
Parallel Recognition of
Complement Reducible Graphs

and Cotree Constructiont

D.G. Kirkpatrick,
T. Przytycka

Technical Repon 88-1
January 1988

Abstract

A simple parallel algorithm is presented for constructing parse tree

representations of graphs in a rich family known as cographs. From the parse tree

representation of a cograph it is possible to compute in an efficient way many

properties which are difficult for general graphs. The presented algorithm runs in

O(log2n) parallel time using O(n3/log2n) processors on a CREW PRAM.

t This research was supported in part by the Natural Sciences and Engineering Research Council of Canada.

2

1. Introduction

Recent development of parallel computation on trees ([:MR.85], [CV86b], [GR.86],

[ADKP87],[He86a],[B74]) has led to efficient parallel algorithms for a number of

problems in some restricted classes of graphs. These classes include graphs which can be

defined by certain composition rules. These composition rules make it possible to represent

a graph from the given class in the form of a parse tree. Having a tree representation of

such a graph one can use a tree contraction schema to compute efficiently some graph

properties which are very difficult for general graphs. Such parallel algorithms have been

presented for series parallel graphs (in [H86a]) and for cographs (in [ADKP87]). These

algorithms assume that the graph is given in the form of a parse tree. This motivates the

problem of designing efficient parallel algorithms to recognize membership in the given

class and to construct the corresponding parse tree. He [H86b] solved this problem for the

class of two terminal series parallel graphs (TTSP graphs). His algorithm constructs a

binary decomposition tree if a given graph is a TTSP graph. Given a graph with n vertices

and m edges the algorithm runs on a CR.CW PR.AM in O(log2n+logm) parallel time using

O(n+m) processors.

In this paper we present an algorithm for parallel construction of a parse tree for

complement reducible graphs (cographs). In fact the algorithm produces a special kind of

parse tree called a cotree which is a unique representation of a cograph. The algorithm can

also be used to determine whether or not a given graph is a cograph. The idea is similar to

that of tree contraction except that the underlying parse tree is not assumed to be known in

advance. The algorithm runs in 0(log2n) parallel time using O(n3/log2n) processors on a

CREW PR.AM. In the next three sections we outline an implementation using O(n3/logn)

processors. Section 6 describes a reduction to O(n3/log2n) processors.

2. Definitions and notation

A complement reducible graph, also called a cograph, is defined recursively in the

following way:

(i) A graph on a single vertex is a cograph;

(ii) If G 1, G2 are cographs, then so is their union ; and

(iii) If G is a cograph, then so is its complement.

Cographs are easily seen to satisfy the following property (cf. [CLS81]):

Property 1. An induced subgraph of a cograph is a cograph.

3

The class of cographs is a very rich class of graphs. Cographs arise in many

disparate areas of mathematics (see [CLS81] for references). Cographs form precisely the

class of graphs which do not contain P 4 as an induced subgraph (P 4 is a path of four

vertices). This characterization suggests a simple parallel algorithm for the recognition of

cographs that operates in 0(1) time using O(n4) CREW processors. Such an algorithm,

however, is not guaranteed to reveal the simple recursive structure that is imposed by the

cograph definition and exploited in many cograph algorithms.

The definition of a cograph suggests a natural parse tree representation. However

this way of presenting a cograph may not be unique. A unique representation is provided

by the so-called cotree [CLS81]. A cotree, To , is the tree presenting the parsing structure

of a cograph G in the following way :

- The leaves of To are the vertices of G.

- The internal nodes of Ta represent the operation complement-union (that is the graph

associated with an internal node is the complement of the union of the graphs associated

with its descendent nodes).

- Each internal node except possibly the root has two or more children. The root has only

one child iff the graph is disconnected.

In order to simplify the description of algorithms which use the cotree

representation of a cograph, each node x of a cotree T is assigned a label, label(x), in the

following way:

- label(root) = 1; and

- if y is a child of x then label(y) = 1 - label(x).

Figure 1 illustrates a co graph G and its labeled cotree T G· The labeling of a node

x records the parity of the number of complement-union operation on the path between x

and the root. It is easy to confirm that :

Property 2. Two vertices u and v in a cograph G are adjacent iff in the cotree defining G

the lowest common ancestor of u and v is labeled 1.

