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Abstract 

The Curvature Scale Space Image of a planar curve is computed by convolving 
a path-based parametric representation of the curve with a Gaussian function of 
variance a2, extracting the zeroes of curvature of the convolved curves and combin­
ing them in a scale space representation of the curve. For any given curve r, the 
process of generating the ordered sequence of curves {f o-lu2::0} is known as the evo­
lution of r. 

It is shown that the normalized arc length parameter of a curve is, in general, 
not the normalized arc length parameter of a convolved version of that curve. A 
new method of computing the curvature scale space image reparametrizes each con­
volved curve by its ·normalized arc length parameter. Zeroes of curvature are then 
expressed in that new parametrization. The result is the Renormalized Curvature 
Scale Space Image and is more suitable for matching curves similar in shape. 

Scaling properties of planar curves and the curvature scale space ima.ge are also 
investigated. It is shown that no new curvature zero-crossings are created at the 
higher scales of the curvature scale space image of a planar curve in C2 if the curve 
remains in C2 during evolution. Several positive and negative results are presented 
on the preservation of various properties of planar curves under the evolution pro­
cess. Among these results is the fact that every polynomially represented planar 
curve in C2 intersects itself just before forming a cusp point during evolution. 

1. Introduction 

In two previous papers (Mackworth and Mokhtarian, 1984) (Mokhtarian and 
Mackworth, 1986) we introduced a new shape representation for planar curves, the 
curvature scale space image, based on smoothing a path-based parametric represen­
tation of the curve. The representation has the property of being invariant to posi­
tion and size changes of the curve and undergoes simple translations in response to 
changes in orientation and the level of detail provided (under certain conditions). It 
can also be used to recognize partially occluded and distorted versions of the curve 
using a coarse-to-fine optimum matching algorithm. 

In this paper we explore, theoretically and experimentally, properties of the 
representation and present some new results. In particular, the main theoretical 
result is that the curvature scale space image is well-structured in the sense that, 
under certain assumptions, no new zeroes of curvature are introduced when the 
curve is convolved with a Gaussian function of arbitrary width. This result may 
appear to be a simple generalization of the one-dimensional result of (Babaud et al, 
1986) and (Yuille and Poggio, 1986) but for reasons to be explained the obvious 
generalizations do not carry through. 
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2. Path Representations of Planar Curves 

A planar curve r is defined by a continuous, locally injective, vector mapping 
of an interval of R to R2 (Goetz, 1970). A curve is the set of points whose position 
vectors are the values of a continuous vector-valued function which is locally one­
to-one. It is represented by the parametric vector equation 

r(u) = (z(u), y(u)) 

The vector function r( u) is a parametric representation of the curve, that is, a 
path. Any curve has an infinite number of distinct path representations. A natural 
path representation is one for which the parameter is the arc lengths. 

H i-( u) exists and Ir( u) I > 0 everywhere then there are no singular points on r 
and the curve is regular. For any parameterization r( u) for u E [ a,b] of any regular 
curve, there is a conceptually, if not practically, straightforward reparametrization 
to one of a natural representation defined by the equation 

B = Julr(v)I dv 
a 

and the reparametrization is r( u( s)). 

The equivalent of the Frenet frame for a path representation for a regular 
planar curve is formed by the unit tangent vector t( u) and the orthogonal unit nor­
mal vector n( u) arranged in a right handed system. 

For any parametrization: 

i-(u) = (x(u) 'y(u)) 

r z . { . 
t(u) = Iii= (x2+jj)1/2 (1) 

(2) 

For any planar curve the vectors t( u) and n( u) must satisfy the simplified 
Serret-Frenet vector equations: 

t( u) = k( u)n( u) 

ii( u) = -k( u)t( u) 

(3) 

(4) 

where k( u), the curvature, uniquely characterizes the curve up to translation and 
rotation. 

