
Constraint Satisfaction
from a Deductive Viewpoint•

by
Wolfgang Bibel

Technical Report 87-40

December 1987

I I
\,

I.

Constraint Satisfaction
from a Deductive Viewpoint*

W. Bibel

University of British Columbia and
Canadian Institute for Advanced Research

Abstract

This paper reports the result of testing the author's proof techniques
on the class of constraint satisfaction problems (CSP). This experiment
has been successful in the sense that a completely general proof technique
turns out to behave 'well also for this special class of problems which it­
self has received considerable attention in the community. So at the same
time the paper happens to present a new (deductive) mechanism for solv­
ing constraint satisfaction problems that is of interest in its own right.
This ~echanism may be characterized as a bottom-up, lazy-ilvaluation
technique which reduces any such problem to the problem of evaluating
a database expression typically involving a number of joins. A way of
computing such an expression is proposed.

1 Introduction

Many tasks in Intellectics1 can be seen as constraint satisfaction problems
(CSP). Usually such problems are represented using constraint satisfaction net­
works (16]. For this kind of representation algorithms have been developed
[10] that provide a solution to such problems without suffering from the mal­
adies inherent in straightforward backtracking techniques. Although these algo­
rithms are quite satisfactory in many applications .it is known that the class of
constraint satisfaction problems is NP-complete so that a polynomial solution
might not exist for the general case [12].

•Submitted to the Artificial Intelligence Journal
1 the field of Artificial Intelligence and Cognitive Science [4]

1

Basically, constraint satisfaction is a deductive problem of a very special
form [10]. Therefore one might expect that the algorithms developed for the
network repr~entation may be incorporated into existing deductive mechanisms
in order to speed-up their performance for such special cases. This has recently
been explored in [8].

From the viewpoint of research in deductive mechanisms it would, however,
be even more satisfactory if the same performance experienced with these special
algorithms would come along as an aside with the improvement of the general
deductive mechanisms. This has been attempted in (7] with the general goal in
mind to eliminate the redundancies experienced in the backtracking behavior
of deductive systems like PROLOG. A recent experimental study [14] compares
the resulting behavior with that of the specialized algorithms mentioned above.

Rather than putting more intelligence into backtracking, [6] proposes a dif­
ferent approach whereby the redundancy is eliminated by way of transforming
a given problem with a number of preprocessing operations. This technique was
developed independent of any particular &pplication (such as constraint satis­
faction) in mind. Because of the importance of constraint satisfaction problems,
we were interested to see how this technique would cope with them. This note
reports the result of this experiment.

The most important aspect of this result is the observed fact that a com­
pletely general proof technique turns out to behave well also for the particular
and important case of constraint satisfaction problems which is demonstrated in
detail in th~ paper. This is by far not an obvious result since there are numer­
ous examples in the literature where this desired behavior could not be achieved
(e.g. the case of "sort"-problems [6]). As a side-result, but obviously of impor­
tance in its own right, the instantiation of our proof technique to the special
case of CSP may be regarded as a new mechanism for solving constraint satis­
faction problems. Finally, our technique brings together three different areas,
namely logic along with its deductive machinery, CSP, and database technology.
It therefore opens a wide field for further analysis and comparison.

As stated before, we approach the problem of constraint satisfaction from
the deductive side which starts with a logical representation of any particular
CSP. This representation models the claim that for a given world description
(consisting merely of facts in the case of CSP) there exist values satisfying the
constraints. In order to reduce the redundancy inherent in this kind of repre­
sentation, all facts in the world description, that involve the same predicate,
are combined into a single fact with an argument that ranges over the entries
of a database table defined by the variety of these facts. The deductive task
remaining after this reduction consists of a linear sequence of resolution steps
with no search involved since the burden is shifted into the unificational part.

