
PROTOCOL SPECIFICATION AND VERIFICATION
USING THE SIGNIFICANT EVENT TEMPORAL LOGIC 1

By

George K. Tsiknis and Son T. Vuong

Technical Report 88-3

January 1988

ABSTRACT
In this report we discuss the Significant Event
Temporal Logic specification technique (SIGETL), a
method for protocol specification and verification
using a temporal logic axiomatic system. This
technique is based on the idea that the state and the
behaviour of a module can be completely described by
the sequence of the significant events with which the
module was involved in communicating with its
environment till the present time. The behaviour of a
module at any time is specified by simple temporal
logic formulas, called transition axioms or
properties of the module. Both, the safety and
liveness properties of a module, as well as the
global properties of a system, can be proven from its
axioms using the axiomatic temporal logic system. As
an example, we apply SIGETL to specify and verify a
simple data transfer protocol. The general
correspondence between SIGETL and ESTELLE FDT is also
discussed.

'This paper is a revised version of the one accepted for
presentation at the Fifth IFIP International Workshop on Protocol
Specification, Testing and Verification in Moissac-Toulouse,
France, in June 1985.

3

1. INTRODUCTION

Computer network protocols are often structured as a layered
system in which each protocol layer provides specific services to
the next higher layer using the services provided by the adjacent
lower layer in the hierarchy. A service specification defines the
services provided by the protocol, regardless of the way these
services are realized by the entites; it merely describes the
behaviour of the protocol layer as it is visible to the user at
the next layer. A protocol specification on the other hand,
describes how the services are supported and realized by each
protocol entity at the layer being specified, by means of
interactions with the services of the next lower layer. In this
paper we deal mainly with protocol specification and its
verification rather than the service specification per se. We
take the view that service specification defines the properties
the protocol specification must satisfy and verification is the
process of proving that the protocol specification actually meets
the given service specification. Therefore, the specification and
verification technique should be powerful enough to allow any
desirable property of a protocol to be expressed and verified.

Among the existing specification techniques which cater to
verification, the temporal logic approaches predominate. An
excellent overview of the most significant temporal logic methods
is presented in [12]. Temporal logic techniques are subdivided
into two (not necessarily disjoint) categories : the state-based
methods and the event-based ones.

Representative state-based techniques are the unbounded
state method pursued by Hailpern [2] and the bounded state one
pursued by Schwartz and Melliar-Smith [11]. Hailpern includes in
the state an unbounded auxiliary variable for each input and
output of each module to record the sequence of messages
exchanged between the module and its environment. Modules are
specified in terms of properties the sequence variables must
satisfy. The bounded state method includes some (bounded)
internal state variables which record a finite history of the
past for each module. Modules are specified in terms of temporal
logic formulas which reflect the cause-effect relationship
between the module interfaces.

Typical event-based techniques are the methods pursued by
Vogt [14] and Schwartz and Melliar-Smith [12]. In these methods
event sequences are (implicitly or explicitly) used to establish
the context (state) in which a future event can occur. A module
specification consists of temporal logic formulas which express
constraints on allowable sequences of events. Any sequence that
satisfies the constraints constitutes a valid behaviour. Vogt's
method explicitly uses event sequence variables to establish the
necessary context, while Schwartz and Mellier-Smith avoid it by
using significantly more complex formulas f~r this purpose.

4

As it is indicated in [12] none of the prev i ous methods is
satisfactory because they inherit a great complexity and they are
difficult to understand. On the other hand, state- transition
specifications are straightforward but they provide very limited
means for verification. In this pape r we pursue a
specification- ve r ification technique which amalgamates the
state-transit i on and event-based approaches. It uses event
sequences to establish the sufficient context (state of the
module) for a module specification, and temporal logic formulas
to define the transition function of the state-transition machine
which describes the module behaviour.

The SIGETL method we developed exhibits some similarities to
Lamport's specification technique [18], in the sense that both
a r e based on the state- t r ansition paradigm and both use temporal
logic as their specification language. Nevertheless, the two
methods differ significantly in the following aspects. Whe r eas in
Lamport's the state of a module is specified by a group of state
variables, in SIGETL the state is represented by a sequence of
events. In Lamport's events are mainly "procedure calls" whereas
in SIGETL they are primitive objects, As a result, the
specification does not rely on any kind of procedure call
mechanism. Moreover, a specification in our method can enjoy any
desired level of abstraction, which might not be the case in the
other technique. For instance, in SIGETL the channels as well as
other modules that are not of prime concern, can be described
just by their high - level properties necessary for the
verification of the system. An explicit specifica t ion of such
modules is neither necessary nor desirable. Finally, our method
was intentionally designed to be closely related to the Estelle
FDT and to facilitate the development of a semi - automatic
verification tool based on SIGETL.

In the remainter of the paper we assume that the reader has
some knowledge of Estelle FDT [6] and temporal logic [1].

2. THE SIGNIFICANT EVENT MODEL (SEN)

The basic building unit in a system and in a protocol
specification in particular is the module. A module is capable of
performing certain functions and, in turn, may be composed of
several submodules which interact with each other~ The
interactions between themselves and with their environment are
realized by means of events. In a module we can distinguish two
kinds of events : input events that is, interactions initiated by
the environment and output events which are initiated by the
module itself. Our model makes no distinction between modules and
submodules; both are called modules.

