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Abstract 

Let Cg,n be a constant such that for each triangulation of a surface of genus g 

with a graph of n vertices there exists a noncontractible cycle of length at most 

Cg,n• Let C(g,n) = Cg,n• Hutchinson in [H87] conjectures that C(g,n) = O(✓ n/g) 

for g > 0. In this paper, we present a construction of a triangulation which 

disproves this conjecture. 
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I.Introduction 

One of the problems in topological graph theory is to find short noncontractible 

cycles in an embedded graph. Consider the family T g,n of all triangulations of a surface of 

genus g by a graph with n vertices. Define by Cg,n the maximum over all elements T e 

T g,n of length of a shortest noncontractible cycle in T. Let C(g ,n) = Cg,n· Hutchinson in 

[H87] has proved that C(g,n) = O(✓(nlg) log g). This means that in any triangulation of a 

surface of genus g with a graph of n vertices there exists a noncontractible cycle of length 

at most c✓(n/g)logg) where c is some constant. In the same paper the author conjectures 

that C(g,n) = O(✓(nlg)) and that for n < g C(g,n) = 0(1). In this paper we construct a 

counterexample to this conjecture. This result implies that in general we cannot construct a 

O(✓(n/g)) planarizing set (a set of vertices whose removal leaves the graph planar) by 

removing short noncontractible cycles. 

Following the ideas from the construction one can show that C(g,n) = il(✓(nlg) 

log•g). It means that C(n,g) grows at least as fast as ✓(n/g)log•g. We conjecture however 

that the result obtained by Hutchinson is tight (up to a constant). In other words we 

conjecture that C(g,n) = E>(✓(nlg)logg). 

The idea of the construction is derived from algebraic topology. In the next section 

we present basic facts and definitions used in the construction. For proofs and more formal 

presentation see for example [K80]. In the third section we prove topological theorems 

which suggest the way of constructing counterexample. Next we present the construction. 

In the appendix we prove few algebraic theorems used in the paper. 
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2. Basic facts and definitions 

Throughout the paper by a surface we will understand a closed, connected, 

orientable surface without boundary. Informally this describers a sphere with g handles 

where g is the genus of the surface. By F2 we denote double torus (sphere with two 

handles) 

A graph is said to be embedded in an orientable surface of genus g (g~O) if it 

can be drown on it in such a way that no two edges cross. If the graph G is embedded in a 

surface S the complement of G relative to Sis a collection of open sets called faces. If all of 

the faces are open discs we say that the embedding is a 2•cell embedding. Throughout the 

rest of the paper we will consider only a 2-cell embedding. 

An embedding is called a triangulation if every face is bounded by three edges. 

The main notion used in the paper is covering. 

Definition 2.1. Let X' and X be two surfaces. A continuous mapping p: X'-> X is said 

to be a covering map if each point xe X has an open neighborhood U x such that p· 1 (U x) is 

the disjoint sum of open subsets of X' each of which is mapped homeomorphically onto 

Ux by p. The surface X' is called the covering surface, the surface X is called the basic 

surface. 

Definition 2.2. The covering is called a k-fo/d covering if for any x e X it holds that 

lp·1(x)I = k. 

It is sometimes convenient to imagine that in a k•fold covering for each Ux from 

definition 2.1 there exist k copies of Ux in the covering space X each of them mapped onto 

Ux by p. 
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Having chosen a point xe X we can consider the set of all closed paths from x to 

x. Point x is called a base point for those paths. 

Definition 2.3. Two closed paths with a base point x are equivalent relative to base 

point x if they are homotopic relative to the base point x (informally : if one can be 

continuously transformed to another in such a way that endpoints are not moved). 

Theorem 2.4. The set of equivalence classes of closed paths based at xe X forms a 

group (denoted by 1t(X,x) and called the fundamental group of X with base point x). 

In the paper we will use a special kind of covering called regular covering. This 

covering has a number of nice properties which will be useful in the construction. However 

to define regular covering we need a few more facts: 

Theorem 2.5. If p: X'-> X is a covering with x0'e X', x0e X such that p(xo') = x0 then 

the induced homomorphism P• : 7t(X'.xo') -> 7t(X.xa) is a monomorphism. 

Note that P•(7t(X',x0')) is a subgroup of 1t(X,xo), We define regular covering as 

follows: 

Definition 2.6. A covering p': X'->X is said to be regular if the group P•(7t(X',x0')) 

is a normal subgroup of 1t(X,xo) (that is for each g e P•(7t(X',x0') and he 7t(X,x0) 

hgh-1 e P•(7t(X'.xo')). 

