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Abstract 

Over the put few years, much experience has been gained in semi-automatic protocol imple­

mentation U8ing an e:xiating Estelle-C compiler developed at the University of British Columbia. 

However, with the continual evolution of the Estelle language, that compiler is now obsolete. 

The present 1tudy found 1ubstantial 1yntactic and semantic differences between the Estelle 

language u implemented by the existing compiler and that 1pecified in the la.test ISO docu­

ment to warrant the construction of a new Estelle-C compiler. The result is a new compiler 

which translates Estelle u defined in the second version of the ISO Draft Proposal 907 4 into 

the programming language C. The new Estelle-C compiler addresses issues such as dynamic 

reconfiguration of modules and maintenance of priority relationships among nested modules. A 

run-time environment capable of 1upporting the new Estelle features is also presented. The im­

plementation strategy uBed in the new Estelle-C compiler is illustrated by using the alternating 

bit protocol found in the ISO Draft Proposal 9074 document. 
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Chapter 1 

Introduction 

Estelle is a formal description technique (FDT) developed to be used by ISO standards 

committees for the specification of communication protocols and services destined to become 

international standards. The me of formal methods for protocol specification reduces the risks 

of erroneoUB or incompatible implementations of these protocols. In addition, the availability 

of precise and unambiguo\18 deac:riptions of protocols allows automatic tools to be built for 

generating protocol implementations directly from the formal specifications. 

In response to the challenge of realizing automatic implementation of protocols from Estelle 

specifications, the first Estelle compiler was developed at the University of Montreal [Gerb83). 

This compiler accepts Estelle apecifications and generates implementation codes in Pascal. 

Currently, several Estelle compilers, interpreters and simulators have already been developed 

(Ansa87,Cour86,Garg87]. 

1.1 Motivations for a New Estelle Compiler 

At the University of British Columbia (UBC), an Estelle-C compiler was developed by 

Daniel Ford in 1984 [Ford85). The compiler accepts Estelle u defined by the 1984 Estelle 

working document [Este84] and generates target codes in the programming language C. The 
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CHAPTER 1. INTRODUCTION 2 

original compiler was found to be erroneous and wu subsequently improved by Alan Lau in 

1986 [Lau86). The improved compiler wu succemfully used by Lau in a comparative study on 

semi-automatic venue manual implementation [Vuon87,Vuon88] of the ISO class 2 transport 

protocol [IS082a,1S082b). 

However, the Estelle language has undergone two major changes since 1984 and is currently 

in the second draft proposal stage [Este85,Este86]. The UBC Estelle-C compiler is now obsolete 

due to the aubstantial differences between the current Estelle specification and the Estelle 

language as implemented by Ford. Therefore, it is necessary to build a new UBC Estelle-C 

compiler that will conform to the new standards [Este86] and, thus, allow further works in 

automatic protocol implementations. 

1.2 Thesis Outline 

This thesis describes the implementation of a new Estelle-C compiler. Chapter 2 presents 

the changes made to the Estelle language since 1984 and the justification for the reimplemen­

tation of a new compiler instead of the modification of the old compiler to conform to the new 

standards. Chapter 3 describes the translation scheme used in the new compiler and compares 

it with the scheme used in the old compiler. The implementation strategy used in the new 

Estelle-C compiler is illuatrated by UBing the alternating bit protocol. Chapter 4 discusses the 

run-time environment used in the new compiler. Chapter 5 concludes the thesis with some 

insights gained from this project. 



Chapter 2 

Estelle Evolution 

Estelle is a hybrid formal protocol description technique which combines an underlying 

extended finite state machine model with the use of a programming language notation. Syntac­

tically, Estelle is based on the programming language Pascal with additional features borrowed 

from Ada and Modula-2. An Estelle specification describes a complex protocol specification 

as a hierarchical structure of increasingly refined communicating finite state machines called 

modules. The syntax provides constructs necessary to specify state transitions within the 

modules as well as the means to interconnect the various specified modules. Semantically, these 

modules are allowed to be executed in parallel. 

The modules communicate with each other through abstract interfaces called interaction 

points. A bidirectional communication path between two interacting modules, called a chan­

nel, is formed when two interaction points, one from each module, are connected together. 