All interactions (input and output events) between two
modules are realized through a communication channel shared by
the modules. The events in a channel shared by two cooperating
modules are directly c oupled in the sense that an out put event at

5

one end of the channel is simultaneously viewed as input event at
the other end. Moreover, only one event can occur in a channel at
an instance of time. This is what we call Directly Coupled Events
Rule (DCER).

The state of a module at any instance of time is described
by the significant event sequence (SES) denoted by o. This is the
sequence of all the significant events that have occurred in any
channel of the module from its initiation till the present time.
By the term significant event we denote an event that, when it
occurs, changes the state of the system. All the possible state
changes for a module are denoted by the transitions or transition
axioms of the module. Thus, an input event is a significant one
provided at the time it occurs, a transition is enabled (it
triggers a state transition), while any output event is a
significant one.

The following rules hold for the events of any module:

a. Many input events can occur simultaneously (at different
channels) but only one of them is realized by the module at a
time. The rest remain outstanding for the next time. The choice
is arbitrary. By the term "realized" we mean that an event has
occured and the module has decided to act on it.

b. If an input event has been realized at a specific time
then, if it is a significant one, it is concatenated to the event
sequence in the next time interval (meaning it becomes past).
Otherwise, it is simply ignored and the system remains at the
same state.

c. When an input event occurs it is always realized at some
future time.

d. If a significant input event (when realized) causes some
output events to occur, then these output events are concatenated
too at the same time with the input event (meaning that the
transitions are atomic), and they consitute the current events of
the module at that time.

The above rules are called Event Rules 2!. ER.

Formally, a module is a 4-tuple (Ch, o, T, S) where: Ch is
the set of channels, defining all the types of the module events,
o is the past-present significant event sequence of the module at
the present time, T is the set of the transition axioms (or
transitions), and S is the future state sequence (possibly
infinite). The state sequence has the form s=s 0 , s,, .•. , where
s 0 is the current state described by the sequence oO and Si is
the ith future state of the module.

The method resembles the Event-Based method developed by
Vogt [14], in the sense that it also uses event sequences to
encode information about a module. It differs from the

6

Event-Based technique in many respects. In particular, in SIGETL
each module has its o~n sequence which includes 9nly the
significant events occurred in the module, and it describes the
state of the module at any time. SIGETL specifies the module
behaviour by a set of state transitons which define the next
possible state of the module. Coseguently invariant (safety)
proofs are feasible in SIGETL. Finaly, the axiomatic system used
in SIGETL is quite different from the one used by Vogt.

3. SIGETL AS A SPECIFICATION LANGUAGE

A protocol, according to the ISO model, is viewed as a set
of interacting modules • Consequently, a protocol specification
consists of the specification of the protocol modules and the
channels shared among them. In SIGETL, the channels are specified
in exactly the same way as in ISO Estelle formal description
technique(FDT) [6],[6'].

A module specification consists
1. The module header which indicates

the channels used by it (this is
module header);

of:
the name of the module and
again identical to Estelle

2. The event sequence a for the module; and
3 . The transitions.

The language used to specify the transitions is the temporal
logic augmented by some functions on o, and some special
predicates.

For a given state sequences, we use the notation

s+n;; sn, sn+l , ...

and! is the existential quantifier. The interpretation of a

temporal formula A on s, denoted as As is defined as :

1. If A is an atomic formula then As = s 0 (A); that is, A is

evaluated at the current state.

3. (cA)s; Vn2:0 (As+n)

4. (<>A)s; ~n2:0 (As+n)

5. (OA)s ;;; As+l

7

7. (A Until-After B) s ; (A Until (A /\ B)) s

It is clear that Until is the only operator that we need since cA

; A Until false and <>A;~c~A

For reasoning about the event sequences, we use the

following notation :

o: [A 1 , .•• ,An] denotes that o is a sequence which may

contain events of kind A1 , ••. ,An only.

o=<e. >~
0

denotes that o contains the events (must be of the
l l=

same kind) e 0 , ••• ,en . * in this order. In addition e denotes

0 or more consecutive instances of e, while e + denotes 1 or

more.

The following functions on the o sequence are used
lol returns the number of events in o. Note that:

if o=<e. > ~ 0 then lol =n+1.
l l=

P(o,Y) is the projection function on o. It returns a sequence
which contains only the events of kind Y which are in o and in
the same order they occur.
Finally, suff(o,Y) is the suffix function (as it is defined by
F. Vogt in his event model). It is defined as:

o=<o1><y><suff(o,Y)>
and, P(suff(o,Y),Y)=X

where Xis the empty sequence.

The only operation allowed to be done on o by the
transitions is the addition of new events. We use the notation

o<e 1 , ••• , en >

to define the sequence resulting from o by concatenating to it
the events e1 , ••• ,en • The order of the concatinated events is
irrelevant, but an expression of the form

o<e 1 , ••• , e n ><m 1 , ••• , mk >

denotes that events e i occur before events m j . Consequently,
events e are past events, while, events mare tfie current ones.

Transitions, in general, express the fact that if at a
certain instance of time a valid input event (not violating the

8

history o) is realized, then the next time this becomes "past",
and the output events triggered by this, become the last
"current" events of o. The last events are considered current and
past at the same time. (This is similar to the notion of
present-past events defined by F. Vogt in his event model).