From (3) we have 



. 
k(u) = t(u)·n(u) 

Differentiating (1): 

i(•l = { -tY:ii~~1 

From (2), (5) and (6) we compute an expression for k(u): 

k(u) - xy-zy 
- (:i2+y2)3/2 

(5) 

(6) 

Two spedal cases of the parametrization, of interest here, yield simplifications of 
these formulas. If we have a natural path representation with s, the arc length 
parameter, ranging over [O,L] then: 

I r(s) I = I (x(s), u(s)) j = (z2(s)+u2(s)) 112 = 1 

t(s) = (z(s), y(s)) 

t(s) = (z(s), ii(s)) 

n(s) = (-y(s), z(s)) 
. 

k(s) = t(s)·n(s) 

k(s) = z(s)y(s)-z(s)y(s) 

Note also 

k2(s) = 1t(s)l2 

k2( s) = z2
( s)+ii2(s) 

If the parameter is a linear rescaling of the arc length ranging over [0,1], the 
normalized path length parameter w, then 

8 
w=-

L 

lr(w)I = L 

t(w) = ½(z(w), y(w)) 

n( w) = 1 (-y( w), z( w)) 



and 

k( w) = ...!..( i( w) ii( w)-:i( w) y( w)) 
£3 

3. The Renormalized Curvature Scale Space 

Following (Mokhtarian and Mackworth, 1986) a curve r is represented using 
the normalized arc length parameter w: 

r = {(x( w), y( w)) I w E [0,1]} 

An evolved curve r u is defined by 

r u = {(X( u,u), Y( u,u)) I u E [0,1]} 

where 

X(u,u) = x(u) @g(u,u) 

Y( u,u) = JI( u) @g( u,u) 

and 

( ) 1 e- v2/2~ 
g u,u = u../21r 

The curvature of r" is: 
[Xu(u,u) Yuu(u,u)-Xuu(u,u) Yu(u,u)J 

k(u,u) = I . 
(Xu( u,u)2+ Yu( u,u)2)3 2 

The implicit function defined by 

k(u,u) = 0 

is the curvature scale space image of r (Mokhtarian and Mackworth, 1986). 

(7) 

(8) 

It is important to notice that, although w is the normalized arc length parame­
ter for the original curve r, the parameter u is not, in general, the normalized arc 
length parameter for the smoothed curve r ui however, u is a strictly increasing 
monotonic function of w, the normalized arc length parameter for r. The most gen­
eral expression for k( u,u) must be used in (7). 

For both theoretical and practical reasons, it is useful to reparamctrize r u by 
its normalized arc length parameter w. 

Define 



R( u,u) = (X( u,u), Y( u,u)) 

where 

then define 

X(w,u) = X(~u-1(w),u) 

Notice that 

~(7(0) = 0 

~u(l) = 1 

and 
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I Ru(u,u) I 
- ------ > 0 at non-singular points 

IA I Rv( v,u) I dv 

Also 

~ 0(u) = u 

(9) 

~ u( u) deviates from the identity function ~ u( u) = u only to the extent to which 
the scale-related statistics deviate from stationarity along the original curve. 

Once we have changed parameters according to equations (9) then the curva­
ture for the normalized path length parameters is: 

1 A A A A 

k( w,u) = L31X.,( w,u) Y 111111( w,u) - X.,.,( w,u) Y .,( w,u)] 

We now define the renormalized curvature scale space image of r to be the implicit 
function defined by A:( w,u) = 0. 

As an example of these concepts we show the coastline of Africa in figure l(a) 
and the curvature scale space and the renormalized curvature scale space of Africa 
in Figure 2(a) and 2(b) respectively. The difference between them is almost negligi­
ble. However, if part of the curve has radically different scale related phenomena 
than the remainder the difference is more important. In Figure l(b) we have added 
considerable noise to half the contour in the normal direction and shown the 
corresponding curvature scale space images in figures 2(c) and 2(d) for comparison. 
Notice that the position of the major contours change substantially from Fig. 2(a) 
to Fig. 2(c) but are essentially unchanged from Fig. 2(b) to Fig. 2(d). This property 
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of renormalized curvature scale space enhances its utility for shape matching of 
similar curves. 

