
Multi-Scale Description of Space Curves 

and Three-Dimensional Objects 

Farzin Mokhtarian 

Technical Report 87-38 

November 1987 

Department of Computer Science 
University of British Columbia 

Vancouver, B.C. 
Canada V6T 1W5 

© Farzin Mokhtarian, 1987 



1 

Abstract 

This paper addresses the problem of representing the shape of three-dimensional 
or space curves. This problem is important since space curves can be used to model the 
shape of many three-dimensional objects effectively and economically. A number of 
shape representation methods tha.t operate on two-dimensional objects and can be 
extended to apply to space, curves are reviewed briefly and their shortcomings dis­
cussed. 

Next, the concepts of curvature and torsion of a space curve are explained. The 
curvature and torsion functions of a space curve specify it uniquely up to rotation and 
translation. Arc-length parametrization followed by Gaussian convolution is used to 
compute curvature and torsion on a space curve at varying levels of detail. Larger 
values of the scale parameter of the Gaussian bring out more basic features of the 
curve. Information about the curvature and torsion of the curve over a continuum of 
scales are combined to produce the curvature and torsion scale space images of the 
curve. These images are essentially invariant under rotation, uniform scaling and trans­
lation of the curve and are used as a representation for it. Using this representation, a 
space curve can be successfully matched to another one of similar shape. 

The application of this technique to a common three-dimensional object is demon­
strated. Finally, the proposed representation is evaluated according to several criteria 
that any shape representation method should idea.Uy Batisfy. It is shown that the cur­
vature and torsion scale space representation satisfies those criteria better than other 
possible candidate methods. 



I. Introduction 

Most work done in computational v1s1on on shape representation has focused 
either on planar curves and two-dimensional shapes [Hough 1962, Duda & Hart 1972, 
Ballard 1981, Pavlidis 1977, Mackworth & Mokhtarian 1984] or on three-dimensional 
objects a.nd surfaces in 3-space [Brady et al. 1985, Faugeras & Ponce 1983, Weiss 
1985]. This paper addre•es the problem of describing the shape of three-dimensional 
curves. It is assumed that the curve is either directly computed from the image [Bar­
nard & Pentland 1983, Watson & Shapiro 1982] or that it represents a surface recon­
structed using stereo [Grimson 1985, Woodham 1984], "shape from" techniques [Ikeu­
chi & Horn 1981, Stevens 1982, Witkin 1981) or laser range finders [Faugeras et al. 
1984]. 

Why study the problem of representing the shape of space curves? Space curves 
are useful to study for the following reasons: 

a. Trajectories of objects in outer space and paths taken by atomic particles are space 
curves. Often, such an object or particle can be recognized by studying the shape of 
its path when subjected to specific forces. 

b. Axes of generalized cones and cylinders [Agin & Binford 1973] are also space curves. 
A generalized cone or cylinder representation of a three-dimensional object can itself 
be efficiently represented by its axes. 

c. Bounding contours of objects that consist of flat or nearly-flat surfaces are rich in 
information and can be used to represent the object effectively and economically. 
These bounding contours are space curves and can be extracted by thinning the 
object into lines and planes. An attempt to describe such objects using three­
dimensional surfaces may not add much useful information but can significantly 
increase storage and processing requirements. 

II. Criteria for a reliable representation 

A reliable representation in computational vision should make it possible to obtain 
a reliable measure of the degree of match between two given objects. Various shape 
representation criteria have been proposed in [Marr & Nishihara 1978, Mokhtarian & 
Mackworth 1986, Mackworth 1987, Woodham 1987]. One set of criteria is presented 
here so that the shape representation proposed in this paper can be evaluated accord­
ing to them in a later section. 

a. Efficiency: The representation should be computable efficiently. 

b. Invariance: Uniform scaling, rotation and translation are the transformations 
which do not alter the shape of an object. The representation should be invariant 
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under these transformations. 

c. Sensitivity: The degree of change to an object should correspond to the degree of 
the resulting change in its representation. 

d. Uniqueness: There should be a one-to-one correspondence between objects and 
their representations. This requirement is only up to the class induced by criterion b 
above. 

e. Detail: The representation should contain information about the object at varying 
levels of detail. This is important since features on an object usually exist at 
different scales. 

f. Robustness: Arbitrary initial choices should not affect the representation. Further­
more, incomplete data should only change the representation locally. 