2

Namely, unification now needs to take into account database operations. The
solution may first be computed symbolically as an expression in the relations
(represented by the database tables) and a number of ;'oin-operations that char­
acterizes the set of solutions. Query optimization techniques allow then for a
relatively efficient computation of such an expression. We indicate one such
way that may be viewed as an association list technique - or as a non-first­
normal-form representation of the relations to be joined together, to phrase it
in dababase terminology.

The whole approach might be characterized as a bottom-up, lazy-evalua­
tion technique. In so far it radically differs from the intelligent backtracking
techniques, that are top-down oriented. The differences and similarities of our
method in comparison with the techniques used in the network approach are less
obvious. While here, under the control of the goal statement, we manipulate
the statements describing the world under consideration, those operate on the
network that combines the information from the goal statement along with the
domain information. (11] mentions, however, that arc consistency is a particular
sequence of semi-joins. A detailed comparison with the network approach is
beyond the scope of this note.

As indicated earlier, this paper continues our line of work which attempts to
enhance the performance of deductive systems by way of an elaborate and fast
preprocessing component. Such a component is supposed to eliminate much
of the redundancy that, from the viewpoint of current deductive procedures,
is inherent in most problems. After this preparatory operation only a small
search space is left over for the main deductive process in most cases. This
basic philosophy is successfully realized in a system PROTHEO [1]. Further it
has been shown in [6] that the same approach allows the efficient treatment of
another class of problems. These problems deal with different sorts (or types) of
objects in a way which again causes serious maladies for the usual backtracking
mechanisms. In [2] the treatment of recursion is approached in this way. With
the present paper we show, as its main result, that the feature appropriate
for constraint satisfaction is already present in this uniform framework, a fine
confirmation, we think, for our general approach to theorem proving.

In more general terms, the emerging generation of deductive systems features
a refined structure. Instead of a single deductive strategy on the one hand
and the unification procedure on the other they combine several more parts
of similar importance. One is this preprocessing component with a special
unification that involves database operations. Another is the special treatment
of recursive loops in the set of p08Sible connections (that define the deductive
structure). Yet another is the integration of whole theories into the unification
part that would previously have caused a heavy load for the deductive search

3

X y z u

1

2
·······•-• ... ·,······ •,•:•:•:•:•,•,•,•:•.•:•

\ii :::1:11:1::::1: ia11

3
.~.~.-.· .. •,•, ·'· .

1111 illllilllill \ii
4 i■ ~ ;:;i::;i:i::il:

Figure 1: Two solutions for the 4-queens problem

part. A system, that would combine these and other parts in a well-balanced
way, for a number of reasons is not yet under construction anywhere.

After stating the problem of constraint satisfaction in the following section
the procedure for obtaining a solution to a given CSP is presented thereafter.
In the final section a number of computational aspects are discussed.

2 The logical form of constraint satisfaction

The standard form of the constraint satisfaction problem, particularly for vision
applications, is as follows. Let V = {Vi,•••, vn} be a set of variables. With
each variable vi a set Li of values (or labels) is associated. Further, binary
predicates Pi; are considered such that Pi;(k, l) expresses that the assignment
of label k to the variable Vi is compatible with the assignment of label i, to the
variable v;. With these notions the Constraint Satisfaction Problem (CS Pt) is
defined as the problem of finding an assignment of labels to the variables that
does not violate the constraints given by Pi;.

Let us illustrate this definition with the well-known 4-queens problem as an
example. The task consists in positioning four queens on a 4 x 4 chess board,
so that none is attacked by any other. The board in figure 1 illustrates the two
possible solutions.

4

The variables V = {x,y,z,u} will be associated with the board's columns.
P,;(k, l) holds if positioning a queen in row k at column i is safe for another
queen in row l and column j. The solution shown in the figure with the black
queens is represented by the substitution {x\2, y\4, z\1, u\3}.

