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Abstract 

In this paper, first we present a connection method for non-monotonic logic, 
together with its soundness and completeness proof. Then, we extend this to a 
proof procedure for autoepistemic logic. In the last section, we also discuss some 
improvements on the method through structure sharing techniques. 
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1 Introduction 

Non monotonic or default reasoning arises naturally in most enterprises dealing with 

logic. Such reasoning sanctions inferences based on assumptions should not they con­

tradict the current knowledge a.nd beliefs. Deductions of this kind imitate the human 

reasoning in some respect, and are plausible when the reasoner has incomplete knowledge 

of the world in concern. 

Several approaches to default reasoning have emerged in the last ten years.Most of 

them have the flavour of a.n extension to first order logic or bear a resemblance to a modal 

logic. Among them, we distinguish the non-monotonic logic of McDermott a.nd Doyle 

[5) (also McDermott's extension in [6]), Reiter's default logic [8], Moore's autoepistemic 

logic (7), and Delgrande's approach using conditional logic [3]. 

In this paper, we deal with the non-monotonic a.nd autoepistemic logic only. We 

believe that these approaches, even though they are at a primitive stage, they seem 

more interesting a.nd ambitious than the other approaches ( except conditional logic) in 

two respects. First, since the default statements are formulae in the language they can 

be reasoned about in the logic. In default logic on the other hand, reasoning about the 

default is not possible. Second, since they use only general inference rules (not depending 

on the defaults) they provide some kind of sema.ntics that is closer to the classical one. 

The first part of the paper, deals with the non-monotonic logic. We briefly discuss its 

main features and give a proof procedure for the propositional case using the connection 

calculus developed by Bibel [1]. In the second part we extend this method to obtain a 

proof procedure for the autoepistemic logic. At the end, we discuss possible improve­

ments as well as possibilities of similar procedures for other default logics. We regret 

that due to lack of time, we do not consider Delgrande's approach in this paper. We 

believe that this method is among the most promising ones, but it is far more difficult 

to find a proof procedure, even for the propositional case. We now proceed with the 

non-monotonic logic. 
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2 Non-Monotonic Logic 

McDermott and Doyle in (5) in order to achieve non-monotonic reasoning, propose an 

extension of the classical first order logic by introducing a sentential operator 'M' that 

informally means "is consistent". AB a result, the non-monotonic language NL is LU 

{" M"}, where L is a first order language. The set of well formed formulas NW is the 

smallest set that is closed under the first order formation rules together with the rule : 

"if w E NW then Mw E NW". 

Non-monotonic inferences then, can be sanctioned by using a single (meta)rule: "Mp 

is derivable if ,pis not derivable. Unfortunately, this rule is not an inference rule at all 

because it is circular. For this reason, McDermott and Doyle define the theorems of a 

theory by means of the fixed points of a non-monotonic operator NM as follows. 

Definition 1 Given a theory (set of formulae} A and any set of formulae S, 

where 

As(S) = {Mqlq EL I\ ,q f/. S} -Th(A) 

and Th means first order theorems. 

The non-monotonic theorems of A then, is the set TH( A} defined by 

TH(A) = n({L} u {SINMA(s) = s}) 

that is, the NM-theorems of A is the intersection on all fized points of N MA or the entire 

language if no such fixed points exist. 

D 

Davis in [2] gives a more comprehensive definition of the non-monotonic theorems of 

a theory A which resembles the usual maximum consistent extension construction. An 

equivalent definition (similar to Moore's) of a fixed point, which we will extensively use 

in this paper is the following. 
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Definition 2 Given a theory A, Sis a ft.zed point of A if 

T = Th(A u {Mql-,q (/. T}) 

D 

Notice that according to the first definition, if a theory A does not have any fixed 

point, the whole language is assigned as its fixed point. H we think of the fixed point 

as maximal extension of A (in fact they are similar to Reiter's extensions), it is possible 

a consistent set A to have an inconsistent extension. For this reason we abandon the 

previous definition of TH(A); instead, we adopt the following one. 

Definition 8 The non-monotonic theorems NM{ A} of a set of formulae A is defined as 

TH(A) = Th(A) u {SINMA(S) = S} 

D 

With this modification, the following lemmata hold ( and are given without proof). 

