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Abstract 

We describe the use of efficient, extended Truth Maintenance Systems (TMSs) for 
diagnosis. We show that for complicated diagnostic problems, existing ATMSs need 
some method of ranking competing explanations and pruning the search space in order 
to maintain computational efficiency. We describe a specific implementation of an 
ATMS for efficient problem solving that incorporates the full Dempster Shafer theory 
in a semantically clear and efficient manner. Such an extension allows the Problem 
Solver to rank competing solutions and explore only the "most likely" solutions. We 
also describe several efficient algorithms for computing both exact and approximate 
values for Dempster Shafer belief functions. 
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1 Introduction 

1.1 Diagnostic Problems 

Diagnostic reasoning is the process of inferring a set of best explanations for a body of 
evidence. It may be thought of as the dual to the deductive process of finding the set 
D of facts derivable from a set of facts X, i.e. g(X) = D. In other words, we want 
some inverse function g-1 such that g- 1(D) = X. We call such a definition of diagnosis 
functional, as Dis a function of X, or in other terminology D is entailed by X, X FD. 
We call a non-functional form of diagnosis consistency-based. Here, the functional or 
entailment relationships do not necessarily hold: g(X) f. D, or X ~ D. Instead, we have 
a weaker, consistency-based notion /(X) C><I D, meaning that D is consistent with X, i.e. 
you cannot derive the negation of any clauses in D. There are well-known techniques 
for the primal (deduction) problem, such as resolution ([8] etc.), but the dual techniques 
are less well-researched. This g-1 (D) = X paradigm covers a wide range of problems 
in Artificial Intelligence. For example, it covers as seemingly disparate areas as circuit 
diagnosis and computer vision. As an example of a typical diagnostic problem, consider 
the well-known circuit consisting of multipliers M1 , M2 and Ms and adders A1 and A2 , as 
shown in Figure 1. The output at Fis 10 instead of 12, meaning that some combination(s) 

Figure 1: Circuit with faulty components 
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of M1, M2, Ms, A1 and A2 is(are) faulty. There are a total of 26 = 32 combinations of 
faulty components. Using a consistency-based approach, taking observations at points like 
X, Y or Z narrows the set of diagnoses consistent with the observations and guides future 
decisions about where to make further readings. A solution consists of a set of faulty 
multipliers and adders consistent with all the observations. 
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As a second example, consider the high level vision problem of generating 3D interpre­
tations from 2D line drawings. Ta.king a functional approach, the task, roughly speaking, 
is to identify the objects in a scene which have caused a given pattern of lines in an image. 
In a sense, the task is to "diagnose" the image as being caused by some set of objects. The 
primal problem, i.e. g(X) = D, is a computer graphics problem, namely to generate a 2D 
projection of a set of 3D objects in some orientation. Well-known, efficient techniques exist 
for this task for any objects and orientations. The dual high level vision problem, which 
we defined earlier, is significantly more difficult, and at present is limited in the type of 
objects which can be identified. 

There have been several approaches to diagnosis, in fields such as circuit design {[11], 
[14], [12]) and medicine ([37], [42]). Two important goals of any diagnostic system are 
efficiency and the ability to generate the best explanations ( of which there may be multiple 
interacting ones) for the observed symptoms. These two goals conflict with one another, 
as the more powerful the diagnostic system ( e.g. generating all explanations vs. a single 
one) the more computationally expensive it becomes. 

We argue that diagnostic systems are most efficient when (1) they incorporate both 
numeric and non-numeric solution methods, and (2) use a heuristic decision procedure 
to guide the explanation-generation (i.e. prune the number of possible partial explana­
tions), rather than enumerating all potential explanations and then optimizing over the 
explanation set. Many model-based reasoning systems generate all possible explanations 
before selecting the "optimal" explanations, e.g. [14], [37]. However, although the causal 
approach enables a more complete description of the ca.uses for a body of evidence, it 
is computationally less efficient than the evidential approach, especially if it uses binary 
weights (or uncertainty representation scheme) . For complex reasoning tasks, such an ap­
proach can be computationally infeasible because of the large search space which ma.y be 
generated [32]. Pruning unpromising solutions using a numerical weighting system and an 
appropriate heuristic for defining "optimality" can improve efficiency and ensure that the 
optimal solutions are always found. 

1.2 Overview 

We describe a specific implementation of a problem-solving tool, the Assumption-based 
TMS (ATMS), suitable for complex diagnostic problems. This extended ATMS computes 
Dempster-Shafer (DS) mass functions for hypothesised diagnoses without compromising 
the semantic clarity or computational efficiency of present ATMSs, e.g. [13]. Existing 
ATMSs cannot rank hypotheses since they are limited to binary truth values. The incorpo­
ration of DS mass functions allows hypotheses to be ranked and offers additional efficiency 
improvements, such as the ability to prune the search space by identifying highly unlikely 
partial solutions. We then show that this extended ATMS is a semantically clear system 
which is more efficient than existing diagnostic uses of the ATMS, such as the General 
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Diagnostic Engine (GDE) (14] and G;MODS [21]. 
This paper is organised as follows. In Section 2 we introduce the terminology and 

definitions used in the rest of the paper. In specific, we describe existing diagnostic uses of 
the ATMS, showing the drawbacks of such systems. We then review the theoretical basis of 
the ATMS and DS theory. We also discuss previous implementations of DS theory, and note 
that, as opposed to this implementation of the full DS theory, all previous implementations 
were of restrictions of DS theory because of the intractability of computing DS weights. In 
Section 3 we describe the semantic correspondence between the ATMS a.nd DS theory. We 
give a small example of how DS weights can be computed from ATMS labels. In Section 4 
we briefly outline the implementation of an extended ATMS for diagnosis. 

