
Advanced Topics in 
Automated Deduction 

by 
Wolfgang Bibel 

Technical Report 87-39 

November 1987 





Advanced Topics in Automated Deduction* 

W. Bibel 

University of British Columbia and 
Canadian Institute for Advanced Research 

1 Introduction 

This chapter deals with a number of issues in Automated Deduction that have 
recently attracted some attention in this area. The presentation is not meant 
to provide an introduction to this area. Rather its purpose is to supplement the 
introductory articles [5,24] contained in a preceding volume. In other words, the 
reader is expected to be familiar with the basic techniques used in Automated 
Deduction either from these or from other sources. This requires, for instance, a 
familiarity with resolution and the connection method. Also, the importance of 
deduction fo:r Artificial Intelligence is not discussed here again. The reader who 
lacks motivation ( or is confused by some ongoing discussions) in this respect 
might wish to read the introduction to [5]. 

In recent years there has been a remarkable progress in the field of automat
ing deduction which is mainly due to the success of PROLOG. The number of 
logical inferences per seconds (LIPS) now ranges between 300K and SOOK for 
the most advanced systems. Ironically, this dramatic speed-up in deductive 
performance has not yet produced any significant result such as the proof of 
a longstanding conjecture in Mathematics, or the like. Rather it occasionally 
happened that seemingly simple deductive problems cause these systems diffi
culty. This, for instance, happened with Schubert's steamroller problem [12] 
that we will briefly discuss in Section 3. 

We see the following three different main problems in the current technology 
of Automated Deduction. 

• Control regimes such as those used in PROLOG are too simple-minded. 

•To appear in "Fundamentals of Artificial Intelligence II", R. Nossum, ed., Springer (LNCS), 
Berlin 

1 



• The expressive power of PROLOG is too poor. 

• Certain phenomena arising in human reasoning are badly understood for 
an adequate representation within some logical formalism. 

In this chapter we will not address the last item, only briefly discuss issues 
related with the second item, and focus mainly on the first of these points. 
Indeed, a more elaborate control regime for deductive systems may enhance 
their performance without affecting the virtues of the architecture of PROLOG
like systems as has been demonstrated in [12]. In order to establish a basis for 
the discussions of this issue, we begin our presentation with studying various 
possible control regimes. First, we review the standard arguments in Section 2 
that favor top-down in comparison with bottom-up control. Then we show in 
Section 3 that a reasonably restricted bottom-up regime is actually superior in 
its performance. The gist _ of this regime consists of the application of several 
reduction operations, notably what we call DB- and !SOL-reductions. Only 
after their application is the control handed over to a top-down regime. One 
may think of this approach as a way of eliminating some of the redundancy 
involved in the representation of a logic program in order to then work on the 
harder core of it. 

Section 4 extends these discussions to programs that contain recursive rules. 
Such rules give rise to deductive cycles. So Section 4.1 first characterizes such 
recursive cycles and distinguishes them from tautological ones. Section 4.2 then 
describes an algorithm that compiles a certain class of programs into iterative 
mechanisms. The application of this algorithm is then demonstrated with more 
complicated problems, namely the Fibonacci program and the rule expressing 
the associative law that both illustrate specific features. Factoring plays a 
significant role for the first and a resulting organization of the database does 
so for the second of these problems. Since there is a great similarity with the 
work done in datalogic, but also some terminological confusion in the database 
literature, we include a clarification of some notions in Section 4.5. Finally, the 
limitations of our approach are discussed. 

Note that the approach we take is quite different in its spirit from that aiming 
at LIPS performance records. An elaborate analysis like the one required for 
the algorithm just mentioned needs quite a bit of execution time, which might 
slow down the performance for simple problems. We gain a more intelligent 
behavior this way, however, so that in more elaborate problems the advantages 
will outweigh the overhead. 

Although quantifiers are present in most of human reasoning, current de
ductive systems of the PROLOG-ty·pe do not even mention them. In Section 5 
we recall a way dealing with them that has long been neglected. It does not 

2 



take recourse to skolemization, but rather takes advantage of the logical op
erators in their relative positions within the formula. While this is already 
attractive in the case of first-order logic, it has recently led to an extremely el
egant solution to treating deduction in various modal logics [26] that we briefly 
summarize. A brief section reminding of the importance of building-in theories 
and mathematical induction concludes the whole chapter. 

In our treatment we use standard notation as much as possible. In cases of 
doubt the reader might wish to check with [3]. 

2 Bottom-up vs top-down execution 

The control regime of a PROLOG system is strictly top-down. It takes the 
goal clause (considered to be at the top of a search tree), selects its first literal, 
searches for a matching head, performs resolution on the pair of literals (i.e. 
on the connection) thus located, yielding a modified goal clause for which this 
process is carried out in exactly the same way again, and so forth. This regime, 
which is actually based on ordered input resolution, works fine for many prob
,lems. At the same time for many other problems it is just not appropriate and 
often fails badly. Consider first why it works pretty well in many cases, which 
will be illustrated by the following two programs. 

Pa1. 

Pam. 
Q1x +- Px. 

Qnx +- Px. 
+- Qnam? 

Top-down this program would succeed with two inference steps in the ob
vious way. An unintelligent bottom-up execution would need m • n inference 
steps, not counting in both cases the identification of pairing predicates. As we 
can see, top-down execution in PROLOG outperforms bottom-up execution in 
this kind of program. 

PO. 
QO. 

P(x + 1) 
Q(x + 1) 

3 

+- Px. 
+- Qx. 
+- Qn? 



Top-down this program would succeed with n + 1 steps (see below for the 
built-in arithmetic) while, again, an unintelligent bottom-up execution might 
actually run forever. These two programs seem to be typical for programs 
involving a number of facts and "chaining" rules on the one hand and recur
sive rules on the other. Since facts, chaining and recursive rules are the main 
components of any logic program, it seems that in general top-down execution 
provides a much better performance. This is not always true as we will see 
upon closer inspection in the following sections. 

Let us start considering this other side of the coin with a look at the factorial 
program below which is actually a variant of the recursive program above. 

FAC(O,l). 
FAC(x + 1, (x + 1) · y) +- FAC(x,y). 

+- FAC(n, z)? 

In the discussion of this and similar examples we allow theory connections ·and 
theory unifications [3], i.e. terms like o+ 1 and l · l are considered unifiable on 
the basis of the theory of arithmetic. In this sense this theory is built into the 
deductive mechanism. Now, if this program is executed top-down, any of the 
insta.nces of the variable y cannot be assigned a value until the whole process 
reaches the bottom which requires the intermediate storage of n expressions 
associated with these n instances that cannot be evaluated. In contrast, the 
bottom-up execution allows the immediate computation of the value of any 
insta.nce of each occurring variable. Since this value is all that is needed in 
order to compute the value of the next instance, this next instance may make 
use of the same storage location as the previous one, which altogether amounts 
to three storage locations for the three occurring variables. Even without a 
more detailed quantitative analysis it should be obvious from this discussion 
that here bottom-up execution results in a much faster computation of the 
final value for z than top-down execution. 