Lemma 1 A set of formulae A has an inconsistent fixed point iff A is inconsistent. 

Lemma 2 If a set A has an inconsistent fixed point it is its only fixed point. 

Lemma 8 If a set A is consistent any of its fixed points is consistent. 

In [6] also has been shown that fixed points are really maximal sets, that is, if S,S' 

are two fixed points of A neither one is a proper subset of the other. 

With this modifications and clarifications we are now ready to present a proof pro­

cedure for the propositional non-monotonic logic. From now on the modifier "proposi­

tional" should implicitly be understood whenever terms like "language", "theory", "fixed 

points", etc. are being used. 
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3 Connection Method for Propositional Non-Monotonic 
Logic 

In this section, we will give a proof procedure for the propositional non-monotonic logic 

based on Bibel's connection method [1}. McDermott and Doyle in [6] outline a similar 

procedure based on the tableau method but their completeness proof is not quite correct. 

The connection method gives a procedure which can be improved (see last section) using 

structure sharing and also it can be easily extended to a proof procedure for autoepistemic 

logic (next section). 

Notation: Given a formula q, [q} denotes the matrix in normal form that positively 

represents q. 

Given a finite set of premises A and a formula p, we investigate what it means p 

to be a theorem of A. First, p has to be in any fixed point S of A. But each such 

S is the deductive closure of A together with some assumptions Mqi,i ~ O, and q is 

consistent with A. Consequently, p is in S iff there is a finite set X of assumptions M qi 

such that AUX r- p, i.e. pis a tautaulogical consequence of AUX. The latter implies 

that the matrix [A AX-+ p] is complementary, which in turn suggests that any non­

complementary path of [A -+ p] contains some M qi such that qi is consistent with A. But 

the consistency of qi can be determined by the complementarity of the matrix [A-+ ,qi], 

which in turn, triggers the generation of more matrices. It is now clear, that our proof 

procedure will need, instead of a single one, a family of matrices defined as follows. 

Definition 4 A family of matrices FF{A,p} for a goal p and premises A is the smallest 

set of matrices that satisfies : 

1. [A-+ p] E FF(A,p). 

e. if FE FF(A,p) and there is a p-noncomplementary (p means propositionally) path 

in F that contains the formula Mq then [A-+ ,q] E FF(A,p). 

D 
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Now we have to define when a matrix in a family is complementary or not. Since the 

complementarity of a matrix depends on the status of other matrices in the family, it is 

necessary to assign labels to matrices which justifies the next definition. 

Definition 5 A labelling of a family FF{A,p} is a/unction LF: FF{A,p}--+ { 'OPEN', 'CLOSED' 

}. 

We embark now to define complementarity. 

Definition 6 1. A literal is a formula of the form p or -,p or Mq or -,Mq, where p 

is a propositional constant and q is any formula. 

e. A connection is a set {L, -,£} called propositional connection, or {Mq} called modal 

connection, where, L is a literal and q any /ormula. 

9. Given a family FF{A,p} and a labelling LF of it, a connection in any matrix Fin 

the family is complementary if it is a propositional connection or if it is a modal 

one { Mq} and [A--+ -,qJ E F F(A,p) and LF([A--+ -,q]) =OPEN. 

,I. A path through a matrix {defined in the usual way) is complementary if it contains 

a complementary connection. 

5. A matrix is complementary if it contains a spanning set of connections. 

6. A labelling LF of a family FF(A,q} is consistent if for any FE F F(A, q), LF(F)=OPEN 

ijj there is a path through F that is not complementary. 

With this definition a procedure that tests if p is a non-monotonic theorem of A 

(A I~ p) is as follows : 

Connection procedure for validity of A I~ p 

1. Generate the family FF(A,p). 

(a) F F(A, p) .- [A--+ p). 
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(b) While there is a path r in some matrix of FF(A,p) such that r is not p­

complementary and Mq Er for some formula q, and [A-+ q] f/. F F(A,p) add 

[A-+ q} to FF(A,p). 

2. For any labelling LF of FF(A,p) do : [H LF is consistent and LF([A -+ pl) -

OP EN stop and return not valid.] 