The renormalization process corresponds to a continuous non-linear horizontal 
shearing of curvature scale space. Figure 3 shows a plot of renormalized arc length 
parameter on evolved Africa (t1=8) versus normalized arc length parameter of origi­
nal Africa. As mentioned earlier, won the evolved curve is an increasing monotonic 
function of u on the original curve. 

4. Scaling Properties of the Curvature Scale Space Image 

For the scale space image of a one dimensional function f(s) an important 
monotonic property first observed and then proven is that zero crossings are never 
created as scale inc~ases. (Babaud et al, 1986; Yuille and Poggio, 1986.) 

The generalization of the monotonic property to smoothing of two dimensional 
images is complex. Although a variant of the monotonic zero crossing property 
holds in that zero crossings are never created as scale increases, they do split and 
merge and in a cross section of the scale space the 1-D property may appear to be 
violated (Yuille and Poggio, 1986; Babaud et al, 1986). 

Accordingly it is by no means apparent that the extension of the monotonic 
property holds for curvature scale space. Moreover, if it does hold it may offer an 
advantage for path based smoothing of 2-D contours over direct 2-D smoothing of 
images. 

We now arrive at the main theoretical result of this paper. 

Theorem 1: Let r be a planar curve in class 0 2 and let r (1 be the evolved version 
of r. If all curves r" are in 0 2, then all extrema occurring at regular points on con­
tours in the curvature scale space image of r are maxima. 

Proof: The proof will be carried out in the original curvature scale space but, since 
curvature is coordinate-frame invariant, the theorem also holds in renormalized cur­
vature scale space. 

By (8) on any contour in curvature scale space 

k(u,a) = 0 

By (7) and the fact that all r" are in 0 2 this is equivalent to: 

X( u,a) Y( u,a)-X( u,t1) Y( u,t1) = 0 

To exploit the properties of the heat equation (Hummel et al, 1987), it is convenient 
to change variables and let 



t = .!..o-2 
2 

so we define 

z( u,t) = X( u,u) 

T 

II( u,t) = Y( u,u) 

a( u,t) = zu( u,t) Jluu( u,t) - Zuu( u,t) Siu( u,t) 

The functions z( u,t) and ti( u,t) are obtained by convolving . ~e-(1/ 4t)u2 with 
v41rt 

the original curve coordinates z( u) and y( u) respectively, and so they satisfy the 
heat equation: 

zuu( u,t) = xt( u,t) 

Yuu( u,t) = flt( u,t) 

(11) 

(12) 

On any contour a ( u,t) = 0 and so, in any neighborhood in which the condi­
tions of the implicit function theorem are satisfied: 

· dt - au 
t = t( u) and t( u) = - = -

du a, 
. The theorem .. will be proven if we can show that for all points such that 
t(u) = 0 we have t (u) < 0 .. 

Now , i( u) = 0 if and only if au( u,t) = 0 

At an extremum where (13) holds, we have 

t( u) = ~ [ - au ) = .2_ [ - au ) + .£.. [ - au ) .!!!.._ _ _-_au_u 
du a, au a, at a, du - a, 

So we must show that if 

a( u,t) = au( u,t) = 0 then 

a 
We shall show that these conditions require ...!! = 1 which proves the theorem. 

a, 

From (10), (11) and (12) we have 

But using (11) 

(13) 



Similarly 

O'.uu = ( Zufltt - Zttflul + ( Ztflut - ZutflJ 

If a = O:u = 0 then using (10) and (14) 
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Ztflut - Xutflt = Zt [ flut - Zut*) = Zt [ flut - Zut-;:-) = : (Zu!lut - Zut!lu) 

=0 

so 

O:uu = Zuf/tt - Zttf/u 

We also have 

so 

O:t = Zuf/U - Zuflu 

and hence O:uu = o:1 as claimed. 