We present two examples of regular coverings which will be used later. 
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Example 1. Let X = F2 and X' be a surface of genus k+l (~2). We construct k-fold 

regular covering p as on figure 2.1. Covering p transforms each of Ai' onto A and each of 

Bi' onto B. 

I 

A,. 

x' 

X 

A 
Figure 2.1. A k-fold covering of F2 

It is easy to see that one can generalize the above construction on surf ace of 

genus, g, greater then two (see fig 2.2). Then the genus of the covering surface is 

k(g-1)+1. 0 
(

0 cr-9 
,,-· ~ 
I ,o, 
I 
I '---~----0 
r / ~ 

X r/:'- -. -~ 
~~---~ 
~ 

• - -1 

Figure 2.2. The k-fold covering of a surface of genus g 
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Let 'Y be a closed path on the surface X which begins at x and ends at y. Let x'e 

p-1 (x) then 'Y defines uniquely the path from x' to some y' where y'e p-1 (y). Assume that 

'Y is a closed path with a base point x. Let f- denote the closed path composed of the 

sequence of k paths 'Y • Consider the smallest number r such that the path in covering 

space which starts at x' and corresponds to yr is closed. The number r is called 

developing number of rwith base points x, x', in the given covering. The closed path 

which corre_sponds to 'f in the covering space is called a generalized lift of y. We say that 

'f is r-developing lift of y. Note that for a regular covering developing number does not 

depend on the choice of base points x e X and x' e p· 1 (x). 

In the first example y is a generalized lift of 'Y and its developing number is k. The 

path a has k generalized lifts a.1', ... ,ak:' each of them having developing number equal to 

one. 

For a regular covering holds: 

Property 2.7. In a regular covering generalized lifts of equivalent closed paths have 

equal developing numbers. 

We can divide all simple noncontractible closed paths into two classes : separating 

and nonseparating closed paths. A closed path 'Y is called a separating path if X - y is 

disconnected. It is easy to see that each nonseparating closed path can be presented (up to a 

homeomorphism of the surface) as on figure 2.3a. Similarly a separating noncontractible 

closed path can be presented as on figure 2.3b. Such a path divides the surface of genus g 

into two surfaces of genus gland g2 such that &1,g2 > 0 and gl + g2 = g. 
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a) a simple nonseparating closed path 

9, l!IL 
b) a simple separating closed path 

Figure 2.3 

The following example shows that for any separating closed path there exists a 2-

fold regular covering such that the preimage of the given path consists of two 

nonseparating closed paths. 
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Example 2. Consider the covering p :X'->F2 where X' is a surface of genus 3 as 

shown on figure 2.4. (In particular p(Ai) = A , p(Bi) = B). In the example the preimage of 

the simple closed noncontractible seperating path y is composed of two nonseperating 

simple paths y1', 'Y{ 

x' 

X 
B 

Figure 2.4. The 2-fold covering of F2 



We can generalize the above construction to the case of any simple, seperating, 

noncontractible closed path, y, on a surface. In this way we obtain a regular 2-fold 

covering such that the preimage of y is composed of two nonseperating simple paths 'Y1 ', 

Y2'(see figure2.5). 

X' 

X 

Figure 2.5. The 2-fold covering o a surface of genus g 

We observe, in the presented examples, that in a k-fold covering there is a certain 

relationship between the genera of the covering and the base surfaces. This relationship is 

true in general and can be formulated as follows: 

Theorem 2.8. In a k-fold covering of a base surface of genus g >O the covering surface 

has genus k(g-1)+1. 

In the definition 2.3 we have introduced an equivalence relation on closed paths 

with a base point. This was the basic definition needed to define fundamental group and 
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then regular covering. In the rest of the paper we will use another equivalence relation on 

closed paths. Now we do not fix a base point. 

Definition 2.9. Two closed paths are equivalent if they are homotopic (one can be 

transformed continuously to another). 

In the figure 2.6, paths y1,y2,y3 are equivalent (we say also that they belong to 

the same homotopy class) and paths 'Yi,'Y4 are not. 