In [9] (see also [7]) it was first shown that bottom-up execution corresponds 
to the execution of iterative programs in conventional programming languages, 
and top-down to recursive ones. The implementation of recursion in general 
requires maintaining a data structure ( called a stack-frame) for every recur
sive call that has not terminated yet. A recursive computation involving n 
recursive procedure calls requires, therefore, space linear in n. On the other 
hand, an iterative program typically uses only a constant amount of memory, 
independent of the number of iterations. These observations apply for any pro
gram.ming language, and have been illustrated for PROLOG above with the 
factorial program. 

4 



This demonstrates that there seem to be virtues in bottom-up execution 
as well. This is true not only for recursive programs but also for programs 
with a focus on facts and chains. An example is Schubert's steamroller problem 
that will be described in the following section. So the natural question arises 
whether one might combine the virtues of both kinds of regimes. We devote 
the following sections to a discussion of exactly this question. This discussion 
will result in a much more attractive control regime than the one provided by 
either top-down or bottom-up execution. 

3 Bottom-up reductions 

As we know from [24] (or from [3] for that matter) the problem of finding a 
proof consists of identifying an appropriate subset among the connections of 
the given formula. Obviously, the smaller the set of connections the easier 
this task can be achieved. There are many possibilities to reduce this set in a 
given formula. A number of them are treated, for instance, in [3] such as pure 
literal reduction, subsumption, tautology reduction, and elimination of simple 
circuits, that all remove connections and possibly clauses. Here we concentrate 
on further reductions of a less familiar sort. Let us consider an example for 
illustration. 

Pa~ Qb~ 
Px ~ Qx. 

~Pz? 

Concentrating on the Q---connection we observe that both literals engaged 
occur in no other connection of the whole formula. We call connections with 
this property isolated. Note that the remaining connections are not isolated in 
this sense, since P z occurs in both of them. The isolated connection in question 
may be eliminated by substituting the affected clauses by their resolvent, which 
amounts to a (bottom-up) resolution step with elimination of the parent clauses 
and has the following result. 

Pa~ Pb. 
~ z? 

Clearly, this reduction step, called /SOL-reduction, decreases the complexity of 
the initial formula and retains provability in general. 

It can easily be seen that the definition of isolated connections may be 
liberalized by allowing literals to occur in more than one connection if they are 

5 



ground literals in unit clauses (i.e. facts). For details on this and for several 
ways to produce isolated connections see [12]. Here we only discuss one further 
reduction that is based on the following valid equivalence. 

Pr+- r E {c1, ... ,c1:} .._. Pc1 /\ ... /\ Pc1; 

The substitution in a logical formula of the right side of this equivalence by the 
left side will be called a DB-reduction. Note that the literal r E { c1, ... , c1:} 
may be tested for its truth-value by database operations. For that reason we 
will take the convention to drop such a literal from this kind of logic program 
and treat the range that it defines separately (or even implicitly). In fact we 
take the view that this range is actually represented in a. data.base table not 
presented explicitly in the following examples. 

DB-reduction properly reduces the size of a. formula. But more importantly, 
it often results in new isolated connections which may then in turn be e!imi
nated. For instance, 

p~ 
Pb~ 
Qx +- Px. 

has no isolated connection, while after DB-reduction, yielding 

p~ 
Qx +- Px. 

with r E { a, b} , indeed an isolated connection appears. 
In conjunction with !SOL-reduction DB-reduction in general requires the 

use of all the usual data.base operators such as union U, intersection n, projec
tion ,r ·, and the (natural equi-) join 1><1. Since they are standard [25], we only 
demonstrate them by use of a few simple examples. For instance, consider the 
following program in which r1 E R1 and r2 E R2 • 

Pr1~ Qr~ 
Px +- Qx. 
Sy ~Py. 

Here only the Q-connection is isolated which upon removal yields 

6 



The obvious next step is a further DB-reduction that takes the union R1 UR2 = 
R for the range of r . 

p~ 
Sx +- Px. 

obviously producing a new isolated connection. It is well-known in logic pro
gramming that two subgoals in a clause sharing common variables correspond 
to the join in databases which in the simplest case of unary predicates is iden
tical with the intersection R1 n R2 = R. For instance, if r ranges over R thus 
defined then !SOL-reduction upon the two connections in the program 

Pr~ 
Q~ \ 
Sx +- Qx, Px. 

simply results in Sr. Had the subgoals been Qyx, Pxz , we would have had 
R 1 t><l R2 = R instead with everything else remaining the same. The projection, 
finally, comes into play if Pr is connected with a clause of the form Qx +- Pxy. 
!SOL-reduction here leads to Qr1 , where r1 E w1R . 

With these reductions at hand, an enhanced control regime would now oper
ate on a given logic program in the following way. All the possible connections 
will first be determined. Then possible reductions will be performed until none 
is applicable any more. To some extent these operations may already be per
formed even· at compile time. Note that they never require more than linear 
time (otherwise they should not be subsumed under the notion of a reduction, 
cf. [6]). Thereafter, the usual top-down execution will be carried out on the 
remaining program. Note that in this last phase a form of unification is needed 
that incorporates database operations. 

As a technical remark we mention that in performing !SOL-reduction with 
a literal Pr in a unit clause this literal would not actually be removed from 
the program. As a reference to a database table it might be needed for further 
queries to the system that might involve the predicate P . 

A proof system for Horn clause logic, PROTHEO, that follows this whole 
scheme of operation has been developed in the author's former research group 
[12]. In [12] the power of this approach has been demonstrated with Schubert's 
steamroller problem. This problem describes the eating habits of a number of 
animals, and asks for the existence of an animal among these characterized by 
certain properties. As a logical formula it consists of 26 clauses (in one of the 
possible formalizations). For most · proof systems operating in a purely top
down oriented way the search space of this formula turned out to be infeasible. 

7 



DB- and !SOL-reduction reduces these 26 clauses to merely 4 remaining clauses 
with altogether 7 literals. There is nearly no search left so that the solution 
can be computed in a straightforward way mainly as a deterministic sequence 
of fast database operations. 

A number of other proposals have been made to cope with the problem that 
was demonstrated by the steamroller formula. Most if not all of them involve 
the declaration of sorts, requiring a sorted logic theorem prover. In effect this 
eventually results in a behavior very similar to the one in our solution. This is 
because a DB-reduction actually collects several items into the same "sort". By 
!SOL-reduction these sorts are then propagated through the remaining formula. 
In sorted logic we have a more elaborate unification procedure that additionally 
has to care for the sorts of the terms. In our solution the analogue complica
tion is the incorporation of database operations into the unification mechanism 
mentioned above. 