To minimize confusion, we talk about vertices when we refer to a graph and about nodes

when we refer to a tree.

The nodes of a cotree labelled by O are called 0-nodes and those labelled by 1 are

called I-nodes. We also use the following notation: n denotes the number of vertices in G,

r a(v) denotes the set of neighbours of the vertex v in G, and lcaT(v1, v2) denotes the

lowest common ancestor of nodes v1 and v2 in the tree T (the subscripts G and Tare

omitted if it is obvious to which graph or tree we refer).

4

G:

b

C

Figure 1 : A cograph and its cotree

Define the following relations between vertices of a graph G:

(1) S0(u,v) <:=> r(v) - {u} = r(u) - {v} and u,v are not adjacent,

(2) S1(u,v) <:=> r(v)- {u} = r(u)- {v} and u,v are adjacent,

(1)

b c

(3) Zo(v,u,w) <:=> (i) r(v) EB r(w) = {u} , where EB denotes the symmetric

difference,

(ii) r(u) ~ r(v), and

(iii) w is not adjacent either to v or to u,

(i) r(v) EB r(w) = {u},

(ii) r(v) ~ r(u), and

(iii) w is adjacent to both v and u.

The vertices satisfying relation Si (i = 0,1) are called siblings. The vertices

satisfying So are called weak siblings and the vertices satisfying S1 are called strong

siblings.

Lemma 1. Two leaf nodes v1 and v2 have the same father in the cotree T G iff the

corresponding vertices v1 and v2 are siblings in G.

5

Proof: (=>) Assume that v1 and v2 have the same father in the cotree T. Note that for

any vertex v such that v ¢V1 and v ¢V2, lca(v,v1) = lca(v,v,2). Hence, by property 2, any

vertex adjacent to v1 is adjacent to v2 and r(v1) - (v2} = r(v2) - (v1}.

(<=) Assume that v1 , v2 have different fathers. Let v = lca(v1,v2), At least one of the

paths from v; to v (i = 1,2) in cotree Tis longer than one. Assume w.l.o.g. that the path

from v1 to v is longer then one. We can find on this path an internal node u which is

labelled differently than v. So, there exists a node w (w ¢ v1 and w ¢ v2) such that

lca(w,v1) = u and lca(w,vi) = v. But this means that w is connected to exactly one of vi,

v2 . So neither So(vi,vv nor S1(v1,v2) holds.

A maximal set of weak siblings is called a 0-bunch set and a maximal set of strong

siblings is called a }-bunch set. A smallest connected subgraph of the cotree T containing a

0-bunch set is called a 0-bunch and a smallest connected subgraph of the cotree containing

a 1-bunch set is called a I-bunch (see Figure 2). The vertex with the smallest index among

the vertices in a bunch set is called the representative of this set.

(0) (1)

~ ~
0-bunch 1-bunch

Figure 2

If we replace a bunch set in a cograph G by its representative, say v, then, by

property 1, the graph G' = (V',E') obtained in such a way is also a cograph. Consider the

following construction of a tree T' from the tree T:

6

(1) If vertices in the bunch set are the only children of some internal node then substitute

the representative of the bunch set for the whole bunch to which they belong (see figure

3a)).

(2) If the vertices in the bunch set are not the only children of some internal node then

remove from Tall vertices in this set but the representative (see figure 3b)).

(1-r) (1-r)

"' (r)

► a) V

VI v2 vk

(1-r)

►

V

Figure 3

Note: The difference in the labels of the parent of the representative of a bunch and the

bunch type in these two cases ensures that this substitution is reversible.

Lemma 2. The tree T obtained from the tree T in the way described above is the cotree of

the cograph G'.

7

8

Proof: Note that for u,w e V'-{ v} label(lcaT(u, w)) = label(lcaT•(u, w)). Also

label(lcaT(u,v)) = label (lcar(u,v)). So, by the definition of G' and property 2, the tree T'

is the cotree of G'.

Similar to siblings, the vertices in relation Zi (i = 0,1) have a special position in

the cotree. It is specified by the following lemma :

Lemma 3: The relation Zo(v,u,w) holds iff v,u, and w are positioned in the cotree as

illustrated in figure 4a. Similarly the relation z1 (v,u, w) holds iff v,u, and w are

positioned in the cotree as illustrated in figure 4b.

w w

a) b)

Figure 4

Proof: We will prove the lemma for the relation 2<, only. The proof for the relation Z 1 is

similar.

