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ABSTRACT 
In this report we discuss the Significant Event 
Temporal Logic specification technique (SIGETL), a 
method for protocol specification and verification 
using a temporal logic axiomatic system. This 
technique is based on the idea that the state and the 
behaviour of a module can be completely described by 
the sequence of the significant events with which the 
module was involved in communicating with its 
environment till the present time. The behaviour of a 
module at any time is specified by simple temporal 
logic formulas, called transition axioms or 
properties of the module. Both, the safety and 
liveness properties of a module, as well as the 
global properties of a system, can be proven from its 
axioms using the axiomatic temporal logic system. As 
an example, we apply SIGETL to specify and verify a 
simple data transfer protocol. The general 
correspondence between SIGETL and ESTELLE FDT is also 
discussed. 

'This paper is a revised version of the one accepted for 
presentation at the Fifth IFIP International Workshop on Protocol 
Specification, Testing and Verification in Moissac-Toulouse, 
France, in June 1985. 
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1. INTRODUCTION 

Computer network protocols are often structured as a layered 
system in which each protocol layer provides specific services to 
the next higher layer using the services provided by the adjacent 
lower layer in the hierarchy. A service specification defines the 
services provided by the protocol, regardless of the way these 
services are realized by the entites; it merely describes the 
behaviour of the protocol layer as it is visible to the user at 
the next layer. A protocol specification on the other hand, 
describes how the services are supported and realized by each 
protocol entity at the layer being specified, by means of 
interactions with the services of the next lower layer. In this 
paper we deal mainly with protocol specification and its 
verification rather than the service specification per se. We 
take the view that service specification defines the properties 
the protocol specification must satisfy and verification is the 
process of proving that the protocol specification actually meets 
the given service specification. Therefore, the specification and 
verification technique should be powerful enough to allow any 
desirable property of a protocol to be expressed and verified. 

Among the existing specification techniques which cater to 
verification, the temporal logic approaches predominate. An 
excellent overview of the most significant temporal logic methods 
is presented in [12]. Temporal logic techniques are subdivided 
into two (not necessarily disjoint) categories : the state-based 
methods and the event-based ones. 

Representative state-based techniques are the unbounded 
state method pursued by Hailpern [2] and the bounded state one 
pursued by Schwartz and Melliar-Smith [11]. Hailpern includes in 
the state an unbounded auxiliary variable for each input and 
output of each module to record the sequence of messages 
exchanged between the module and its environment. Modules are 
specified in terms of properties the sequence variables must 
satisfy. The bounded state method includes some (bounded) 
internal state variables which record a finite history of the 
past for each module. Modules are specified in terms of temporal 
logic formulas which reflect the cause-effect relationship 
between the module interfaces. 

Typical event-based techniques are the methods pursued by 
Vogt [14] and Schwartz and Melliar-Smith [12]. In these methods 
event sequences are (implicitly or explicitly) used to establish 
the context (state) in which a future event can occur. A module 
specification consists of temporal logic formulas which express 
constraints on allowable sequences of events. Any sequence that 
satisfies the constraints constitutes a valid behaviour. Vogt's 
method explicitly uses event sequence variables to establish the 
necessary context, while Schwartz and Mellier-Smith avoid it by 
using significantly more complex formulas f~r this purpose. 
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As it is indicated in [12] none of the prev i ous methods is 
satisfactory because they inherit a great complexity and they are 
difficult to understand. On the other hand, state- transition 
specifications are straightforward but they provide very limited 
means for verification. In this pape r we pursue a 
specification- ve r ification technique which amalgamates the 
state-transit i on and event-based approaches. It uses event 
sequences to establish the sufficient context (state of the 
module) for a module specification, and temporal logic formulas 
to define the transition function of the state-transition machine 
which describes the module behaviour. 

The SIGETL method we developed exhibits some similarities to 
Lamport's specification technique [18], in the sense that both 
a r e based on the state- t r ansition paradigm and both use temporal 
logic as their specification language. Nevertheless, the two 
methods differ significantly in the following aspects. Whe r eas in 
Lamport's the state of a module is specified by a group of state 
variables, in SIGETL the state is represented by a sequence of 
events. In Lamport's events are mainly "procedure calls" whereas 
in SIGETL they are primitive objects, As a result, the 
specification does not rely on any kind of procedure call 
mechanism. Moreover, a specification in our method can enjoy any 
desired level of abstraction, which might not be the case in the 
other technique. For instance, in SIGETL the channels as well as 
other modules that are not of prime concern, can be described 
just by their high - level properties necessary for the 
verification of the system. An explicit specifica t ion of such 
modules is neither necessary nor desirable. Finally, our method 
was intentionally designed to be closely related to the Estelle 
FDT and to facilitate the development of a semi - automatic 
verification tool based on SIGETL. 

In the remainter of the paper we assume that the reader has 
some knowledge of Estelle FDT [6] and temporal logic [1]. 

2. THE SIGNIFICANT EVENT MODEL (SEN) 

The basic building unit in a system and in a protocol 
specification in particular is the module. A module is capable of 
performing certain functions and, in turn, may be composed of 
several submodules which interact with each other~ The 
interactions between themselves and with their environment are 
realized by means of events. In a module we can distinguish two 
kinds of events : input events that is, interactions initiated by 
the environment and output events which are initiated by the 
module itself. Our model makes no distinction between modules and 
submodules; both are called modules. 

All interactions (input and output events) between two 
modules are realized through a communication channel shared by 
the modules. The events in a channel shared by two cooperating 
modules are directly c oupled in the sense that an out put event at 
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one end of the channel is simultaneously viewed as input event at 
the other end. Moreover, only one event can occur in a channel at 
an instance of time. This is what we call Directly Coupled Events 
Rule (DCER). 