In order to state the 4--queens problem in a logical form, we use P as short
for P12 , Q for Pu , R for P14 , S for P23 , T for P24 , and W for P 34 , merely
to improve readability. Hence P12 (1, 3) now briefly reads P(l, 3) which once
more is abbreviated as Pl3. Again, this literal expresses that a queen in row
1 and column 1 is compatible with another queen in row 3 and column 2. In
the following formula F each line expresses the possible alternatives for some
pair of columns.

P13 /\ Pl4 I\ P24 I\ P31 /\ P41 /\ P42 I\
Ql2 I\ Ql4 I\ Q21 /\ Q23 /\ Q32 /\ Q34 /\ Q41 /\ Q43 I\
R12 /\ R13 /\ R21 /\ R23 I\ R24 I\ R31 /\ R32 I\ R34 I\ R42 I\ R43 I\
S13 /\ S14 /\ S24 /\ S31 /\ S41 /\ S42 I\
T12 /\ T14 /\ T21 I\ T23 /\ T32 /\ T34 I\ T41 I\ T43 I\

W13 /\ W14 I\ W24 I\ W31 /\ W 41 /\ W 42

The task consists in determining a position in each column of the board
so that for each pair of columns these positions are compatible. As a logical
formula this task description altogether reads

F-+ 3x,y,z,u (Pxy I\ Qxz I\ Rxu I\ Syz I\ Tyu I\ Wzu)

F formalizes the world description, the existential formula, let us call it
G , states the goal to be achieved. A Constraint Satisfaction Problem (in the
proof-theoretic version) is any problem that has exactly this form.

More formally, a CSP is a formula (without function symbols) of the form
F-+ G; the world description F is a conjunction of ground literals (listing all
facts in this world); the goal G is an existential formula with a conjunction
of literals (the constraint). A aolution to a CSP consists in a constructive
proof of the formula's validity (that automatically yields a substitution for the
existential variables).

Lemma. Any CS Pt may be transformed into a CSP in linear time, and vice
versa.

The easy proof, illustrated by the example above, is left to the reader.

On the basis of this lemma the distinction between the two isomorphic ver­
sions may be abandoned. While in our definition the arity of the predicates is

5

arbitrary, it is well known that we may restrict ourselves to the case of unary and
binary predicates (10,13]. Moreover, the unary ones may be handled easily [10]
so that in our discussions we will mostly focus on the binary ones although all
results hold for the general case of arbitrary arities, as will be briefly discussed
in the final section.

3 A deductive CSP procedure

The way it is stated in the previous section, solving a CSP means proving the
formula's validity. Those readers familiar with the basic concepts in Automated
Theorem Proving will recall that syntactically this in turn means, we need
determine a spanning and unifiable set of connections (5,3]. In [6] we presented
a more elaborate way of controlling the actions of a theorem prover to obtain a
better performance. This general control turns out to be perfectly suitable for
CSP as we are now going to demonstrate. For this purpose, consider again the
previous formula for the 4-queens problem.

In order to eliminate the redundancy inherent in its presentation we (and the
theorem prover) apply a reduction rule, introduced in [6] and briefly recalled
here as follows. In any set-theoretic environment the following equivalence
obviously is a valid one.

The substitution, in a logical formula, of the right side of this equivalence by
the left side will be called a DB-reduction. Note that the literal r E { c1, ... , ck}
for given values of r may be tested for its truth-value by database operations.
For that reason we will use the convention to drop such a literal from this
kind of logic program and treat the domain, that it defines, separately (or even
implicitly). In fact, we take the view that this domain is indeed represented as
a database table. So in short, instead of listing for each predicate all the facts
associated with it separately, they are combined in a single literal with a special
variable that ranges over all possible arguments collected in a database table.

Consider, for instance, the predicate P that occurs in the facts
P13, P14, P24, P31, P41, P42. Let p be the variable that ranges over the val­
ues (1,3), (1,4), (2,4), (3,1), (4,1), (4,2) which we assume to be stored in a
database table identified by p. Then the conjunction of all these facts reduces
to the single literal Pp_. Similar tables are created for Q, R, S, T, W in ac­
cordance with the formula F above in an obvious way. These tables and the
corresponding variables are now tacitly assumed. The formula then reads as
follows thereby using a familiar PROLOG-like notation.