(=>) Assume that v,u, and ware positioned as illustrated in figure 4a. By property 2, v

and w have no neighbours in T 1· Assume t e: T1 and t ;e v,u,w then lca(v,t) = lca(w,t)

and (i) follows. As immediate consequences of the definition of cotree we have (ii) and

(iii).

(<=) From (i) and (iii) we have that v and w are not adjacent, v and u are adjacent, u

and w are not adjacent. This implies the position of the nodes as in figure 5a. From (i) we

know that there are no nodes between a and b, u and a , w and b, and from (ii) we have

additionally r(v) ~ r(u). This implies the more restricted position of the nodes shown in

figure 5b. Finally point (i) restricts us to the position presented on figure 4a.

w

w

V
u

a) b)

Figure 5

A vertex u for which there exist vertices v,w such that Zo(v,u,w) or Z 1(v,u,w) is

called a contractible vertex . The corresponding leaf in a cotree is a contractible leaf. If a

node has a contractible leaf as a child then it has exactly two children one of them being a

leaf and the other being a nonleaf.

A contractible sequence is a maximal sequence of distinct vertices (leaves in the

cotree) u1,u2,.,,,uk such that there exist two vertices v,w for which Zj(v,u1,u2),

Z1-i(u1,u2,u3) , ... , ~(uk-J,Uk,w) all hold, and there does not exist an x such that

Z1-i(x,v,u1) holds.

9

10

Define a branching node as an internal node having more than two children or

having more than one leaf as a child. Note that any nonbranching node appears in the

cotree as vertex v in Figure 6.

Figure 6

A smallest connected induced subgraph of a cotree containing a contractible

sequence is called a line . A line is a 0-line if the lowest level internal ncxle is a 0-node and

a 1-line otherwise. By lemma 3, lines have the form presented in Figure 7. The set of

vertices associated with a 0-line is called a 0-line set and the set of vertices associated with

a I-line is called a 1-line set. The leaf which has a smallest level in the cotree among other

vertices in a line (i.e. vertex v1 in Figure 7) is called the representative of the given line

set.

(0)

a) 0-line

Figure 7

(1)

b) I-line

V
k

Let G' be the cograph obtained from G by replacing a line set by its representative.

Let T' be the tree obtained by removing from T all elements of a line set and their parents

except the representative and its parent. The parent of the representative takes as its new

parent the (fonner) parent of the highest level vertex in the line set (see Figure 8).

►

Figure 8

Lemma 4. The tree T' obtained from the tree T in the way described above is the cotree of

the cograph G'.

Proof : Similar to the proof of the lemma 2.

In figure 9, a/ and g are branching nodes, {v1,v2,a} and {vg,v9,g} induce

0-bunches and {v3,v4,v5,b,c,d} induces a 1-line. The vertex v1 is the representative for

the first bunch and the vertex vg for the second. The vertex v3 is the representative for the

line.

11

(1) f

Figure 9

Note that in the above example all line sets and bunch sets are disjoint. This is true

in general.

Lemma 5. Let each of U,W be a line set or a bunch set. If U * W then UnW = 0.

Proof: By lemmas 1 and 3, an element of a bunch set cannot belong to a line set. Note

also that Si(w,u) and Sj(u,v) implies i = j and Si(v,u), so an element of a 0-bunch set

cannot belong to a I-bunch set. If U and W are both line sets or both bunch sets then

UnW * 0 contradicts the maximality of U and W.

3. The main idea

We will assume that the input graph is connected. If it is not we can run a parallel

algorithm for finding connected components ([HCS79]) and join cotrees obtained for each

connected component according to the cotree definition.