The state of a module at any instance of time is described 
by the significant event sequence (SES) denoted by o. This is the 
sequence of all the significant events that have occurred in any 
channel of the module from its initiation till the present time. 
By the term significant event we denote an event that, when it 
occurs, changes the state of the system. All the possible state 
changes for a module are denoted by the transitions or transition 
axioms of the module. Thus, an input event is a significant one 
provided at the time it occurs, a transition is enabled (it 
triggers a state transition), while any output event is a 
significant one. 

The following rules hold for the events of any module: 

a. Many input events can occur simultaneously (at different 
channels) but only one of them is realized by the module at a 
time. The rest remain outstanding for the next time. The choice 
is arbitrary. By the term "realized" we mean that an event has 
occured and the module has decided to act on it. 

b. If an input event has been realized at a specific time 
then, if it is a significant one, it is concatenated to the event 
sequence in the next time interval (meaning it becomes past). 
Otherwise, it is simply ignored and the system remains at the 
same state. 

c. When an input event occurs it is always realized at some 
future time. 

d. If a significant input event (when realized) causes some 
output events to occur, then these output events are concatenated 
too at the same time with the input event (meaning that the 
transitions are atomic), and they consitute the current events of 
the module at that time. 

The above rules are called Event Rules 2!. ER. 

Formally, a module is a 4-tuple (Ch, o, T, S) where: Ch is 
the set of channels, defining all the types of the module events, 
o is the past-present significant event sequence of the module at 
the present time, T is the set of the transition axioms (or 
transitions), and S is the future state sequence (possibly 
infinite). The state sequence has the form s=s 0 , s,, .•. , where 
s 0 is the current state described by the sequence oO and Si is 
the ith future state of the module. 

The method resembles the Event-Based method developed by 
Vogt [14], in the sense that it also uses event sequences to 
encode information about a module. It differs from the 
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Event-Based technique in many respects. In particular, in SIGETL 
each module has its o~n sequence which includes 9nly the 
significant events occurred in the module, and it describes the 
state of the module at any time. SIGETL specifies the module 
behaviour by a set of state transitons which define the next 
possible state of the module. Coseguently invariant (safety) 
proofs are feasible in SIGETL. Finaly, the axiomatic system used 
in SIGETL is quite different from the one used by Vogt. 

3. SIGETL AS A SPECIFICATION LANGUAGE 

A protocol, according to the ISO model, is viewed as a set 
of interacting modules • Consequently, a protocol specification 
consists of the specification of the protocol modules and the 
channels shared among them. In SIGETL, the channels are specified 
in exactly the same way as in ISO Estelle formal description 
technique(FDT) [6],[6']. 

A module specification consists 
1. The module header which indicates 

the channels used by it (this is 
module header); 

of: 
the name of the module and 
again identical to Estelle 

2. The event sequence a for the module; and 
3 . The transitions. 

The language used to specify the transitions is the temporal 
logic augmented by some functions on o, and some special 
predicates. 

For a given state sequences, we use the notation 

s+n;; sn, sn+l , ... 

and! is the existential quantifier. The interpretation of a 

temporal formula A on s, denoted as As is defined as : 

1. If A is an atomic formula then As = s 0 (A); that is, A is 

evaluated at the current state. 

3. (cA)s; Vn2:0 (As+n ) 

4. (<>A)s; ~n2:0 (As+n ) 

5. (OA)s ;;; As+l 
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7. (A Until-After B) s ; (A Until (A /\ B)) s 

It is clear that Until is the only operator that we need since cA 

; A Until false and <>A;~c~A 

For reasoning about the event sequences, we use the 

following notation : 

o: [A 1 , .•• ,An ] denotes that o is a sequence which may 

contain events of kind A1 , ••. ,An only. 

o=<e. >~ 
0 

denotes that o contains the events (must be of the 
l l= 

same kind) e 0 , ••• ,en . * in this order. In addition e denotes 

0 or more consecutive instances of e, while e + denotes 1 or 

more. 

The following functions on the o sequence are used 
lol returns the number of events in o. Note that: 

if o=<e. > ~ 0 then lol =n+1. 
l l= 

P(o,Y) is the projection function on o. It returns a sequence 
which contains only the events of kind Y which are in o and in 
the same order they occur. 
Finally, suff(o,Y) is the suffix function (as it is defined by 
F. Vogt in his event model). It is defined as: 

o=<o1><y><suff(o,Y)> 
and, P(suff(o,Y),Y)=X 

where Xis the empty sequence. 

The only operation allowed to be done on o by the 
transitions is the addition of new events. We use the notation 

o<e 1 , ••• , en > 

to define the sequence resulting from o by concatenating to it 
the events e1 , ••• ,en • The order of the concatinated events is 
irrelevant, but an expression of the form 

o<e 1 , ••• , e n ><m 1 , ••• , mk > 

denotes that events e i occur before events m j . Consequently, 
events e are past events, while, events mare tfie current ones. 

Transitions, in general, express the fact that if at a 
certain instance of time a valid input event (not violating the 
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history o) is realized, then the next time this becomes "past", 
and the output events triggered by this, become the last 
"current" events of o. The last events are considered current and 
past at the same time. (This is similar to the notion of 
present-past events defined by F. Vogt in his event model). 

Consequently, each transition has the form 

CA [o=o0] A [at(e)] ~ 
0 ( [ o= o0<e><O 1 , ••• , On >] A [ o 1 ] ••• A [ On ] ) 

where [at(e)] means that input event e has occurred and realized 
by the module; [o=oO] means that the sequence of ~vents o is o0, 
while [o=o<e><o1 , ••• ,on>] means that the sequence o contains 
all the events in o0 and the events e, o 1 , ••• ,on ; C is the 
enabling condition of the transition; o 1 , ••• ,on are the output 
events triggered by the transition; and [o i J means that the 
event Oi occurs. 