6

Pp.
Qq.
Rr.
Ss.
Tt.

+- Pxy,Qxz,Rxu,Syz,Tyu,Wzu?

In this representation we have a very simple form of a PROLOG program in
which for each predicate symbol there is exactly one head literal which moreover
is simply a fact. Note that this property is not specific to our current example
but holds for any CSP in general. In such a case another reduction rule intro­
duced in (6] applies which is now briefly recalled. A connection is called isolated
if none of its literals does occur in any other connection in the formula. For
instance, the depicted connection {Pp,Pxy} in the program above is obviously
isolated in this sense. In fact, all connections in this program are isolated. ·Res­
olution upon an isolated connection and deletion of the parent clauses is called
!SOL-reduction.

The definition of isolated connections may be liberalized [6] by allowing
literals to occur in more than one connection if they are ground literals in unit
clauses (i.e. facts). This is because the logic would not change if each connection
uses its own instance of the ground literal as depicted in the following program.

p~

p~ "'
+- Pxy, Pyz?

Performing !SOL-reduction upon the connection depicted in the previous
program above leads to the following remaining program.

Ss.
Tt.
Ww.

+- Qxz, Rxu, Syz, Tyu, Wzu, (x, y) E P?

The unification of the pair (z, y) with p resulted in the restriction of (x, y)
to the entries in the database table for the predicate P (i.e. the domain of p)
which is formally expressed in the newly added last literal of the goal clause.
Note that we use P also to denote the database containing the p-values, a
practice that we will follow similarly in the sequel. The next !SOL-reduction,
i.e. resolution step upon the depicted Q-connection leads to

7

Rr~ Ss.
Tt.
Ww.

~ Rxu, S71z, T71u, Wzu, (x,y,z) E PM Q?

Here M denotes the natural equi-join from relational algebra [15]. It takes
the cross-product of P and Q, but restricts the result to those elements with
equal values in the two x-poeitions and deletes the second (now redundant)
x-position. Whenever we want to explicitly show the condition that is used in
the join, we use a functional notation like join(P, P.1 = Q.1, Q) instead of
P M Q in the present case. In this sort of expression we allow more than one
such equality condition.

Let PQ denote PM Q and PQR denote PQ MR. The next steps then
yield the following sequence of intermediate results obtained in exactly the same
way as the previous two just explained.

Ss~ Tt.
Ww.

~ Syz, Tyu, Wzu, (x,y,z,u) E PQ MR?

Tt ~
Ww. '\

~ Tyu, Wzu,
(x, 11, z, u) E join(PQR, PQR.2 = S.1 I\ PQR.3 = S.2, S)?

Ww~
~ Wzu,

(x, 11, z, u) E join(PQRS, PQRS.2 = T.11\ PQRS.4 = T.2, T)?

~ (x, y, z, u) E join(PQRS, PQRST.3 = W.11\ PQRST.4 = W.2, W)?

As the reader may have noticed, PQRS abbreviates join(PQR, PQR.2 =
S.1 I\ PQR.3 = S.2, S) ; similarly for PQRST and PQRSTW. The last
line gives all the values for x, y, z, u that are possible under the constraints in
G and therefore constitute a solution for this CSP; they are represented as
a relation PQRSTW computed from the relation tables P, Q, R, S, T, W by

8

altogether five join operations. In our example, PQRSTW contains the two
tuples (2, 4, 1, 3) and (3, 1, 4, 2) corresponding to the two configurations shown
in figure 1 as we will show in detail in the next section.

No constants occurred in any of the goal literals of our present example. As­
sume there would be literals with constants as in the following slightly modified
goal formula.

+- P2y, Qzl, R2u, Syz, Tyu, Wzu?