3. Return valid. 

This procedure is inefficient but always terminate. Since A is finite, there are only 

finite number of matrices in FF(A,p), and hence, finitely many labellings to be considered. 

The correctness (soundness and completeness) of this procedure is given by the following 

two theorems. 

Lemma 4 Let X, Y be sets of formulas and q a formula of a propositional language such 

that X ~ Y, Y I- q and X If q. Every non-complementary path of [X -+ q] share a 

connection with every open path of [Y - X] where [Y - X] is the matrix that represents 

the disiunction of the negations off ormulas in Y-X. 

Proof: Since Y I- q, by the completeness of the connection calculus, [Y -+ q] is 

complementary. But any path p through it, is the union of a path p' through [X-+ qj 

and a path p" through [Y - X]. Consequently, if pis complementary and p', p" are not, 

there must exist a connection between a literal in p' and one in p". 

D 

Theorem 1 If S is a fixed point of A and p any formula, there is a consistent labelling 

LF of the family FF{A,p) such that q ES iff [A-+ q] E FF(A,p) and LF([A-+ q]) = 
CLOSED. 

Proof: Let S be a fixed point of A. Then 

S = Th(A u {Mpl-ip f/. S}) 
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If A is inconsistent, then any matrix [A --+ r] can only be labelled CLOSED and the 

theorem is true. Assume that A is consistent. Consider a family FF(A,p) and the 

labelling LF such that LF([A--+ q]) = OPEN if q (/. S, CLOSED otherwise. We claim 

that LF is a consistent labelling. 

Let [A --+ q] be a matrix labelled OPEN. Suppose that it is complementary. IT 

every path in it is p-complementary then A r q and q E S. Otherwise, each p­

noncomplementary path should contain a modal literal Mq' such that LF([A--+ -iq']) = 
0 PEN. Since -i</ (/. S, Mq' is among the assumptions of S. Let Y = { q1 , ••• , qn} be 

the set of all such modal literals for the matrix [A --+ q], then by the previous lemma 

[A A Y --+ q] is p-complementary and q E S. 

Now we consider the matrices labelled CLOSED. Let [A--+ r] be one of them. Since 

r ES either Arr or there is a minimal set of assumptions X = {Mq1, ... ,Mqn} such 

that X ~ 0, -,qi(/. S, and AUX r r. In the first case [A--+ r] is complementary. In the 

second case by the previous lemma, every p-noncomplementary path of [A--+ r] contains 

at least one element of X. But for every i, 1 < i ~ n, -,qi (/. S and the matrix [A-+ -,qi] 

is labelled OPEN. Consequently, every path is complementary. 

D 

Theorem 2 If there is a eonsistent labelling LF for a family FF( A,p), there exists a fixed 

point S of A sueh that for every matrix [A--+ q) E FF(A,p), LF([A--+ q]} = CLOSED 

iff q ES. 

Proof: First, we extend FF(A,p) as following. If Mq occurs in A and there is not 

any matrix in the family that has a p-noncomplementary path containing Mq, then 

the matrix [A --+ -iq) is added. Let FF'(A,p) be this extension of FF(A,p) and LF' a 

consistent extension of LF. Obviously, such an extension always exists since the labels 

of the new matrices do not interfere with the old ones. 

We will construct S from the labelling. Let 

R<, = {MqlLF'([A-+ -iq]) = OPEN} 
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So = Th(A U Ro) 

Let M q1, M q2, ••• be an enumeration of all formulas of the form Mq in L - Ro, such that 

if Mq, is a subformula of Mq; then i < j. We define R.., s,, i = O, 1, ... as 

R..+1 = Ri if ,q,+1 E S1 else R.. = R.. u {Mq,+1}, 

S,+1 = Th(A u R..+1) 

Now let S = us, and R = UR,.. Clearly, S, c Si+1 and S = Th(A US). To show that S 

is a fixed point need to show that 

R = {Mql,q ¢ S} 

a. Let ,q ¢ S. We will show M q E R. If M q E Ro then M q E R. Otherwise, q must 

be some q,. Since ,q ¢ S,,q ¢ S,. So, Mq E R..+1 and Mq ER. 

b. Now, we show that R c {Mql,q ¢ S}, that is, if Mq ER, then ,q ¢ S. 

