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Abstract 

Quadratic proofs of the pigeonhole formulas are presented using the 
connection method proof techniques. For this class of formulas exponential 
lower bounds are known for the length-of- resolution refutations. This 
indicates a significant difference in the power of these two proof techniques. 
While short proofs of these formulas are known using extended resolution, 
this particular proof technique, in contrast to both the connection method 
and resolution, seems not suitable for the actual proof search. 

1 Introduction 

Comparing the performance of different proof systems has generally been ac
knowledged as a very hard research problem. In fact, concrete mathematical 
results have been achieved only under drastic idealizations that are far from 
reality. One such idealization focuses on the length of proofs (in propositional 
logic) as a measure of comparison thus totally ignoring the cost of search for 
obtaining them (see [2], Section IV.3, for other approaches). This approach has 
also been driven by its relevance to the P-NP-problem. 

It was long conjectured that no short resolution refutations exist of the 
pigeonhole formulas Pn. These encode the principle that n + 1 pigeons cannot 
fit exactly into n holes. Haken [9] has finally settled this conjecture by providing 
an exponential lower bound on the number of distinct steps needed for the 
shortest resolution refutation of Pn. Recent papers [12,7] have provided similar 
results for more classes of formulas. 

*submitted 
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This is certainly not good news for Automated Theorem Proving (ATP), 
which to a large extent relies on resolution as its main proof technique. Namely, 
what is the value of a proof technique that already takes an exponential amount 
of steps just to write down the proof for an intuitively simple problem, let alone 
has so many more steps usually wasted in the search for the proof. There is little 
comfort in that there exists a variant of resolution, called extended resolution, 
which offers short proofs of the pigeonhole formulas, as Cook [8] has shown. 
This is because the extension rule involved in it requires the introduction and 
appropriate definition of new proposition atoms, for which task there seems to 
be no mechanism available other than an exhaustive search through the infinite 
space of all possible formulas. 

Each of these two proof techniques thus has a significant defect worth con
ceptually grasping. Resolution is computationally inadequate in the sense that 
it fails to provide a proof in a short (polynomial) amount of time at least for 
some formulas that are inherently simple (i.e. they permit polynomial proofs in 
other systems). Extended resolution, on the other hand, generates an infinitely 
branching search graph, and for that reason again is computationally inade
quate. One would like to have a proof mechanism that, besides being sound 
and complete also is computationally adequate. 

The connection method [2,4], like resolution, has a state-dependent, finitely 
branching search graph, so it does not suffer from the deficiency experienced 
with extended resolution. Further it can simulate (the search for) resolution 
proofs [~], so it is at least as computationally adequate as resolution. The 
question is whether it has the potential to do significantly better than resolu
tion. The present paper provides a positive answer to this question simply by 
providing short (quadratic) proofs of the pigeonhole formulas. 

The situation for ATP might not be that bad after all. First, even resolu
tion does quite well on a wide range of problems of importance (just think of 
PROLOG). Second, other techniques such as (some variant of) the connection 
method still offer the perspective of possibly being computationally adequate. 

The following section summarizes the terminology needed for the presenta
tion. Section 3 presents the connection proofs for the pigeonhole formulas and 
an analysis of their lengths. The final section evaluates the significance of the 
result. 

2 Preliminaries 

This paper deals with propositional logic represented in the set-theoretic form 
commonly used in ATP [2]. That is, we have variables x and negated variables 
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x which both are called literalB. ClauBeB are sets of literals, and matriceB are 
sets of clauses. This construction of matrices may be iterated, i.e. clauses may 
also contain matrices, resulting in non-normal form matrices. 

Matrices are usefully displayed in a 2-dimensional way as illustrated by the 
examples in the next section. Thereby an appropriate visual grouping is applied 
in the case of non-normal form matrices. Paths (through a matrix) are sets of 
literals collected while traversing the matrix from left to right thereby paying 
attention to the nested grouping just mentioned. A path is complementary if it 
contains the subset { x, x} , called a connection, for some variable x. A matrix 
is complementary if all its paths are complementary. Depending on the inter
pretation the reader prefers, complementarity means validity or inconsistency 
of the represented propositional formula. 

The connection method performs theorem proving by checking the paths in 
some systematic way for complementarity. Various such ways have been devel
oped. Section II.3 in [2) describes one using linear chaining with an operation 
called extension. In particular in the more advanced ways, advantage is drawn 
extensively from the fact that often the complementarity of a path implies that 
of other paths. There are a number of results known in this respect. 

One such result is Prawitz' reduction [11) which says the following. If the 
matrix contains two clauses of the form { x} U c and { x} U d then all paths 
containing literals both from c and d may safely be ignored. As a clause 
substitution rule applicable to non-normal form matrices it may be expressed 
in the following way. 

cu {x}, du {x} => {{d, {x}}, {c, {x}}} 

Other such results are the following well-known reduction rules. 

PURE. Any clause containing a literal not contained in any connection may 
be deleted. 

SUB SUMPTION. Any clause containing another one may be deleted. 