Several shape description methods for planar curves exist which can be extended 
to apply to space curves as well. The Hough transform (Hough 1962] has been used to 
detect lines, circles and arbitrary two-dimensional shapes in images, and may be 
extended to detect space curves but such an extension would involve an explosion in 
the parameter space and would not meet requirements a, b and e. Chain encoding 
[Freeman 197 4} and polygonal approximations [Pavlidis 1977] can be extended as 
representations for space curves. These methods don't satisfy requirements b, d and e. 
Fourier descriptors (Persoon & Fu 197 4] may also be used. Criteria e and f are not 
satisfied by this class. Shape factors and quantitative measurements [Danielsson 1978] 
can be used to describe space curves but these methods involve a substantial reduction 
in data and do not meet conditions c, d and e. Splines (ballard & Brown 1982] can also 
be used to represent space curves. This method does not satisfy requirements b, d, e 
and f. Another class of methods is strip trees {Ballard & Brown 1982]. Hierarchical 
straight line approximations to a space curve can be obtained using an extension of 
these methods. However they don't meet criteria b, c and f. A final method is (Asada 
&; Brady 1986]. They use a limited number of well-defined shape primitives which can 
be approximated well by analytical functions. The extension of this method to space 
curves would require a large number of primitives and would violate criteria a and d. 

III. Multi-scale description of space curves 

This section introduces the parametric representation of space curves and 
describes the Frenet Trihedron for space curves. Curvature and torsion of a space 
curve are then defined and geometrical interpretations given to them. Next it is shown 
how to compute curvature and torsion on a space curve at varying levels of detail. A 
multi-scale representation for a space curve which combines information about the cur­
vature and torsion of the curve at varying levels of detail is then presented. 



A. The parametric representation of a space curve 

A space curve is the image of an interval under a continuous locally one-to-one 
mapping into the 3-space [Goetz 1970]. Therefore the set of points of a space curve are 
the values of the position vectors of the continuous vector-valued, locally one-to-one 
function: 

r = r(u) = r(:r:(u), y(u), z(u)) 

where :r:(u), y(u) and z(u) are the components of r(u) and u is a monotonic function of 
arc-length s of the curve. , is also called the natural parameter. The function r( u) or 
the triple of functions (.z(u), 11(u), z(u)) is called a parametric representation of the 
curve. 

B. The Frenet Trihedron and Frenet formulas for a space curve 

With every point P of a space curve of class 0 2 is associated an orthonormal triple 
of unit vectors: the tangent vector t, the principal normal vector n and the binormal 
vector b (Figure 1). The osculating plane at P is defined to be the plane with the 
highest order of contact with the curve at P. The principal normal vector is the unit 
vector normal to the curve at P which lies in the osculating plane. The binormal vec­
tor is the unit vector perpendicular to the osculating plane such that the three vectors 
t, n and b in that order form a positively oriented triple. The plane containing t and n 
is the osculating plane. The one containing n and b is the normal plane and the one 
containing b and t is the recti/11ing plane. 

The derivatives oft, n and b with respect to the arc-length parameter give us: 

dt dn db 
ds = 1tn, ds = -1tt + rb, ds = -TD. 

These formulas are called the Frenet or the Serret-Frenet formulas. The 
coefficients 1t and rare called the curvature and torsion of the curve respectively. 

Curvature is the instantaneous rate of change of the tangent vector to the curve 
with respect to the arc length parameter. There is no interpretation for the sign of cur­
vature. Torsion is the instantaneous rate of change of the osculating plane with respect 
to the arc length parameter. A sign is assigned to the absolute measure of torsion as 
following: 

Let point P correspond to value , of the arc length parameter and let point Q 
correspond to value s+h. Let line I be the intersection of the osculating planes at P and 
Q. Give line l the orientation of a vector w on I such that t.w>O. Consider the rota­
tion about l through a non-obtuse angle which superposes the osculating plane at P on 
the osculating plane at Q. This rotation also superposes b(s) on b(s+h). If b(s), 
b(s+h) and w form a positively oriented triple, then torsion has positive sign, other­
wise it has negative sign. 



C. Computing curvature and torsion of a curve at varying levels of detail 

Since the curve is represented in parametric form, in order to compute curvature 
and torsion at each point on the curve, we need to express those quantities in terms of 
the derivatives of z(.), JI(.) and z(.). In what follows, r( u) represents the parametriza­
tion of a space curve with respect to an Sll'bitrary parameter and p(s) represents the 
pa.rametrization of that curve with respect to the arc-length parameter. 