Consequently, each transition has the form

CA [o=o0] A [at(e)] ~
0 ([o= o0<e><O 1 , ••• , On >] A [o 1] ••• A [On])

where [at(e)] means that input event e has occurred and realized
by the module; [o=oO] means that the sequence of ~vents o is o0,
while [o=o<e><o1 , ••• ,on>] means that the sequence o contains
all the events in o0 and the events e, o 1 , ••• ,on ; C is the
enabling condition of the transition; o 1 , ••• ,on are the output
events triggered by the transition; and [o i J means that the
event Oi occurs.

Note that for an input event e, [e] means that the event e
has occurred but not yet realized, while [at(e}] means that e has
been realized by the module. Consequently, the following rule
holds

• [e] ~ <>[at(e}] (E-Rule}

Also note the necessity of using"[]" to denote that every
term is a proposition (either true or false at any state of the
system) .

SIGETL offers mainly two levels of abstraction. At the lower
level a module is specified by its SES and the transition axioms
as described earlier. If a higher level of abstraction is
desired, the module can be specified as a black box; that is, its
behaviour is described by its safety and liveness properties. In
this description the module's SES does not need to be specified;
instead its properties can be specified by using the event
sequences of the modules with which this module interacts.
Examples of black box specifications are the "additional modules"
of a simple data transfer protocol in APPENDIX 3.

4. SIGETL SYSTEM FOR PROTOCOL VERIFICATION

The axiomatic temporal logic system used in SIGETL is shown
in APPENDIX 2. This system is different from the DUX system
presented in [1] mainly because it uses the Until-After modality
and it has a different induction axiom (A6}. Our induction axiom
postulates that if it is always the case that when pis true and
g is false then pis true at the next state, then if pis true at
the current state it will remain true up to the first state at
which g becomes true. This axiom is more suitable for the
verification of the protocols than the old induction axiom which

9

is a theorem in our system (Th1) as an immediate consequence of
A6 with q=false. Also, axiom A7, which defines the Until-After
modality, does not exist in DUX.

Among the derived rules the first three are typical rules in
any S4 system while the rest are special SIGETL rules very
frequently used in the proofs of the liveness properties of the
protocols. The latter rules can be derived from the axioms by the
inference rules and ~ropositional logic (PL) as it is illustrated
by the following derivation of the rule D4:

1 • p :> p Until-After q Hyp
2. <>q Hyp
3. p :> c(E A ~q) V <>(p A q) 1,A9,A8,PL
4. <>q :> c(p A ~q) PL,A4
5. p :> <>(p A q) 2,3,4,PL

Similar derivations can be given for the other derived rules.

We distinguish two kinds of properties of a module to be
verified: safety properties and liveness properties. Safety
properties (or invariants, analogous to partial correctness of
programs) have the form oI(o) where I is a modality-free logic
formula. To prove cI(o) it is sufficient to prove that I holds
initially (when o=A) , and that it is preserved by each
transition: that is, if I(obefore) :> I(oafter) where obefore and
oafter are the sequences before and after the "execution" of a
transition. (I-Rule). Liveness properties (or commitments) have
the form A:> B where A and Bare temporal logic formulas. These
properties are proven from the transitions using the axiomatic
system. Finally, the global properties of a system are proved
from the pr ope rt ies of its compo,nents using the axiomatic system.

5. TRANSLATION FROM ESTELLE TO SIGETL

As mentioned previously, SIGETL is very similar to Estelle
[6] in some respects but, while Estelle is implementation
oriented, SIGETL is a verification oriented formalism. We now
give some guidelines for the translation between the two
techniques. The reader will notice the intentional similarities
between them.

In Estelle the state of a module is defined by the values of
the "major state" variable and some other variables called state
components (e.g. sequence number, etc.). These state components
need to be translated in SIGETL using the event sequence o and
the defined functions. In some cases special functions on o must
be defined in order to express some variables (such as credits
available or finite sequence number) as functions of o.

The Estelle-to-SIGETL translation of a specification is
relatively straitforward. The type and channel definitions of
both formalisms are identical. Furthermore, an Estelle transition
of the form:

from <fromstate>
to <tostate>

when <event>
provided <enabling condition>

begin
<transition body>
end

is translated to

1 0

translate(fromstate, enabling condition) A[o=oO] A [at(event)] ~
o([o=oO<event><out events>] A [out events])

where translate(fromstate,enabling condition) is the condition
that results from translating fromstate and enabling condition in
SIGETL terms; and out events are the events initiated in the
transition body. Similar rules can be deduced for the other
transition types.

As an example, the SIGETL specification of a simple data
transfer protocol is provided in Appendix 3, which was derived
from the Estelle specification version in Appendix 4. The type
and channel definitions in both formalisms are identical and
there is one transition axiom in the SIGETL specification for a
module for each Estelle transition of the same module. In
addition there are some additional transition axioms which
describe the behaviour of the module when an event, expected at a
"certain state", does not occur (e.~. axioms t4, t5 and r3 in
APPENDIX 3). Moreover in SIGETL additional axioms are needed to
insure that only one input event can be realized at any time by
the module (axiom t6 in Transmitter).

For verification purposes, in SIGETL we need in addition to
the entity specifications, the specifications of all the other
modules involved in the system (i.e. network module, user
modules, op. system module, etc.). These specifications are
called "Additional Modules". For each one of these modules only
their properties (safety and liveness) need to be specified and
they are given in the section called "Additional Modules".