(14) 

□ 

Notice, incidentally, that a:( u,t) satisfies the diffusion equation at the maxima 
of the contours and that all such contours have a curvature of -1 at their maxima in 
( u,t) curvature scale space. 

5. Some planar curves and their scaling properties 

In this section we will investigate some of the scaling properties of planar 
curves. Sub-section 5.1 contains a number of theoretical results on scaling properties 
of planar curves and sulrsection 5.2 contains some observations and examples of 
behavior of a few planar curves during evolution. 

5.1. Theoretical results 

We first present three lemmas concerning fundamental properties of evolution 
of planar curves. 

Lemma 1: Evolution is invariant under rotation, uniform scaling and translation of 
the curve. 

Proof: We will show that evolution is invariant under a general affine transform 
which includes transformations consisting of rotation, uniform scaling and transla­
tion. 
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Let r = (z(u), u(u)) be a planar curve and let fo-= (X(u,u), Y(u,a)) be its 
evolved version. If r o- is transformed according to an affine transform, then the fol­
lowing relationships hold between its old coordinates, X( u,u) and Y( u,a), and its 
new coordinates, z1 ( u,u) and and 111 ( u,u) : 

z1(u,u) = aX(u,u) + b Y(u,u) + c 

111 ( u,u) = dX( u,u) + e Y( u,u) + I 
Now suppose r is transformed according to an affine transform and then evolved. 
The coordinates, ~( u), 112( u) of the new curve are: 

Zi(u,o) = (az(u) + bll{u) + c)@g(u,o) 

112(u,o) = (dx(u) + e11(u) + /)@g(u,o) 

Because the convolution operator is distributive (Kees 1982], it follows that 

~(u,o) = (ax(u))@g(u,o) + (by(u))@g(u,o) + c@g(u,o) 

112(u,o) = (dz(u))@g(u,o) + (e11(t))@g(u,o) + f@g(u,o) 

and 

~(u,o) = a (z(u)@g(u,o)) + b (ll(u)@g(u,o)) + c = z1(u,a) 

112(u,o) = d (x(u)@g(u,o)) + e (u(u)@g(u,o)) + /= y1(u,a) 

Note that this result holds for any convolution operator not just the Gaussian. □ 

Lemma 2: A connected planar curve remains connected during evolution. 

Proof: Let r = (x( u), II( u)) be a connected planar curve and let 
r o- = ( X( u,o), Y( u,o)) be its evolved version. We will show that r o- is also a con­
nected curve. 

Since r is connected, z( u), 11( u) and therefore X( u,o) and Y( u,o) are continuous 
functions. Let "o be any value of parameter u and let Zo and y0 be the values of 
X( u,u) and Y( u,u) at "o respectively. It follows that if u goes through an 
infinitesimal change, 

u--+ u0 + E 

then X( u,u) and Y( u,u) will also go through infinitesimal changes 

X( "o,o)--+ Zo + 6 

Y( "o,u)--+ !lo + e 
As a result, point P(Zo, y0) on r o- goes to point P'(x0 + 6, Yo + e). Let the distance 
between P and P' be D. Then 
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D = ✓ ( Xo + 6 - Zo) 2 + ( flo + € - Yo) 2 = ✓ 6 2 + € 2 

Let I 61 be the larger of 161 and I el. Then 

D ~ ..Jii2 = 6\12 

It follows that an infinitesimal change in parameter u also results in an infinitesimal 
change in the value of the vector-valued function r tr Therefore r u is a connected 
curve. □ 

Lemma 3: A closed planar curve remains closed during evolution. 

Proof: .A closed curve has (z(O), 11(0)) = (x(l), y(l)). 
(X(O,u), Y(O,u)) = (X(l,u), Y(I,u)). 

It follows that 

□ 
If one smoothes the curvature function (Asada and Brady, 1986) then closed 

curves apparently may not remain closed (Hom and Weldon, 1986). 

The next theorem concerns a property of all planar curves during evolution. 