Note that for an input event e, [e] means that the event e 
has occurred but not yet realized, while [at(e}] means that e has 
been realized by the module. Consequently, the following rule 
holds 

• [e] ~ <>[at(e}] (E-Rule} 

Also note the necessity of using"[ ]" to denote that every 
term is a proposition (either true or false at any state of the 
system) . 

SIGETL offers mainly two levels of abstraction. At the lower 
level a module is specified by its SES and the transition axioms 
as described earlier. If a higher level of abstraction is 
desired, the module can be specified as a black box; that is, its 
behaviour is described by its safety and liveness properties. In 
this description the module's SES does not need to be specified; 
instead its properties can be specified by using the event 
sequences of the modules with which this module interacts. 
Examples of black box specifications are the "additional modules" 
of a simple data transfer protocol in APPENDIX 3. 

4. SIGETL SYSTEM FOR PROTOCOL VERIFICATION 

The axiomatic temporal logic system used in SIGETL is shown 
in APPENDIX 2. This system is different from the DUX system 
presented in [1] mainly because it uses the Until-After modality 
and it has a different induction axiom (A6}. Our induction axiom 
postulates that if it is always the case that when pis true and 
g is false then pis true at the next state, then if pis true at 
the current state it will remain true up to the first state at 
which g becomes true. This axiom is more suitable for the 
verification of the protocols than the old induction axiom which 
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is a theorem in our system (Th1) as an immediate consequence of 
A6 with q=false. Also, axiom A7, which defines the Until-After 
modality, does not exist in DUX. 

Among the derived rules the first three are typical rules in 
any S4 system while the rest are special SIGETL rules very 
frequently used in the proofs of the liveness properties of the 
protocols. The latter rules can be derived from the axioms by the 
inference rules and ~ropositional logic (PL) as it is illustrated 
by the following derivation of the rule D4: 

1 • p :> p Until-After q Hyp 
2. <>q Hyp 
3. p :> c(E A ~q) V <>(p A q) 1,A9,A8,PL 
4. <>q :> c(p A ~q) PL,A4 
5. p :> <>(p A q) 2,3,4,PL 

Similar derivations can be given for the other derived rules. 

We distinguish two kinds of properties of a module to be 
verified: safety properties and liveness properties. Safety 
properties (or invariants, analogous to partial correctness of 
programs) have the form oI(o) where I is a modality-free logic 
formula. To prove cI(o) it is sufficient to prove that I holds 
initially (when o=A) , and that it is preserved by each 
transition: that is, if I(obefore) :> I(oafter) where obefore and 
oafter are the sequences before and after the "execution" of a 
transition. (I-Rule). Liveness properties (or commitments) have 
the form A:> B where A and Bare temporal logic formulas. These 
properties are proven from the transitions using the axiomatic 
system. Finally, the global properties of a system are proved 
from the pr ope rt ies of its compo,nents using the axiomatic system. 

5. TRANSLATION FROM ESTELLE TO SIGETL 

As mentioned previously, SIGETL is very similar to Estelle 
[6] in some respects but, while Estelle is implementation 
oriented, SIGETL is a verification oriented formalism. We now 
give some guidelines for the translation between the two 
techniques. The reader will notice the intentional similarities 
between them. 

In Estelle the state of a module is defined by the values of 
the "major state" variable and some other variables called state 
components (e.g. sequence number, etc.). These state components 
need to be translated in SIGETL using the event sequence o and 
the defined functions. In some cases special functions on o must 
be defined in order to express some variables (such as credits 
available or finite sequence number) as functions of o. 

The Estelle-to-SIGETL translation of a specification is 
relatively straitforward. The type and channel definitions of 
both formalisms are identical. Furthermore, an Estelle transition 
of the form: 



from <fromstate> 
to <tostate> 

when <event> 
provided <enabling condition> 

begin 
<transition body> 
end 

is translated to 

1 0 

translate(fromstate, enabling condition) A[o=oO] A [at(event)] ~ 
o([o=oO<event><out events>] A [out events]) 

where translate(fromstate,enabling condition) is the condition 
that results from translating fromstate and enabling condition in 
SIGETL terms; and out events are the events initiated in the 
transition body. Similar rules can be deduced for the other 
transition types. 

As an example, the SIGETL specification of a simple data 
transfer protocol is provided in Appendix 3, which was derived 
from the Estelle specification version in Appendix 4. The type 
and channel definitions in both formalisms are identical and 
there is one transition axiom in the SIGETL specification for a 
module for each Estelle transition of the same module. In 
addition there are some additional transition axioms which 
describe the behaviour of the module when an event, expected at a 
"certain state", does not occur (e.~. axioms t4, t5 and r3 in 
APPENDIX 3). Moreover in SIGETL additional axioms are needed to 
insure that only one input event can be realized at any time by 
the module (axiom t6 in Transmitter). 

For verification purposes, in SIGETL we need in addition to 
the entity specifications, the specifications of all the other 
modules involved in the system (i.e. network module, user 
modules, op. system module, etc.). These specifications are 
called "Additional Modules". For each one of these modules only 
their properties (safety and liveness) need to be specified and 
they are given in the section called "Additional Modules". 

In the rest of the paper, we give an example using a simple 
data transfer protocol. 