2 Preliminaries 

2.1 Existing Diagnostic Uses of TMSs 

Truth Maintenance Systems (TMSs) are an AI reasoning tool which have been used for 
a variety of applications. We represent the input alphabet (using terminology introduced 
in [38]) by a set X = {x1 , ... , xn} of propositional symbols. A propositional literal is a 
propositional symbol or its negation. A TMS records dependencies among a set of facts 
to maintain a consistent (set of) vaJuation(s) for the fact set as the fact set changes over 
time. A fact is a propositional Horn clause consisting of a propositional literal or a finite 
disjunction of propositional literals with no literal repeated, e.g. riv x2 V x3 V ... V Xk V x, k ~ 
0.2 A valuation is a truth assignment (believed or not believed) with respect to a given fact 
set truth assignment and set of dependency records. Xi is dependent on x; if the valuation 
of Xi changes as the valuation of x; changes. A TMS uses such dependency information to 
rule out regions of the search space and to efficiently indicate necessary database changes 
when contradictions are discovered. 

There are two types of TMSs, Justification-based TMSs (JTMS) (e.g. [27], [15]) and 
Assumption-Based TMSs (ATMS) (e.g. [13]). The ATMS has received the most attention 
recently, and has proven to be a powerful tool for diagnosis, since it enables multiple in­
teracting diagnoses to be identified, can perform incremental diagnoses, and records the 
complete problem structure, among other capabilities. One such application, GDE [14], 
can simultaneously find a.11 sets of faulty circuit components which explain the observations 
for circuits as in Figure 1. In GDE, the ATMS identifies hypothesised sets of circuit com­
ponents whose faulty behaviour could cause discrepancies between predicted and observed 
circuit measurements. Entropy values are assigned to these faulty component sets to guide 
future measurements and incrementally narrow the set of hypotheses. 

Although GDE offers several advantages over previous diagnostic systems, such as its 

2 We ca.n represent any fact as either Xi :) Xi or x, V xi· We use the latter method by convention. 
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domain independence and ability to identify all multiple, interacting causes, there are 
several ways in which it can be improved, of which we mention two. First, a [0,1] uncer­
tainty representation scheme within the ATMS8 can allow a context pruning mechanism 
to prune all but the most likely contexts. This avoids a possible combinatorial explosion 
of the number of contexts caused by GDE's computation of all possible diagnoses. Such 
a combinatorial explosion can occur when diagnosing complex circuits, due to the ATMS 
needing to create a huge number of contexts to represent a large number of partial diag­
noses, as shown by Provan [32]. Hence, some pruning mechanism is needed to avoid this 
combinatorial explosion. The binary weights in an ATMS cannot rank contexts represent­
ing partial solutions, e.g. in terms of a criterion such as "likelihood to generate a complete 
solution". Second, for complex circuits computational inefficiency can occur because GDE 
must repeatedly generate the current set of diagnoses ( called candidates) from inconsisten­
cies in the circuit ( conflict sets), a computationally expensive process. It would be better 
to generate the diagnoses directly. 

2.2 ATMS Review 

The ATMS records dependencies in terms of a distinguished subset A~ X of literals called 
assumptions. We refer to an environment E as a set of assumptions and a context C as 
the set of literals derivable from the assumptions in E given the facts. 

The input consists of a set X ={Xi, ... , X1} of facts, referred to in [13] as justifications. 
We call the conjunction of the X, 's a Boolean polynomial function4 F, i.e. F = "•=l, ... ,1 X,. 
We note that there may be many other polynomials F' which also compute such a partially 
specified Boolean function F, where a polynomial F' computes F if F'(x) = F(x) for every 
instantiation of x. 

Assumptions are the fundamental literals with which the derivation of all other literals 
are recorded. For example, in the network diagnosis problem described in Section 1.1, 
assumptions can be: (1) each component is working, represented by M 1, M 2 , etc. in 
Figure 1; or (2) input values, e.g. A = 3, B = 2, etc. 

Facts containing an unnegated literal, e.g. x1 V Ts V x6, have an antecedent (which 
can be a set of assumptions, as in x1 V x 3) justifying a consequent xs, which cannot be 
an assumption. We also call a derived literal the consequent of a fact. In the network 
diagnosis example, facts could be as follows: 

M1 V (X = 6) 

M2 V (Y = 6) 
A1 V (F = 6). 

3 1n GOE, the ATMS and the uncertainty representation module (which uses an entropy method) are 
separate. 

4 This is standard conjunctive normal form (CNF), the dual representation of traditional disjunctive 
normal form {DNF) Boolean functions. 
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The first of these facts means that if M1 is working, the reading at point X in the circuit 
should be 6. 

The ATMS's operation consists of two distinct phases, label manipulation and inter­
pretation construction, which we describe below. 

Label Manipulation: In the label manipulation phase, for each literal the ATMS 
maintains a label, which is a set of environments in which the literal can be proven. Each 
environment consists of the greatest lower bound (GLB) of assumption sets. In logical 
terms, each environment in the label for Xi is defined in terms of a minimal support clause 
e: for Xi, and is given by {/\; A; for some j I (VI Ai) is a minimal support clause of X}, 
using the definition of [38]. e. is a support clause for Xi with respect to X if X ~ ek, x, U €; 
does not contain a complementary pair of literals (i.e. both X; and x;), and XI= XiU ek• e; 
is a minimal support clause for x, with respect to X if no proper subset of €A: is a support 
clause for x, with respect to X. A closely related type of clause, a prime implicate,6 is 
defined as follows: a prime implicate of a set X of clauses is a clause 11' such that 

• XI= 11", and 

• For no proper subset 1r' of 11' does X I= 1r'. 

The relationship . between the label (minimal support clause) for a literal x and a prime 
implicate is given as follows [38]: € is a minimal support clause for x with respect to X iff 
there is a prime implicate 7r for X such that X E 71" and e = r. - x. 