Theorem 2: Let r = (x(u), 11(u)) be a planar curve in C2 and let x(u) and y(u) be 
polynomial functions of u. Let r O' = (X(u,u), Y(u,u)) be the first evolved version of 
r with a cusp point at '-'="o, then there is a 6> 0 such that r 0'-6 intersects itself in a 
neighborhood of point "o· 

Proof: Since the class of polynomial functions is closed under convolution with a 
Gaussian (Hummel et al. 1987], it follows that X(u,u) and Y(u,u) are also polyno­
mial functions: 

X(u,u) =Go+ 0iu + ~u2 + aau3 + 

Y(u,u) = b0 + b1u + b2u2 + b3u3 + 
Suppose that r v goes through the origin of the coordinate system at u=O. It follows 
that aa=bo=O. Assume further that there is a singularity on r O' at u=O. \Ve have: 

Xu(u,u) = Gt+ 2~u + 3~u2 + 4a4u3 + 

Yu( u, o) = b1 + 2b2u + 3b3u2 + 4b4u3 + 

Since Xu(u,o) and Yu(u,u) are zero at a singular point, it also follows that a1=b1=0. 

We will now perform a case analysis of the singular point at u=O to determine 
when it corresponds to a cusp point. Since we will examine a small neighborhood of 
point u= O, we will approximate the curve using the lowest degree terms in X( u, u) 
and Y( u,o): 
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Assume w.l.o.g. that n> m. From above we know that m> 1. 

Using 

it follows that 

and 

ru(-E,u) = (m(-E)m-1, n(-E),...1) 

We can now analyze the singular point in each of the four possible cases: 

1. m and n are both. even numbers. 

m-1 and n-1 are both odd numbers. Therefore 

ru(-E,u) = (-mEm-1, -nE,...1) = -£m-1(m, nEn-m) 

A comparison of ru{E,u) and ru{-E,u) shows that an infinitesimal change in the 
parameter u results in a large change in the direction of the tangent vector. There­
fore the singular point is also a cusp point in this case. 

2. m and n are both odd. 

m-1 and n-1 are both even. Hence 

ru(-E,u) = (mfm-1, nE,...1) = £m-1(m, nEn-m) 

Comparing ru(E,u) to ru(-E,u) now shows that the tangent direction does not 
change with u in a small neighborhood of the singular point. Therefore this singular 
point is not a cusp point. 

3. mis odd and n is even. 

m-1 is even and ~1 is odd. Hence 

ru(-E,u) = (mfm-1, -nE,...1) = Em-1(m, -nfn-m) 

An infinitesimal change in u also results in an infinitesimal change in the tangent 
direction. Again, this singular point is not a cusp point. 

4. m is even and n is odd. 

m-1 is odd and n-1 is even. So 

ru(-E,u) = (-mE"'-1, nE,...1) = E"'-1(-m, nEn-m) 

An infinitesimal change in u now results in a large change in the tangent direction. 
Therefore this singular point is a cusp point. 
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It follows from the case analysis above that only the singular points in cases 1 
and 4 are cusp points. We will now derive analytical expressions for the curve r t1-c 
so that it can be analyzed in a small neighborhood of the cusp point. 

To deblur function /( u) = u1, we convolve a rescaled version of that function 

with the function J;£-s2(1-.z2), a third order approximation to the deblurring 

operator derived in (Hummel d al., 1987), as follows: 
00 

(D,n(11) = I J;=e--r(1-.z2)/(y+ 2zv't)dz 
~ 

or 
00 

(D,f)(r,) = J;= J e-r(1-.z2)(r,+ 2zv'i")1dz 
-00 

where t is the scale factor and controls the amount of deblurring. Solving the 
integral above yields 

(D,/)(11) = t 1.3.5 ... {p-1) (2t)P/2 k(k-1) ... (k-p+l) {1-p) yl-p 
p=O pl (15) 

(p 111cn) 