UNIT. If a matrix contains a unit clause (with one literal only), then, after 
reBolving upon all connections containing this literal, all clauses naming 
its variable may be deleted. 

ISOL. If the literals in a connection are not contained in any other connection, 
then, after resolving upon this connection, the parent clauses may be 
deleted. 

FACTOR. If a number of clauses share a common variable, they may be re
placed by a single clause with one occurrence of this literal obtained by 
application of the associativity law. 
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MONOTONE. A path containing another one may be ignored. Consequently, 
if a matrix is a superset of another one, its complementarity is implied by 
that of the smaller one. 

RENAME. Consistent renaming of variables does not affect complementarity. 

Each of these reductions is illustrated in the subsequent section. Note that they 
can be executed fast so that their costs are sort of negligeable. In what follows, 
we are dealing with an infinite sequence Pn, n > 1, of sets of clauses that is 
defined in the following way. 

n+l n 

P n = ( U { { Zli, • • • , Xni}}) U ( U u 
i=l 

The set of the first n + 1 (purely negative) clauses is abbreviated by P;;, that 
of the remaining (n3 + n2)/2 ones by P;t. Pn contains n • (n + 1) variables. 
The matrices for P 1 and P 2 are depicted in the next section. Pn encodes the 
statement that n + 1 'pigeons' can fit exactly into n 'holes' which obviously 
expresses an inconsistency. For this encoding, Xi; may be read as 'hole i is 
occupied by pigeon i '. 

3 Short Connection Proofs for Pn 

In the present section we prove the following result. 

Lemma. There is a short proof for Pn in the connection method, the length 
of which is quadratic in the number of clauses in Pn, n ~ 1. 

The proof is by induction on n. 
There are two extensions needed for P1 as illustrated by the two connections 

in its matrix representation. 

_,......-XU 
Xu X12 

x~ 

There are ten extensions needed for P2 as illustrated again by the twelve result
ing connections in its matrix representation where two clauses are listed twice 
for an easier depiction. 
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Xu X12 

!?21 !?22 

xs1 Xs2 

So, as the induction hypothesis, let us assume that there is a proof for Pn-l 

of appropriate length. We will reduce Pn to Pn-l by a number of reduction 
operations. Although this will, of course, be done for arbitrary n , each of these 
operations will at the same time be illustrated for the generic case n = 3 . Its 
matrix Ps is the following one. 

The reduction of Pn to Pn-l will in turn be proved by induction. For that 
purpose we consider the following sequence of matrices Qnm , m = 1, ... , n + 1 . 

m n+l 

( U {{ XH, ... , Xni}}) U ( U {{ XH, •• , , Xn-li}}) 
i=l i=m+l 

n-1 n 

u (U U { { X;;, Xik}}) U ( u 
By comparison with the definition of Pn, given in Section 2 it is obvious from 
this representation that Qn(n+l) = Pn. The special case n = 3 will be displayed 
in matrix form shortly. 

The base case for the induction on m will be handled further below. So we 
now turn our attention to the induction step in which Qnm will be reduced to 
Qn(m-1}; For that purpose we focus our attention to those clauses in Qnm that 
contain the variable Xnm which are the following ones. 

Xnl Xnm-1 

Xn-lm Xnm Xnm 

Xnm 

Factoring reduces this to the following submatrix consisting of two clauses. 

Xnl · · · Xnm-1 

Xn-lm Xnm 

Xnm 

Prawitz reduction allows us to restrict our attention to the set of paths through 
the entire matrix that are defined by the following two (left and right) subma-
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trices. 

Xn1 • • • Xnm-1 

Notice that superimposing the left submatrix on the right one results in the 
previous submatrix. For each of these two submatrices along with the remaining 
clauses of Qnm complementarity has to be established which may be done 
independently (unless there is good reason for combining the two tasks). Hence 
we will talk of the first, corresponding to the left submatrix, and the second 
case. In the special case of Qs4 = Ps the first case is given by the following 
matrix. 

Xnm is pure, so this unit clause may be deleted. Similarly, x,m , i = 1, ... , n -1 , 
are all pure as well, hence all clauses containing them may be deleted. Further, 
all clauses subsumed by the unit clauses Xn,, i = 1, ... , m - 1, will be deleted 
as well. These unit clauses may also be used to remove themselves and the 
literals Xn, from the negative clauses {x11 , ••• , Xn,} by !SOL-reduction, i = 
1, ... , m - 1. In the resulting matrix we rename the variables by exchanging 
the names x,(n+1) and x,m wherever they occur, i = 1, ... , n - 1 . The result 
is Pn-l to which the induction hypothesis (for n) can be applied. 

Thus having solved the first case, we now turn our attention to the second 
one. Again, as an aid to the reader, we depict the matrix for the special case 
of Qs, = Ps. 

Xu X12 

X21 X22 

Xs1 Xs2 

Xu Xu X12 X13 X21 X22 X2s X:n X31 Xs2 p+ 
X24 Xs-4 Xu Xu X14 X24 X24 X24 Xs2 Xss Xss 2 

The variable Xnm is pure, whence the unit clause may be deleted. The remain
ing matrix by construction is just Qn(m-l) as defined further above. Hence in 
this second case the induction hypothesis ( on m) can be applied again. 