Labels are assigned to a derived literal by taking the set union of all combinations of 
labels for its antecedents and then using subsumption to ensure the new label is repre­
sented in GLB form. Inconsistencies are removed by identifying the inconsistent sets of 
assumptions (nogoods) and removing these sets and their supersets from all labels. 

For example, if we have x 1 V x3 V X5, and x1 and x8 have labels {{A, B}, {B, C}} and 
{ {A}, {D, E}} respectively, then x6 is assigned the label {{A, B}, {B, C, D, E}}. 

The ATMS explores multiple solutions simultaneously, implicitly representing each 
solution with a context. A derived literal is contained in a context if the assumptions 
in at least one of the environments in its label are a subset of that context. Multiple labels 
for a literal x, indicate that x, is present in multiple contexts. However, this procedure does 
not explicitly calculate contexts, but manipulates labels. Contexts are explicitly computed 
by an interpretation construction algorithm. 

Interpretation Construction: In the second phase of operation, the ATMS con­
structs the interpretations to explicitly determine the set of "solutions" or maximal con­
texts. An interpretation is the smallest set of assumptions from which all literals in the 
context are derivable, and a context is maximal if it has no consistent superset contexts. 

5 The dual to prime implicate (in Boolean algebra) is called a prime implicant. We use the prime implicate 
terminology to avoid confusion between the dual representations. 
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In logical terminology, the ATMS computes the minimal or irredundant polynomial 1 
for F. IT we call assign a unit cost to each support clause ei, then we define the cost of 
F as the sum of the costs of the support clauses ei in F.6 A minimal polynomial 1 is 
a polynomial such that 1 computes F and no polynomial computing F has cost smaller 
than 1. 

2.3 Dempster-Shafer Theory Review 

Many good descriptions of Dempster-Shafer (DS) theory exist, e.g. [29], [30], [40], [43]. 
We state a few basic relationships, and refer the reader to the references. 

In DS theory, weights are assigned to subsets as well as elements of the set of propo­
sitions. A mass function {l assigns weights to proposition (} and proposition set ( or frame 
of discernment) 0 subject to the following properties: {l(fJ) E [O, 1], E 11ee ll(O) = 1 and 
e(0) = o. 

There are two measures in DS theory which are derived from this mass function: Belief, 
the degree of belief in proposition subsets from which (} can be proven: 

Bel(O) = L e(cp), (1) 
cp!;;II 

and Plausibility, the belief in subsets that do not disprove 0: 

Pls(O) = 1 - L ll(cp) = 1 - Bel(,O). (2) 
cp!;;-,11 

These two measures can be used as upper and lower bounds on the preference order: 

VOE 0, Bel(O) :::; ll(O) :::; Pls(O). (3) 

Dempster's Rule of Combination defines an updated belief function for a proposition (J 

provable in terms of (Ji and O; as: 

(4) 

The numerator assumes independence of propositions. 7 Viewed in set-theoretic terms, 
this is simply "summing" the mass functions of all sets in which (} is provable. The 
denominator of Equation 4 is a normalizing term, given that DS belief is assigned only to 
non-contradictory subsets. 

6 There are many ways to define such a cost function. For example, we can assign the cost of each support 
clause e, as the number of assumptions in e,. 

7 All approaches to reasoning with uncertainty, e.g. Bayes nets, etc. must make independence assumptions 
of one sort or another for computational tractability. 
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2.4 Related Implementations of Dempster-Shafer Theory 

Aside from recent ATMS implementations, only restrictions of DS theory have previously 
been implemented because of the computational complexity associated with computing 
mass functions. The number of subsets of 0 increases exponentially with I 0 I, and the 
normalizing function can sum over all of these subsets, so computing a single normalization 
function can be computationally expensive. The total space necessary to compute DS belief 
functions over a set of n propositions is 22

n. 

Examples of such restricted implementations include work by Shafer and Logan and 
by d'Ambrosio. Shafer and Logan [41) have implemented a restriction based on a proposal 
by Barnett [6], as well as a restriction based on a proposal by Gordon and Shortliffe [19]. 
D'Ambrosio [10] has implemented a restricted form of DS theory based on the Support 
Logic Programming of Baldwin [3]. D'Ambrosio attaches a simplification of the Dempster­
Shafer uncertainty bounds to ATMS labels. This approach evaluates the DS weights after 
the ATMS has symbolically determined the maximal context sets. The advantages of 
this approach include the ability to (1) rank solutions, (2) reason with non-independent 
evidence, and (3) analyse the certainty bound of any literal from multiple perspectives (if 
it exists in multiple contexts). 

We extend the ATMS with DS theory in a manner similar to that of d' Ambrosio. 
However, unlike d'Ambrosio's method, we use the full DS theory, base this extension upon 
semantic appropriateness (of which d'Ambrosio made no mention), use a different notion 
of uncertainty primitive, and discuss a more efficient implementation than that proposed 
by d'Ambrosio. 

D'Ambrosio's approach is based upon having the DS mass function as the uncertainty 
primitive, and ATMS assumptions as proposition tokens (or truth variables). Our ap­
proach more closely follows the ATMS's notion of assumption sets being the primitive data 
representation; hence, DS mass function assignments to the assumption sets summarise 
the "proofs" denoted by the assumption sets in terms of a single ( or pair of) uncertainty 
value(s). 

Laskey and Lehner [23] have independently extended the ATMS with the full DS theory 
in a manner more or less identical to the extension proposed here and also described in [34]. 
However, Laskey and Lehner do not discuss the complexity of this DS theory implemen­
tation, and their simple implementation of the computation of DS Belief functions from 
ATMS labels (which we refer to as Network Reliability computation) will be intractable 
for all but the simplest problems. Here, we discuss both the semantics of extending the 
ATMS and the efficiency issues surrounding this extension. 