Figure 2.6 

3.The topological motivation for the construction 

Our goal is to show how to construct a triangulation with "long" noncontractible 

cycles. As we mentioned before the idea of the construction is derived from algebraic 

topology. In this section we consider properties of families of closed paths on basic and 

covering surfaces. For a given family of noncontractible paths on F2 we construct a regular 

covering such that all generalized lifts of those paths have big complexity in the sense 

defined bellow. We can treat the complexity of a path as a measure of its length. 

Consider the presentation of F2 as a regular 8-gon ( figure 3.1 ) , where edges a.i 

and CXj -1 are pairwise identified. 
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ol,. 

Figure 3.1. The presentation of F2 as a regular 8-gon 

Definition 3.1. Let 'Y be a closed path on F2 and ["(] its homotopy class. Denote by /(y,o.) 

the number of crossings between closed paths o. and "(. The complexity of y is defined as 

follows: 

"' complexity("()= min LI ('Y',Cli ). 
1Ht1 i•I 

Informally if we measure the length of a path by the maximal number of crossings 

of the given path with edges Cli then complexity of a closed path 'Y is the length of the 

shortest path in the homotopy class["(]. 

Example 3. Consider the surface F 2 and the closed path corresponding to o.1. This is a 

noncontractible path so its complexity is at least one. Note that o.1 is equivalent to o.1' (see 

figure 3.2) and therefore its complexity is exactly one. 

oc,. 

Figure 3.2 
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Lemma 3.2. There are at most 9s nonhomotopic paths on F 2 of complexity less or equal 

to s. 

Proof: We can associate with each closed path a word on the alphabet 

( cx1,••·•cx4,cxc1, ... ,cx4-1} in the following way: 

Start from any point on the path and travel along the path in any direction. The 

word associated with the path corresponds to the order in which given path cuts the edges 

CX1, .. ,,cx4 (without loss of generality it is enough to consider only paths which do not 

contain the common point of edges Cli and assume that each crossing point of the path with 

cxi looks as on figure 3.3). If an edge cxi is cut as on figure 3.3a then the corresponding 

symbol in the word is CXj otherwise (figure 3.3b) this symbol is Cli-1. 

+.: 
b) 

Figure 3.3 

Let P = Cli ±1 .We consider as equal the following pairs of words: w 1P~·1w2 and 

w1w2, ~w and wp. It is easy to see that if two paths have associated equal words then 

they are equivalent 

There is at most 9s different words of length less or equal to s. So there are at most 

9s nonequivalent closed paths which do not cut edges cxi more then s times. Therefore 

there are at most 9s nonequivalent paths of complexity less or equal to s. 

Define the complexity of a closed path on a regular covering of F2 as follows: 
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Definition 3.3. Let X be a regular covering of F2. The complexity of a closed path on X 

is equal to the complexity of its projection on the base surface F2, 

Note that complexity of a closed path has the following properties: 

Pl: Complexity of a r-developing generalized lift of 'Y is equal to r times complexity()'). In 

particular complexity of a generalized lift of 'Y is always greater or equal to the 

complexity of y. 

P2: Complexity of two paths whose projections on F2 are homotopic are equal. In 

particular complexity of two homotopic paths are equal. 

The main result of this section is stated by the following theorem: 

Theorem 3.4. For any constant h there exists a covering surface X of F2 such that the 

genus, g, satisfies clog*g Sh for some universal constant c (not depending on the constant 

h) and all noncontractible closed paths on X have complexity bigger or equal to h. 

To prove this theorem we start with a lemma concerning simple closed paths. 

Lemma 3.5. Let y1,.,.,'Yk be a family of simple, closed, noncontractible and 

nonhomotopic paths on a surface X. Then there exists an m-fold regular covering of X 

such that each generalized lift of 'Yi (i=l, ... ,k) has developing number at least two and 

ms 16k 

Proof: For each 'Yi construct a covering space Xi such that at least one generalized lift of 

'Yi has developing number equal to two. To do so for each nonseparating 'Yi use the 

construction from example 1 and for each separating Yi use first the construction from 
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example 2 to obtain two nonseparating generalized lifts of 'Yi and then apply the 

construction from example 1 to one of those lifts. 

For each i Xi is at most 4-fold covering. By theorem A.4 from the appendix we 

can construct an m-fold regular covering X' of X such that X' covers also each of Xi and 

Consider a covering p : X -> F2. Let r be the family of all closed noncontractible 

paths on X and let 

Then the following holds: 

r = min complexity (y) 
{fr 

Lemma 3.6. Let ybe a closed path from the family r with self-crossings such that it is 

not homotopic to any path without self-crossings. Then complexity(y) ~ 2r. 