While no one has studied these similarities and potential differences in fur
ther detail, it seems to be obvious that technically the differences are negligible. 
However there is a major drawback for the sorted logic approach insofar as it 
requires the programmer to provide the system with the information as to which 
among the unary predicates are to be treated as sorts, an unpleasant extra bur
den on the user. Also it does not seem to provide a solution for "sort"-predicates 
with more than one argument, while obviously our reduction mechanism is com
pletely general in that respect. Since first-order logic is already complicated 
enough, particularly in view of more general applications like in non-monotonic 
reasoning, the extra technical complications involved in sorted logic cannot be 
regarded as a particular virtue either. Hence for all these and other reasons the 
reduction mechanism described in this section is our favorite solution to this 
issue. 

By now the reader may have noticed that the first program in the previous 
section, which was meant to witness the supposed superiority of top~own vs. 
bottom-up execution, with DB- and !SOL-reduction (i.e. bottom-up) behaves 
as efficiently as the usual top-down execution. In other words the arguments 
given there - for the case of facts and chaining rules - have lost their credi
bility. On the contrary, a bottom-up regime like the one we just described is at 
least as good as a purely top~own one, and sometimes (like in the steamroller 
problem) even dramatically better. It replaces deep search trees by shallow 
ones, thus reducing the need for costly backtracking substantially. 

In [4] it is shown that the same technique leads to the reduction of any kind 
of a constraint satisfaction problem to the problem of executing a nested term 
consisting of database operations. Since constraint satisfaction problems play 

8 



a particularly important role in Intellectics1 , we see that the seemingly simple 
ideas presented in this section apparently have important applications beyond 
those represented by the steamroller problem. 

In spirit the Q• algorithm [19J addresses exactly the same problem as the 
one dealt with in the present section. The authors actually emphasize their view 
of Q• as a problem reduction mechanism which is exactly what our reduction 
rules provide as well. While here we presented a very few and simple reduction 
rules, Q• seems to be a collection of a number of ideas built into this algorithm. 
As far as it can be taken from the way Q• is presented in [19] all these ideas are 
actually covered in a technical sense by our reductions, so that our approach 
appears to be much more satisfactory because of its simplicity, generality, and 
uniformity. But it might still be worthwhile to look into the ( unpublished) algo
rithm Q• itself in order to possibly detect features that might further enhance 
our technique perhaps by way of a further reduction rule. 

4 Recursion 

So far we have discussed a number of reduction operations that simplify a given 
logical problem and sometimes already provide even the whole proof. We now 
study the logical structure of the formulas that result from such a sequence of 
reductions, aiming at the identification of further possibilities for their efficient 
treatment. Such formulas will typically contain cycles of connections possibly 
indicating some sort of a recursive structure. The present section will hence be 
devoted to the topic of recursion. 

4.1 Cycles 

We begin our discussion of recursion with the definition of the more general 
concept of a cycle. 

Definition. In a set of clauses a cycle is a set {c1 , ••• , en} of connections 
c; = {L;, .R;}, i = 1, ... , n, such that .R; and L; with i - i = l mod n are 
different literals in one clause. A cycle is called linear if there is no literal that 
occurs in more than one of its connections. 

Recall that unifiability of the terms in the literals is not inherent in the no
tion of a connection, that is, only the predicate symbols determine connections. 
Our notation {L;, R;} is meant to indicate an implicit existential quantification 
that orders the otherwise unordered pairs of literals in the connections. The fol
lowing example illustrates a cyclic set of connections that would not qualify as 

1 the field of Artificial Intelligence and Cognitive Science 

9 



a cycle in the sense of our definition, since Px is contained in two connections 
next to each other. 

p~ 
Qfy~ Py~ 

~Qz,Pz? 

The cycle formed by the two connections in Axz - Axy, Ayz is not linear 
since Axz occurs in both of them. There are two different types of such cycles, 
the tautological and the recursive ones. Let us first consider tautological cycles. 

Definition. A cycle is called tautological if there exists a clause C involved 
in the cycle and a substitution which on C is the identity substitution, such 
that all connections in the cycle become complementary pairs of literals. 

For instance, the cycle in each of the following clause sets is tautological, 

{{P; - Qy:J'x}}, {{P~z}}, 

{{P~Pza}} 

while this does not hold for the following clause sets. 

----... ..i:::::==: ---- ..__ 
{{Px - Py}}, {{Axz - Axy, Ayz}}, 

~ ~ 
{{Px - Qx}, {Qa - Pb}}, {{Pxy ...- Qxy}, {<.1za - Pua}} 

In no case can tautological cycles ever give rise to a recursion since the identity 
substitution on C in the definition prevents any progress while traversing the 
cycle in a deductive process. Under certain conditions even some or all of the 
connections in a tautological cycle may be deleted without affecting provability. 
On the ground level such conditions have been stated in Lemma 3.6 of [6] for a 
class of tautological cycles called simple circuits (mentioned before in section 3). 
The generalization to the first-order level follows standard techniques [3], which 
always require some care, however. The deletion of such connections may leave 
some of the previously connected literals pure in the sense of [6] so that whole 
clauses may become obsolete. Altogether this is a powerful generalization of the 
well-known reduction of deleting tautologies mentioned already in the previous 
section. It may be used to further reduce a given program beyond what was 
already achieved with the techniques described in the previous section, and in 
this sense it is indispensable for the restriction of the search space. 

Definition. A cycle is called potentially recursive, if it is not tautological 
and if there exists a weak unifier for all its connections. 

Weak unification was defined in [15] and captures whether in a proof a 
pair of literals is potentially unifiable by possibly renaming variables so that a 

10 



variable occurring at both ends of a connection adopts a name at one end that 
is different from the one at the other. For instance, the connection in 

is weakly unifiable in this sense since x will be renamed to, say, x' in one of 
the two literals. The obvious idea behind this concept is to take into account 
the possibility of considering more than a single copy of the clauses involved. 

Definition. A cycle is called recursive if there is a proof of the formula 
with a spanning set of connections that contains a fixed number of instances of 
the whole cycle, i.e. of all its connections. 

For instance, there are two such instances ( depicted here with one connec
tion only) from the potentially recursive cycle of the previous example in the 
following proof. 

p~ 
Pfx +- Px. 
~Pfffa? 

If the instances of the clauses involved in a recursive cycle are represented 
explicitly, then there is actually no cycle anymore. This may be seen in the fol
lowing picture where, along with the substitutions involved, the three instances 
of the rule in the previous proof here are represented explicitly. 

p~ 
pf X-::::._ p X • 
PJy-::::::_Py. 
Pfz +- Pz. 
~Pfffa? 

x\a 
y\fa 
z\ffa 

Nevertheless there is this cyclic property of coming back again and again 
to a copy of the same clause. In the following we will often briefly speak of a 
recursive cycle even if we actually mean a potentially recursive one. This notion 
of a recursive cycle, usually introduced with resolution in mind, is generally 
accepted although there are differences in the details of the definition given by 
various authors such as our exclusion of tautological cycles; this will be further 
discussed in Section 4.5 below. 