In the rest of the paper, we give an example using a simple
data transfer protocol.

6. SIGETL SPECIFICATION OF A SIMPLE DATA TRANSFER PROTOCOL

This protocol is similar to the one presented by Hailpern in
[4]. It is essentially an "alternating bit" protocol with an
unbounded sequence number. In this protocol the sender gets the
next message to be sent from use r t, appends to it the sequence
number and sends it to the receiver via the network(medium). The
sender retransmits the same message repeatedly until it receives
an acknowledgment for that message. Whenever the receiver
receives the next expected message, it delivers the message to
user2 and sends an acknowledgment for the message to the sender.

1 1

The SIGETL specification of the protocol is given in
APPENDIX 3 while APPENDIX 4 contains the Estelle specification of
the same protocol.

The abbreviations (state1),(state2) in the SIGETL
specification give a hint for the translation between the two
specifications. In addition, we need to express the other state
components namely send-seq and recv-seg with SIGETL formulas.
This is achieved by :

in ESTAB ~send-seq= lus(o)I
in ACK-WAIT~ send-seq= lus(o) 1-1
and recv-seg = lur(o) I

Having stated that, the translation
straitforward. However, some explanations
the additional modules are in order.

In the SIGETL specifications :

should be relatively
for the properties of

(Ul), states that the userl if it sends a message, it sends it
after it received an indication that the previous one was indeed
delivered to the other user.
(U2) states the willingness of userl to send a message after the
last acknowledgment.
(Timer) gives the liveness property of the timer. That is, if the
timer is set after the last TIMEOUT or STOPTIMER then a TIMEOUT
is expected.

The Network module describes the properties of a medium with
minimum requirements. This medium may lose or destroy or corrupt
a finite number of messages (N3, N4, N5, N6), but can not
generate messages by itself (N1,N3). Moreover, this medium is not
necessarily a FIFO one. It is assumed that message corruption is
detected by a lower-level mechanism and corrupted messages are
discarded.

In this specification we use the pseudo-functions data, id,
seg, which if applied to any event will return the value of the
coresponding field of the message of the event.

We are now ready to discuss the verification of this example
to illustrate how the SIGETL system can be used for protocol
verification in general.

7. VERIFICATION OF THE DATA TRANSFER PROTOCOL

For this protocol we want to prove:
First, that if any messages are delivered to User2, these are the
messages sent by Userl and they are delivered in the order they
were sent (safety).
And second, that if Userl keeps sending messages, at some future
time messages will indeed be delivered to User2 (liveness).

1 2

In order to prove the above properties we need first to
state and prove the invariants and commitments of the sender
(consisting of the transmitter and the system module) and the
receiver.

For simplicity, we
properties as well as in
J'. Furthermore, without
Sender and Receiver.

shall omit enclosing every term in the
the proofs given in this section in '[
any confusion , we simply use o for both

a. Sender

The safety specifications of the sender are given by the
invariants:

• c(us(o)=<us. >jus(o) l- 1 /\ sd(o)=<sd + >lus(o) l- 1) (T1)
l 1=0 i i=0

• c(ra(o)=<ra. >jus(o)l- 2) (T2)
l l=O

T1 states that at any time lus(o) I messages have been received
from the user and all these messages have been sent to the
network (each one many times) in the order they have been
received. T2 in conjunction with T1 denotes that if n messages
have been sent, then the first n-1 must have been acknowledged.

Since the proofs of T1 and T2 are quite similar we only give
the first one.

Proof of T1
In this proof-we use o to denote
execution of a transition and onext to
next state (that is after-executing a
to the formula T1 without c.

the sequence before the
denote the sequence at the

transition), and T1 refers

1. in ESTAB /\ at(us) /\ T1(o) ~ T1(onext)

since us(onext)=us(o)<uslus(o)I >

and lus(o) I = jus(onext) I -1,

a nd sdlus(onext)j-1 e onext

2. in ESTAB /\ at(us) /\ T1(o) ~ O(T1(o))

3. in ACK-WAIT/\ at(ralus(o)j-, /\ T1(o) ~

T1{onext) ~ O(Tl(o))

4. in ACK-WAIT/\ at(TIMEOUT) /\ T1(o) ~ T1{onext) ~

O(T1(o))

t1

1 ,

O-interp.

t2, O-int.

t3, O-int.

5 . T 1 (o) ::> OT 1 (o)

6 • c (T 1 (o) ::> OT 1 (o))

7 • T 1 (o) ::> cT 1 (o)

8. Tl (o) since T1 0.) is true

9. cT 1 (o)

1 3

,, ••• ,4,

t4, t5, t6

5, gen.

Th 1 •

7,8,mp.

The liveness properties of the transmitter are expressed by

the commitments:

• We define: UC - c((o=A) V (ua E suff(o,us)) ::>

<>US)

•UC::> c<>sd

• Vk(rak ::> lus(o)l~k+1) ::> Vk(rak ::> <>(ra k eo))

(T3)

(T3')

• Vk(rak e o:, lus(o)I ~k+1)) A UC::> (T4)

Vj(raj e o:, c<>sdj+i V <>(raj+l Eo))
T3: states that if the user keeps sending messages to the
transmitter then, the transmitter keeps sending to the network.
T3': if the acknowledgment of any message is received after the
message has been sent, then any acknowledgement received is added
to the sequence (is a significant one). T4: if the acknowledgment
of any message is received after that message has been sent then,
if the acknowledgment for the message j is received, the
transmitter keeps sending the next message until its
acknowledgment is received.