Pearl [29] describes this semantic correspondence between the ATMS and DS theory 
in a manner almost identical to the one presented here. He motivates this correspondence 
using the analogue of a random switch, which we discuss in the next section. However, he 
does not provide an implementation of an ATMS for computing DS mass functions. 
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3 Extension of ATMS with Dempster Shafer Theory 

To enable the ATMS to rank solutions and hence improve the ATMS's diagnostic efficiency 
(e.g. by pruning the search space of possible solutions), we propose assigning a [0,1] 
uncertainty representation. We want to define an efficient TMS with a clear semantics for 
solving diagnostic problems. It is not sufficient just to assign an uncertainty representation 
without the entire system having a clear semantics, as that will obscure the decision-making 
process. Moreover, introducing an arbitrary weighting system may be counterproductive 
from a computational point of view, as it may make the resulting diagnostic tool less 
efficient than existing TMSs. 

3.1 Semantic Correspondence of the ATMS and Dempster Shafer 
Theory 

DS theory can be incorporated into the ATMS in a semantically clear and efficient manner 
as their semantics are identical. To show the consistency of the semantics of the ATMS 
and DS theory, we need to show a correspondence between 

• assumptions and mass functions, i.e. Ai <=> e(Ai)-

• Assumption sets and Bel and Pls assignments, i.e. /\i Ai <=> Bel(/\i Ai), Pls(/\i Ai). 

• ATMS label updating and DS updating 

Assumption/mass function correspondence: De Kleer [13] defines an assumption 
not as a regular literal with a truth assignment, but as a distinguished literal with a 
hypothetical truth assignment. It is very simple to quantise this hypothetical truth 
value using a DS mass function. Such a quantisation reflects the "confidence" with 
which the truth value holds. 

Pearl [29] describes this notion of quantisation using a random switch model, as 
shown in Figure 2. The mass function defines the fraction of time a switch assigns 
a truth value to the assumption. Hence, as in Figure 2, the switch assigns a truth 
value to assumption A a fraction p of the time, and no assignment 1 - p of the time. 

Assumption set/Belief and Plausibility correspondence: The ATMS can identify 
the sets of assumptions from which given literals can be logically proven; hence, if a 
literal x has label L = {L1, L2, Ls}, it can be proven if any assumption set L1 or 
L2 or Ls is valid. The ATMS's label for a literal corresponds to the frequency with 
which that literal can be proven from the initial set of assumptions, i.e. its DS mass 
function can be computed from the label if a DS mass function is assigned to each 
assumption. 
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~-1-p t Random switch 

Figure 2: Random switch model for mass function assignment to ATMS assumption. 
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Figure 3: Lattice depicting frame of discernment 0 = {A, B, C, D} 

The DS Belief function (Bel) corresponds exactly to the ATMS label, in that the 
symbolic representation of Bel(Oi) is the set of propositions from which Oi can be 
proven. The plausibility function can be derived similarly, using the set of proposi­
tions which do not disprove Oi, i.e. Pls(Oi) = 1- Bel(-.Oi), Pls is a weaker notion of 
provability than Bel. 

We can use a proposition/assumption set lattice to provide a more intuitive notion of 
this correspondence. Consider the lattice built using assumptions (or propositions) 
A, B, C, D, as shown in Figure 3. Subset/superset relations are indicated by edges, 
and sets of propositions by vertices. In this lattice, each vertex logically entails 
vertices above it to which it is connected by an edge provided that both assumption 
sets are consistent. 

During interpretation construction, the ATMS constructs such a lattice, identifying 
the maximal consistent assumption sets. The supersets of any inconsistent assump­
tion set are inconsistent as well. Hence the ATMS can be thought of as identifying 
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the consistent assumption sets to which mass is assigned in DS theory. As shown by 
Zadeh [47], DS theory cannot combine conflicting evidence (i.e. assumption sets). 
However, using the ATMS to identify contradictory sets of assumptions as nogoods 
ensures that this problem never arises in computing DS weights. 

ATMS label updating/DS updating correspondence: H the denominator of the DS 
updating equation (4) is ignored, equation 4 and ATMS label updating are identical. 
The denominator in equation 4 sums the mass assigned to the non-contradictory as­
sumption sets, i.e. it computes the belieffunction of 1-E Bel(confl.icting assumption sets), 
which is equal to 1- E Bel(nogood set). Hence the denominator sums the mass as­
signed to the nogood database. 

For this application, the denominator is irrelevant, because we want to use the DS 
mass functions to rank interpretations, and not to explicitly compute the belief as­
signed to each interpretation. Ignoring the denominator provides the interpretation 
ordering we want, as each interpretation would just be multiplied by the denomina­
tor. 

This semantic correspondence means that the ATMS can perform most of the computa­
tional work necessary to compute DS mass functions. We discuss the additional complexity 
of computing DS mass functions in Section 4.1. 

3.2 Computing Dempster Shafer Belief Functions 

The ATMS can be extended with DS theory quite simply. To each ATMS assumption 
Ai assign a DS mass function e(Ai), Then use the ATMS to symbolically compute the 
labels for all the literals. Similar to the ATMS's removal of contradictory sets (nogoods) 
from all contexts as an essential part of its processing, DS theory can assign belief only 
to non-contradictory subsets, i.e. it "removes" mass assigned to contradictory subsets. 
That is, the numerator of equation 4 assumes non-conflicting subsets. Hence, 8 is not 
provable for subsets which have a non-null intersection with contradictory subsets. In 
the ATMS implementation, nogoods must be explicitly accounted for in computing DS 
Belief functions. This is done by assigning belief in the numerator of equation 4 only to 
subsets with null intersections with nogoods (i.e. conditioning on the consistent sets), and 
using a normalisating function, the denominator of equation 4, to renormalise all Belief 
assignments given that no mass is assigned to nogoods. Hence, the Belief assigned to any 
proposition (literal) is given by: 

The un-normalised DS mass function for any literal x can be computed from its label 
as follows. We discuss these computations more fully in Section 4. To provide an intuitive 
understanding, we give the simplest algorithm, described in terms of ATMS labels and 
Belief functions. 
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1. Compute a Boolean expression from the label: .C, = {L1 V L2 V L3}, where each 
L, = /\1; A1; for the set of k assumptions. 