Then obviously we could proceed as before. Namely, whenever a constant
occurs in the literal the associated table would first be reduced to those of
its elements that match with this constant in the appropriate position (called
selection in databases) before continuing with a join if there are still variables
left. In the presence of unary predicates we end up with doing a similar thing.
Their connections would be treated prior to the remaining ones so that the
(domain) variables ending up in the constraint literals by unification would then
reduce the associated tables similarly as just described. This way we actually
handle node inconsistency from the network approach. Altogether we obtain
the following general procedure for solving a CSP.

CSP-Procedure

STEP!. Represent the CSP in logical form and apply DB-reduction.

STEP2. Resolve on all (isolated) connections (prefer unary predicates, oth-
erwise apply any order), each resulting in a (further) restriction on the
variables determined by database operations (such as the join).

STEP3. Compute the relation defined by the expression resulting in STEP 2
(see the next section).

Theorem. The final restriction resulting from performing STEPl and STEP2
for a CSP determines a relation that contains exactly the solutions of the
CSP.

Proof. The special logical form ensures that all connections must be isolated.
Further there are no more such connections than literals in the goal. The
procedure thus must terminate successfully if a solution exists.

From the correctness of the reduction operations from [6] it is then obvious
that the execution of the resolution steps upon these connections yields
the relation as described in the theorem.

9

4 Computational aspects

The mechanism reported in this paper has not yet been integrated into our
current deductive system PROTHEO, a task which in a first straight-forward
approach simply requires a suitable interface with an adequate database system.
In fact the deductive part of the mechanism (STEP2) has become so simple for
the special case of CSP that we do not even need much of the deductive power
at all. Rather, the main computational problem has now been shifted into
STEP3 which is its appropriate place (i.e. we consider this a particular virtue
of our technique). The task to be performed there, in database terms, amounts
to executing a query. As the expression resulting from STEP2 may be quite
complicated, we have to be concerned about the computational needs for this
part. This is a concern well-known in CSP and the database field, in the latter
treated under the label of query-optimization [15]. On the basis of the results
known from there we can provide a first approximation for the complexity of
the behavior of our procedure.

The number of join-operations needed for obtaining the solution is bounded
by the number of constraint literals in the constraint formula. More precisely,
this number depends upon the goal's structure in the following way. Let us
call two goal literals Li, Ln linked together if there is a variable x contained
in L 1 and Ln and a sequence of goal literals Li, L,., ... , Ln such that any pair
of subsequent literals share at least one variable. The transitive closure of this
binary relation on the goal literals partitions the set of all goal literals from G
into disjoint subsets G1 , ••• , Gm (in our 4--queens example we have m = 1).
Then a solution of the CSP requires IG1I + · · · + IGml - m join operations.
Note that the solution for each subset may be obtained independently and is
an independent part of the final solution for G. So from a complexity point of
view we may restrict our attention to the case m = 1 .

Let k denote the number of literals in G and n the maximal number of
entries in each table (i.e. the cardinality of the relation). Then a join in the
worst case produces n x n elements in the new table. The time complexity
for executing the join is o(n log n) [15]. So in this crude way of estimation the
total time complexity becomes o(nl:+1).

The behavior can be improved if hashing-techniques are used. Also, one
might select an execution order for the sequence of joins that gives a prefer­
ence to the smallest table among those to be treated or, more generally, to a
sequence that minimizes the intermediate tables. In addition, an alternate way
is provided by the use of a different represention of the tables that eliminates
the redundancy of storing the information and takes account for the fact that
none of the intermediate relations - PQ, PQR, ... in this note's standard

10

example - has actually to be computed explicitly. We will briefly illustrate
such a possibility that is related with association graphs used in AI and with
non-first-normal-form representations used in databases.

The first step thus consists of a transformation of the representation of each
relation as follows. While relations are usually represented by storing all its
tuples explicitly (first normal form representation), we prefer for our purposes
a representation that mentions in each column (i.e. attribute) any occurring
value only once, whence we might speak of a value-oriented representation. For
illustration recall the relation P from Section 2. It consists of the following
table.