The following are four functions of the form /( u) = u1 and their deblurred ver­
sions: 

a. /(u) = u2 
b. /(u) = u3 

c. /(u) = u4 

d. /(u) = u5 

(D,f)( u) = u2 
- 2t 

(D,/)( u) = u3 
- 6tu 

(D,f)( u) = u4 - 12tu2 - 36t2 

(D,/)( u) = u5 - 20tu3 
- 180t2u 

We can now analyze the cusp points identified in cases 1 and 4 above. In case 
1, the curve r" is approximated by ( u"', u") where m and n are both even numbers. 
We now deblur the curve to obtain: 

m-2 m 

(D,z)(u) = u"'- c1tum-2 - c2t2um-4- · · · -cm-2 t_2_tr - cmt2 

2 2 

n-2 n 

(Dt y)( u) = un - c'ttun-2 - c1
2t2un-4- · · · -c' n-2 t-

2-u2 - c' n t2 

2 2 

Note that all powers of u are even and the constants c; and c'; are all positive as fol­
lows from an examination of (15). It follows that 



u 

m-2 

(D,x)(u) = mum-1 - (m-2)c1tum-3 - · · • - 2c ,,._2 t 
2 u 

2 

n-2 

(D,y)(u) = nun-1 - (n-2)c'1tun-3 - • • • - 2c' ,...2 t 
2 u 

2 

contain only odd powers of u and (D,:r}(E) = -(D,i-)(-E). Hence there is also a cusp 
point on the curve r0'-6 at ut,=O. This is a contradiction of the assumption that rO' 
is the first evolved version of r with a cusp at Uo· It follows that r O' can not have a 
cusp point of this kind at Uo· 

We shall now turn to the cusp points encountered in case 4. Recall that, in 
that case, the curv~ r O' is approximated, in a small neighborhood of the cusp point, 
by ( um,un) where m ·is even and n is odd. Again we deblur the curve to obtain: 

.!!!:!. .!!!:. 
(Dtz)(u) = um - c1tum--2 - c2t2um-4 - · · · - c m-2 t 

2 u2 - c mt 2 

2 2 

n-1 

(D,y)(u) = u" - c'1tun-2 - c'2t2un-4 - · · · - c' ,...1 t 2 u 
2 

Again note that constants c; and c1 are all positive. 

The deblurred curve intersects itself if there are two values of u, u1 and u2, such 
that 

zCut) = z("'2) 

u(u1) = Y("'2) 

(16) 

(17) 

Since (D,x)( u) contains even powers of u only, it follows from (16) that u1 = -tii, 
Since ( D, y) ( u) contains odd powers of u only, substituting "'1 = -u2 in ( 17) and sim­
plifying yields: 

n-1 

rL." - c' tu n-2 - c' t2u n-4 - · · · - c' t-2-u - 0 
-1 1 1 2 1 n-1 1 -

2 

Since r 0'-6 is of interest to us, we let t = 6. We now obtain 
n--1 

Ui" - c'16Uin--2 - c'2~"1n-4 - ... - c' n-16_2_"1 = 0 (18) 
2 

u1 = O is one of the roots of this equation. For very small values of u1, the LHS of 
(18) is negative since the first term will be smaller than each of the other terms 
(which are negative). As u1 grows larger, the first term becomes larger than the sum 
of all other terms and therefore the LHS of {18) becomes positive. It follows that 
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there exists a positive value of u1 at which (18) is satisfied. Therefore r u~ is self­
intersecting in a small neighborhood of the cusp point of r ,,. D 

Theorem 2 is of practical importance. If one can demonstrate that a curve 
remains simple during evolution then it follows from this theorem that it can not 
develop a cusp. 

5.2. Observations and examples 

While most simple curves remain in 02 during evolution, some with very irregu­
lar shapes may not show that property. Figure 4 shows a simple curve which forms 
a pair of cusp points during evolution. This is an important curve because it is a 
counter-example to the hypothesis that the class of simple curves is closed under 
evolution. It serves as an illustration of the need for the careful wording of the state­
ment of Theorem 1 and as an example of the situation covered by Theorem 2. 