C.l. Curvature 

In case of an arc-length parametrization, we simply have: 

tt = 1;;1 
In coordinate form 

Given an arbitrary parametrization of the curve: 

In coordinate form 

where 

C.2. Torsion 

..!!_(r/li-D 
ltul ____ du ___ - lrxrl 

It= lt,1 =Tl= - Ii-I -Ii-la· 

It= 
J A2 + B2 + (fl 

(z2 + il + z2) 312 • 

B= z :i: .... 
z :i: 

:i: y .. 
:i: y 

(1) 

We will first derive an expression for the torsion of a space curve with arc-length 
parametrization. Multiplying both sides of the third Frenet formula by n results in 

r = -b,n = -(txn),n = -(t,xn)n - (txn,)n = tnn, 

Note that tnn, is the mized product of vectors t, n and n, and is equal to (txn)n,. 
We now make use of 

t = i,, 

to obtain 

-;,· It, •• 
n = - - -p 

, K, K,2 
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...... 
1' = pp p = 1!..!!.J!_ 

2 •·2 
It p 

In coordinate form 
. . . 
z II z .. .. 
z II z 
z· ii z· 

In case of an arbitrary parametrization, we make use of: 

and 

to obtain 

In coordinate form 

• • dt 
p=r-, 

ds 
•• ..( dt )2 

• tl-t 
p=r7; +rds2' 

... • .. ( dt )3 
3 
•• ( dt) <Pt • <Pt 

p = r - + r - - + r-
ds ds ds2 ds3 

. .. ... I 016 
1' = !!!...,1: 

li-16 (rxi-) 2 

. . 
z II .. .. 
.z .J/. ... 
.z II 

...... 
rrr ----

(rxi-)2 

. 
z .. 
z ... 
z 

1' = 
A2 + B2 + 02 

where A, B and Care as before. 

C.3. Curvature and torsion at varying levels of detail 

(2) 

In order to compute ,c and r at varying levels of detail of the curve r, functions 
.z( u), s,( u) and z( u) are convolved with a Gaussian kernel g( u,o) of width o [Marr & 
Hildreth 1980]: 

u2 
1 -­

g( u,o) = uv'
2

1r e 2cr2 

The convolved functions together define the evolved curve r ,,. The convolution of a 
function/( u) and the Gaussian kernel is defined as: 

00 
--( u-v)2 

F( u,o) = J( u) © g( u,o) = f /( v) ;}
2

,r e 2cr2 dv 
-00 
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Furthermore, it is known that 

.F( u,u) = aF( u,u) = /( u) © [ ag( u,u) ] 
OU au 

.F( u,u) = &2 F( u,u) = /( u) © [ a2g( u,u) ] 
au2 8u2 

and 

These properties of convolution can be used to compute curvature and torsion on 
evolved versions of a space curve. Note that since the arc-length parameter s on a 
space curve is in general not the arc-length parameter on the evolved curve [Mack­
worth & Mokhtarian 1987], the most general expressions for tt and r (formulae (1) and 
(2)) must be used. Figure 2 shows a space curve representing the shape of an 
armchair. Figure 3 shows an application of this method to that curve. If it is desired to 
describe an object at a specific scale, this method can be used to obtain that descrip­
tion. 

D. A multi-scale representation for space curves 

The curvature and torsion functions of a space curve specify that curve uniquely 
up to rotation and translation [Do Carmo 1976]. We therefore propose a representation 
for a space curve that consists of the curvature scale space and torsion scale spate 
images of the curve. This representation is a generalization of the curvature scale space 
representation proposed for planar curves in [Mokhtarian & Mackworth 1986]. The 
scale space image was first proposed as a representation for one-dimensional signals in 
[Stansfield 1980] and developed in [Witkin 1983]. 

We first explain an algorithm to compute the torsion scale space image of a space 
curve and then show how the curvature scale space image of that curve can be com­
puted by a slight modification of the algorithm. 

Algorithm: torsion scale space: 

1. Let u, the width of the Gaussian mask used, be equal to u0, a small positive value. 

2. Add a small positive value ~u to u. 

3. Compute masks representing the first three derivatives of the Gaussian function 
with u as its width. 
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4. Convolve each of the three masks computed in step 3 with each of the coordinate 
functions of the curve. 

5. Combine the results obtained in step 4 according to formula (2) for torsion to com­
pute its value at every point on the evolved curve. Store the results in an array. 

6. Scan the array of torsion values computed in step 5 to find the zero-crossing points. 
A zero-crossing point is between two adjacent values in the array with one of those 
values positive and the other one negative. Maintain a count of the number of zero­
crossing points found. H this count is equal to zero, then STOP. 

'1. Mark each of the zero-crossing points discovered in step 6 in a coordinate system in 
which the horizontal axis represents u, the para.meter along the curve and the verti­
cal axis represents u, the width of the Gaussian mask. As a result, each zero­
crossing point p will have coordinates up and up where up is the value of u at point 
P and up is the value computed for u in step 2. 

8. Go to step 2. 

End of Algorithm: torsion sea.le space. 

The two-dimensional array computed by this algorithm is the torsion scale space 
image of the space curve. Figure 5 shows the torsion scale space image of the chair of 
figure 2. Note that this image is much more structured than the original curve. 

The curvature scale space image of a space curve can also be constructed using an 
algorithm almost identical to the one described above. The only difference is that 
level-crossings rather than zero-<:roesings are searched for. This is because the curva­
ture of a space curve has only magnitude and no sign. 