1 3
1 4
2 4
3 1
4 1
4 2

We define an operation p that, applied to P, yields the following representation
of the same information.

11 ls4
22 24
3s 31
44 412

That is, for any value in one of the columns, e.g. value 1 in the left column,
we select any new index which only by coincidence here is 1 again. This index
is assigned to each associated value in the second column of the original table.
P can be reconstructed from pP in the obvious way. Let us now assume we
have done this for Q, R, S, T in a similar way.

Starting to work on the expression PQRSTW from the previous section
leads us first to joining P and Q whereby we use this representation, which is
illustrated in the following table.

p Q p t>4 Q
11 l34 h lsa 11 }34 124
22 2, 2s 257 22 24 21s
3s 31 37 3sa 3s 31 324
44 412 4a 457 44 412 41s

The first columns of both relations are to be identified. So for any value occur­
ring in both columns, e.g. for the value 1, this is achieved simply by renaming its

11

index all over in one of the two predicates. The renaming was done in Q above,
i.e. 11, became 11, 257 became 217 , and 467 changed into 417 . Doing this
with all four values in the example and removing the obsolete second instance
of the first column gives the result. The formal definition of this "merging"
operation, denoted by IXlp, derives from that of the usual join by way of the
following equation.

pP 1X1, pQ = p(p 1X1 Q)

This is why we may actually ignore the distinction between IXl and l><lp. The
following table shows the next step for our example which is of the same kind
as the previous one.

PIXIQ R (P l><l Q) l><l R
11 ls4 124 lg l57 11 ls4 124 123
22 24 2u 25 2ns 22 2.,, 213 2134
33 31 324 37 31168 3s 31 324 3124
44 412 413 4s 457 44 412 413 423

The next step, illustrated in the following table, is slightly more complicated.

(P 1X1 Q) l><l R s PQRS
11 l34 124 123 11, l1s ls 12 123
22 24 213 2134 26 2s 22 2s
33 31 324 3124 37 35 3s 32
44 412 413 423 4s 466 42 4s 423

According to the definition of PQRS the second and third column of PQR
have to be matched with the two columns in S. For instance, consider the value
1 in what might be called the "match column". In S it is paired with the values
3 and 4 by way of the index 5 in what might be called the "constraint column".
With this information let us look into the corresponding pairing in PQ RS. Via
index 4, 1 is paired with 1 there which does not match with any of those two
pairs in S . So the index 4 in lu will be removed. Similarly with index 3
in 213 • Performing this match with each of the values results in the vector
(12 , 20, 30, 43) for the constraint column of PQRS. As we see, it does no more
contain the indices 1 and 2 so that these two can now be discarded from the
whole matrix which leads to the result shown above. In order to complete the
example, joining in T removes the index 3 in l2s and the index 2 in 42s ,
while joining in W then does the same with the remaining index in both these
entries. Hence the final matrix just consists of the two possible solutions left
over.

This exercise is meant to illustrate the sort of possibilities for improvement
in calculating the final expression. It is not meant to give a full account of this

12

technique which would be beyond the scope of this note. So we just add a few
general remarks.

The technique is polynomial in time and linear in space, as can be easily
seen. In fact·, it is pretty efficient. It is not covering the general case, though.
One problem that can immediately arise is illustrated by the following example
of two simple relations to be joined on the b, c-columns.

C1 C2 e1

The matching operation described above runs into trouble because the indices
in the second column are not independent in contrast to those in the third one
that is to be matched. The easiest way out of this problem is a recoding of the
first relation by making the second column the primary one.

C2 C2 e1

Now there is no problem to proceed as described above. General wisdom from
the database field teaches us that even with this possibility of recoding (which
again can be done in polynomial time) we are covering the case of the "loss-less
join" but still not the general one. But since the problem is NP-hard there may
not be much further hope anyway.