The restriction in our definition of cycles, whereby the literals in the same 
clause have to be different ones, excludes other types of cycles (like the example 
shown above) that might as well be considered in our context. Although I lack 
a striking argument I nevertheless feel that the notion captured here is the 

11 



more productive one for our purposes. Indications of this are the following two 
observations. First, a tour through a cycle, that ends in the same literal where 
it started from, indeed returns to this point of departure in quite a different 
state than it started from since, for instance, it could not run through the same 
cycle again in a deductively meaningful way. Second, these types of cycles seem 
better attacked with the reduction provided by factoring, which reduces them 
to the cycles we have defined above, or the cycle can at least be broken into 
two parts associated with the deductive solution of two independent subgoals. 
Both actually applies to the example of a "non-cycle" given above. 

Recursive cycles as defined above may still include cycles that are tautolog
ical in nature (but of course not tautological in the sense of our definition). We 
may only conjecture that our definition of tautological cycles covers all the cy
cles that are indeed tautological in nature. It is actually somewhat of a surprise 
that no one seems to have bothered before to clarify such a basic distinction. 

4.2 Compilation of recursive cycles 

In a given formula ( or logic program) all cycles can be detected fast by well
known algorithms. Once the cyclic structure is known, this insight may be used 
for a much faster proof detection than the one that could be achieved by a 
straightforward depth-first search as in PROLOG. This observation was known 
for a long time and has been made, for instance, in [9]. Special attention was 
given recently to this possibility by the researchers working in datalogic, i.e. in 
the field on the boundary between logic and databases that will be reviewed in 
more detail in Section 4.5 below. 

The most attractive approach among those taken in this kind of work is the 
one that aims at a compilation of the whole proof process [17]. For instance, the 
compilation of a program such as the one in our last example in the previous 
section should result in a code that checks the term in the goal for an arbitrary 
number of consecutive f's followed by an a, rather than performing any de
ductive steps at all [9]. We will now outline such an approach for a limited class 
of programs. First, let us illustrate the idea with the familiar factorial problem. 

0, 1). 
x+l,(.z+l)•y) +- F AC(x, y). 

--.:==========+-=~F~AC(n,z)? 
We have discussed this program already in Section 2. Recall from there 

that we allow theory connections and theory unifications [3], i.e. terms like 
0 + 1 and 1 · 1 are considered unifiable on the basis of the theory of arithmetic. 
There are four unifiable connections in this program and one of them forms a 

12 



potentially recursive cycle. How could one, with such a knowledge at hand, head 
for a compilation such that any reasonable goal may be executed fast without 
explicit (mo~e time-consuming) deduction steps? 

Recall that running a logic program means finding and executing a proof. 
Also recall that in terms of the connection method a proof consists of a spanning 
set of connections. The cycle does not itself form a spanning set of connections. 
The single connection formed by the fact FAC(O, 1) and the top goal would 
satisfy this requirement, but in this simple case the cycle connection would not 
even be involved in the proof. Another spanning set of connections is set up by 
the connection formed by the fact F AC(O, 1) and the rule subgoal, the cycle 
connection, and the connection formed by the rule head and the top goal. Let 
us examine more closely this second alternative. 

Since the cycle connection is not tautological, it must connect two different 
instances of the rule which we may assume to be the i-th and the i + 1-
th instances. The unifications that are implied by this connection may be 
expressed as the following equations. 

Xi+l = X; + 1 , Yi+l = ( Xi + 1) · Yi 

The F AC(O, 1)--connection may be used to determine a value for the base case. 

X1 = 0, 1/1 = 1 

The top goal connection determines the value for the output. 

where k is such that xi+ 1 = n. It is a simple step from these equations to 
the following destructive assignment program. 

x ~ 0; y ~ 1 ; l : x ~ x + 1 ; y ~ x • y ; if x =fa n goto l; output y 

This program clearly outperforms any deductive mechanism, or, to put it 
differently, it provides the fastest way to carry out the proof for the above 
formula (except for parallel executions). So is there a mechanical way to extract 
it from the formula? We claim that the following compilation algorithm may be 
reijned so as to achieve this for a limited class of formulas. 

1. Identify cycles in the problem (the single connection in the rule above). 

2. Select one of the cycles (only one choice above). 

3. Add unifiable connections necessary to form a spanning set ( the two addi
tional connections above). 

13 



4. Select appropriate "base" connections {the F AG(O, !)-connection above) 
providing the initialization for the variables involved. 

5. Extract the cycle equations (as done above). 

6. Possibly normalize these equations (not needed above; for an example see 
next section). 

'1. Extract the termination equations from the remaining connections {as done 
above). 

8. Transform the resulting set of equations into a bottom-up destructive as
signment algorithm (the result was shown above). 

Selections in this algorithm have to be interpreted as non--deterministic fea
tures that have yet to be transformed into some sort of a while-loop {or, in 
other words, some sort of backtracking). The present example is so simple that 
no alternatives are possible. 

There is an alternate way of looking at the equations resulting from the 
unification of the connected terms which will be helpful as a guide to the more 
refined version of the algorithm. Namely, the cycle's effect may be seen as that 
of a function / that takes a pair (x, y) as input and returns the resulting 
pair f(x, y) as output. Let us call / the cycle function associated with the 
cycle in question (a way to determine and represent such a function will be 
shown shortly). This observation holds for any cycle although one would have 
to consider arbitrary tuples rather than just pairs in the general case. 

If the cycle is traversed k times then the output will be flc(x, y) . If the 
initial values for (x, y) have been obtained in step 4, viz. (0, 1) in the present 
case, then step 7 provides a single equation that is (n, z) = f1c(o, 1) in our 
case. Actually this is a vector equation and therefore consists of two equations, 
one for each component. Since this makes two equations with two unknowns, 
k and z , they can be solved, that is, z may be provided in a functional form 
dependent on the input only. So z may as well be computed in a functional 
way which is what we are aiming for. 

The extraction of / is particularly simple in our case where the pair (x, y) is 
explicitly contained in the subgoal (i.e. without any further function symbols) 
and where the cycle contains only a single connection. In this simplest case 
/ can just be read off from the other literal in the connection. That is, here 
the function consists of a pair where the left component is the +!-function 
and the right one the • -function with appropriate argument-functions. Using 
the primitive functions and operations from recursion theory and following the 

14 



notation in [13], then for the factorial program the full equation is the following. 

(n,z) = [(c;o1r2) X (•o < <;, 11"2 o d2 >)]*((0,1),k) 

Since n = <;*(n), it is straightforward to determine k and z in this case. The 
reader not familiar with this functional language should not worry too much. 
The only lesson to be learned from this exercise is that the compilation of 
recursive cycles indeed boils down to solving equations. If we take the present 
alternative way of determining the cycle function then step 8 in the algorithm 
becomes even superfluous since the primitive functions and operations used 
on the right side of the equation above provide a perfect and highly efficient 
programming language. 