For illustration of the base case for the m-induction still to be proven, let 
us present the matrix of Q81 which is the following one. 

Xu 
X12 :X1s Xu Xu X12 X21 

X21 
Xu Xu X12 X1s X21 X21 X22 X22 X23 

X31 
X22 X2s X24 X12 X13 X14 X1s Xu Xu X22 X2s X24 X23 X24 X24 
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Qn1 contains Pn-l as a submatrix upto naming the variables. Indeed, after 
exchanging the variable names xil and x,n+1 wherever they occur, for i = 
1, ... , n - 1 , we explicitly have Pn-l C Qn1 • The monotonicity property thus 
settles the base case by way of the induction hypothesis, which is the last piece 
needed for the full proof. 

Let us now tum our attention to the length of the connection proof obtained 
for Pn. For the reduction of Pn to Pn-l we had to carry out n steps. Each 
of these involved identifying and processing the first and the second case. The 
identification is of length O(n). O(n2) steps are needed for performing each 
of these first cases which adds up to O(n8) steps for this first-case part. This 
then turns out to be the overall complexity, since it majorizes also the constant 
amount needed to carry out each of the second cases and the linear time needed 
for the renaming in the base case. Since n such reduction steps have to be 
carried out and since the number t of clauses is O(n8

), the overall complexity 
is O(t•n). With a little more effort invested in handling the first case (since it 
is basically the same each time) and on the actual calculation of the complexity 
we could have done even with a linear proof, but for the purposes of this paper 
it would not have made any difference anyway. 

4 Conclusions 

In the previous section we have presented short proofs of the pigeonhole for
mulas that are based on proof techniques provided by the connection method. 
In a sense this amounts to the presentation of a simple exercise. But the sig
nificance of this contribution lies not in these proofs themselves, rather in the 
consequences of their existence for the evaluation of the connection method. In 
particular, since there are no such proofs for resolution according to Haken's 
result, these proofs provide the first solid fact establishing a significant compu
tational distinction between resolution and the connection method in favor of 
the latter. 

The crucial feature that avoids the exponential explosion in our proofs lies 
in their capability to take advantage of subsumption on a global level. If a 
subproblem is subsumed by another one, (by monotonicity) it can be ignored. 
Put in a more general (and technical) way, if a path is subsumed by another 
one in the same problem, it can be ignored during the proof process. Resolution 
has no such global capabilities. To understand this correctly one has to keep 
in mind that the resolvent is not a subproblem in this sense. Rather one has 
to add the resolvent to the given set of clauses in order to obtain the resulting 
subproblem [5]. 

7 



From a mathematician's viewpoint that feature in essence may be regarded 
as the capability of recognizing lemmas and applying them more than once. 
Because of its significance this capability is built into our theorem prover 
PROTHEO [1] that is based on the connection method. 

With the observation of a crucial difference between resolution and the con
nection method, a belief expressed in [10] (p. 379) turns out to be false for 
the present state of affairs. The belief was that 'resolution strategies may be 
able to mimic the matrix reduction strategies of importance'. It is still possible, 
though, that some future improved form of resolution will catch up again. 

The connection proofs of the previous section are presented in a way, that 
does not exactly follow the connection calculus in [2). For the purpose of this 
paper, using the Prawitz matrix reduction rule made it easier for the reader. 
Since this rule is incorporated in the more advanced forms of the connection 
method (see [2J, Section N.6), it is obvious that we could as well have stuck 
strictly to the connection method. 

Our result also underlines once again the importance of the simplification 
operations such as subsumption. In particular, it reminds us of renaming and 
the global subsumption operation that seem to have been neglected in actual 
implementations. If a feasible proof mechanism exists at all, it might necessarily 
consist of a combination of a basic logical operation (such as extension in the 
connection method or Prawitz reduction) with a (hopefully small) number of 
special reduction and preprocessing operations. But even if it does not exist, 
the same might be true for a computationally adequate mechanism (recall this 
concept from the Introduction) that fails for intrinsically hard problems only. 
Under this aspect one might question the practical relevance of possible future 
work on the complexity of any proof method unless it takes these operations 
into account (if they make a difference). 

Of course, one would now like to see further natural questions being settled. 
The most obvious one is, how does the connection method perform on other hard 
examples for resolution such as those in [12]. Also, which are the hard examples 
for the connection method (if any - who knows)? Further it seems that the 
technique of factoring used also in our proofs above has a similar power in the 
context of the connection method as the generalized matrix reduction method 
[6]. To see the reason for such a belief, the interested reader might have a look 
at example 3.6 there. Factoring the variables x6 and x6 in that example and 
pursuing similarly as in the proofs of the previous section, result in the same sort 
of short proof that is demonstrated there with the generalized matrix reduction 
method. In fact, factoring along with the possibility of deleting paths containing 
the empty set may substitute subsumption which leads to the question whether 
there are more general and fewer principles that permit the substitution of some 
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of the reduction rules mentioned in this paper. 
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H. Levesque, and A. Mackworth. 
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