2. Account for nogoods 

Bel(x) - Bel[.C,(x) 1-,nogood] 
Bel[.C,(x) n -,nogood] 

Bel[-,nogood] 
Bel[.C,(x)] - Bel[.C,(x) n nogood] 

1 - Bel [nogood] 

Alternatively, if we use the relation 

e(A n B) = e(A) + e(B) - e(A u B), 

we obtain 

B l( 1
-, d) _ Bel[.C,(x) U nogood] - Bel[.C,(x)] 

e x nogoo - B l[ d] , 1 - e nogoo 

which is Dempster's Rule of Conditioning. 

(5) 

(6) 

3. Convert the Boolean expression 5 or 6 into a form such that all the L, are mutually 
exclusive or independent, which we call MEI (mutually exclusive/independent) form. 

4. Convert the Boolean expression into an expression representing a Dempster-Shafer 
mass function, using the intersection formula 

(7) 

and union formula 

(8) 

5. Substitute mass functions for the A. 's to calculate the mass function for x. 

Note that in Steps 1 to 4 we manipulate Boolean expressions. We refer to steps 3 and 4 
as a Network Reliability computation, and show several more efficient algorithms, as well 
as some approximation algorithms, for this computation in Section 4. 
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3.2.1 Examples 

Example 1: 
Consider a following example without nogoods: the set of clauses is 

Xi 

Xe 
Xi I\ Ai => X2 

X2 I\ A2 => Xs 
xi I\ As => x, 
X4 I\ A, => Xs 

x2 I\ x, I\ As => xs 

riv Ai v x2 

~v A2 v xs 
xi V As V x, 
X4 VA, V Xs 

x2 V x;. V As V xs 

The masses assigned to the assumptions are: 

I ASSUMPTION I MASS I 
Ai .5 

A2 .7 
As .8 
A4 .6 
As .9 
A6 .4 

The labels the ATMS assigns to the literals are: 

I LITERAL I LABEL 

X2 {Ai} 
Xs {A1, A2} 
X4 {As} 
Xs { {As, A4}, {A1, As, As}} 

13 

The computation of the Boolean expressions for ( and hence Belief assigned to) these 
labels is trivial except for the expressions for xs, which we now show: 

Bel(xs) - Bel ( {{As, A,}, {Ai, As, As}}) 
Bel((As I\ A,) V (Ai I\ As I\ Ai;)) 
Bel(As I\ (A, V Ai I\ Ai;)) 

- e(As)Bel(A, V Ai I\ As) 
e(As)(e(A,) + e(Ai)e(Ai;) - e(Ai)e(A,)e(As)) 

The Belief assigned to the literals is: 
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I LITERAL I BELIEF I 
X2 .5 

X3 .35 

X4 .8 
X5 .62 

Example 2: 
Consider the introduction of a new clause x2 I\ Ae => ~, such that e(Ae) = 0.4. Since 

x 4 and z.- both are in the same context, a nogood is formed: 

Nogood - .C(xe) I\ .C(Te) 
{As}/\ {Ai, As} 
{A1, As,A6} 

The new assignment of Belief to literals is: 

I LITERAL I BELIEF I 
"nogood" .16 

X2 .4 
Xs .28 
X4 .76 

X5 .15 

Example 3: 
Suppose instead that the clause X4 I\ A1 => Xs such that e(A1) = 0.4 is introduced. 

Similar to Example 2, a nogood {As, A1 } is created and the revised Belief assignment is 
given by 

I LITERAL I BELIEF I 
"nogood" .32 

X2 .50 

Xs .35 
X4 .71 
X& .55 

For this application, we are primarily interested in determining the mass assigned to 
partial solutions (i.e. interpretations), so that only the most likely partial solutions will be 
explored. This will enable the Problem Solver to reduce the number of assumptions, and 
thus reduce the size of the problem solved by this extended ATMS. This can be done, for 
example, by (1) deferring the exploration of contexts of low likelihood to produce complete 
solutions, and (2) "ignoring" certain assumptions which are not members of the current 
contexts8

, effectively reducing the size of the search space. 
8 One method is to garbage collect these assumptions along with other useless assumptions, as described 

in [13]. 
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4 Implementation Issues-Network Reliability Com-
putation 

4.1 Complexity Considerations 

Up to the identification of the label set and of the set of interpretations (i.e. the minimal 
polynomial 1), the computational efficiency of our method relies on the ATMS being 
able to avoid significant regions of the search space. Provan, in [31] and [33] shows that, 
in the worst-case, the problem of label generation is of exponential complexity, and the 
interpretation construction problem is NP-hard. 

On top of this, computing the DS mass function either from the ATMS label set s• or 
from the minimal polynomial 1 is of complexity exponential in the number of literals in 
the Boolean polynomial F. This problem, referred to as the Network Reliability problem, 
has been studied extensively. 

From this summary of the complexity of the sub-problems of computing DS Belief 
functions using the ATMS, we see that it is necessary to solve two (and possibly three) 
problems of exponential worst-case complexity, label generation, interpretation construc­
tion (which is not necessary) and network reliability. Hence, using the ATMS to compute 
DS Belief functions encounters an exponential worst-case complexity similar to that which 
has prevented implementation of the full DS theory up until now. If one is using the 
ATMS already, DS Belief functions may be computed or approximated efficiently, given 
an efficient network reliability algorithm. 