To prove these commitments, we need some properties for the
sender deduced from the transition axioms and (Timer). These are:

• in ESTAB ::> in ESTAB Until-After at(us)

• in ACK-WAIT::>

in ACK-WAIT Until-After at(ralus(o) 1-l)

• in ACK-WAIT A ~at(ralus(o)
1

_ 1) ::> <>TIMEOUT

• ua E suff(o,us); arlus(o) I E o

(tp1)

(tp2)

(tp3)

(tp4)

14

• c(in ESTAB Vin ACK-WAIT) (tp5)

tpl, tp2 are deduced from the axioms t3, t4, t5, t6 and A6.

tp3 can be deduced from the fact that

in ACK-WAIT A ~at(ra I us< o) I -1
O(SETTIMER

suff(o,[STOPTIMER,TIMEOUT])).

tp4 comes from the fact that ua and ralus(o)l-l are always

too at the same state (t2).

added

We now give the proof of the commitment T3. The other proofs

are similar to this.

Proof of T3

1. UC

2. in ESTAB::, <>US

3. in ESTAB::, <>(in ESTAB A at(us))

4. in ESTAB::, <>sd

5. in ACK-WAIT::,

c(in ACK-WAIT A ~at(ralus(o) 1-1
<>(in ACK-WAIT A at(ralus(o)j-1

6. in ACK-WAIT::,

D<>(in ACK-WAIT A at(TIMEOUT))

<>(in ACK-WAIT A ralus(o)j-1)

7. in ACK-WAIT::,

a<>sd V <>{in ESTAB)

8.in ACK-WAIT::, <>Sd

9. <>sd

V

)) V

))

Hyp

1,tp4, state1

2,tpl, E-Rule,D4

3,t1,Th1, ::,-Trans

tp2, AB, ::,-Trans

5, tp3, E-Rule,D4

6,t2,t4

7,4

4,8, Proof by Cases,

tp5

10. D<>Sd

11 • UC :, c<>sd

b. Receiver

9, gen

1,10,D3.

The safety properties of the receiver are :

• c(ur(o)=<uri >!~~(o) 1-l A Vi~lur(o) 1-1 (rd i fo))

• a (sa (o) = < sa; > I ur (0 > I - 1)
l 1=0

and its liveness commitments are:

• c<>rd ::> c<>sa

• c(rdk ::> lur(o)l~k) A c<>rd::,

Vj(rdj fO:, (<>(lur(o) l~j+l) A

(c<> saj V <>(rdj+i fa))))
Informally :

(R 1)

(R2)

1 5

(R3)

(R3')

(R4)

Rl: states that the data delivered to the user are the data of
the in-sequence messages received by the receiver.
R2: insures that the receiver sends an acknowledgement (possibly
many times) for every in-sequence message it receives.
R3: if an unbounded number of messages reach the receiver, then
an unbounded number of acknowledgments have been sent.
R4: Assuming that message k does not arrive until the receiver
has processed message k-1, and that messages do not stop coming
to the receiver, the receiver will keep sending an acknowledgment
for the last message, until it receives the next one.

The proofs of these formulas are similar to the proofs for
the sender properties and they are omitted.

C. Safety of the System

The safety of the system is expressed by :

• c(ur(o)=<ur. >~ 0 ~
l l=

Vi~n((usi eo) A data(usi)=data(uri)))

1 6

(S 1)

which states that if n+l messages have been received by the user2

these are the first n+l messages sent by user1 and the order is

preserved.

Proof of S1 --- -- --
1.UR ~ ur(o)=<ur. >~

0 l l=

2. UR~ V~n((rdi eo) A data (uri)=data(rdi))

3. UR~ Vi~n((sdi eo) A data(sdi)=data(uri))

4. UR~ Vi~n((usi eo) A data(uri)=data(usi))

R1 def

ur, dr

2, N 1

T1,

def

sd, us

Since U1 holds implies that the us i 's in o are the only

messages the user1 has sent.

d. Liveness of the System

The liveness of the system is given by:

• c<>sd A c<>rd A c<>sa A c<>ra

• c(lur(o) l=n ~ <>(lur(o) l>n))

(L 1)

(L2)

The first formula denotes that the system is starvation
free: that is, infinitely many messages are transfered through
each one of the four system channels.The second formula expresses
the system liveness: that is, at any time if user2 has received n
messages then he will definately receive the next message at some
future point.

We now give the proofs of L1 and L2.