Case 1. Assume Mq E Ro, There exists a matrix [A-+ ,q] which is labelled OPEN. 

Assume ,q E S. If A I- ,q then, [A -+ ,q] is complementary, and the labelling is 

inconsistent. Otherwise, A If ,q and exists an S1r, such that S1r,_1 If ,q and S1r, I- ,q. 

In the matrix [A -+ ,q] there is a p-noncomplementary path that contains Mq1c, 

Consequently,[A -+ ,q1r,] E FF'(A,p). If the last matrix is OPEN, then Mq1c E Ro 

and S1r,_1 I- ,q, If it is CLOSED, let X be the set of Mr such that Mr is in some p­

noncomplementary path of it, and [A -+ ,r] is labelled OPEN. Since the labelling is 

consistent, A U XI- ·9•· But X c Ro, so ·9• E S1i:_1 and S1r,_ 1 I- ,q. 

Case e. q should be some q,. So, Mq E R.. and ,q ¢ S,_1, Assume ,q E S, that 

is ,q E S1r, for some k ~ i and ,q ¢ S1i:-1, Then, AU R1i:-1 If ,q and AU R1r, I- q. Or 

Au R1r,-1 u {Mq1i:} I- ,q. 

But Mq1r, is not a subformula of q neither q, (since i < k), so, Mq should occur in A. 

Consequently, there is a matrix [A-+ ,q1r,] in FF'(A,p). By following the same reasoning 

as in Case 1, we arrive at a contradiction. 

Finally, we have to show that the labels agree with the fixed point. H the matrix 
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[A-+ -iq] is OPEN, then Mq ES by construction. If it is CLOSED, then Au R.o f- -,q 

and -iq ES. 

□ 

Now we give some examples. 

Example 1. Let A= {Mc-+ -,d,Md-+ -,e,Me-+ -if}. We show that A I~ -,J. The 

family and the labelling are given below: 

( 
Mc Md Me ) CLOSED 
d e I -,J 

( 
Mc Md Me ) OPEN 
d e f -ic 

( 
Mc Md Me ) CLOSED 

d e I -,d 

( 
Mc Md Me ) OPEN 

d e I -ie 

In this case, there is only one consistent labelling in which, the first matrix is labelled 

CLOSED and -,J is a NM-theorem of A. 

Example e. Let A= {Mc-+ -,d,Md-+ -ic}. We show that A~ -ic: 

( Mc Md ) OPEN CLOSED 
d C -,c 

( Mc Md ) CLOSED OPEN 
d C -id 

There are two consistent labellings in one of which the first matrix is labelled OPEN. 

Example 9. As a final example, we show that {Mc-+ -,d,Md-+ -ic} I~ Mc V Md: 

( 
Mdc Md ) 

c Mc Md 
CLOSED CLOSED 
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( Mc Md ) OPEN CLOSED 
d C ,c 

( Mc Md ) CLOSED OPEN 
d C ,d 

There are two consistent labellings in which the first matrix is labelled CLOSED. 

4 Autoepistemic Logic 

There are many problems with the nonmonotonic logic as Moore points out in [7]. All 

of them come from the fact that the logic is very' weak to cope with the negation of 

modal formulas. Thus, if p is in a fixed point S of A ,M,p is not forced in S. This is 

because McDermott and Doyle want "M" to mean "is consistent". Moore shows that 

if this semantic is changed and allows Mq to informally mean that ,q is not believed, 

then a stronger logic can be obtained. Consequently, Moore defines an autoepistemic 

extension T of a set A as 

T = Th(A U {Mqj,q F/. T} U {,M,qjq ET}) 

Since everything else we have said for the nonmonotonic logic applies also here, we now 

extend the previous connection method for the autoepistemic logic. 

In the previous section, when we defined complementary paths for matrices in a 

family, because of the structure of the nonmonotonic fixed points, we only considered 

formulas of the form Mq. In the present logic, we have also to consider the formulas of 

the form ,M q. As a first consequence of this, clause 2 of definition 4 of FF ( A,p) should 

be replaced by : 

(2) If FE FF(A,p) and there is a p-noncomplementary path in F that contains the 

formula Mq or ,Mq then [A-+ ,q] E FF(A,p). 