The class of self-crossing curves also has some members which remain in C2 

during evolution and other members which develop cusps during evolution. Figure 5 
shows a self-crossing curve which forms a cusp point during evolution. In this exam­
ple, the formation of the cusp is followed by the creation of two new zero-crossings 
which eventually disappear as the curve evolves further. Figure 6 shows a convex 
but self-intersecting curve which also forms a cusp during evolution. 

The first criterion for shape representation as proposed in (Mokhtarian and 
Mackworth, 1986) is efficiency. Since many convolutions are needed to compute the 
entire curvature scale space image, a method to render the computation of the 
image more efficient is useful. A procedure to track the zero-crossing contours in the 
curvature scale space image was used in (Mokhtarian and Mackworth, 1986). The 
poin~ at which the curvature zero-crossings are found at a certain scale are remem­
bered. At the next scale (where the width of the Gaussian filter used is slightly 
higher), convolutions are done only in small neighborhoods of points where zero­
crossings where previously discovered. This procedure significantly reduces the 
required computation time and can be used with curves that do not develop new 
curvature zero-crossings during evolution. But as seen earlier, some planar curves do 
not have this property and therefore the procedure just described can not be used to 
compute their curvature scale space images. Fortunately, the following observation 
enables us to achieve efficiency without tracking zero-crossing points across scales: 

The convolution of a function with a Gaussian of width c, can be achieved by con­
volving that function with a Gaussian of smaller width u1 and convolving the result­
ing function with a Gaussian of width u2 such that 

u2 = u? + c,22 

It follows that the computations needed to determine the curvature scale space 
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image can be performed using a Gaussian with small u with a substantial reduction 
in computation time. Our experimental results agree with this conclusion. 

Convex curves are those planar curves which have positive curvature at every 
point. Gage and Hamilton [1986] have shown that simple convex curves remain sim­
ple and convex during evolution and tend to a circle. This fact demonstrates that 
we are correct in ending the curvature scale space filtering of a planar curve as soon 
as it becomes a simple convex curve since it is guaranteed that it will remain convex 
from that point on and therefore no new curvature zero-crossings will be found at 
larger scales. 

6. Conclusions 

We introduced .the renormalized curvature scale space image which corrects for 
the non-linear shrinking of arc length when a planar curve evolves. This new 
representation is more suitable than the curvature scale space image for matching a 
planar curve to an evolved version of itself, or for matching two similar curves. 

We also showed that no new curvature zero-crossings are created at the higher 
scales of the curvature scale space image of a planar curve provided that the curve 
remains in 0 2 during evolution. The scaling properties of a few other categories of 
planar curves were also investigated. Among these is a result concerning the 
behavior of curves that develop cusps during evolution. 
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(a) Coastline of Africa. 

(b) Coastline of Africa with added noise. 

Figure 1. Two planar curves used as test data. 
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( a) The CSSI of Africa. (b) The renormalized CSSI of Africa. 
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( c) The CSSI of noisy Africa. ( d) The renormalized CSSI of noisy Africa. 

Figure 2. A comparison of regular and renormalized curvature scale space images. 
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Figure 3. Plot of renormalized arc length on evolved Africa (a=8) 
vs. arc length of original Africa. 



( a) A simple curve (b) Convolved with u=4 

(c) Convolved with u=l6 (d) Convolved with u=25 

( e) Convolved with u=32 (fj Convolved with u=48 

Figure 4. A simple curve which crosses itself and then develops cusps during evolution. 



( a) A self ~rossing curve (b) Convolved with a=8 

(c) Convolved with o=12 (d) Convolved with a=14 
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( e) The curvature scale-space image of the curve 

Figure 5. A self-crossing curve that develops a cusp point during evolution. 



(a) A convex curve (b) Convolved with u=16 

(c) Convolved with cr-=24 ( d) Convolved with u=32 
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( e) The curvature scale-space image of the curve 

Figure 6. A convex curve that develops a cusp point during evolution. 