Proof: It follows from the obvious fact that if a closed path 'Y is composed of two closed 

noncontractible paths then it cuts edges <Xj in at least 2r points (we can again consider 

without loss of generality only paths which do not contain the common point of edges ai). 

Furthermore each path homotopic to 'Y is composed of two such closed paths. 

Proof of theorem 3.4: Construct the covering space in the following inductive way: 

Let Xo = F2, From lemma 3.2 there exist at most 9 h nonhomotopic, noncontractible paths 

of complexity less or equal to h. Consider those homotopy classes of closed paths on x0 

which posess a simple path as a representative. Denote those representatives by y10, ••• , 'Y~. 

Note that No~ 9h. By lemma 3.5 we can construct a regular covering X 1 of x0 in which 

generalized lifts of all those paths are at least two. The complexity of the lifts of the rest of 

the paths cannot decrease (comparing complexity of those paths). Note that by lemma 3.6 

closed paths which do not have paths without self crossing in their homotopy classes have 
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complexity at least two. Also their generalized lifts have complexity at least two. Therefore 

complexity of generalized lifts of all noncontractible closed paths is at least two so all 

closed, noncontractible path in X1 have complexity at least two. Note that X1 is a t1-fold 

covering where : 

The inductive step is as follows: 

Let Xi be a regular trfold covering of F2, and assume that all closed, 

noncontractible paths on Xi have complexity at least 2i. First construct a regular covering 

X\+ 1 of Xi. To do this consider those homotopy classes of noncontractible closed paths on 

F2 which posess a representative with a simple generalised lift to Xi of complexity less or 

equal to h. Let -y1L, ... ,"fN~ be the simple generalised lifts of those representatives. Observe 

again that Ni S 9h. By lemma 3.5 we can construct a regular at most 16(9".)_fold regular 

covering such that complexity of all generalised lifts of 'Yli.'"'•'YN~ is doubled. Note that by 

A.l(see appendix) X'i+l is at most tr16<~-fold covering of F2, Let Xi+l be a covering of 

X'i+ 1 which is also a regular covering of F 2· By theorem A.4 from appendix it is at most 

ti+l -fold covering where 

By a similar argument as in the first step all closed, noncontractible paths in Xi+l 

have complexity at least 2i+l. 

Repeat this construction until 2i ~ h. We need at most 'iog2h1 steps to do so. 

-Denote by X the covering space of F2 we have obtained. By the construction complexity of 

all paths on Xis bigger or equal to h. Xis at most t-fold covering wheret S tfog 6'. By 

..., -
lemma 2.8 the genus of X is less or equal to t + 1. 

Let b1 = 16 ui.}and inductively bi+l = (b1 bJbib,~By the construction ti S bi. 

Let b = bj where 2.i-1 < h S 2i. We will show that h S log"'b where log*n = k iff 
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~g I~ ... log'! S 1 < lo\log ... log n. 
k fiines -1 times 

Throughout the paper by log we understand log2. 

Note that 

(i) log bi+l3 S bi3 for all i 
lb1b,) 

because log bi+ 13 = 3 logbi+ 1 = 3 log(b1 bi) = 3b1 bi log(b1 bi) S 

6b-2 logb· S b-3 I I I 

Note also that ~ 
11111 \ 

(ii) log log b13 = log log{1, /= log (3·9hlogl6) = log3 + h log9 + loglog16 S 4h + 4 

so 

(iii) log(4h + 4) Sj + 3 

and obviously 

(iv) Jog .. .log (j+3) < 1 
j+2 

From (i) ~ (iv) we obtain 

~<1 
2j + 4 

therefore 

log.Jog t < 1 
2j + 4 

So log"'t ~ 2j + 4 and for h ~13holds 2j + 4 < h so log"'t< hand therefore 

log*g Sh for h ~13 

and the theorem follows. 
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4. Construction of the triangulation 

Let T be a triangulation of F2 containing edges of the regular 8-gon from figure 

3.1. Call such a triangulation a base triangulation. Let n(T) denote the number of vertices in 

the triangulation T. Let X be a covering space of F2 and p the covering mapping. 