The difficult part of the network reliability problem is transforming a DNF Boolean 
function F into mutually exclusive/independent ( or series/parallel) form, or some equiv­
alent form from which the DS weights can be simply computed. The actual assignment 
of DS mass functions to assumptions and computation of mass functions once F is in the 
appropriate form is trivial. 

Since we are interested only in relative ranking of interpretations, we have designed 
the system to efficiently compute approximate solutions using heuristics which maintain 
the relative ranking (with respect to DS masses) of the interpretations. Consequently, by 
determining approximate rather than exact solutions to the network reliability problem, 
the system avoids the intractability associated with computing the exact solution. 

We now briefly review the Network Reliability problem, and show the approximation 
we use. 

4.2 Network Reliability 

In describing the Network Reliability problem, we need to introduce some graph-theoretic 
notation, such as that defined in any text on graph theory, e.g. [46]. This is because 
many network reliability solution methods are based on exploiting the properties of the 
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underlying graph. In making these· definitions we show the equivalence of the graph­
theoretic and logical descriptions of the problem. 

We can consider the Boolean function F as defining a graph 9 (V, E) composed of 
vertices V and edges E. More precisely, a Boolean literal Xi corresponds to an edge 
Ei, and a logical connective (v, A) corresponds to a vertex that joins two or more edges 
between the corresonding components as follows: a/\ connecting two literals (or clauses) 
corresponds to an edge connecting two vertices ( or vertex sets) in series, and a V connecting 
two literals (or clauses) corresponds to an edge connecting two vertices (or vertex sets) 
in parallel. The direction of the edges corresponds to the direction of implication for the 
clauses. 

Further, we assume each edge is associated with a statistically independent random 
variable with only two possible states, functioning or not functioning. An event is a state 
assignment to literals or an instantiation of variables, such as x1 to Xn-l functioning and 
Xn not functioning. There are 2n possible events. We assign to each edge a [O, 1] weight, 
e : E ~ [O, 1], which is the probability that the edge functions properly. This probability 
corresponds to the weight assigned to the ATMS assumption that the edge represents. We 
will refer to a system as a set of clauses which can be thought of as a graph or a Boolean 
polynomial. 

A path consists of a set of connected edges. We call e a path between v~rtices s and t in 
the event that all edges in the path are functioning. A minimal path is a path the deletion 
of any edge of which renders the path disconnected. A circuit is a closed path. A subgraph 
9' (V', E') of 9 (V, E) is a graph such that V' ~ V and E' ~ E. A graph is connected if it 
has at least one path between every pair of vertices. A cutset of a graph 9 is a subgraph 
of 9 the removal of any edge ( or vertex) of which renders 9 disconnected. In the following 
we refer only to edge cutsets, as we are concerned only with models in which edges fail.9 

A tree T is a subgraph with no circuits. A max-tree T• is a tree consisting of I V I -1 
edges. The order of a vertex is the number of edges incident on it. The order of a graph 
is the order of a vertex if all vertices have the same order, of the average of the orders of 
all vertices. A p-graph is a subgraph 9' (V', E') of 9 (V, E) such that each e E E' is on a 
path from a source vertex s to a terminal vertex t. For example, the simplest p-graph is 
an s - t path. An acyclic p-graph is a p-graph with no cycles. 

The reliability R(s, t) is the probability that an s - t path exists, and we define this 
version of the reliability problem as follows: 

Reliability Problem: Given a graph 9 (V, E) and a probability assignment e to E, com­
pute the probability that a functioning path exists between two distinguished vertices s 
and t. 

We note that there are many other graph-theoretic definitions of reliability, such as: 

• the reliability between a distinguished vertex s and a set K ~ V, s ft. K, of vertices, 

9 Reliability models in which vertices, or both edges and vertices fail have also been explored. 
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Table 1: Correspondence between Boolean and Network Reliability forms 

I Boolean Form I Network Reliability Form I 
Xi (1 - e(xi)) 
Xi e(xi) 
A arithmetic product 
V arithmetic sum 

• the reliability between all pairs of vertices. 

The reliability problem defined here is NP-hard [4]. The complexity of other definitions 
of the reliability problem has been examined in [44], [5], [36] and [4]. In general, all 
reliability problems, except for a few special cases, are NP-hard in the worst-case. 

4.3 Relation of the ATMS to Graph Theory /Network Reliability 

In this section we outline the relationship between the problem we compute with the ATMS 
and the network reliability problem. We use the labels for the literals ( as generated by the 
ATMS) to compute the DS Belief function, which is a reliability measure. 

We have already shown how a Boolean polynomial F defines a graph. Now, we outline 
the graph-theoretic equivalent of the labels. But instead of the label, we will use a closely­
related type of clause, the prime implicate. A label is just another means of representing 
a prime implicate II, and II is the representation necessary to compute the DS Belief 
function (or reliability). Using the notion of prime implicate defined in Section 2.2, it can 
be shown that the set of prime implicates for F, II ( X), defines a set of paths through g. 
If F is expressed in DNF, the set of prime implicants for X is equivalent to the cut sets 
for the corresponding graph. 

The prime implicates contained in the minimal polynomial 1 are non-unique and hence 
are equivalent to a non-unique minimal path set. The use of a stronger minimisation 
criterion, that of s-coherent irredundancy, can produce a unique minimal polynomial. An 
s-coherent polynomial is a polynomial consisting of prime implicates containing negated 
literals only.10 An a-coherent irredundant polynomial lac is unique and hence defines 
the unique minimal path set. If lac is in DNF, it defines the unique minimal cut sets. 
Hence lac defines a graph consisting of only and all the minimal paths, and is the minimal 
representation of the graph for the purposes of computing the network reliability. That 
is, 1,c and the equivalent system reliability formula are termwise identical; the operations 
necessary to convert 1.c (in CNF) to a network reliability formula are given in Table 1. 