After a channel is •tablished between two modules, the modules can interact by transmitting 

units of information, called lnteractlona, through the channel. 

The dynamics of a channel is modeled abstractly u a pair of first-in-first-out queues located 

at the two linked interaction points. Each interaction signaled between two modules is routed 

3 



CHAPTER 2. ESTELLE EVOLUTION 4 

from the interaction point at the sending module to the queue in the interaction point at the 

receiving module. 

Each channel is auociated with a channel type. For each channel type, a set of parameterized 

interaction primitives can be specified for generating interaction instances which are to be 

transmitted through the channel. Becauae of the bidirectional nature of the channels, two 

interaction role identifiers must be specified for each channel in order to distinguish the two 

directions. Each of the allowable interaction primitives may be associated with either one or 

both of the defined roles. The use of the role identifier allows each interaction primitive to 

be specified as either unidirectional or bidirectional. The two corresponding interaction points 

for each channel must have opposite roles so that they can be used to send and to receive 

interactions of the opposite type. 

The abstraction provided by the Estelle channel can be used naturally for modeling the set 

of service primitives allowable at the boundaries between two adjacent protocol layers. When 

a protocol specification is refined into submodules, the same abstraction can also be used to 

specify interactions between any two submodules. 

Excellent descriptions of the Estelle features and facilities can be found in Linn [Linn86] 

and Courtiat et al. (Cour86]. Thia chapter only describes the changes to the Estelle language 

from the 198-4 working document (Este84] to its present 1986 draft proposal form [Este86] and 

concludes with a juatification for building a new Estelle-C compiler from scratch instead of 

modifying the current UBC Estelle-C compiler. 
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2.1 Module Hierarchy 

Some of the imjor differences between the Estelle language as defined in the original working 

document [Este84) and that defined in the resulting draft proposal documents [Este85,Este86] 

are the changes made io the hierarchical 1tructuring of the modules. Since a module is the 

basic unit of protocol 1pecification in E.telle, the changes have profound effects on the run-time 

environment that the new Estelle-C compiler must support. 

2.1.1 Static Organization 

A protocol specification is originally defined as a hierarchy of modules of two different 

types [Este84). At the bottom of the module hierarchy are processes. A process defines an 

atomic unit of protocol specification as an extended finite state machine which cannot be further 

subdivided. The behavior of a proceu is specified as a list of possible transitions. All processes 

are specified to be executed in parallel. The modules at the higher layers in the module hierarchy 

are called refinements. Refinements may be further divided into submodules, each of which 

may be either a process or another refinement. Refinements, however, may not contain any 

transition specification. The aole purpose of the refinement modules is to impose a structure on 

the set of defined procesBeS during 1y1tem initialization time; these modules are inactive during 

protocol execution. 

The implication of this modular organisation is that a protocol specified in this manner 

has a static structure. Since only the bottom layer of the hierarchy contains active modules, 

the structure cannot be changed during run-time. Another consequence of this organization is 

that the structure is linear. The eet of active modules can be linked together into a linear list. 

Simple round-robin acheduling over this list will suffice during run-time to simulate parallelism 
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[Ford85]. 

2.1.2 Dynamic Organization 

In the first draft proposal for Estell+ [Este85], transition execution is allowed in the higher 

level modules. In addition, provisions are made to allow modules to share common variables. 

In order to ensure mutual exclusion between the shared variables, two restrictions are imposed 

on the structuring principles of an Estelle protocol specification. 

First, two types of modules with different execution semantics are defined. An activity 

is a module which ia conaidered to be atomic and cannot be substructured. A process is a 

module which may be substructured into either child processes or child activities. Processes at 

the same level may be run in parallel, but activities may be run only in an interleaved fashion. 

Second, a parent/child priority relation is imposed on the module hierarchy. If a transition of 

a parent module is enabled, no child may begin a transition. 

The first restriction will ensure mutual exclusion among modules at the same level in the 

module hierarchy if they are specified u activities. The second restriction will ensure mutual 

exclusion among modules at different levels in the module hierarchy. 

