our present application requires only ranking of
solutions, hence making fairly rough estimates of Belief assignments sufficient.

5 Conclusions

We have described an extended ATMS suitable for solving complex diagnostic problems.
This TMS incorporates the full DS theory in a semantically clear and efficient manner.
Such an extension allows ranking of competing solutions and exploration of only the "most
likely" solutions by the Problem Solver.

This extension has moderate computational requirements over and above that of the
ATMS. The efficiency of computing DS weights from ATMS labels relies on obtaining
approximations to the weights. This is sufficient for the diagnostic application we propose,
as all we require is a relative ordering of the interpretations. Exact DS weights can be
computed from ATMS labels, but at significantly greater computational expense.

Acknowledgements: Johan de Kleer has provided helpful comments. Judea
Pearl's discussion of the semantics of the ATMS and DS theory have helped refine my un­
derstanding of their correspondence, as have discussions of network reliability algorithms.

References
[1] J.A. Abraham. An Improved Method for Network Reliability. IEEE Trans. Reliabil­

ity, R-28:58-61, 1979.

[2] A. Agrawal and R.E. Barlow. A Survey of Network Reliability and Domination The­
ory. Operations Research, 32(3):478-492, 1984.

[3] J.F. Baldwin. Evidential Support Logic Programming. Fuzzy Sets and Systems, 24:1-
26, 1985.

[4] M.O. Ball. Computational Complexity of Network Reliability Analysis: An Overview.
IEEE Trans. Reliability, R-35:275-285, 1986.

REFERENCES 24

[5] M.O. Ball. The Complexity of Network Reliability Computations. Networks, 10:153-
165, 1977.

[6] J.A. Barnett. Computational Methods for a. Mathematical Theory of Evidence. In
International Joint Conference on Artificial Intelligence, pages 868-875, 1981.

[7] F. Beichelt a.nd L. pross. An Improved Abraham-Method for Generating Disjoint
Sums. IEEE '.Irana. Reliability, R-36:70-74, 1987.

(8] C. Chang and R.C. Lee. Symbolic Logic and Mechanical Theorem Proving. Academic
Press, NY, 1973.

[9] T.L. Chu and G. Apostolak.is. Methods of Probabilistic Analysis of Noncoherent Fault
Trees. IEEE 1rans. Reliability, R-29:354-360, 1980.

[10] B.D. D'Ambrosia. Combining Symbolic and Numeric Approaches to Uncertainty
Management. In AAAI Uncertainty in Artificial Intelligence Workshop, pages 386-
393, Morgan Kaufmann, 1987.

[11] R. Davis. Diagnosis based on structure and function. In Proceedings of the American
Association for Artificial Intelligence, pages 137-142, 1982.

[12] R. Davis. Diagnostic reasoning based on structure and behaviour. Artificial Intelli­
gence Journal, 24:347-410, 1984.

[13] J. de Kleer. An Assumption-based TMS. Artificial Intelligence Journal, 28:127-162,
1986.

[14] J. de Kleer and B. Williams. Diagnosing multiple faults. Artificial Intelligence Jour­
nal, 32:97-130, 1987.

[15] J. Doyle. A Truth Maintenance System. Artificial Intelligence Journal, 12:231-272,
1979.

[16] C.C. Fong and J.A. Buzacott. Improved Bounds for System-Failure Probability. IEEE
Trans. Reliability, R-36:454-458, 1987.

[17] L. Fratta and U. Montanari. Boolean Algebra Method for Computing the Terminal
Reliability in a Communications Network. IEEE Trans. Circuit Theory, CT-20:203-
211, 1973.

[18] Y. Fu. Applications of Topological Methods to Probabilistic Communications Net­
works. IEEE Trans. Communication Technology, 13(3):301-307, 965.

[19] J. Gordon and E. Shortliffe. A Method for Managing Evidential Reasoning in a
Hierarchical Hypothesis Space. Artificial lntelUgente Journal, 26:323- 357, 1985.

[20] A. Gmarov, L. Kleinrock, and M. Gerla. A New Algorithm for Network Reliability
Computation. In Proc. 1919 Computer Networking Symposium, pages 17-20, 1979.

[21] L.J Holtzbla.tt. Diagnosing Multiple Failures Using Knowledge of Component State.
In Proc. IEEE Con/. on AI Applications, pages 139-143, 1988.