6. SIGETL SPECIFICATION OF A SIMPLE DATA TRANSFER PROTOCOL 

This protocol is similar to the one presented by Hailpern in 
[4]. It is essentially an "alternating bit" protocol with an 
unbounded sequence number. In this protocol the sender gets the 
next message to be sent from use r t, appends to it the sequence 
number and sends it to the receiver via the network(medium). The 
sender retransmits the same message repeatedly until it receives 
an acknowledgment for that message. Whenever the receiver 
receives the next expected message, it delivers the message to 
user2 and sends an acknowledgment for the message to the sender. 
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The SIGETL specification of the protocol is given in 
APPENDIX 3 while APPENDIX 4 contains the Estelle specification of 
the same protocol. 

The abbreviations (state1),(state2) in the SIGETL 
specification give a hint for the translation between the two 
specifications. In addition, we need to express the other state 
components namely send-seq and recv-seg with SIGETL formulas. 
This is achieved by : 

in ESTAB ~send-seq= lus(o)I 
in ACK-WAIT~ send-seq= lus(o) 1-1 
and recv-seg = lur(o) I 

Having stated that, the translation 
straitforward. However, some explanations 
the additional modules are in order. 

In the SIGETL specifications : 

should be relatively 
for the properties of 

(Ul), states that the userl if it sends a message, it sends it 
after it received an indication that the previous one was indeed 
delivered to the other user. 
(U2) states the willingness of userl to send a message after the 
last acknowledgment. 
(Timer) gives the liveness property of the timer. That is, if the 
timer is set after the last TIMEOUT or STOPTIMER then a TIMEOUT 
is expected. 

The Network module describes the properties of a medium with 
minimum requirements. This medium may lose or destroy or corrupt 
a finite number of messages (N3, N4, N5, N6), but can not 
generate messages by itself (N1,N3). Moreover, this medium is not 
necessarily a FIFO one. It is assumed that message corruption is 
detected by a lower-level mechanism and corrupted messages are 
discarded. 

In this specification we use the pseudo-functions data, id, 
seg, which if applied to any event will return the value of the 
coresponding field of the message of the event. 

We are now ready to discuss the verification of this example 
to illustrate how the SIGETL system can be used for protocol 
verification in general. 

7. VERIFICATION OF THE DATA TRANSFER PROTOCOL 

For this protocol we want to prove: 
First, that if any messages are delivered to User2, these are the 
messages sent by Userl and they are delivered in the order they 
were sent (safety). 
And second, that if Userl keeps sending messages, at some future 
time messages will indeed be delivered to User2 (liveness). 
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In order to prove the above properties we need first to 
state and prove the invariants and commitments of the sender 
(consisting of the transmitter and the system module) and the 
receiver. 

For simplicity, we 
properties as well as in 
J'. Furthermore, without 
Sender and Receiver. 

shall omit enclosing every term in the 
the proofs given in this section in '[ 
any confusion , we simply use o for both 

a. Sender 

The safety specifications of the sender are given by the 
invariants: 

• c(us(o)=<us. >jus(o) l- 1 /\ sd(o)=<sd + >lus(o) l- 1 ) (T1) 
l 1=0 i i=0 

• c(ra(o)=<ra. >jus(o)l- 2 ) (T2) 
l l=O 

T1 states that at any time lus(o) I messages have been received 
from the user and all these messages have been sent to the 
network (each one many times) in the order they have been 
received. T2 in conjunction with T1 denotes that if n messages 
have been sent, then the first n-1 must have been acknowledged. 

Since the proofs of T1 and T2 are quite similar we only give 
the first one. 

Proof of T1 
In this proof-we use o to denote 
execution of a transition and onext to 
next state (that is after-executing a 
to the formula T1 without c. 

the sequence before the 
denote the sequence at the 

transition), and T1 refers 

1. in ESTAB /\ at(us) /\ T1(o) ~ T1(onext) 

since us(onext)=us(o)<uslus(o)I > 

and lus(o) I = jus(onext) I -1, 

a nd sdlus(onext)j-1 e onext 

2. in ESTAB /\ at(us) /\ T1(o) ~ O(T1(o)) 

3. in ACK-WAIT/\ at(ralus(o)j-, /\ T1(o) ~ 

T1{onext) ~ O(Tl(o)) 

4. in ACK-WAIT/\ at(TIMEOUT) /\ T1(o) ~ T1{onext) ~ 

O(T1(o)) 

t1 

1 , 

O-interp. 

t2, O-int. 

t3, O-int. 



5 . T 1 ( o ) ::> OT 1 ( o ) 

6 • c ( T 1 ( o ) ::> OT 1 ( o ) ) 

7 • T 1 ( o ) ::> cT 1 ( o ) 

8. Tl (o) since T1 0.) is true 

9. cT 1 ( o) 

1 3 

,, ••• ,4, 

t4, t5, t6 

5, gen. 

Th 1 • 

7,8,mp. 

The liveness properties of the transmitter are expressed by 

the commitments: 

• We define: UC - c((o=A) V (ua E suff(o,us)) ::> 

<>US) 

•UC::> c<>sd 

• Vk(rak ::> lus(o)l~k+1) ::> Vk(rak ::> <>(ra k eo)) 

( T3) 

( T3' ) 

• Vk(rak e o:, lus(o)I ~k+1)) A UC::> (T4) 

Vj(raj e o:, c<>sdj+i V <>(raj+l Eo)) 
T3: states that if the user keeps sending messages to the 
transmitter then, the transmitter keeps sending to the network. 
T3': if the acknowledgment of any message is received after the 
message has been sent, then any acknowledgement received is added 
to the sequence (is a significant one). T4: if the acknowledgment 
of any message is received after that message has been sent then, 
if the acknowledgment for the message j is received, the 
transmitter keeps sending the next message until its 
acknowledgment is received. 