In the second draft proposal for Estelle [Este86], the major change to the Estelle language 

specification is to forbid the use of shared variables among modules at the same level in the 

module hierarchy. The inclusion of this restriction eliminates the concern of mutual exclusion 

among modules at the same level. Consequently, there is no further need to distinguish be­

tween processes and activities. However, the concepts of processes and activities are retained 

to distinguish the two poesible forms of module execution semantics. The process abstraction 

represents a synchronous parallel execution while the activity abstraction represents a nonde­

terministic sequential execution. Because of these new semantics, activity modules may now 
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be further substructured into other activities. 

The new module synchronisation aemantica defined m the two Estelle draft proposals 

[Este85,Este86] imply a more complicated run-time environment than is necessary for Estelle 

as defined in the working document (Eate84]. The new run-time scheduler must differentiate 

between modules at different levels in order to enforce the parent/child priority relationships. 

The scheduler used in the new Estelle-C compiler is discussed in Section 4.1. 

2.2 Module Configuration 

Module configuration is the proceu of instantiating and interconnecting the modules defined 

in an Estelle specification. Module configuration can only be performed by a parent module on 

ita immediate child modules. In the original version of Estelle [Este84), module configuration 

can only be performed at system initia.lization time. Since all modules above the bottom level 

are inactive, the number and the typea of modules will remain unchanged for the life-time of 

the specified system. In the later versions (Este85,Este86] where active modules are present in 

the higher levels, module configuration may be carried out any time. The potential result of 

this enhancement is a protocol specification with a dynamically varying module organization. 

2.2.1 Dynamic Module Instantiation 

The process of module instantiation includes the declaration of a module variable, the 

initialization of a module instance, and the binding of the initialized module instance to the 

module variable. 

In the working document version of Estelle [E1te84}, module instantiation is an implied oper­

ation associated with the declaration of a module variable. In the later versions [Este85,Este86), 

modules are explicitly created and initialized by using the INIT statement. Module termination 
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is possible using the RELEASE 1tatement. Theae two special Estelle statements may be used 

either at system initialization or within tranaition execution. The use of explicit statements to 

perform these two operations in an Estelle protocol specification provides the power to change 

the number and the type of modules within the specification dynamically. The need to sup­

port dynamic module creation and termination results in a run-time environment which must 

maintain the complete hierarchical module organization at all times. In contrast, under the old 

Estelle environment, this information may be discarded after the system has been initialized 

[Ford85]. 

2.2.2 Dynamic Module Interconnection 

With the addition of dynamic module imtantiation, it becomes necessary to provide explicit 

module interconnection atatements. These operatioJUI are provided in Estelle by the special 

statements: CONNECT, DISCONNECT, ATTACH and DETACH. The CONNECT and DISCONNECT 

statements are w.ed to alter the interconnections between modules at the same level; and the 

ATTACH and DETACH 1tatements are used to alter the interconnections between modules at 

adjacent levels. 

With the added capabilities for dynamic reconfiguration, the immediate parent of a set 

of modules can be specified to act as a supervisory manager. However, these provisions for 

dynamic reconfiguration of the various entities in a protocol specification result in an Estelle 

run-time environment that is more complex than one which simply maintains a complete module 

hierarchy. 
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2.3 Justification for a New Estelle-C Compiler 

With the basic ideu underlying the •mi-automatic approach to protocol implementation 

well understood and demonatrated by the many existing Estelle compilers [Boch87a], the major 

motivation for developing a new compiler for Estelle ia to upgrade the UBC Estelle-C compiler 

to aupport the latest Eatelle language ■pecification (Este86]. However, it is apparent that there 

are many issues which must be addreued in changing from a static run-time environment to a 

dynamic one. Thia 1NCtion deecribea the justifications for a complete rewrite of the Estelle-C 

compiler instead of modifying the existing compiler. 

2.3.1 Syntactic Issues 

One of most important reasons for rewriting the new Estelle-C compiler is that the syntax 

of Estelle has changed 10 significantly that building a new parser is desirable. The old compiler 

was written with the aid of the UNIX utilities lex and r,acc. A significant omission in the 

old compiler was the lack of syntax error recovery mechanisms. The building of a new parser 

offers an opportunity to incorporate this important compiler feature into the new compiler. 