Note that the resulting functional program in the present example is iterative 
in the sense of a DO-loop rather than a WHILE-loop. So the performance of the 
resultant program is even better than the algorithmic program shown further 
above (by using a register rather than a termination test to be executed in each 
cycle). This may be achieved in general following this approach as long as we 
are computing primitive recursive functions which is done anyway most of the 
time. 

Coming back to the algorithm itself, let us emphasize once more that we are 
not claiming to handle all recursive problems this way, of course. The point is 
that we aim at an identification of a class that consists of a rather simple, but 
popular kind of problems to be treated this way. Simple problems in this sense 
are those that have linear cycles only. In fact the present version obviously 
has only a single cycle in mind. Another feature that makes problems simple 
is given when the output tuple (the pair (n, z) in the present example) may 
be represented in closed form as in the equation above which of course is not 
always possible (the Ackermann function is the classic example). We will refer 
to this as to the solvability feature. 

Note that the approach taken here with compiling logic programs is different 
from what is usually considered in the compilation of logic programs. There, no 
transformation into an iterative form takes place as here. Of course, the pro
gram might be presented in an iterative way by the user himself (see programs 
8.3 and 8.4 in [23] for computing the factorial in an iterative way in PROLOG). 
Although possible, we would not like to have the programmer bother about this 
issue. 

The transformation we suggest is also not provided by the technique of 
tail recursion optimization used in PROLOG. This optimization re-uses the 
memory area allocated for the parent goal for the new goal if this is the last 
call in the body of a rule. Although this technique can be used in our program 
above it does not provide a cure to the problem under discussion. The memory 

15 



requirements still grow linearly with n, since the result variable z has to store 
the intermediate symbolic results n • y, n • (n - 1) • y, etc., whereby y cannot 
be evaluated. In addition there are the extra efforts needed for building each of 
the frames associated with the procedure calls. The fact that here this growth 
could actually be prevented by computing the result of the subexpressions like 
n • (n - 1) is accidental with this particular example, and would not apply in 
all cases where our approach would still work. In summary, we claim that the 
compilation techn~ques used in PROLOG could be enhanced by the bottom-up 
compilation we are proposing here. 

4.3 The incorporation of factoring 

The factorial problem is too simple to illustrate all the features that have to 
be taken into account in our approach. Therefore we analyze a more compli
cated example in the present section, viz. the Fibonacci problem, and test the 
previous algorithmic steps with it. Thereby we prefer the more illustrative first 
alternative of representing the equations resulting from the unifications. 

FIB(O, 1). 
FIB(l 1). 
FIB((+ 2,x + y) - ~ +-- FIB(k + 1,x), FIB(k,y). 

+-- FIB(n,z)? 

There are two connections in the rule that may both, separately or together, 
be used to form a recursive cycle. If we consider using them both for a single 
cycle then this one would no more be linear (hence much more complicated) 
since the head literal would occur in both connections of the cycle. So we try to 
succeed by using only one of them and select the one containing the rule's first 
subgoal (the other alternative being briefly mentioned later). This completes 
the first two steps of the compilation algorithm. 

Step 3 requires determining a spanning set of connections. Ignoring the 
trivial alternatives that do not involve the cycle connection, we proceed in a 
mechanical way as follows. There is only a single connection possible that 
involves the rule head and does not interfere with the cycle, namely the one with 
the program's goal; so this must be taken. Similarly, there is no choice with the 
first subgoal which only unifies with F IB(l, 1). This literal is also contained in 
the connection with the other subgoal to be taken into consideration. FI B(O, 1) 
is sort of an "isolated literal" since for the spanning set of connections to be 
assembled there is no other connection that contains this literal. It must be 
selected as the connection required for FIB ( k, y) since otherwise unifiabili ty 
fails for one of the two connections that contain FI B(l, 1). 

16 



This selected set of connections is now spanning except when the cycle con
nection is involved since then the second subgoal literal is pure in instances other 
than the first two ones (not unifiable anymore with FIB(O, 1) and FIB(l, 1) ). 
This is where this problem differs significantly from the previous ones. At this 
point we recall the factoring technique in Automated Theorem Proving [3], that 
is, we consider factoring the first and second subgoals i.n the rule (illustrated 
as a factoring connection) as the only possibility left to settle the spanning 
property requirement. So altogether we arrive at the following situation. 

FIB{O,l). ~ 
FIB ( 1, 1) . ~ :::::=~-
F J Jl[k + 2,x + yj+:-FJB(k + 1,x)';'FJB(k,y). 
~FIB(n, z)? 

Step 4 in the algorithm now yields the equations k1 = 0, X1 = y1 = 1. 
The equations k2 = 1 , y2 = 1 in a refined version of the algorithm might 
result not before step 5 has been performed since only then this assignment 
becomes obvious to a mechanical procedure. Step 5 yields ki+ 1 + 1 = ki + 2 and 
Xi+i = Xi+ 'Yi, where the first one in step 6 will be reduced to ki+i = ki + 1. 
This equation now determines the instances that are linked together by the 
factoring connection. Hence in addition we obtain Yi+l =xi. From now on the 
situation is the same as in the factorial problem so that we may proceed exactly 
as demonstrated there with performing the remaining steps 7 and 8. In other 
words, our compilation algorithm succeeds also in solving this more complicated 
problem if factoring is included in the proof technique as it certainly should. 

Above we mentioned the other alternative of selecting a linear cycle. Had 
we selected this one then the resulting equation ki+ 1 = ki + 2 would turn out 
to be inconsistent with the constraints resulting from the factoring connection, 
which discards this alternative. 

4.4 A datalogic example 

As we mentioned before, a lot of work has already been done to compile recur
sion for the access of a database. By treating the transitivity problem frequently 
studied in that area we first want to demonstrate the relevance of our algorith
mic approach to this sort of application. A more detailed evaluation of the 
relationship with that area and its terminology will then follow. 

17 



Aab. 
Abe. 
Acd. 
Ade. -Axz +-- Axy, Ayz. 

+-- Avw? 

Before we apply our algorithm from Section 4.2 to this example we clarify the 
circumstances under which it is meant to be applied. One alternative would be 
to run this algorithm at compile time with the query already available. Another 
one would consider the compilation prior to the queries being available. It 
actually makes quite a difference which of these two alternatives is assumed 
since in the first case we would have the information about the specific input, 
its argument position and its value, while in the second one neither are known. 
For real applications we have to provide solutions for both of these situations. 
Prior to any query available the database has to be organized for a fast access 
via the recursive rule. But once the query is available its particular features 
should be used once more to speed up the access even further. In the following 
we thus first consider the case where it is not known which of v and w actually 
carries the input and what this input is. 

As a second remark note that it is not this particular problem for which we 
strive to provide a particularly smart database solution. Rather our algorithm 
(in its refined version) is meant to handle any such problem similarly well, 
obviously a much more ambitious goal. In the present case the result should 
be that for a given input, say on v, the compiled algorithm would just start at 
the appropriate point in the list ( c, d, e) to just read off all the possible. outputs 
from the remainder of that list. With these preliminaries in mind let us now 
see how our algorithm would proceed with this particular program whereby a 
number of issues will be mentioned that will have to be incorporated in the 
envisaged refined version of the algorithm. 