To prove these commitments, we need some properties for the 
sender deduced from the transition axioms and (Timer). These are: 

• in ESTAB ::> in ESTAB Until-After at(us) 

• in ACK-WAIT::> 

in ACK-WAIT Until-After at(ralus(o) 1-l ) 

• in ACK-WAIT A ~at(ralus(o) 
1

_ 1 ) ::> <>TIMEOUT 

• ua E suff(o,us); arlus(o) I E o 

( tp1 ) 

(tp2) 

(tp3) 

(tp4) 
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• c(in ESTAB Vin ACK-WAIT) (tp5) 

tpl, tp2 are deduced from the axioms t3, t4, t5, t6 and A6. 

tp3 can be deduced from the fact that 

in ACK-WAIT A ~at(ra I us< o) I -1 
O(SETTIMER 

suff(o,[STOPTIMER,TIMEOUT])). 

tp4 comes from the fact that ua and ralus(o)l-l are always 

too at the same state (t2). 

added 

We now give the proof of the commitment T3. The other proofs 

are similar to this. 

Proof of T3 

1. UC 

2. in ESTAB::, <>US 

3. in ESTAB::, <>(in ESTAB A at(us)) 

4. in ESTAB::, <>sd 

5. in ACK-WAIT::, 

c(in ACK-WAIT A ~at(ralus(o) 1-1 
<>(in ACK-WAIT A at(ralus(o)j-1 

6. in ACK-WAIT::, 

D<>(in ACK-WAIT A at(TIMEOUT)) 

<>(in ACK-WAIT A ralus(o)j-1 ) 

7. in ACK-WAIT::, 

a<>sd V <>{in ESTAB) 

8.in ACK-WAIT::, <>Sd 

9. <>sd 

V 

) ) V 

) ) 

Hyp 

1,tp4, state1 

2,tpl, E-Rule,D4 

3,t1,Th1, ::,-Trans 

tp2, AB, ::,-Trans 

5, tp3, E-Rule,D4 

6,t2,t4 

7,4 

4,8, Proof by Cases, 

tp5 



10. D<>Sd 

11 • UC :, c<>sd 

b. Receiver 

9, gen 

1,10,D3. 

The safety properties of the receiver are : 

• c(ur(o)=<uri >!~~(o) 1-l A Vi~lur(o) 1-1 (rd i fo)) 

• a ( sa ( o) = < sa; > I ur ( 0 > I - 1 ) 
l 1=0 

and its liveness commitments are: 

• c<>rd ::> c<>sa 

• c(rdk ::> lur(o)l~k) A c<>rd::, 

Vj(rdj fO:, (<>( lur(o) l~j+l) A 

(c<> saj V <>(rdj+i fa)))) 
Informally : 

( R 1 ) 

(R2) 

1 5 

(R3) 

( R3' ) 

(R4) 

Rl: states that the data delivered to the user are the data of 
the in-sequence messages received by the receiver. 
R2: insures that the receiver sends an acknowledgement (possibly 
many times) for every in-sequence message it receives. 
R3: if an unbounded number of messages reach the receiver, then 
an unbounded number of acknowledgments have been sent. 
R4: Assuming that message k does not arrive until the receiver 
has processed message k-1, and that messages do not stop coming 
to the receiver, the receiver will keep sending an acknowledgment 
for the last message, until it receives the next one. 

The proofs of these formulas are similar to the proofs for 
the sender properties and they are omitted. 

C. Safety of the System 

The safety of the system is expressed by : 



• c(ur(o)=<ur. >~ 0 ~ 
l l= 

Vi~n((usi eo) A data(usi )=data(uri ))) 

1 6 

( S 1 ) 

which states that if n+l messages have been received by the user2 

these are the first n+l messages sent by user1 and the order is 

preserved. 

Proof of S1 --- -- --
1.UR ~ ur(o)=<ur. >~ 

0 l l= 

2. UR~ V~n((rdi eo) A data (uri )=data(rdi )) 

3. UR~ Vi~n((sdi eo) A data(sdi )=data(uri )) 

4. UR~ Vi~n((usi eo) A data(uri )=data(usi )) 

R1 def 

ur, dr 

2, N 1 

T1, 

def 

sd, us 

Since U1 holds implies that the us i 's in o are the only 

messages the user1 has sent. 

d. Liveness of the System 

The liveness of the system is given by: 

• c<>sd A c<>rd A c<>sa A c<>ra 

• c( lur(o) l=n ~ <>( lur(o) l>n)) 

( L 1 ) 

(L2) 

The first formula denotes that the system is starvation 
free: that is, infinitely many messages are transfered through 
each one of the four system channels.The second formula expresses 
the system liveness: that is, at any time if user2 has received n 
messages then he will definately receive the next message at some 
future point. 



We now give the proofs of L1 and L2. 

Proof of L1 

1 • UC U1, tp4 

2. c<>Sd 1 ' T3, mp 

3. <>rd 2, N5, mp 

4. c<>rd 3 ' gen 

5. C<>Sa 4, R3, mp 

6. <>ra 5, N6, mp 

7. c<>ra 6, gen 

8. Ll 2, 4, 5, 7 A-Intr 

Proof of L2 --
First we prove the hypotheses of T4, T3' and R4 

1 • rak V rak eo ::, sak eo 

2. sak eo ::, I ur ( o) I~ k+l 

3. lur(o) l~k+l ::, rdk eo 

4. rdk eo ::, sdk eo 

5. sdk eo ::, lus(o) l~k+l 

6. Vk(rak V rak eo ::, lus(o) l~k+1) 

9. sak-l eo::, lur(o)l~k 

N2 

R2 

Rl 

Nl 

Tl 

1, ••• ,5, ::,-Trans, 

gen 

T2 

N2 

R2 

4,5,7,8,9,::,-Trans, 

gen 

1 7 



Now we prove L2: 