12

Let the input graph be Go= (V o,Eo), Assume for now that Go is a cograph and

denote its cottee by TO· The idea is to partition the set of vertices into subsets, remove from

each subset all but one vertex (its representative) and reduce the problem to constructing the

cotree for the graph induced on the diminished vertex set. Iterating this step we obtain a

sequence of graphs Go= (Vo,Eo), G1 = (V 1,E1) , ... ,Gk= (Vk,Ek) such that Vi is obtained

from Vi-I by performing a partition of Vi and then removing all but one vertex in each set

of the partition. We want the constructing sequence to have the property that having the

cotree for Gi one can easily construct the cotree for Gi-1 · It seems natural at first to

partition Vi into bunch sets. Unfortunately the length of the sequence of graphs which is

constructed in this way is proportional to the length of the longest path in the cotree To

which may be proportional to IVol if To is unbalanced. This is the reason for introducing

line sets in addition to bunch sets into the partition.

By lemma 5, the set of vertices of a cograph can be partitioned into 0-bunch sets,

I-bunch sets, 0-line sets, I-line sets and single vertex sets. For any set Ui from such a

partition, we can consider the smallest connected subtree of the cotree T which contains

elements of this set as leaves. Such a subtree will be called a fragment of T induced by this

set. Notice that in the proposed partition the only possible fragments are bunches, lines or

single vertices.

The algorithm proceeds in stages. In stage i, it produces a triple (Gj,Uj,Fi) such

that the sequence of triples prcxluced by the algorithm satisfy the following conditions :

(i) The first element of the sequence is the triple (Go, { { v}, ve Vo}, {Vo}),

(ii) Ui+1·={Ui+11, ,Ui+I'} is a partition of Vi,

(iii) Vi+l = { ui1, ... ,ui1} where u) is the representative of U~,

(vi) Gi=(Vi,Ei) is the subgraph induced by Vi,

(v) Fi= {Fi1, ... , Fi1} where F~ is the fragment of Ti-I induced by U~,

(vi) The last element in the sequence is the first triple (Gk,Uk,Fk) for which IUkl = 1.

13

14

Note that the cotree Tk is just the only fragment in Fk. For i = k-1, ... ,1, we

construct cotree Ti from cotree Ti+l·

We define the operation reduce which i) partitions vertex set into bunch sets, line

sets and single vertex sets, ii) finds representatives for those sets, iii) constructs

corresponding fragments, and iv) constructs the graph induced by representatives of the

partition. In the next section we show how to implement this operation in polylogarithmic

parallel time. In section 4 we outline an algorithm for constructing the adjacency matrix of a

cograph from its cotree representation. In the remaining part of this section we show that

the length of the sequence (Go,Fo,Uo), ... ,(Gk,Fk,Uk) constructed using the reduce

operation is O(log n) and that having this sequence we can construct the cotree To in

polylogarithmic parallel time.

Consider a leaf u of the cotree Ti. Let r denote a label. Let u be the representative

of a set U in the partition Ui. The following diagram summarizes the substitutions of

fragments for representatives (sometimes together with its parent) in the tree Ti to obtain

tree Ti-I· Their validity follows from lemmas 2 and 4.

type of set fragment associated the position of u possition of the fragment

represented by u with it in the cotree T. in the cotree T.
l 1-l

single vertex set u
'--.u '--.u

r-bunch set
(1-r) ~ (1-r)

/
)

(r)

ii' u "1 V-, _ .. V 1,

J ~ vl v2 vk
u "1 v2 v k

(r)

.~
r-line set

(r) {>k ~ u
(r k

VJ ,,

Figure 10

To prove that the length of the sequence is O(log n), we note that the operation

reduce satisfies the following properties:

Property 3. Consider the set B of vertices in the graph (i.e. leaves in the cotree) which

are in bunch sets of the partition. After a single application of the reduce operation at most

L IB 1/2 J of these vertices remain.

Property 4. Let the partition have k line sets. Consider the set L of vertices in the graph

which are in line sets of the partition. After a single application of the reduce operation

exactly k of these vertices remain.

These properties imply the following theorem :

Theorem 1. After O(logn) applications of the operation reduce a cograph is reduced to a

single vertex.

Proof : It suffices to show that a single application of the operation reduce removes at

least 1/10 of the current leaves.

Suppose that the operation reduce is applied to a cograph with t vetices. Let B be

the set of vertices in the cograph which are in bunch sets of the partition. Consider the

following cases :

(1) IBI ~ t / 5. Then, considering only leaves removed from bunch sets of the partition, the

number of vertices left is less or equal tot- lBI + IBV2 = t- lBV2 S 9/10 t.