With added error recovery as part of the design goal, the Estelle grammar is rewritten into a 

LL(l) form. Then, the parser for the new Estelle-C compiler is hand-coded in C using recursive 

descent techniques. Syntax error recovery ia carried out uaing the panic mode technique with a 

dynamic stop symbol set. AsJ. unrelated advantage gained from rewriting the compiler without 

uaing lex and race ui the pONibility for further development of the new compiler in non-UNIX 

environments. 
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2.3.2 Semantic, h1ue1 

Another important reuon for rewriting the new compiler relates to semantics issues. Being 

a formal description technique for protocol apecification, the Estelle language must have precise 

meaning; otherwiae, protocols specified in Estelle will not have a sound foundation and may 

be opened to different interpretationa. In order to satisfy this requirement, the second draft 

proposal for Estelle is published with a new aection on formal semantics [Este86]. When the 

implementation of the old Estelle-C compiler is compared with the new formal semantics, several 

features are found to be incompatible. 

The major area of incompatibility has to do with the scoping rules for variables. The old 

Estelle compiler did not pay particular attention to the scoping of many variables. Variables 

local to individual transitions were not supported. Module parameters were not made available 

to the module tranaitiona. Procedures and functions defined within a module were not allowed 

access to global variables declared within the same module. Furthermore, the old Estelle-C 

compiler is still erroneoua despite the improvements made by Alan Lau [Lau86]. In particular, 

the old compiler lacks some important Estelle features, such as the data types SET and multi­

dimensional ARRAY. Solutions to these and other problems are all part of the redesign of the 

new Estelle-C compiler. 

Other semantics issues deal with error checking. The old Estelle-C compiler has no provision 

for checking semantic errors beaidea Estelle specific aemantic errors. Since the code generated 

by the Estelle compiler would have to be further compiled by the C compiler, the rationale 

was that the C compiler can be uaed for most of the aemantic checks. However, by placing 

most of semantic checking burden on the C compiler, the error messages from the C compiler 

become cryptic. Users of the compiler without firm understanding of the organization of the 
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generated C-codes frequently have trouble understanding errors detected during the subsequent 

C compilation. In order to build a more •user-friendly" Estelle compiler, more emphasis is 

placed on semantic checking in the new Estelle-C compiler. 

2.3.3 User Issues 

Building extensive error checking facilities into the new Estelle-C compiler is not adequate 

to make -the new compiler user-friendly. The old Estelle-C compiler produces a C program 

which is not readily compilable by the C compiler without extensive user modifications. Also, 

the old Estelle run-time support routines contain specification dependent details which must 

be modified for each Estelle ■pecification. In order to generate an executable implementation 

from an Estelle specification, the user must recompile the run-time support routines using the 

C compiler along with the C-code generated by the Estelle-C compiler. In the new Estelle-C 

compiler, it is no longer neceasary for the user to modify any of the generated codes. Be­

sides improving and extending the run-time routines to support the new Estelle features, all 

specification dependent details have been extracted from these run-time support routines. The 

specification independent routinee have been precompiled into a single object library. After 

the generated C-codes. have been compiled by the C compiler, they can be easily linked to this 

object library to form the final executable program. 

In summary, the new E1telle-C compiler is written to incorporate the features in the latest 

version of the Estelle language and to improve the user-friendliness of the compiler. The user­

friendliness upect of the improvement includes the use of effective error diagnostics for the 

user and the freeing of the user from the need to know the details in the underlying run-time 

environment. The goal is to increase the degree of automation than that achieved in the previous 

eemi-automatic implementationa of protocols from formal specifications. With regards to the 
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shortcomings in the old Estelle-C compiler, a complete rewrite of the compiler is desirable as 

well as necessary. 



Chapter 3 

Estelle to C Translation 

The translation of Estelle to C in the new Estelle-C compiler follows the implementation 

strategy used by Gerber (Gerb83], a strategy which was also adopted by Ford [Ford85]. Each 

Estelle module is tranalated into two separate C routines. One routine is used for transition 

execution while the other is used for module initialization. The transition routine implements 

the finite state machine specified for the module. The Initialization routine sets up the 

internal states of the module before it is ready for the subsequent transition execution. 

Beaides generating executable codes to implement the modules, the Estelle-C compiler also 

generates two sets of global declaration structures. One structure, called the signal parameter 

block (FDTSVAR), is used for storing the parameter information carried in the interactions 

passed between modules. The other structure, called the module variable block (FDTLVAR), 

is used by each module for etoring local variables. Mter these four sets of generated C codes 

are compiled and then linked together with a set of pre-compiled run-time support routines, an 

executable protocol implementation results. 