Proof of L1

1 • UC U1, tp4

2. c<>Sd 1 ' T3, mp

3. <>rd 2, N5, mp

4. c<>rd 3 ' gen

5. C<>Sa 4, R3, mp

6. <>ra 5, N6, mp

7. c<>ra 6, gen

8. Ll 2, 4, 5, 7 A-Intr

Proof of L2 --
First we prove the hypotheses of T4, T3' and R4

1 • rak V rak eo ::, sak eo

2. sak eo ::, I ur (o) I~ k+l

3. lur(o) l~k+l ::, rdk eo

4. rdk eo ::, sdk eo

5. sdk eo ::, lus(o) l~k+l

6. Vk(rak V rak eo ::, lus(o) l~k+1)

9. sak-l eo::, lur(o)l~k

N2

R2

Rl

Nl

Tl

1, ••• ,5, ::,-Trans,

gen

T2

N2

R2

4,5,7,8,9,::,-Trans,

gen

1 7

Now we prove L2:

11. Vj(raj to :, c<>(sdj+l) V <>(raj+l

EO))

12. Vj(rdj to:> <>(lur(o) jc!:j+1) A

(c<> saj V <>(rdj+l to)))

13. lur(o) l=n :> rdn-l to

14. I ur (o) I =n ::> c<>san- 1 V <> (rdn E o)

18. <>(rdn to) ::> <>(lur(o) l~n+1)

20. <>(san eo) ::> <>(lur(o)l~n+1)

21. L2

8. CONCLUSIONS

1 8

6, U1 , T4, mp

L 1 , 1 0, R4 , mp

R1

1 3, 1 2 , sub, :,-Trans

N6, U 1 , T3' , :,-Trans

1 1 , sub, D 1 , Th6, Th 1 5

N3, R3'

1 2, sub

N2, Dl

R2, D1

14, •.• , 20, Proof

by Cases, gen.

It is a general belief that state transition oriented
specifications are easier to understand since the behaviour of a
system is described by an abstract program. Such specifications,
although they are closer to an implementation of the system,
provide little or no means for expressing and reasoning about the
properties (correctness) of the system. On the other hand,
temporal logic seems to be a suitable tool for this purpose.
However, specification methods using temporal logic tend to
produce complicated expressions which are not only hard to
understand but also dif f icult to reason with.

1 9

The Significant Event Temporal Logic(SIGETL) method we have
develo~ed can be viewed as a generalized transition oriented
specification technique as well as a sound tool for verifying
protocols specified in any transition oriented method. We believe
that SIGETL bridges the gap between the two general categories
mentioned earlier, in a very natural way. The only disadvantage
of SIGETL is the inherent undesidability of first order temporal
logic. However, since theorem proving techniques are quite
advanced nowadays, we believe that implementation of a SIGETL
semi-automatic verification system is feasible and worthwhile. We
have also applied the SIGETL technique on other protocols
including a data transfer protocol with finite sequence number,
conditional events, buffers and FIFO medium (a version of the
alternating bit protocol) [13].

Our research effort presented in this paper aims at adding a
verification capability to an integrated set of tools under
development at the University of British Columbia, which
currently provides validation and synthesis facilities via tools
called VALIRA and VALISYN [15] and an automatic implementation
capability for protocols specified in Estelle via an Estelle-C
compiler l 16,17).

[1]
REFERENCES

M. Ben, "Temporal Logic
Programs", ACM TOPLAS, 1980.

Proofs of Concurrent

[2] B. Hailpern, "Verifying Concurrent Processes Using
Temporal Logic", Technical Report 195, Computer
Systems Lab., Stanford Univ., Aug. 1980, also in LNCS
129, Springer-Verlag.

[3] B. Hailpern, S. Owicki, "Verifying Network Protocols
Using Temporal Logic", NBS Trends and Appl. Symp., May
1980.

[4]

[5]

B. Hailpern, S. Owicki, "Modular
Computer Protocols", IBM Research
1981.

C. Hoare, "Communicating Sequential
Aug 78, V21, NS.

Verification of
Report RC 8726,

Processes",CACM,

[6) ISO/TC97/SC16/WG1 Subgroup B, "A FDT Based on an
Extended State Transition Model", March 1984.

ISO/TC97/SC21/WG1/DIS9074, "Estelle
Description Technique Based on an
Transition Model, 1987.

A Formal
Extended State

[7) z. Manna, P. Wolper, "Synthesis of Communicating
Processes from Temporal Logic Specificatons", Tech.
Report CS-81-872, Comp. Science, Stanford Univ., 1981.

20

[8] z. Manna, A. Pnueli, "Verification of Concurrent
Programs, Part II: Temporal Proof Principles", Tech.
Report CS-81-843, Comp. Science, Stanford Univ.,1981.

[9] S. Owicki, L. Lamport, "Proving Liveness Properties of
Concurrent Programs", ACM Trans. on Prog. Lang. 4,
1982.

[1 0] A. Pnuel i,
Programs",
Concurrent
1979.

"The Temporal Semantics of Concurrent
Intern. Symp. on the Semantics of

Computation, Evian, Springer-Verlag, July

[11] R. Schwartz, P. Melliar-Smith, "Temporal Logic
Specification of Distributed Systems", Proceedings of
the IEEE Conference on Distributed Systems, April
1 981 •

[12] R. Schwartz, P. Melliar-Smith, "From State Machines to
Temporal Logic: Specification Methods for Protocol
Standards", Protocol Specification Testing and
Verification, C. Sunshine (ed.), North-Holland, 1982

[13] G. Tsiknis, "Specification-Verification of Protocols
The Significant Event Temporal Logic Technique", M.
Sc. Thesis, University of British Columbia, April
1985.

[1 4] . F. Vogt, "Event-Based Temporal
Services and Protocols",
Testing and Verification,
North-Holland, 1982.