(2) IBI < t I 5. Let k be the number of branching nodes in the cotree. Notice that ks IBI -1

and the number of contractible sequences is at most k. Add the root to the set of

branching nodes. With each branching node (except the root) we can associate a path

15

of internal nodes in such a way that the first node, say v, is a branching node and the

last node is the closest ancestor of v whose father is a branching node. For every

such path there are at most four leaves which are children of nodes in the path and are

not contractible leaves (see figure 11 for the worst case configuration). So after the

application of reduce operation the number of leaves which are left is at most IB 1/2 +

4k + 1 s; 9/2 IBI -3 < 9/10 t.

Figure 11

The algorithm outlined above assumed that the given graph was a cograph. It can

be modified to work without this assumption as follows:

(* construct the sequence of triples (G;,U;.F;) *)

M := nog9/l()n 7
i :=0;
Uo := { {vk} I vkeV};

for 1 s; k s; n do F0k= {vk};
while IUil > 1 and i s; M do

i := i + 1;
(* construct the next triple (G;,U;.F;) *)
reduce; --- see section 4 for details
od;

ifi>M
then the input graph is not a cograph;

e Is e (* construct the cotree *)

Ti:= Fi1; (* there is only one fragment in F; *)
while i>O do

i := i - 1;
obtain Ti by substituting for each representative of the partition Ui+l the

16

corresponding fragment from Fi+l
od

(* check if co"ect *)
Construct the co graph G' defined by cotree To; --- see section 5 for details
if G'-=Go then the input graph is not a cograph.

4. Implementation of the operation reduce

The operation reduce finds the partition of the vertices of a graph into bunch sets,

line sets and single vertices. It also identifies representatives of those sets and constructs

corresponding fragments. We describe this operation in two phases. In the first phase, we

define the main steps of the operation. In the second phase, we describe the implementation

of those steps. We also note when to check conditions which might disqualify the input

graph as a cograph. Some of the technical details of the implementation are left to the

reader.

The operation reduce proceeds is follows :

1. For each pair of vertices v,w check if v and w are siblings.

2. Find bunch sets, their representatives and construct corresponding bunches.

3. For each pair of vertices v,w check for a vertex u such that Zj(v,u,w) (i=0,l). Such a

vertex ·u is a contractible vertex. If there exists a vertex x such that z1.j(u,w,x) then

u, w are successive contractible vertices.

4. Find line sets, their representatives and construct corresponding lines.

5. Obtain Gi+l by removing from Gi all vertices not chosen as representatives.

The details of the implementation are as follows:

17

Step 1. This step can be implemented in O(log n) time with n3/log n processors. For each

pair of vertices v,w compute the exclusive or of columns v and w of the adjacency matrix

excluding rows v and w and then sum the elements of the resulting vertex. This can be

done for each such a pair of vertices in O(log n) time with n/log n processors using the

prefix sum computation algorithm described in [V84]. Store the results of this step in n x n

array A by assigning A(v,w) = 1 if the resulting sum is zero (i.e. v and ware siblings) and

A(v,w) = 0 otherwise. If there exist no sibling vertices (this can be checked in O(log n)

parallel time) then the graph is not a cograph.

Step 2. Using the pointer hopping technique and the array A, each vertex can determine

the vertex with the smallest index among its siblings. This can be done in O(log n) time

with O(n2/logn) processors. The unique vertex whose index is smaller than the index of its

lowest indexed sibling is the representative of its bunch. The processor associated with this

vertex determines its bunch-type (0-bunch or I-bunch) and builds the parent node of the

bunch. All the vertices in the bunch set construct pointers to the bunch parent (whose

address is known via the representative which is known to all the vertices in the bunch set).

To allow the construction of the cotree a new copy of the representative is constructed

along with a pointer its associated bunch. This copy participates in the next iteration.

Step 3. The implementation of this step is similar to that one of the step 1 but in this case

we check if the corresponding prefix sum computation gives 1. If so, the position on which

the difference occurs indicates the vertex u. Note that the relation r(u),;:. r(v) has been

checked in the previous step and that condition iii) can be checked in a constant time. Check

first for the relation Zo. Store the result in the array A by assigning A(v,w) = u iff

Zo(v,u,w) and A(v,w) = 0 if otherwise. It is possible for A(v,w) = A(v',w') = u,;:. 0.