In our whole presentation we have focused on the case of binary relations.
This was only to keep things simple for the reader. The CSP-procedure from
the previoue section generalizes to the case of arbitrary predicates. With the
restrictions just mentioned the same is true for the technique outlined in the
present section.

The potential for parallel treatment is limited as was shown in [9]. In any
case, each of the subsets G; may be treated independently, as we mentioned
above, hence they may be dealt with in parallel. For each of them the sequence
of join operations may be executed in any order. Hence, by using the bi­
section technique parallelism may be exploited so that maximally log k join
operations will have to be performed in sequence (instead of the k mentioned
above). The combination of these two possibilities of exploiting parallelism
should additionally lead to a significant improvement in practice.

Acknowledgements. I am particularly indebted to A. Mackworth, who taught
me many details of CSP and helped me overcome wrong perceptions.
He, P. Gilmore, H.J. Ohlbach, R. Reiter, J. Schumann, and the referees
provided many helpful and greatly appreciated comments that gradually
improved previous versions of this paper.

13

References

[1] S. Bayerl, E. Eder, F. Kurfess, R. Letz, and J. Schumann. An implementa­
tion of a PROLOG-like theorem prover based on the connection method.
In Ph. Jorrand and V. Sgurev, editors, AIMSA '86, Artificial Intelligence
- Methodology, Systems, Applications, pages 29-36, North-Holland, Am­
sterdam, 1987.

[2] W. Bibel. Advanced topics in automated deduction. In R. Nossum, editor,
Fundamentals of Artificial Intelligence II, Springer, Berlin, 1988.

[3] W. Bibel. Automated Theorem Proving. Vieweg Verlag, Braunschweig,
second edition, 1987.

[4] W. Bibel. "Intellektik" statt "Kl" -Ein ernstgemeinter Vorschlag. Rund­
brief der Fachgruppe Kunstliche lntelligenz in der Gesellschaft fur Infor­
matik, 22:15-16, December 1980.

[5] W. Bibel. Matings in matrices. Comm. ACM, 26:844-852, 1983.

[6] W. Bibel, R. Letz, and J. Schumann. Bottom-up enhancements of de­
ductive systems. In I. Plander, editor, Proceedings of ,Ith International
Conference on Artificial Intelligence and Information-Control Systems of
Robots, North-Holland, Smolenice, CSSR, October 1987.

[7] M. Br~ynooghe and L. M. Pereira. Deduction revision by intelligent
backtracking. In J. A. Campbell, editor, Implementations of PROLOG,
pages 194-215, Horwood, Chichester, England, 1984.

[8] P. Van Hentenryck. Consistenc11 Techniques in Logic Programming. PhD
thesis, University Namur, Belgium, July 1987.

[9] S. Kasif. On the parallel complexity of some constraint satisfaction prob­
lems. In AAAI-86, pages 349-353, Kaufmann, Palo Alto CA, 1986.

[10] A. K. Mackworth. Consistency in networks of relations. Artificial Intelli­
gence, 8:99-118, 1977.

[11] A. K. Mackworth. Constraint satisfaction. In S. Shapiro, editor, Ency­
clopedia of Artificial Intelligence, pages 205-211, J. Wiley and Sons, New
York NY, 1987.

[12] A. K. Mackworth and E. C. Freuder. The complexity of some polyno­
mial network consistency algorithms for constraint satisfaction problems.
Artificial Intelligence Journal, 25:65-74, 1985.

14

[13] N. J. Nilsson. Principles of Artificial Intelligence. Tioga, Palo Alto CA,
1980.

[14] W. Rosier and M. Bruynooghe. Empirical Study of Some Constraint Satis­
faction Algorithms. Report CW 50, Katholieke Universiteit Leuven, 1986.

[15] J. D. Ullman. Principles of Database Systems. Computer Science Press,
Rockville MD, 1982.

1

[16] P.H. Winston. Artificial Intelligence. Addison Wesley, Reading MA, 1984.

December 4, 1987

15