The program has a structure very similar to that of the Fibonacci program. 
So if we again restrict our considerations to linear cycles then the first step 
produces the two obvious alternatives from which we select (in step 2) the 
first one. In order to put together a spanning set of connections in step 3, the 
tec.hnique of factoring from the previous section would be naturally attempted in 
this case again. It would fail, however, in the present case, since the resulting 
unifications would transform our cycle into a tautological one (so a test for 
tautological cycles as a consequence of unifications being, for instance, among 
the necessary refinements of the algorithm mentioned above). The only way 
to assemble a spanning set is by solving the second subgoal in the rule in each 

18 



instance with a fact from the database. All other connections are then obvious. 
So we obtain the following equations (step 5). 

There are two cases to be considered. Assume the first where v carries the 
input which in step 7 yields 

Y1 E .XuAvu, z1 E .XuAy1u, w = Zi, i E {1, 2, ... } 

So indeed the algorithm provides a precomputation for this case so that for 
a concrete v the resulting w-values may just be read off the z-list assuming 
that a further refinement of the algorithm has provided the maximal list which 
is ( c, d, e) as noted before. 

The other case where w carries the input goes similarly. Both cases may 
be prepared by the compiler without having the actual input. Once the input 
is available the appropriate choice will be made. The second alternative in the 
choice of the two cycles by symmetry leads to the same solutions, an insight 
that at this point we would not expect from the compiler in mind (rather it 
would - redundantly - handle it as an alternative). 

In summary, it turns out that our proposed algorithm provides the adequate 
framework for this kind of problem as well. 

4.5 A logical view of datalogic 

A database is a collection of explicitly given data organized in some way (see 
[22] for a more detailed definition). There has been an agreement on this notion 
for decades; only recently various authors are producing notational confusion 
that we will try to clarify in the following. 

There is no need for a definition of logic, since it is well-known, not only 
for decades but even centuries. Horn clause logic is a more recent concept 
( denoting a certain part of logic) but still predates the emergence of the concept 
of databases. PROLOG is a programming language based on Horn clause logic. 
From a logical point of view databases are concerned with that part within 
(Hom clause) logic, that concerns the facts (i.e. the clauses consisting of a 
ground literal) only. 

Given this common ground it is natural that there has always been an 
interaction between logic and the database field; let us just mention three logi
cal papers [16,10,22], from three rather different periods, with an emphasis on 
databases. This interaction has recently intensified considerably so that it is 
justifiable to speak of a whole area in its own right. In [20] the term datalog 

19 



is used that we slightly modify to the more elegant datalogic; either of these 
two terms is adequate since there is no doubt that we are dealing with (Horn 
clause) logic once rules are added, but at the same time the emphasis within 
logic is on the data. 

Other names such as deductive databases (or even simply databases [1]) are 
ill-conceived. Since there is only the most trivial form of deduction possible 
in a database, which is the matching of a query (typically a literal) with a 
fact (another literal) in the database, what could be "deductive" about it? 
This remains true even though some deductions may be compiled into database 
or relational algebra operations as we have shown further above. It is not 
the database operations themselves that gain more power by this compilation, 
rather it is the compilation that in certain cases encodes the deductive steps 
with a combination of such simple operations. 

The features behind the important notions of datalogic are quite familiar 
in the literature of Automated Theorem Proving for many years. For instance, 
[ 6,3] survey the origins of the notion of a cycle in the early seventies and even 
before. As we have shown above, the cyclic feature is the essence of a recursive 
rule. It should therefore be simple to restate the definitions of some datalogic 
notions (cf. [1,20]) in terms of cycles, a fact that will be demonstrated now. Of 
course, all the following definitions are restricted within datalogic to the Horn 
clause case while the cycle notions actually apply to the general case. 

Definitions A predicate P is said to be recursive if there is a potentially 
recursive cycle containing P (i.e. P appears in a literal in some of its con
nections). Two predicates P and Q are called mutually recursive if there is a 
potentially recursive cycle containing both P and Q . A rule in a set of rules 
is called recursive if there is a potentially recursive cycle containing the rule's 
head. A recursive rule is linear if all potentially recursive cycles containing its 
head are linear. A set of rules is linear if all its recursive rules are linear. Two 
rules are mutually recursive if there is a potentially recursive cycle containing 
both their heads. 

All these so-defined notions coincide with those in datalogic at least in spirit, 
but not always in the fine details. For instance, the two rules 

p~ 
Qy +-- Py. 

contain a tautological cycle which therefore is not potentially recursive; hence 
the two rules are not mutually recursive in our terminology while they usually 
fall into that category in datalogic. Since the cycle here truly is a tautological, 
not a recursive one, we prefer our refined notion. Also note that a non-linear 

20 



rule may still be treated in a linear way with linear cycles, as we have demon
strated with the Fibonacci and transitivity examples above, which once again 
shows an advantage of our refined terminology. 

On the other hand we do not at all claim that this short subsection covers 
all the relevant techniques for treating recursion in the context of a database 
with maximal efficiency. For instance, concepts such as adornments, magic sets, 
counting, and others [1,20] would have to be discussed in a more comprehensive 
survey. Nevertheless we are convinced that these might preferably be incorpo
rated on the basis outlined in the previous sections whenever they add truly 
new concepts to those introduced above. 

4.6 Limitations 

The technique for treating recursion efficiently, that has been described in the 
last few subsections, will, of course, not succeed in all cases. On purpose we 
have restricted ourselves to the treatment of a limited class of problems. This 
class is determined by the following two characteristics. 

A Only linear and single cycles are considered, that feature 

B the solvability property (see Section 4.2). 

This limited class clearly contains all the tail recursion problems that have 
been mentioned in Section 4.2. On the other hand, there are many recursive 
problems that cannot be treated with our technique. An example is the follow
ing quite complex non-Horn problem [21]. 

Pxz +- Pxy, Pyz. 
Qxz +- Qxy, Qyz. 
Qyx +- Qxy. 
Pxy V Qxy. 

+- Pab V Qcd? 

This formula allows nearly no reductions of the sort we mentioned so far. 
It has many different cycles and gives no indication which of them should be 
preferred in order to find the proof. In fact the proof is made up by a recursive 
cycle that involves all possible connections; so in any case the cycle is highly 
non-linear. Moreover, this cycle is traversed by the proof in a way that does 
not suggest any obvious regularity and further requires three instances of each 
rule except the first one where two suffice. So we would say, its apparent non
obviousness (just try to proof it by hand) is manifested by these characteristics: 
non-reducibility, non-linearity (or -regularity in a more general sense), and 

21 



need for a relatively high number of instances. In the early work of the present 
author the last property was taken as the only characteristic parameter (see the 
degree in [2]). With the deeper insight gained over the years we now propose a 
more refined "degree" of non-obviousness that takes into account the other two 
parameters as well. To formalize such a more complicated degree in a logically 
convincing way might not be that easy a task, though. 