However if the graph is a cograph then if A(v,w) = u,;:. 0 and A(v,w') = u ',;:. 0 then u =

u'. For each vertex u it can be determined if u is an entry of A and, if so, a pair (v,w)

can be chosen such that A(v,w) = u. (This can be done in O(logn) time using a total of

18

O(n2llogn) processors by exploiting the structure of A). If the pair (v,w) is chosen for

vertex u then this is recorded in vector Bo by setting Bo(v) = u and Bo(u) = w.

In the similar way we can check for the relation Z1. If for vertex u the pair (v, w)

satisfying Z1(v,u,w) is chosen, then it is recorded in vector B 1 by setting B1(v) = u and

B1(u) = w.

Step 4. Note that UJtU2 are two successive contractible vertices iff there exists such

vertices v and w such that Bi(v) = UJ, Bi(u1) = u2, B1-i(u1) = u2 and B1-i(u2) = w. This

follows from the fact that :

Bi(v) = UJ , Bi(u1) = u2 => Zj(v,u1,u2) and

B1-i(u1) = u2, B1-i(u2) = w => Z1-i(u1,u2,w).

So we can construct table B such that B(u 1) = u2 iff u 1 and u2 are two successive

contractible vertices. From this we can construct the corresponding contractible sequence.

This step can be implemented in O(log n) time with O(n2/logn) processors using standard

pointer hopping techniques. As in the case of a bunch, we construct copies of

representatives. Each copy keeps pointers to the beginning and to the end of its associated

line.

Summarizing the discussion above, we have the following lemma:

Lemma 6. If the input graph is a cograph then we can construct its cotree in 0(log2n)

parallel time, using O(n3flogn) processors.

19

5. Adjacency matrix construction from the cotree representation of a cograph

The algorithm to construct the adjacency matrix from the cotree representation of a

cograph is based on property 2 and the idea of top-down tree computation [ADKP87].

This leads to O(logn) time and O(n2/logn) CREW PRAM algorithm using the optimal (but

unpractical) list ranking algorithm of Cole and Vishkin [CV86a] or O(logn) time and O(n2)

processors algorithm using standard list ranking algorithm.

Binarize the cotree T in such a way that newly intrcxluced internal nodes have the

same label as the ncxle whose split led to the given node (see figure 12).

(1)
e

e ►

a b C

a b

Figure 12

To construct i-th row of the adjacency matrix mark the path from i-th leaf to the

root. Associate with each edge of the binarized cotree one a variable function. It is the

constant function equal to the label of parent vertex for the given edge if the parent vertex is

marked or the identity function otherwise. These functions define a decomposable top­

down binary tree computation. As the result of this computation the value computed in a

leaf j (j -:;; i) is equal to one iff i,j are adjacent in the cograph represented by T. In

[ADKP87] it is shown that such a computation can be performed in at most the time and

processor cost of list ranking. To construct entire adjacency matrix we multiply the number

of processors used by n .

20

The construction above, together with lemma 6, implies the following lemma:

Lemma 7. We can test if an arbitrary input graph is a cograph and, if so, construct its

cotree in O(log2n) parallel time, using O(n3/logn) processors.

6.Reduction of the processor requirements

We can reduce the number of processors used by the algorithm to O(n3/log2n)

preserving O(log2n) time bound. Note that high number of processors in the

implementation described above follows from the cost of computing relations Si and Zi

(i=0,l). In each case the algorithm uses n/logn processors to compute each entry of the

matrix A. Assume that we have only n3 /log2n to do the full job. Then some of the

processors have to be involved in computing more then one entry to the array A (cf.steps

1,3 and 4 of the implementation of the operation reduce). With this number of processors

we can still compute entries of an n x n/logn submatrix using the method described in

previous section. To reduce the number of processors divide matrix A to submatrices of the

size n x n/logn and compute elements of those submatrices one after another. Call columns

of A which corresponds to removed vertices inactive columns. While the algorithm

proceeds the number of active columns decrease. Our goal is to assign processors only to

active columns. To do so keep a vector ACT of active columns and a variable NA equal to

the number of active columns. Initially ACT(i) = i and NA = n. To compute elements of

active columns of A, compute in parallel clements in first n/logn columns from the vector