REFERENCES 25

[22] Y. Kim, K. Case, and P. Ghare. A Method for Computing Complex System Reliabil­
ity. IEEE Trans. Reliability, R-21(4):215-219, 1972.

[23] K. Blackmond Laskey and P.E. Lehner. Belief Maintenance: An Integrated Approach
to Uncertainty Management. In Proceedings of the American Association/or Artificial
Intelligence, page , 1988.

[24] M.O. Locks. A Minimizing Algorithm for Sum of Disjoint Products. IEEE Trans.
Reliabilitv, R-36:445-453, 1987. .

[25] M.O. Locks. Recursive Disjoint Products: A Review of Three Algorithms. IEEE
Trans. Reliability, R-31:33-35, 1982.

[26] M.O. Locks. Recursive Disjoint Products, Inclusion-Exclusion, and Min-Cut Approx­
imations. IEEE Trans. Reliability, R-29:368-371, 1980.

[27] D. McAllester. Reasoning Utility Package User's Manual. Technical Report AIM-667,
MIT AI Laboratory, 1982.

[28] K.B. Misra. An Algorithm for the Reliability Evaluation of Redundant Netowrks.
IEEE Trans. Reliability, R-19:146-151, 1970.

[29] J. Pearl. Non-Bayesian Formalisms for Managing Uncertainty. Technical Report R-
106, UCLA Department of Computer Science, 1988.

[30] H. Prade. A Computational Approach to Approximate and Plausible Reasoning with
Applications to Expert Systems. IEEE Trans. PAM!, 7:260-283, 1985.

[31] G. Provan. A Complexity Analysis of Assumption-Ba5ed Truth Maintenance Sys­
tems. In B.M. Smith and G. Kelleher, editors, Proceedings of a Workshop on Truth
Maintenance Systems, Ellis Horwood, 1988.

[32] G. Provan. Complexity Analysis of Multiple-Context TMSs in Scene Representation.
In Proceedings of the American Assocfotionfor Artificial Intelligence, pages 113- 177,
1987.

[33] G. Provan. Computational Complexity of Truth Maintenance Systems. Technical
Report 88-11, University of British Columbia, Department of Computer Science, 1988.

[34] G. Provan. Solving Diagnostic Problems Using Extended Truth Maintenance Systems.
In European Conference on Artificial Intelligence, pages 547-552, 1988.

[35] J .S. Provan. Bounds on the Reliability of Networks. IEEE Trans. Reliability, R-
35:260-268, 1986.

[36] J.S. Provan and M.O. Ball. The Complexity of Counting Cuts and Computing the
the Probability the a Graph is Connected. SIAM J. Computing, 12:777-788, 1983.

[37] J.A. Reggia, D.S. Nau, and P.Y. Wang. Diagnostic Expert Systems Based on a Set
Covering Model. Int. J. Man-Machine .Studies, 19:437-460, 1983.

REFERENCES 26

[38] R. Reiter and J. de Kleer. Foundations of Assumption-based Truth Maintenance Sys­
tems: Preliminary Report. In Proceedings of the American Association for Artificial
Intelligence, pages 183-188, 1987.

[39] A. Satyanarayana and A. Prabhakar. New Topological Formula and Rapid Algorithm
for Reliability Analysis of Complex Networks. IEEE Trans. Reliability, R-27:82- 1001

1978.

[40] G. Shafer. Mathematical Theory of Evidence. Princeton University Press, 1976.

[41] G. Shafer and R. Logan. Implementing Dempster's Rule for Hierarchical Evidence.
Artificial Intelligence Journal, 33:271-298, 1987.

[42] E.H. Shortliffe and B.G. Buchanan. A Model of Inexact Reasoning in Medicine. In
Mathematical Biosiences, pages 351-379, 1975.

[43] T. Thompson. Parallel Formulation of Evidential-Reasoning Theories. In Interna­
tional Joint Conference on Artificial Intelligence, pages 321- 327, 1985.

[44] L. Valiant. The Complexity of Enumeration and Reliability Problems. Siam J. Com­
puting, 410--421, 1979.

[45] R.R. Willie. A Theorem Concerning Cyclic Directed Graphs with Applications to
Network Reliability. Networks, 10:71- 78, 1980.

[46] R.J. Wilsori. Introduction to Graph Theory. Longman, second edition, 1979.

[47] L. Zadeh. Review of Shafer's Mathematical Theory of Evidence. Artificial Intelligence
Magazine, 5:81-83, 1984.