In addition, in definition 6.2 a set of the form { ,M q} should be also considered to 

be a connection, while definition 6.3 should be replaced by : 
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Given a family FF(A,p} and a labelling LF, a connection in any matrix F in the 

family is complementary if either it is a propositional connection or it is of the form { 

Mq} where [A --+ ,q] E FF(A,p) and LF([A --+ ,q]) = OPEN or it is of the form 

{,Mq} where [A-+ ,q] E FF(A,p) and LF([A--+ ,q]) = CLOSED. 

The connection procedure stated in the previous section can be applied to test for 

validity in this case alser-Step 1 has to be modified to take into consideration the new 

definition of FF(A,p}. The proofs of soundness and completeness of this system are very 

much similar to the previous proofs and are omitted. 

5 Improvements 

In this section we consider the connection method for autoepistemic logic only. Some of 

the improvements we discuss here, apply to non.monotonic logic as well. 

In [9], Wallen has developed a number of connection methods for classical modal 

logics. It would be beneficial if we could use some of these methods for autoepistemic 

logic. Alas, the semantics of autoepistemic logic is quite different that any one of the 

modal logic semantics. The M operator here, does not behave as the O in modal logics. 

As an example, in section 3, we have showed that {Mc--+ ,d,Md--+ ,c} I~ Mc V Md. 

While this is also true for the autoepistemic logic, it is false for any modal logic. Consider 

a modal interpretation l=(W,R,V} where W={ w} , R={ (w,w)} and V(w,c)=false, 

V(w,d)=false. I is clearly a modal model of {Mc--+ ,d,Md--+ ,c} but not a model of 

Mc V Md. Consequently, Wallen's method can not be applied directly. Whether or not 

any technique involving prefixes is applicable here, has not been explored yet. 

Nevertheless, there are some obvious improvements for the last connection method. 

First, all of the matrices in the family share the matrix [A] which negatively represents 

A. Therefore, all the matrices in a family F F(A, qo) can be represented by the single 

matrix {A, {[q0], (q1), ••• , [qn]}} where [q1) is the matrix of the goal to be proved and (qi] 

is the matrix that represents •Qi for any [A--+ ,q,] E FF(A, qo), 

The procedure consists of many passes through the last clause of the matrix. In the 
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first pass, it starts from a q-matrix and tries to find a noncomplementary path through 

the matrix {A, Ti} that does not contain any modal literals. H such one exists, then 

a. if q, is q0 it stops and reports "not valid" . 

b. It marks everywhere in the matrix the literal M q, (by a dot as in matrix method 

or by setting P(Mq,) = 0.) 

c. It deletes any clause that contains the literal -iMq. 

d. It deletes the whole matrix (q,]. 

H every path starting from [Ti] is p-complementary, then 

a. if [Ti] is (q0) it stops and reports "valid". 

b. it marks every literal -iM q, in the whole matrix. 

c. it deletes any clause that contains M qi. 

d. it deletes [qi]. 

After the first pas, a labelling is assigned to the remaining q-matrices, and a similar 

pass is performed, but this time it checkes for complementary (not p-complementary) 

paths, only steps b and c are applied and the marking and deletions are not permanent 

(they are undone before the next step). The consistency test is applied as well. At the 

end of the step, if the matrix {A, qo} is not complementary, it stops; otherwise the same 

step is repeated with another labelling. 

We are sure that further improvements exist, but the shortage of time forces us not 

to consider anything else. 

6 Conclusion 

We have shown how the connection method can be used as a proof procedure for non­

monotonic logic. An extension of this procedure provides a proof method for autoepis­

temic logic also. We have discussed some improvements and how structure sharing 

techiques can be applied to this connection method. 

It is interesting to see if similar or even better techniques can be applied to Reiter's 

normal default logic. Reiter, in (8] gives a resolution type procedure for normal default 
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theories, but the consistency test is left out. We believe that a connection method proof 

that performs this test during the extension step is possible. 

A more challenging direction is the development of connection methods for condi­

tional logics as well as for Delgrande's default logic. In these cases, we believe that 

Fitting's prefixes can successfully be used and more elegand methods than the one we 

have presented here are possible. 
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