10See [9] for a full definition. 
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Similar to there being a number of prime implicates exponential in the number of 
literals or clauses, the number of s -t path-/cutsets is an exponential function of IV I and 
IEI, 

We use this subset of correspondences to illustrate how the graphical and logical meth­
ods are just two different ways of looking at the same problem. We now examine methods 
of obtaining a Boolean polynomial equivalent to 1.c• 

4.4 Methods of Solving Network Reliability Problems 

The Network Reliability problem has been studied extensively in the literature. Several 
methods have been developed for computing network reliability. The computational ap­
proaches fall into three categories of techniques: 

1. Path/cutset enumeration methods 

2. Pivotal factoring/decomposition 

3. Topological decomposition. 

Each approach simply ensures that conditional dependencies are taken care of in the 
reliability computation. For example, the path/ cutset enumeration apprdach ensures that 
no pair of paths/cutsets have an overlap (i.e. must not share a sub-path), which would 
make the pair conditionally dependent. The pivotal decomposition method ensures that 
no event (in this case an edge) is double-counted by expanding the reliability fromula 
R(s, t) based on on two disjoint events, an edge working R(s, t I E;) and it not working 
R(s, t IE;), as shown in Equation 13. We discuss each of these techniques in turn. 

4.4.1 Path/Cutset Enumeration 

The path/cutset enumeration methods begin with the (minimal) set of paths/cutsets, and 
expand them so that they are conditionally independent. The two expansion methods used 
are: 

1. Inclusion/ exclusion 

2. Sums of Disjoint products 

We note that the input to algorithms based on these methods, minimal paths/cutsets, 
corresponds to the set of prime implicates/implicants. 

The reliability of ans - t path R(s, t) is given by the sum of the probabilities that the 
r paths betweens and t, (e1, ... ,e,.) exist: 

,. 
R(s, t) - e( U et), 

k=l 

.. 
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Enumerating the minimal cutsets of a graph is equivalent to enumerating the minimal 
paths, by Menger's Theorem (see [46]). We note that for any graph ,9(V,E), there are 
2IEI-IVl+2 possible paths between any nonadjacent pair of nodes; for large graphs, the 
number of paths or cutsets is very large. 

The cutset-based reliability of ans - t path R(s, t) is given by 

N 

R(s,t) = 1- P(LJ C!,t), (9) 
i=l 

where C!,t is the event that all edges fail in the i-th prime cutset and N is the total 
number of prime cutsets with respect to nodes sand t. As in the computation of R(s, t) by 
path enumeration, each cutset must be conditionally independent. For a graph ,9(V, E), 
the order of the number of cutsets is 2IVl-2, as compared to 2IEI-IVl+2 paths. For graphs 
with average degree ~ 4, I E I> 2 I V I and 2IEI-IVl+2 > 2IVl- 2, i.e. there are more paths 
than cutsets. Hence, for such graphs enumerating the cutsets is more efficient. 

Inclusion/exclusion (IE) 
This method is based on the following simple expansion of parallel and series links: 

• parallel links are computed using 

• and series links using 

Given a path set ( Gi, ... , Gr), the reliability is given by 

r r 

R(,9) I:e(t'i)- I:I:e(eie;) + ... (10) 
i=l i=l i<i 

Here R(.9) means the general network reliability given a any network measure, i.e. 
not necessarily a measure such as an s - t path. We note that this way the technique 
demonstrated in Section 3.2.1. As shown by equation 10, the terms alternate in sign, with 
the terms with - signs being the double-counted terms. An example of this enumeration 
technique is [ 22]. 

Sum of Disjoint Products (SDP) 
This method is based on expanding all parallel paths using the following formula: 

(11) 
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Figure 4: Bridge network: Example of a non-MEI formula 
Xz 

Thus, for a system with s paths, we obtain 

(12) 

This method generates s terms for s path sets, but takes exponential time to generate 
each term in the worst case. We note that an SDP reliability formula contains fewer terms 
than the equivalent IE formula for all but the smallest systems, and for large systems is a 
factor of 10 smaller. 

This technique was first explored by Fratta and Montanari [ 17], and then improved 
upon by Grnarov et. al [20] and Abraham (1]. The Abraham method has since been 
improved by Locks [24] and Beichelt and Spross [7]. 

4.4.2 Pivotal Decomposition/Factoring 

This method can be used for any graph (formula), and is especially useful for graphs 
(formulae) which ca.n not be reduced to a set of series/parallel (MEI) paths, such as that 
representing the bridge network shown in Figure 4. This method is based on the factoring 
theorem, which "factors out" edges in a graph by conditioning on such edges. Thus, it 
conditions on the functioning of some edge E; such that 

R(s,t) = p,R(s,t IE;) + (1- Pe)R(s,t IE;), (13) 

where Pe is the probability that edge E; is functioning. H we use this method to create 
an MEI graph from a non-MEI graph, we choose an edge which prevents enumeration of 
MEI paths. Edge Es in Figure 4 corresponds to the edge which reduces the graph to MEI 
form using the factoring theorem. 

We note that the input to this method is either a graph or Boolean formula, i.e. it 
does not need the set of minimal paths or cutsets. An examples of this technique is (28]. 
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4.4.3 Topological Decomposition 

Topological decomposition is a method introduced by Satyanarayana and Prabhakar [39) 
which reduces a graph g to its p-acyclic subgraphs. The system reliability can be computed 
directly from the set of p-acyclic subgraphs, due to the direct correspondence between reli­
ability formula and p-acyclic subgraphs. This method is related to the Inclusion/Exclusion 
method, but it generates only the noncanceling terms of equation 10. Hence, it is more 
efficient than IE with respect to the number of terms generated as it generates only half 
the terms of equation 10. This algorithm is based on domination theory (see [2], [45]), and 
an explanation of it is beyond the scope of this paper. 