ACT then next n/logn columns, and so on. As shown in the proof of theorem 1, the

number of vertices (and hence active columns) after i applications of reduce is at most

21

22

(9/l0)i n. Thus the time spent to compute entries to the matrix A by the cotree construction

algorithm is

M
I logn riogn • (9/lQ)il = O(log2n)

i=O

It remains to show how to maintain the vector ACT. Assume that there is an

additional vector ALIVE. After each application of the operation reduce ALIVE(i) = 1 if i is

an active column and ALIVE(i) = 0 if otherwise. In order to determine for each active

column its position in the vector ACT, it suffices to perform one prefix sum computation

on elements :in vector ALIVE.

7. Conclusion

With lemma 7 and the details of processor reduction described in section 6 we

have completed the proof of our main result:

Theorem 2. We can test if an arbitrary input graph is a cograph and, if so, construct its

cotree in O(log2n) parallel time, using O(n3/log2n) processors.

The main difficulty in the efficient parallel construction of a parse tree for a

cograph follows from the possibility of building an unbalanced cotree. Note that the same

difficulty arises in the tree contraction problem ([ADKP87],[GR86],[MR85],[CV86b])

which is the basis for numerous parallel algorithms operating on trees. It appears that all

efficient parallel algorithms for the tree contraction problem work in an iterative way.

Typically in each iteration they remove leaves and shoncut long paths of the processed

tree. In this paper this idea has been extended by applying it not just to operations on trees

but also to the construction of trees themselves.

Acknowledgment

We are indebted to Derek Corneil for a number of helpful discussions on the

results of this paper.

References

[ADKP87] K. Abrahamsom, N. Dadoun, D.G.Kirpatrick and T.Przytycka. "A simple
parallel tree contraction algorithm". Computer Science Department Technical
Report 87-30, University of British Columbia, Vancouver, August 1987.

[B74] R. Brent. "The parallel evaluation of general arithmetic expressions".
Journal of the ACM 21, 2, April 1974, pp. 201-206.

[CLS81] D.G. Corneil, H. Lerchs and L. Stewart. "Complement reducible graphs."
Journal of Discrete and Applied Mathematics 3, 1981, pp. 163-175.

23

[CV86a] R. Cole and U. Vishkin. "Approximate and exact parallel scheduling with
applications to list, tree and graph problems. " In 27th Annual Symposium
on Foundations of Computer Science, 1986, pp. 478-491.

[CV86b] R. Cole and U. Vishkin. "The accelerated centroid decomposition technique
for optimal parallel tree evaluation in logarithmic time". Ultracomputer Note
#108, TR-242, Dept. of Computer Science, Courant Institute NYU, 1986.

[GR86] A. Gibbons and W. Ryner. "An optimal parallel algorithm for dynamic tree
expression evaluation and its applications". In Symp. on Foundations of
Software Technology and Theoretical Comp. Sci., 1986, pp. 453-469.

[H86a] X. He. "Efficient parallel algorithms for solving some tree problems. " In
24th Allerton Conference on Communication, Control and Computing,
1986, pp. 777-786.

[H86b] X.He. "Parallel recognition and decomposition of two terminal series
parallel graphs" , Computer & Information Science Research Center
Technical Repon, The Ohio State University Colunbus, 1986

[HCS79] D.S. Hirschberg, A.K. Chandra, D.V. Sarwte. "Computing connected
components on parallel computers". Communication of ACM, August
1979, Vol 22, Number 8.

[L71] H. Lerchs. "On cliques and kernels. "Dept. of Comp. Science , University
of Toronto, March 1971.

[MR85] G. L. Miller and J. Reif. "Parallel tree contraction and its application. "In
26th IEEE Symp. on Foundations of Computer Science, 1985, pp. 478-89.

[S78] L. Stewart. Cographs, A Class of Tree Representable Graphs. M. Sc.
Thesis, Dept. of Computer Science, Univ. of Toronto, TR 126n8, 1978.

[V84] U. Vishkin. "Randomized speed-ups in parallel computation". In 16th
Annual Symp. on Theory of computing, 1984, pp 230-239.

24