This example illustrates that there are formulas that need non-linear cycles 
to be proved. So the restriction to linear cycles properly limits applicability. 
On the other hand it is a very natural restriction worth exploring, since "most" 
practical problems may be treated this way (whatever this means). 

From a theoretical point of view one would like to have a syntactic char
acterization of the class of problems that may be treated with our technique, 
such that for a given formula it can be determined whether it is a member 
or not (like the characterization of Horn formulas). So far we can only offer 
the characterization that is provided and may be applied by carrying out the 
proposed algorithm. Since the algorithm is reasonably efficient, we think that 
this characterization is actually good enough for practical purposes, although 
it certainly would be useful if someone in Theoretical Computer Science would 
find a more explicit one. 

In [8] we have presented an alternate way of functionalizing a logic program 
that takes into account an appropriate induction scheme. It seems that the 
proposal made here is more direct, at least for relatively simple programs. The 
other proposal might then be useful in cases where a linear cycle does not 
provide the solution, i.e. in more complicated cases. But a more elaborate 
comparison has yet to be carried out. 

5 Quantifiers and modal operators 

Logic will not forgive inaccuracy while people are fond of their little mistakes. 
This is one reason why logic has not really attained popularity to an extent 
it certainly should. Being the single available formalism capturing essential 
features of human thought it should be taught at elementary schools already in 
some way or another. But even Mathematics professors question any relevance 
of logic to their work. 

Logic has now gained a little popularity through PROLOG particularly for 
applications in the knowledge-based systems area. As we have seen PROLOG 
is limited to the simple logical structure of rules. It is interesting to watch the 
field, how it currently stretches its limbs in order to try to fit into the jacket 
that obviously is too tight. Negation is one cause for discomfort, quantifiers are 

22 



another. 
Indeed quantifiers are never mentioned in PROLOG. Nevertheless they are 

present by the nature of human logic. We just do not mention them explicitly 
(for the psychological reason mentioned above), assuming a default structure 
in this respect instead. Unfortunately, there are even very practical examples 
where the original default jacket simply does not fit. [20] mentions some of 
these and proposes an improved default instead. While this is fine, the principal 
problem does not disappear which is that quantifiers are essential and cannot 
be defined away. They abound in natural language in particular. So we have 
to deal with them in a conscious way, even in the default case. Let us have a 
brief look at this default case. 

It is achieved by skolemization (see [31). Instead of saying "Everyone has a 
father" which all-quantifies by way of the "everyone" and existentially quantifies 
by way of the "a", a "father"-function is introduced which substitutes the 
existential quantifier. This way only all-quantifiers are left which then. are 
ignored by default. There are a number of reservations with this solution. 

First of all, the meaning actually has changed slightly by this transition. 
While the natural statement did not rule out the possibility of having more 
than one father, the functional version actually does by the nature of functions. 
Second, in a nested quantificational structure the skolemization gives up quite 
a bit of information about this structure retaining only the relative position 
of the existential quantifiers with respect to the all-quantifiers. Thirdly, the 
length of the formula may increase by the transition, quadratically in the worst 
case which in turn causes an increased overhead in the performance. Finally, in 
view of advanced unification techniques skolemization actually turns out to be 
a redundant step. More on these points can be found in [3]. 

Raising these issues means begging for alternatives. As just indicated, the 
main function of skolemization is to record the relative occurrences of the dif
ferent types of quantifiers within a formula. The proof technique most sensitive 
for the position of any logical operation within a formula is that based on 
the Gentzen-type natural deduction systems. And indeed an analysis of these 
systems has provided such an alternative. Rather than introducing Skolem 
functions, this alternative achieves the right way of unification by taking into 
account the structure of the relation that is provided by the operational sym
bols within the formula the way they occur in relation to each other. While 
there have been other approaches to the automation of deduction on the basis 
of calculi of natural deduction, this one is unique insofar as it does not dispense 
with the concern for efficiency comparable to that of resolution. An outline of 
this whole approach is given in [5]. For a comprehensive treatment the reader 
has to consult [3]. 

23 



The technique used in this approach is not dependent on the logical operators 
involved. So in a sense it does provide an efficient treatment of deduction 
in (to some extent) any logistic calculus. [3] further presents the treatment 
of higher-,>rder logic this way. Very recently now Wallen (26] has picked up 
these ideas and applied them to various modal logics, specifically to the modal 
systems K, K4, D, D4, T, S4, and S5. He succeeded in providing efficient proof 
mechanisms for all these systems. Actually, since the technique is as general as 
it is, one may expect its successful application to other systems as well along 
exactly the same lines. Since we did not want to spoil the beauty of Wallen's 
work by giving a sketchy overview of it, the remainder of this section will just 
state a few observations in this context. The interested reader might find it 
extremely rewarding to read the original source itself, perhaps start with [27] 
as an appetizer. 

The work is done on the basis of a sequent calculus [5]. All the modifications 
needed to extend the classical calculus to cope with these modal systems _still 
preserve the property of being cut-free, which is of vital importance for the 
automation of deduction. Also they retain the subformula property and, of 
course, the basic structure of the sequents. 

One central part in establishing provability is an analysis of the propositional 
structure of the given modal formula. In fact, it turns out that this part is in 
essence identical with the analogue part in first-,>rder logic. That is, a spanning 
set of connections has to be identified. What is different are the conditions under 
which a pair_ of literals can be deemed complementary. 

The key observation is that an appropriate notion of complementarity can 
be defined by noting the context of atoms relative to the modal operators in 
the endsequence, and considering mappings of representations of these contexts, 
called prefixes, which render the prefixes of the components of connections iden
tical. The first part of this is similar to incorporating the relation among occur
rences of logical operators into the unification process, while the second part, 
which makes it actually work, is an original contribution of extreme elegance. 
These mappings can in fact be seen as substitutions in the usual sense. Their 
exact definition depends on which modal system we are dealing with. 

Testing a formula for validity in any of these modal logics thus is in a sense 
the. same as in classical logic, so that any kind of search strategy developed so 
far is applicable without alteration. For instance, all the material presented in 
the previous sections have full relevance to modal logic this way. What changes 
is the ·unificational part, which, for instance, does not always produce a single 
most general unifier, although the set of such unifiers is always finite. 

It should be noted that this seems to be the first proof mechanism for such 
modal systems that is both fully general and (comparatively) efficient. Its 

24 



compatibility with first-order proof techniques makes it even more attractive. 
One has to get serious with quantifiers and modal operators, though, in order 
to appreciate this beauty. 

6 Building-in theories 

All the material in the previous sections focused on the purely logical part of 
deduction. For practical purposes it is essential though that in a certain context 
advantage is taken of deductive structures that occur in a stereotype way again 
and again (resulting from the theory defined by the context). Equality has 
to be treated this way to mention just one example. The previous volume 
contains much material on this topic (18,24]. This is the only reason why no 
additional attention is given to this area here, so the reader should not draw 
false conclusions about the importance of this area. 