Some care should be given to choosing a suitable value for level L. A first approxi­
mation to L is the average of the curvature values of all the sampled points on curve 
r. However, if this approximation is used, the number of level-crossing points found on 
curves r" drops quickly to zero as u increases and the resulting curvature scale space 
image will not be very rich and therefore not suitable for matching purposes. 

Therefore the actual value used for L is the average of curvature values of points 
of r ~o where o-0 E (O,o-1] and o-1 is the value of u where the number of zero-crossings first 
drops to zero in the torsion scale space image of r. Using such a value ensures that the 
resulting curvature scale space image will be sufficiently rich for matching purposes 
and will represent roughly the same range of values of t7 represented in the torsion 
scale space image of r. Figure 4 shows the curvature scale space image of the chair 
computed using this method for selecting a value for L. 

Note that the curvature and torsion scale space images of a space curve can be 



renormalized using the procedure described in (Mackworth & Mokhtarian 1987]. In the 
renormalized curvature or torsion scale space image, the parameter u is always the 
arc-length parameter of the evolved curve. 

In order to match a space curve against another, the torsion scale space images of 
both are constructed and matched against each other using the algorithm described in 
[Mokhtarian & Mackworth 1986]. If the resulting cost of match is low, then one curve 
is transformed according to the transformation parameters predicted by the match so 
that both curves exist at the same scale. The curvature scale space images of both 
curves are then constructed and matched using the same algorithm. The final cost of 
match is a combination of the two costs. 

IV. Discussion 

If the curve to be represented is closed, then its coordinate functions are assumed 
to be periodic. This eliminates all edge-based problems during computation of convolu­
tions. 

The computation of a multi-scale representation for a space curve involves com­
puting derivatives of functions. While this process may be sensitive to noise in the raw 
data, it is quite stable for a slightly evolved version of the curve. 

We can now evaluate our space curve representation method according to the cri­
teria set forth in section D: 

Criterion a: Efficiency 

The construction of the curvature and torsion scale space images typically involves 
the computation of a large number of convolutions. Convolutions involving Gaussians 
of large widths can be expressed in terms of convolutions involving Gaussians of small 
widths only. Since the filters used to approximate these functions are also small, a 
significant reduction in computation time can be achieved in this way. An alternative 
way to render the computation efficient is to use Fast Fourier Transforms. 

Criterion b: Invariancy 

The torsion scale space image consists of zeroes of torsion at varying levels of 
detai and is therefore essentially invariant under rotation, uniform scaling and transla­
tion of the curve. The curvature scale space image consists of curvature level-crossings 
and in invariant under rotation and translation of the curve but not under uniform 
scaling of it. Since the torsion scale space image is used for initially matching a pair of 
space curves, this is not a shortcoming of this representation. 

Criterion c: Sensitivity 

Small changes to the shape of the curve usually result in small changes in its 
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representation since smaller values of the scale para.meter will be sufficient to smooth 
out the change. 

Criterion d: Uniqueness 

It has been shown by Yuille and Poggio [1983] that almost all signals can be 
reconstructed up to an equivalence class from their scale space images. Al though this 
property has not been proven for the curvature and torsion scale space images, these 
images are very rich in information and very unlikely to be identical for two curves of 
different shapes. 

Criterion~: Detail 

Since the representation combines information about the curve at varying levels of 
detail, criterion e is also satisfied. 

Criterion f: Robustness 

If the curve is closed, an arbitrary starting point should be chosen on the curve for 
parametrization. This only results in a horizontal shift in the scale space image but will 
not change its structure. If the curve is open, the natural starting point is one of its 
endpoints. Incomplete data near the endpoints does change the structure of the scale 
space image but the change is local. 

V. Conclusions 

The problem of finding a representation for space curves was addressed in this 
paper and a number of criteria for any solution method were proposed. A technique 
for describing a space curve at varying levels of detail was developed and a multi-scale 
representation based on that technique was proposed. It was shown that the proposed 
representation satisfies those criteria better than other poesible candidate methods. 
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Figure 1. The Frenet trihedron for a. space curve. 

Figure 2. A space curve representing an armchair. 



X(u,u) 

Y(u,u) 

Z(u,u) 

1t( u,u) 

r( u,u) 

(a) c, = 4 

X(u,u} 

Y( u,u) 

Z(u,u) 

r( u,u) 

(b) u = 8 

Figure 3. Multi-scale description of the chair. 
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Figure 3. (Continued) Multi-scale description of the chair. 
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Figure 3. (Continued) Multi-scale description of the chair. 
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Figure 4. The Curvature Scale Space Image of the chair. 
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Figure 5. The Torsion Scale Space Image of the chair. 