Triangulation T defines a triangulation T x of the covering space in such a way that vertices 

of T x are preimages of vertices of T and edges of T x are defined by preimages of edges of 

T. Triangulation T x is called a covering triangulation of the base triangulation T. 

Note that the length of a closed path in Tx is bigger or equal to 1/4 of its 

complexity. Therefore we can use the ideas from the previous section to construct for any 

base triangulation T a covering triangulation T x in which all noncontractible paths are 

longer then any given constant. To disprove the conjecture we have to consider additionally 

factor ✓((n(T x)/g). However, as we will show in the next lemma, the ratios of the number 

of vertices to the genus in the covering and the base triangulations do not differ to much. 

Lemma 4.1. Let T be a base triangulation and T x its covering triangulation. Let d = 

n(T)/2. Then d ~ n(Tx)/g < 2d. 

Proof: Assume that X is a k-fold covering of F2. Then n(T x) = k·n(T) and by theorem 

2.8 genus g of X is equal to k+ 1. 

So n(T x)/g = k·n(T)/ (k+ 1) 

but k·n(T) / (k+l) < k·n(T) / k = 2d 

Using this lemma we can prove the following: 
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Theorem 4.3. For any h > 0 there exists a surface Xg of genus g such that for each n ~ 

g -1 there exists a triangulation T g of the surface X8 with n vertices such that clog* g ~h and 

T g do not have noncontractible cycles shorter then h/4. 

Proof: Let T be the triangulation with only one vertex v1 as on figure 4.1. 

\14 -') 
v. 

V. ·" ... 
-I 

., 11 

"'◄ v, 

.,,. "· Figure 4.1 

Theorem 3.4 implies that there exists a regular t-fold covering of F2 with a 

..; 

covering space of genus g = t + 1 such that each noncontractible closed path has complexity 

at least h and clog* g ~ h for some universal constant c > 0. 

Consider the covering triangulation Tx. Denote by 1-yl the lenght of the path y. By 

definition 3.1 complexity of a closed path 'Yin T x is ~ 41-yl . So lyl ~ complexity(y)/4 and 
,.J 

therefore l"(I ~ h/4.The triangulation Tx hast= g - 1 vertices. We can add to any 

triangulation a vertex, say v, without decreasing length of noncontractible cycles. It can be 

done by the construction given on figure 4.2. 

Figure 4.2 

This finishes the proof of theorem 4.3. 
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By the above theorem we have the following corollary: 

Corollary 4.4. There exist infinitely many pairs (g,n) such that there exists triangulation 

T of surface of genus g such that T has n vertices and 

✓(nlg) log*n S (8/c)/ 

and all noncontractible cycles in the triangulation Tare longer then /. 

Proof: It is _enough to use theorem 3.4 for pairs (n,g) where 4g ::!! n ~ g-1. 

5. Conclusions 

Theorem 4.3 shows that C(n,g) is not O(✓(nlg)). Corollary 4.4 is the first step to 

prove that C(n,g) is n(✓(n/g)log*n). To finish the proof one should extend this corollary to 

all but finitely many pairs (n,g). There are two main ideas behind such extension: 

(i) To extend it over all n one can use the idea of construction of collars of triangulation 

along each of cxi. They should be constructed in such a way that if the collars are of 

depth d then if a path 'Y has complexity / then tyl~/14. 

(ii) To extend it over all g one can repeat whole construction for surfaces with boundary 

and construct collars along boundary as well. Then one can glue two surfaces along 

boundaries in such a way that the length of the shortest noncontractible cycle will not 

decrease. 

Our construction to disprove the conjecture is elementary. Using more advanced 

methods ([H67]) one can improve theorem 3.1. In order to keep the paper self-contained 

we do not present the improvement. On the other hand we hope to prove our conjecture 

that C(g,n) = E>(✓(n/g)logg). 
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Appendix 

In the appendix we prove a theorem concerning existence of a covering space 

having properties needed in the proof of theorem 4.3. For this proof we need first some 

lemmas from group theory. 

Lemma A.I. Let P,H be subgroups of G of finite index. If the index of Pin G is k and 

the index o( H in G is l then the index of If("')}> in G is less or equal to kl. 

Proof: Consider right cosets of PnH in H. Let h1, ... ,h1 be represetatives of those cosets. 

We will show that h;P :# hjP for i~j. Assume that not. Then there exist h,h' in P such that 

h·h = h·h' So h--lh · = h'h-1 Therefore h'h-1 e PnH and h· = h·h'h-1 so h· and h· are in l '} " '} l • l '} l '} 

the same coset of Hr'\P in H which is a contradiction. So the index of PnH in H is less or 

equal to the index of P in G (which is equal to k) and so the index of PnH in G is less or 

equal to lk. 