In addition there has been some progress in the meantime with the treat
ment of mathematical induction in the context of a theorem prover based on 
the connection method reported in [14]. There a special sort of connection is 
introduced that links literals if they reoccur in a proof with an inductive nature. 
A system based on this approach is actually operative. 

The restriction to literals in this inductive setting seems not be that harmful 
since more complicated formula parts may be abbreviated with literals by inclu
sion of appropriate definitions as also Wallen (private communication) suggests. 

7 Conclusions 

This chapter is meant to provide an update on the material contained in a pre
vious volume (11] on the topic of Automated Deduction. As has to be expected 
for such a wide and active area, only a few major issues could be discussed at 
some length and to some degree of detail here. We have chosen these to be the 
following ones. 

A bottom-up reduction technique has been suggested that enhances the per
formance of top-down theorem provers such as PROLOG systems. It is well
known that bottom-up executions may quickly result in an exponential combi
natorial explosion. This is avoided here by carefully restricting the bottom-up 
execution to those deductive parts of the program that are guaranteed to be 
settled in linear time. These parts are identified in a syntactic way with the 
notion of isolated connections along with other preparatory features like DB
reductions. It is felt that this kind of technique has a great importance, in 
particular for practical applications. 

25 



The program resulting from these operations typically is recursive in nature. 
Such recursive programs have been analyzed in some detail, in particular by way 
of the basic concept of a (deductive) cycle. On the basis of this analysis the 
framework of an algorithm is given that achieves the compilation of a recursive 
logic program into code of a purely iterative nature (basically a DO-loop), at 
least for a class of practically important cases. This algorithm is illustrated with 
selected examples demonstrating key issues such as the need for factorizing and 
the incorporation of databases. 

The remaining two sections are more of the nature of providing pointers to 
material of particular interest in the literature, such as an extremely elegant 
approach to the automation of deduction in modal logic. 

References 

[1] F. Bancilhon and R. Ramakrishnan. An amateur's introduction to recur
sive query processing strategies. In Proc. SIGMOD Con/. on Management 
of Data, pages 16-52, ACM, 1986. 

[2] W. Bibel. An approach to a systematic theorem proving procedure in 
first-order logic. Computing, 12:43-55, 1974. 

[3] W. Bibel. Automated Theorem Proving. Vieweg Verlag, second, 289 pages 
edition, 1987. 

[4] W. Bibel. Constraint Satisfaction from a Deductive Viewpoint. Technical 
Report, Forschungsgruppe Kiinstliche Intelligenz, Technische Universitat 
Miinchen, 1987 (submitted). 

[5] W. Bibel. Methods of automated reasoning. In W. Bibel and Ph. Jorrand, 
editors, Fundamentals of Artificial Intelligence - An Advanced Course, 
pages 173 - 222, Springer, LNCS eae, Berlin, 1986. 

[6] W. Bibel. On matrices with connections. Journal of ACM, 28:633-645, 
1981. 

[7] W. Bibel. Pradikatives Programmieren. In GI - e. ·Fachtagung ilber Au
tomatentheorie und Formale Sprachen, pages 274-283, Springer, Berlin, 
1975. 

[8] W. Bibel. Predicative programming revisited. In W. Bibel and K. Jantke, 
editors, MMSSSS'85 - Mathematical Methods for the Specification and 
Synthesis of Software Systems, pages 24-40, Springer, Berlin, 1986. 

26 



[9] W. Bibel. Programmieren in der Sprache der Pradikatenlogik. (Rejected) 
thesis for "Habilitation" presented to the Faculty of Mathematics, Tech
nische Universita.t Miinchen, January 1975. 

[10] W. Bibel. A Uniform Approach to Programming. Bericht 7633, Technische 
Universita.t Miinchen, Mathematische Fakulta.t, 1976. 

[11] W. Bibel and Ph. Jorrand, editors. Fundamentals of Artificial Intelligence. 
Study Edition, Springer, Berlin, 1987. 

[12] W. Bibel, R. Letz, and J. Schumann. Bottom-up enhancements of de
ductive systems. In I. Plander, editor, Proceedings of ,4th International 
Conference on Artificial Intelligence and Information-Control Systems of 
Robots, North-Holland, Smolenice, CSSR, October 1987. 

[13] W. S. Brainerd and L. H. Land weber. Theory of Computation. Wiley, New 
York, 1974. 

[14] M. Breu. Einbeziehung einfacher Induktionsbeweise in den Konnektio
nenkalkul. Diplom-thesis, Technische Universita.t Miinchen, 1986. 

[15] E. Eder. Properties of substitutions and unifications. Journal for Symbolic 
Computation, 1:31-46, 1985. 

[16] C. Green. Theorem proving by resolution as a basis for question-answering 
systems. In B. Meltzer and D. Michie, editors, Machine Intelligence ,4, 
Edinburgh University Press, 1969. 

[17] L. J. Henschen and S. A. Naqvi. On compiling queries in recursive first
order databases. Journal of ACM, 31:47-85, 1984. 

[18] G. Huet. Deduction and computation. In W. Bibel and Ph. Jorrand, 
editors, Fundamentals of Artificial Intelligence - An Advanced Course, 
pages 39-74, Springer, LNCS 29£, Berlin, 1987. 

[19] J. Minker, D. H. Fishman, and J. R. McSkimin. The Q• algorithm -
a search strategy for a deductive question-answering system. Artificial 
Intelligence, 4:225-243, 1973. 

[20] K. Morris, J. D. Ullman, and A. van Gelder. Design overview of the NAIL! 
system. In E. Shapiro, editor, Proc. 9rd Intern. Con/. on Logic Program
ming, pages 554-568, Springer (LNCS £25), Berlin, 1986. 

27 



{21) F. J. Pelletier a.nd P. Rudnicki. Non-obviousness. AAR Newsletter, 6:4-5, 
1987. 

[22) R. Reiter. Towards a. logical reconstruction of relational data.base theory. 
In M. L. Brodie et al., editor, On Conceptual M<XUling, pages 191-238, 
Springer, Berlin, 1983. 

[23) L. Sterling and E. Shapiro. The Art of Prolog. MIT Press, Cambridge MA, 
1986. 

[24] M. E. Stickel. An introduction to automated deduction. In W. Bibel and 
Ph. Jorrand, editors, Fundamentals of Artificial Intelligence, pages 75-132, 
Springer, Berlin, 1987. 

[25] J. D. Ullman. Principles of Database Systems. Computer Science Press, 
Rockville MD, 1982. 

(26] L. Wallen. Automated Deduction in Modal Logics. PhD thesis, University 
of Edinburgh, 1987. PhD Thesis. 

[27] L. Wallen. Matrix proof methods for modal logics. In IJCAI'87, pages 917-
923, Morgan Kaufmann, Los Altos CA, 1987. 

28 