Logic Specifications of
Protocol S~ecification

C. Sunshine (ed.)

[15] S. Vuong, et al., "VALIRA A Tool for Protocol
Validation via Reachability Analysis", 6th IFIP
Workshop on Protocol Specification Testing and
Verification, Sarikaya and Bochmann (Eds.), June 1986.

[1 6] S. Vuong, A. Lau, "A Semi-Automatic
Protocol Implementation - The ISO Class
Protocol as an Example", IEEE
SanFrancisco, April 1987.

Aproach to
2 Transport

INFOCOM' 87,

[17] S. Vuong, A. Lau, I. Chan, "Semiautomatic
Implementation of Protocols Using an Estelle-C
Compiler", IEEE Trans. on Software Engineering, March
1988.

[18) L. Lamport, "Specifying Concurrent Program Modules",
TOPLAS 5 2, April 1983.

APPENDIX 1
Axioms and Derived Rules of Standard Logic

Assump Axiom
Assump Intro
Assump Elim
T Axiom
F Axiom
V Intr
V Elim
/\ Intr
A Elim
:> Intr
:> Elim
~ Intr
~~ Intr
~~ Elim
;; Intr
- Elim
:> to A Trans
V Elim
:> Elim
Proof by Cases
:> Trans
;; Trans
:> to V Trans
DM
DM'
CP
/\ Commut
V Commut
;; Commut

21

AXIOMS
Al. c{p:>q)J(Cp:>cq)
A2. O(p:>q):i(Op~Oq)
A3. np~_eAO_eAOcp
A4. cp= <> p

APPENDIX 2
The Temporal Logic System

AS. ~op~o~p
AG. c(pA~q:>Op):i(p:>p Until-After q)
A7. p Until q ~ g V (p A O(p Until g))
AB. p Until q :> c(p A ~g) V <>q
A9. p Until-After g; p Until (p Ag)

INFERENCE RULES
R1, (taut). If p 1s a (substitution of a) tautology then rP •
R2, (mp). If rP and rP:>g then rg.
R3, (gen). If rP then rep.

D 1 •
D2.
D3.
D4.

DERIVED RULES
If FP then FMJ? where Misc or<> or 0
If ~p:>g then I- Mp:>Mq
If J? rq then rt1p:>q. Deduction theorem
If I- I?:> (p Until - After q) and j-<>q

(ded}

D5.

D6.

then j- p :> <>(pAg) (U-<> Rule)
If r p :> (p Until-After q) and r A ~g :> <>r
then r p :> t1<>(J?Ar) V <>(pAq) (U- c<> Rule)
If r p :> (p Until-After q) and r c~q
then r p :> c{pA~g) (U-c Rule)

THEOREMS
Thl. c{pJOp) :> (p:>cp)
Th2. Op:> <>p
Th3. c(p A q) ~ cp A cg
Th4. <>(p_V q); <>p V <>g
Th5. ccp = !:!P
Th6. <><>p = <>p
Th7. O(p A q) ~ Op A Oq
Th8. Op V oq ~ O(p V q)
Th9. <>(p A q) :> <>p A <>q
Thl0. cp V cq :> c(p V g)
Th11. p A Ocp ~ cp
Th12. <>p ~ p V O<>p
Th13. c((p V cg) A (q V cp)) - cp V cq
Th14. <>cp; c<>cp
Th15. c<>p; <>c<>p
Th16. <>p A cg:> <>(p A cg)
Th17. <>cp A cg J <>c(cp A cg)
Th18. <>cp A <>cg:> <>c(cp A cg)
Th19. c<>(p V g) :> c<>p V c<>g
Th20. c<>p A cq :> c<>(p A cg)
Th21. a<>p A <>cg:> c<> (p A cg)
Th22. (p ~ g) Until r :> (p Until r :> g Until r)
Th23. p Until g :> c~g Until r :> p Until r)
Th24. p Until (g Ar):> (p Until g) Until r
Th25. O(p Until g) :> (Op) Until (Oq)

22

APPENDIX 3
SIGETL Specification of the Data Transfer Protocol

type

data-type= .•• ;
seq-type=0 ••. ;
id-type=(DATA,ACK);

(* Channel definitions*)

Channel UserTransmitter(User, Provider);
By User:

SENDreq(d:data-type);
By Provider:

SENDack;

Channel UserReceiver(User, Provider);
By Provider:

RECEIVEindic(d:data-type);

Channel EntityNetwork(User, Provider);
By User:

SEND(id:id-type, d:data-type, seq:seq-type);
By Provider:

RECEIVE(id:id-type,d:data-type, seq:seq-type);

Channel System Transmitter (User, Provider);
By User:

STARTTIMER;
STOPTIMER;

By Provider:
TIMEOUT;

(* Abbreviations used in this specification*)

us(o) = P(o, SENDreq), usi = SENDreg(di), and US=any SENDreq.

ua(o)=P(o,SENDack), ua=any SENDreq.

ur(o)=P(o,RECEIVEindic), uri =RECEIVEindic(bi), ur=any uri

sd(o)=P(o,[SEND, where id=DATA]),

sdi =SEND(DATA,di ,() and sd=any sdi

rd(o)=P(o,[RECEIVE,where id=DATA]),

rdi =RECEIVE(DATA,bi ,i) and rd=any rdi

sa(o)=P(o,[SEND,where id=ACK]), sai =SEND(ACK,-,i)

and sa=any sa,
1

23

ra(o)=P(o,[RECEIVE, where id=ACK]), ra. =RECEIVE(ACK,-,i)
l

and ra=any ra.
l

[in ESTAB) ;e [al=>..] V [rajus(o 1) 1- 1 eol]