4.4.4 Applying Exact Methods 

Given that the ATMS has already computed the (minimal) prime implicates, we use net­
work reliability methods based on path/ cutset enumeration or pivotal factoring, since their 
input can be a set of prime implicates. The path/cutset enumeration methods can use 
either the prime implicates IT (from which the ATMS labels are derived) or the minimal 
prime implicates IT• ( derived from the minimal polynomial 1). We now briefly discuss the 
tradeoff involved in using IT or IT•. 

IT rr is used, the ATMS must convert IT to IT•, which is an NP-hard problem. In 
generating the reliability formula R(9), there is an exponential increase in the number of 
terms. In this ca.se I R(9) I= 0(21n•1). 

IT IT is used, the ATMS does not need to convert IT to IT•. However, typicalJy I II l~I 
IT• I, and the resultant reliability formula will contain significantly more terms, and be 
more computationally expensive to compute. We have yet to determine which approach 
is more efficient in general. 

In general, of the Path/Cutset methods, SDP algorithms are more efficient than IE 
algorithms because fewer terms are generated. Locks [25] has shown that the revised 
Abraham method is the best SDP algorithm known to date. No detailed comparisons of 
algorithms based on Path/ Cutset and Pivotal Decomposition/Factoring methods exist, to 
the author's knowledge. 

We also advocate using restrictions wherever they are applicable to reduce the com­
putational complexity. For example, in the case of hierarchical evidence, the algorithm 
of Shafer and Logan [41] can be used, giving a complexity only linear in the number of 
elements of 9, instead of exponential for the general case of non-hierarchical evidence. 

4.4.5 Approximation Methods 

To avoid the exponential complexity associated with computing exact reliability formulae, 
various approximation methods have been proposed. We outline a few approximation 
methods based on path/cutset enumeration methods, since these are the methods which 
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most concern us, given that these methods can accept prime implicate input (i.e. use the 
ATMS labels). 

One such approximation method is based on tree-enumeration technique of Fu [18]. Fu 
set Prob(Tt) to be the probability that tree Tt exists, and for edge set {E1, ... , E, }, 

Prob(Tt) = IT fl;• 
; such that E;ET;" 

Hence the reliability of graph g is approximated by 

ITI 
Prob(9) ~ L Prob(Tt). 

i=l 

For the trees we substitute the minimal paths (prime implicates) ei, ... , c, contained 
in the minimal polynomial 1 to obtain an upper bound U - Prob(9) for the reliability 
expression Prob(9) as given by Equation 10. This method ignores inter-path conditional 
dependencies, and its inaccuracy is dependent on the degree of such dependencies. Using 
this method, it can be shown that 

r 

u - Prob(9) ~ L Prob(ci) = det(M RM'), (14) 
i=l 

where M is the node incidence matrix of 1, R is the diagonal edge reliability matrix, and 
M' is the transpose of M. In many cases both M and R are sparse, and so sparse matrix 
methods can be used to speed computations further. 

Similarly, a lower bound can be obtained as 

r r 

L - Prob(9) = L Prob(ci) LL Prob(eie;), (15) 
i=l i=l;<i 

These bounds can be improved by including more terms from the expansion given by 
Equation 10, as (14) corresponds to the first RHS term of (10). The extent of the expansion 
determines the accuracy of the approximation. Using this IE expansion method, Fong and 
Buzacott [16] describe algorithms for improving the bounds given by (14) and (15) through 
similar partial expansions of (10). 

Alternatively, the set of prime implicates in conjunction with the prime implicants can 
be used to obtain upper and lower bounds on R(g), as noted by Chu and Apostola.kis [9]. 
If we order the set of prime implicates as II = {Iii, II2 , ... , Ilu}, and the prime implicants 
as r = {r 1,r2 , ••• ,r0 }, R(.9) can be bounded by: 

(16) 
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where n indicates a product and U indicates a sum. The drawback of this method for this 
ATMS application is that it entails computation of r, which is non-trivial. 

Chu and Apostolakis also describe several other bounds on R(9) based on II and 
r. Provan [35] and Locks [26] also detail several reliability bounds. We note that the 
evaluation of the bounds described here ( e.g. in terms of accuracy and increased efficiency 
over exact values), and the determination of better bounds is still an open research issue. 

In general, the choice of approximation technique is dependent on how close the approx­
imation is required to be to the exact value, and to some extent on problem characteristics. 
At present, we are using the bounds given by (14) and (15), primarily because of their 
computational simplicity and because our present application requires only ranking of 
solutions, hence making fairly rough estimates of Belief assignments sufficient. 

5 Conclusions 

We have described an extended ATMS suitable for solving complex diagnostic problems. 
This TMS incorporates the full DS theory in a semantically clear and efficient manner. 
Such an extension allows ranking of competing solutions and exploration of only the "most 
likely" solutions by the Problem Solver. 

This extension has moderate computational requirements over and above that of the 
ATMS. The efficiency of computing DS weights from ATMS labels relies on obtaining 
approximations to the weights. This is sufficient for the diagnostic application we propose, 
as all we require is a relative ordering of the interpretations. Exact DS weights can be 
computed from ATMS labels, but at significantly greater computational expense. 

Acknowledgements: Johan de Kleer has provided helpful comments. Judea 
Pearl's discussion of the semantics of the ATMS and DS theory have helped refine my un­
derstanding of their correspondence, as have discussions of network reliability algorithms. 
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