Lemma A.2. Let H be subgroup of G of a finite index k and let g 1 , ... ,g k be 

representatives of the right cosets. Then H'1' = g1Hg1·1 n ... ngkHgk-1 is a normal subgroup 

ofG. 

Proof: Let a e G. Consider the sequence ag1Hg1-la-l, ... ,agkHgk·la-1 . It is enough to 

show that the above sequence is a permutation of the sequence g1Hg1-J , ... ,gkHgf1 . 

Consider function f 8 : { 1, ... ,k} -> { l, ... ,k} such that f a(i) =jiff agi e gjH. Note that fa 

is a permutation (i.e. it is a bijection) and f 8-1 gives the inverse function. Furhermore 

ag;Hg{la-1 = gfJifigt(if1 . 

Note that H* is a subgroup of H. 
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Lemma A.3. Let H1, ... ,HN be subgoups of G with indices k1, ... ,kN . There exists a 

normal subgroup H* of G such that H* is also o subgroup of Hi for each i and has index 

less or equal to k i•kit. .. k,/'". 

Proof: By lemma A.2 for each i there exists a subgroup Ht such that Ht is a normal 

subgroup of G. By lemma A.1 its index is k,lc,. But product of normal subgroups is a 

normal subgroup so H* = H 1 "'nH2 • ••• nHN • is a normal subgroup of G. Note that for 

each i H* is_ a normal subgroup of Hi. By lemma A.2 the index of H* in G is less or equal 

to k 1k,kiz ... kJt'"-

Letp1 : X 1->X, ... ,PN: X~>X be k,-fold coverings. Letx1e X1, ... , x~ XN 

and xe X be base points such thatp;(x;) = x. Note thatp 1• (1t(X1.x1 )), ... ,PN• (n(XN.XN)) 

are subgroups of 7t(X,x) and index of P;• (1t(Xi.X;)) in 7t(X,x) is k;. 

Theorem A.4. There exists a k-fold regular covering X' of the base space X which 

covers also each of Xi (i = 1, ... ,N) such that k SJc1"'ki1 ... k~ 

Proof: By lemma A.3 we can construct a normal subgroup G of 7t(X,x) of index k where 

~ k i•k2ki ... kJl',y But for any normal subgroup of 7t(X,x) we can construct uniquely 

corresponding regular covering (see [K80]). If G is a subgroup of P;• (1t(Xi.X;)) for each i 

then the constructed regular covering covers also each of Xi. This finishes the proof of 

theoremA.4. 
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Appendix 

In the appendix we prove a theorem concerning existence of a covering space 

having properties needed in the proof of theorem 4.3. For this proof we need first some 

lemmas from group theory (see [PP87]). 

Lemma A.1. Let P,H be subgroups of G of finite index. If the index of Pin G is k and 

the index of Hin G is/ then the index of HnP in G is less or equal to kl. 

Lemma A.2. Let H be subgroup of G of a finite index k and let g 1, ... ,gk be 

representatives of the right cosets. Then H* = g1Hg1·1 n ... ngkHgfl is a normal subgroup 

of G. 

Lemma A.3. Let H 1, ... ,HN be subgoups of G with indices k1, ... ,kN . There exists a 

normal subgroup H* of G such that H* is also o subgroup of Hi for each i and has index 

less or equal to k/ ki ... kif. 

Let Pl : X 1->X, ... , PN: XN->X be krfold coverings. Let x1e X 1, ... , x~ XN 

and xe X be base points such that p;(x;) = x. Note thatp J* (1t(X 1 .XJ )), ... ,PN* (n(XN.XN)) 

are subgroups of 1t(X.x) and index of Pi* (1t(Xi.Xi)) in 1t(X.x) is ki. 

Theorem A.4. There exists a k-fold regular covering X' of the base space X which 

covers also each of Xi (i = l, ... ,N) such that k 5:k/•ki2 ... kif"! 

Proof: By lemma A.3 we can construct a normal subgroup G of 1t(X.x) of index k where 

5: ki•k2"1 ... kNk"- But for any normal subgroup of 1t(X,x) we can construct uniquely 
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corresponding regular covering (see [K80]). If G is a subgroup of Pi• (1t(Xi.Xi)) for each i 

then the constructed regular covering covers also each of Xi.This finishes the proof of 

theoremA.4. 
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