11. Vj(raj to :, c<>(sdj+l ) V <>(raj+l 

EO)) 

12. Vj(rdj to:> <>( lur(o) jc!:j+1) A 

(c<> saj V <>(rdj+l to))) 

13. lur(o) l=n :> rdn-l to 

14. I ur ( o) I =n ::> c<>san- 1 V <> ( rdn E o) 

18. <>(rdn to) ::> <>( lur(o) l~n+1) 

20. <>(san eo) ::> <>(lur(o)l~n+1) 

21. L2 

8. CONCLUSIONS 

1 8 

6, U1 , T4, mp 

L 1 , 1 0, R4 , mp 

R1 

1 3, 1 2 , sub, :,-Trans 

N6, U 1 , T3' , :,-Trans 

1 1 , sub, D 1 , Th6, Th 1 5 

N3, R3' 

1 2, sub 

N2, Dl 

R2, D1 

14, •.• , 20, Proof 

by Cases, gen. 

It is a general belief that state transition oriented 
specifications are easier to understand since the behaviour of a 
system is described by an abstract program. Such specifications, 
although they are closer to an implementation of the system, 
provide little or no means for expressing and reasoning about the 
properties (correctness) of the system. On the other hand, 
temporal logic seems to be a suitable tool for this purpose. 
However, specification methods using temporal logic tend to 
produce complicated expressions which are not only hard to 
understand but also dif f icult to reason with. 
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The Significant Event Temporal Logic(SIGETL) method we have 
develo~ed can be viewed as a generalized transition oriented 
specification technique as well as a sound tool for verifying 
protocols specified in any transition oriented method. We believe 
that SIGETL bridges the gap between the two general categories 
mentioned earlier, in a very natural way. The only disadvantage 
of SIGETL is the inherent undesidability of first order temporal 
logic. However, since theorem proving techniques are quite 
advanced nowadays, we believe that implementation of a SIGETL 
semi-automatic verification system is feasible and worthwhile. We 
have also applied the SIGETL technique on other protocols 
including a data transfer protocol with finite sequence number, 
conditional events, buffers and FIFO medium (a version of the 
alternating bit protocol) [13]. 

Our research effort presented in this paper aims at adding a 
verification capability to an integrated set of tools under 
development at the University of British Columbia, which 
currently provides validation and synthesis facilities via tools 
called VALIRA and VALISYN [15] and an automatic implementation 
capability for protocols specified in Estelle via an Estelle-C 
compiler l 16,17). 

[ 1 ] 
REFERENCES 

M. Ben, "Temporal Logic 
Programs", ACM TOPLAS, 1980. 

Proofs of Concurrent 

[2] B. Hailpern, "Verifying Concurrent Processes Using 
Temporal Logic", Technical Report 195, Computer 
Systems Lab., Stanford Univ., Aug. 1980, also in LNCS 
129, Springer-Verlag. 

[3] B. Hailpern, S. Owicki, "Verifying Network Protocols 
Using Temporal Logic", NBS Trends and Appl. Symp., May 
1980. 

[ 4 ] 

[ 5 ] 

B. Hailpern, S. Owicki, "Modular 
Computer Protocols", IBM Research 
1981. 

C. Hoare, "Communicating Sequential 
Aug 78, V21, NS. 

Verification of 
Report RC 8726, 

Processes",CACM, 

[6) ISO/TC97/SC16/WG1 Subgroup B, "A FDT Based on an 
Extended State Transition Model", March 1984. 

ISO/TC97/SC21/WG1/DIS9074, "Estelle 
Description Technique Based on an 
Transition Model, 1987. 

A Formal 
Extended State 

[7) z. Manna, P. Wolper, "Synthesis of Communicating 
Processes from Temporal Logic Specificatons", Tech. 
Report CS-81-872, Comp. Science, Stanford Univ., 1981. 



20 

[8] z. Manna, A. Pnueli, "Verification of Concurrent 
Programs, Part II: Temporal Proof Principles", Tech. 
Report CS-81-843, Comp. Science, Stanford Univ.,1981. 

[9] S. Owicki, L. Lamport, "Proving Liveness Properties of 
Concurrent Programs", ACM Trans. on Prog. Lang. 4, 
1982. 

[ 1 0] A. Pnuel i, 
Programs", 
Concurrent 
1979. 

"The Temporal Semantics of Concurrent 
Intern. Symp. on the Semantics of 

Computation, Evian, Springer-Verlag, July 

[11] R. Schwartz, P. Melliar-Smith, "Temporal Logic 
Specification of Distributed Systems", Proceedings of 
the IEEE Conference on Distributed Systems, April 
1 981 • 

[12] R. Schwartz, P. Melliar-Smith, "From State Machines to 
Temporal Logic: Specification Methods for Protocol 
Standards", Protocol Specification Testing and 
Verification, C. Sunshine (ed.), North-Holland, 1982 

[13] G. Tsiknis, "Specification-Verification of Protocols 
The Significant Event Temporal Logic Technique", M. 
Sc. Thesis, University of British Columbia, April 
1985. 

[ 1 4] . F. Vogt, "Event-Based Temporal 
Services and Protocols", 
Testing and Verification, 
North-Holland, 1982. 

Logic Specifications of 
Protocol S~ecification 

C. Sunshine (ed.) 

[15] S. Vuong, et al., "VALIRA A Tool for Protocol 
Validation via Reachability Analysis", 6th IFIP 
Workshop on Protocol Specification Testing and 
Verification, Sarikaya and Bochmann (Eds.), June 1986. 