[in ACK-WAIT] ; [oh!)..] A [ralus(o 1) 1- 1 /.o1]

(* Module definitions*)

Module Transmitter (UserTransmitter(Provider);
· EntityNetwork(User))

SES: ol : [us,ua,sd,ra,STARTTIMER,STOPTIMER,TIMEOUT]

Transition Axioms:

• [in ESTAB] A [ol=oO] A [at(us)] ~

•

O([in ACK-WAIT] A [o1=o0<uslus(o0) I >

<sdlus(oO)I ,STARTTIMER>] A

[sd I us (00) I] A [STARTTIMER])

[in ACK-WAIT] A [o1=o0] A [at(ralus(oO) 1- 1)] ~

O([in ESTAB] A [o1=o0<ralus(oO)
1

_ 1
><STOPTIMER,ua>] A [STOPTIMER] A [ua])

• [in ACK-WAIT] A [ol=oO] A [at(TIMEOUT)] ~

O([in ACK-WAIT] A [o1=o0<TIMEOUT>

<sdlus(oO)
1
_ 1 ,STARTIMER>] A

[sdlus(oO)
1
_ 1] A [STARTIMER])

• [in ESTAB] A [ol=o0] A ~[at(us)] ~

O([in ESTAB] A [ol=o0])

• [in ACK-WAIT] A [o1=o0] A ~rat(ralus(oO)l-1)]

A ~[at(TIMEOUT)] ~

O([in ACK-WAIT] A [o1=o0])

(state1)

(state2)

(t 1)

(t2)

(t3)

(t4)

(t5)

24

• ([at(us)] A ~[at(ra)] A ~[at(TIMEOUT)])

V (~[at(us)] A [at(ra)] A ~[at(TIMEOUT)])

V (~[at(us)] A ~[at(ra)] A [at(TIMEOUT)])

V ~([at(us)] V [at(ra)] V [at(TIMEOUT)])

Module Receiver (UserReceiver (Provider):
EntityNetwork (User))

SES : o2 : [ur, rd, sa]

Transition Axioms:

• [o2=o0] A [at(rdlur(oO)I)] :>

O([o2=o0<rdlur(oO) I >

<ur I ur (o0) I ' sa I ur (o0) I >] A

[ur I ur (o0) I] A [sa I ur (o0) I])

• [o2=o0] A [at(rdk where k¢jur(o0) j)] :>

O([o2=o0<rdk ><Salur(oO) 1-1 >] A

[sa I ur (o0) I - 1])

• [o2=o0] A ~rat(rd)] :> O([o2=o0])

(*Additional Modules*)

Module User1 (UserTransmitter(User))

Properties:

• c ([us] :> [o 1 = >-] V [ua e s u f f (o 1 , us)])

• [o1=X] V [uaesuff(ol,us)] :> <>[us]

Module User2 (UserReceiver(User))

Properties: none

Module System (SystemTransmitter(Provider))

Properties:

(t6)

(r 1)

(r2)

(r3)

(U 1)

(U2)

25

• [SETTIMER E suff(ol, [STOPTIMER,TIMEOUT])] ~

<>[TIMEOUT]

Module Network (EntityNetwork(Provider)
EntityNetwork(Provider))

Properties:

• er ([rd i] V [rd i E o2] ~ ([sd i E o 1] A

[data(rdi)=data(sdi)]))

• c([rai] V [rai Eol] ~ [sa i Eo2])

• c<>[sd] ~ <>[rd]

• c<>[sa] ~ <>[ra]

26

Timer

(N 1)

(N2)

(N3)

(N4)

(N5)

(N6)

27

APPENDIX 4

Estelle Specification of the Same Protocol
(* Types and Channels are the same as in SIGETL specification*)

(* Module definitions*)

Module Transmitter (U:UserTransmitter(Provider);
N:EntityNetwork(User);
S:SystemTransmitter(User));

Var
data:data-type;
send-seq:seq-type;

Stateset
[ESTAB,ACK-WAIT];

Initialize
Begin

state to ESTAB;
send-seq:=0;

end

(*transitions*)
trans

from ESTAB
to ACK-WAIT

when U.SENDreq(d)
begin

data:=d;
out N.SEND(DATA,data,send-seq);
out S.STARTTIMER;

end;

from ACK-WAIT
to ESTAB

when N.RECEIVE(ACK,-,seq)
provided (send-seg=seq)

begin
send-seq:=send-seq+l;
out U.SENDack;
out STOPTIMER;

end;

from ACK-WAIT
to SAME

when S.TIMEOUT
begin

out N.SEND(DATA,data,send-seg);
out S.STARTTIMER;

end;
end Module

Module Receiver(U:UserReceiver(Provider}
N:EntityNetwork(User}}

Var
recv-seg:seq-type;

Initialize
begin recv-seg:=O; end

(*transitions*}
trans

when N.RECEIVE(DATA,d,seq}
provided(seq=recv-seg)
begin

out N.SEND (ACK,-,seg}:
out U.RECEIVEind(d);
recv-seq:=recv-seg+l:

end;

provided otherwise
begin

out N.SEND(ACK,-,recv-seq};
end;

end Module.

28