[ 1 6] S. Vuong, A. Lau, "A Semi-Automatic 
Protocol Implementation - The ISO Class 
Protocol as an Example", IEEE 
SanFrancisco, April 1987. 

Aproach to 
2 Transport 

INFOCOM' 87, 

[ 17] S. Vuong, A. Lau, I. Chan, "Semiautomatic 
Implementation of Protocols Using an Estelle-C 
Compiler", IEEE Trans. on Software Engineering, March 
1988. 

[18) L. Lamport, "Specifying Concurrent Program Modules", 
TOPLAS 5 2, April 1983. 



APPENDIX 1 
Axioms and Derived Rules of Standard Logic 

Assump Axiom 
Assump Intro 
Assump Elim 
T Axiom 
F Axiom 
V Intr 
V Elim 
/\ Intr 
A Elim 
:> Intr 
:> Elim 
~ Intr 
~~ Intr 
~~ Elim 
;; Intr 
- Elim 
:> to A Trans 
V Elim 
:> Elim 
Proof by Cases 
:> Trans 
;; Trans 
:> to V Trans 
DM 
DM' 
CP 
/\ Commut 
V Commut 
;; Commut 
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AXIOMS 
Al. c{p:>q)J(Cp:>cq) 
A2. O(p:>q):i(Op~Oq) 
A3. np~_eAO_eAOcp 
A4. cp= <> p 

APPENDIX 2 
The Temporal Logic System 

AS. ~op~o~p 
AG. c(pA~q:>Op):i(p:>p Until-After q) 
A7. p Until q ~ g V (p A O(p Until g)) 
AB. p Until q :> c(p A ~g) V <>q 
A9. p Until-After g; p Until (p Ag) 

INFERENCE RULES 
R1, (taut). If p 1s a (substitution of a) tautology then rP • 
R2, (mp). If rP and rP:>g then rg. 
R3, (gen). If rP then rep. 

D 1 • 
D2. 
D3. 
D4. 

DERIVED RULES 
If FP then FMJ? where Misc or<> or 0 
If ~p:>g then I- Mp:>Mq 
If J? rq then rt1p:>q. Deduction theorem 
If I- I?:> (p Until - After q) and j-<>q 

(ded} 

D5. 

D6. 

then j- p :> <>(pAg) (U-<> Rule) 
If r p :> (p Until-After q) and r A ~g :> <>r 
then r p :> t1<>(J?Ar) V <>(pAq) (U- c<> Rule) 
If r p :> (p Until-After q) and r c~q 
then r p :> c{pA~g) (U-c Rule) 

THEOREMS 
Thl. c{pJOp) :> (p:>cp) 
Th2. Op:> <>p 
Th3. c(p A q) ~ cp A cg 
Th4. <>(p_V q); <>p V <>g 
Th5. ccp = !:!P 
Th6. <><>p = <>p 
Th7. O(p A q) ~ Op A Oq 
Th8. Op V oq ~ O(p V q) 
Th9. <>(p A q) :> <>p A <>q 
Thl0. cp V cq :> c(p V g) 
Th11. p A Ocp ~ cp 
Th12. <>p ~ p V O<>p 
Th13. c((p V cg) A (q V cp)) - cp V cq 
Th14. <>cp; c<>cp 
Th15. c<>p; <>c<>p 
Th16. <>p A cg:> <>(p A cg) 
Th17. <>cp A cg J <>c(cp A cg) 
Th18. <>cp A <>cg:> <>c(cp A cg) 
Th19. c<>(p V g) :> c<>p V c<>g 
Th20. c<>p A cq :> c<>(p A cg) 
Th21. a<>p A <>cg:> c<> (p A cg) 
Th22. (p ~ g) Until r :> (p Until r :> g Until r) 
Th23. p Until g :> c~g Until r :> p Until r) 
Th24. p Until (g Ar):> (p Until g) Until r 
Th25. O(p Until g) :> (Op) Until (Oq) 
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APPENDIX 3 
SIGETL Specification of the Data Transfer Protocol 

type 

data-type= .•• ; 
seq-type=0 ••. ; 
id-type=(DATA,ACK); 

(* Channel definitions*) 

Channel UserTransmitter(User, Provider); 
By User: 

SENDreq(d:data-type); 
By Provider: 

SENDack; 

Channel UserReceiver(User, Provider); 
By Provider: 

RECEIVEindic(d:data-type); 

Channel EntityNetwork(User, Provider); 
By User: 

SEND(id:id-type, d:data-type, seq:seq-type); 
By Provider: 

RECEIVE(id:id-type,d:data-type, seq:seq-type); 

Channel System Transmitter (User, Provider); 
By User: 

STARTTIMER; 
STOPTIMER; 

By Provider: 
TIMEOUT; 

(* Abbreviations used in this specification* ) 

us(o) = P(o, SENDreq), usi = SENDreg(di ), and US=any SENDreq. 

ua(o)=P(o,SENDack), ua=any SENDreq. 

ur(o)=P(o,RECEIVEindic), uri =RECEIVEindic(bi ), ur=any uri 

sd(o)=P(o,[SEND, where id=DATA]), 

sdi =SEND(DATA,di ,() and sd=any sdi 

rd(o)=P(o,[RECEIVE,where id=DATA]), 

rdi =RECEIVE(DATA,bi ,i) and rd=any rdi 

sa(o)=P(o,[SEND,where id=ACK]), sai =SEND(ACK,-,i) 

and sa=any sa, 
1 
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ra(o)=P(o,[RECEIVE, where id=ACK]), ra. =RECEIVE(ACK,-,i) 
l 

and ra=any ra. 
l 

[in ESTAB) ;e [al=>..] V [rajus(o 1) 1- 1 eol] 

[in ACK-WAIT] ; [oh!)..] A [ralus(o 1) 1- 1 /.o1] 

(* Module definitions*) 

Module Transmitter (UserTransmitter(Provider); 
· EntityNetwork(User)) 

SES: ol : [us,ua,sd,ra,STARTTIMER,STOPTIMER,TIMEOUT] 

Transition Axioms: 

• [in ESTAB] A [ol=oO] A [at(us)] ~ 

• 

O([in ACK-WAIT] A [o1=o0<uslus(o0) I > 

<sdlus(oO)I ,STARTTIMER>] A 

[ sd I us ( 00 ) I ] A [ STARTTIMER]) 

[in ACK-WAIT] A [o1=o0] A [at(ralus(oO) 1- 1 )] ~ 

O([in ESTAB] A [o1=o0<ralus(oO) 
1

_ 1 
><STOPTIMER,ua>] A [STOPTIMER] A [ua]) 

• [in ACK-WAIT] A [ol=oO] A [at(TIMEOUT)] ~ 

O([in ACK-WAIT] A [o1=o0<TIMEOUT> 

<sdlus(oO) 
1
_ 1 ,STARTIMER>] A 

[sdlus(oO) 
1
_ 1 ] A [STARTIMER]) 

• [in ESTAB] A [ol=o0] A ~[at(us)] ~ 

O([in ESTAB] A [ol=o0]) 

• [in ACK-WAIT] A [o1=o0] A ~rat(ralus(oO)l-1 )] 

A ~[at(TIMEOUT)] ~ 

O([in ACK-WAIT] A [o1=o0]) 

(state1) 

(state2) 

( t 1 ) 

(t2) 

(t3) 

(t4) 

(t5) 
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• ([at(us)] A ~[at(ra)] A ~[at(TIMEOUT)]) 

V (~[at(us)] A [at(ra)] A ~[at(TIMEOUT)]) 

V (~[at(us)] A ~[at(ra)] A [at(TIMEOUT)]) 

V ~([at(us)] V [at(ra)] V [at(TIMEOUT)]) 

Module Receiver (UserReceiver (Provider): 
EntityNetwork (User)) 

SES : o2 : [ ur, rd, sa] 

Transition Axioms: 

• [o2=o0] A [at(rdlur(oO)I )] :> 

O([o2=o0<rdlur(oO) I > 

<ur I ur ( o0) I ' sa I ur ( o0) I >] A 

[ ur I ur ( o0) I ] A [ sa I ur ( o0) I ] ) 

• [o2=o0] A [at(rdk where k¢jur(o0) j)] :> 

O([o2=o0<rdk ><Salur(oO) 1-1 >] A 

[ sa I ur ( o0) I - 1 ]) 

• [o2=o0] A ~rat(rd)] :> O([o2=o0]) 

(*Additional Modules*) 

Module User1 (UserTransmitter(User)) 

Properties: 

• c ( [ us ] :> [ o 1 = >- ] V [ ua e s u f f ( o 1 , us ) ] ) 

• [o1=X] V [uaesuff(ol,us)] :> <>[us] 

Module User2 (UserReceiver(User)) 

Properties: none 

Module System (SystemTransmitter(Provider)) 

Properties: 

(t6) 

( r 1 ) 

(r2) 

(r3) 

(U 1 ) 

(U2) 
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• [SETTIMER E suff(ol, [STOPTIMER,TIMEOUT])] ~ 

<>[TIMEOUT] 

Module Network (EntityNetwork(Provider) 
EntityNetwork(Provider)) 

Properties: 

• er ( [ rd i ] V [ rd i E o2] ~ ( [ sd i E o 1 ] A 

[data(rdi )=data(sdi )])) 

• c([rai ] V [rai Eol] ~ [sa i Eo2]) 

• c<>[sd] ~ <>[rd] 

• c<>[sa] ~ <>[ra] 

26 
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( N 1 ) 

(N2) 

(N3) 

(N4) 

(N5) 

(N6) 
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APPENDIX 4 

Estelle Specification of the Same Protocol 
(* Types and Channels are the same as in SIGETL specification*) 

(* Module definitions*) 

Module Transmitter (U:UserTransmitter(Provider); 
N:EntityNetwork(User); 
S:SystemTransmitter(User)); 

Var 
data:data-type; 
send-seq:seq-type; 

Stateset 
[ESTAB,ACK-WAIT]; 

Initialize 
Begin 

state to ESTAB; 
send-seq:=0; 

end 

(*transitions*) 
trans 

from ESTAB 
to ACK-WAIT 

when U.SENDreq(d) 
begin 

data:=d; 
out N.SEND(DATA,data,send-seq); 
out S.STARTTIMER; 

end; 

from ACK-WAIT 
to ESTAB 

when N.RECEIVE(ACK,-,seq) 
provided (send-seg=seq) 

begin 
send-seq:=send-seq+l; 
out U.SENDack; 
out STOPTIMER; 

end; 

from ACK-WAIT 
to SAME 

when S.TIMEOUT 
begin 

out N.SEND(DATA,data,send-seg); 
out S.STARTTIMER; 

end; 
end Module 



Module Receiver(U:UserReceiver(Provider} 
N:EntityNetwork(User}} 

Var 
recv-seg:seq-type; 

Initialize 
begin recv-seg:=O; end 

(*transitions*} 
trans 

when N.RECEIVE(DATA,d,seq} 
provided(seq=recv-seg) 
begin 

out N.SEND (ACK,-,seg}: 
out U.RECEIVEind(d); 
recv-seq:=recv-seg+l: 

end; 

provided otherwise 
begin 

out N.SEND(ACK,-,recv-seq}; 
end; 

end Module. 
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