The Estelle run-time environment is constructed &om three major control blocks represent­

ing the three major abstractions defined in the Estelle language. The interactions which are 

13 



CHAPTER 3. ESTELLE TO C TRANSLATION 14 

signaled between modules are repreNnted by ■lgn.al control blocks (FDTSCBs). The chan­

nels through which the interactiom are tr&111mitted are represented by channel control blocks 

(FDTCCB,). Finally, the modules which aend and receive the interactions are represented by 

process control blocb (FDTPCB, ) . 

The following aections present the Alternating Bit Protocol as an example in Estelle to 

C translation. The complete Estelle ■pecification for the Alternating Bit Protocol and the C 

program generated from it are included in Appendices B and C, respectively. The sections 

begin with the explanation on the generation of the two global declaration blocks followed by a 

description of the three control blocks and the ways in which they are combined with the gen­

erated declaration codes and with each other to form the run-time environment. Subsequently, 

the translation of an Estelle module into an initialization and a transition routine is discussed. 

3.1 Global Declaration Blocks 

Two global declaration blocks are generated to represent all of the specification dependent 

variables needed during run~time. To facilitate the ease of understanding the generated code, 

the identifiers used in the generated C code retain their Estelle names. The elaborate variant 

structures described below is neceeaary to protect the Estelle names from identifier conflicts 

when used within a C program. 

3.1.1 Signal Parameter Block 

The signal parameter block (FDTSV.AR) is a three-level variant record structure repre­

aenting the combination of all specified parametere in all interaction primitives for all channel 

types within an Estelle apecification. The FDTSV.AR generated for the alternating bit protocol 

is shown in Figure 3.1. 
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typedef union { 

/• CHAlflraL U_acceaa_point primitive■ and their identity numbers•/ 

union { 
atruct { 

int udata 
. } SEND_B.EQ; 
int RECV_B.EQ; 
struct { 

int udata: 
} RECV_BSP; 

} U_acces■_point 

/• 1. SEND_REQ (udata udata_type); •/ 

I• 2. llECV_REQ; •I 

/• 3. llECV_RSP (udata udata_type); •/ 

/• CHANNEL N_acceaa_point primitives and their identifiers•/ 

union { 
struct { 

ndata_type ndata 
} DJ.TJ._REQ; 
■truct { 

ndata_type ndata 
} DJ.TJ._BSP; 

} N_acce■■-point; 

/• 1. DATA_REQ (ndata ndata_type); •/ 

/• 2. DJ.TJ._RSP (ndata ndata_type); •/ 

I• CHANNEL s_acceaa_point priaitivea and their identifiers•/ 

union { 
int TINER_llEQ 
int TINER_BSP 

} S_acceaa_point 

} FDTSV.lR; 

TIMER_REQ; •I 
TIMER_BSP; •/ 

Figure 3.1: Signal Parameter Block Structure 

15 
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The first level variant 1tructune identify the channel types while the second level variant 

structures identify the interaction primitives within the channels. For easy identification, the 

interaction primitives defined for uch channel type are numbered. The identity numbers as­

signed by the Eatelle-C compiler for the iDteraction primitives are shown in Figure 3.1. The 

innermost structure■ repreeent an enumeration of the parameters for the interaction primitives. 

These innermoet 1tructures are abeent for interaction primitives without parameters. 

3.1.2 Module Variable Block 

The module variable block (FDTLVAR) is a two-level variant record structure that 

contains the complete global state variables for all module bodies. The module variable block 

generated for the alternating bit protocol is presented in Figure 3.2. 

The outer level variant structures identify the module bodies in the Estelle specification. The 

inner structures ,tore all ~or and minor state variables declared for the module bodies. The 

variables are collected from the various Estelle declaration sections. The first set of variables is 

extracted from the module parameter declaration and the exported variable declaration sections 

in the associated module header declarations. The rest of the variables are derived from the 

STATE, STATESET, VAR and MODVAR declaration sections in the module bodies. The origins of 

the various variables in the FDTLVAR are shown in Figure 3.2 as comments. Module bodies 

without any variable declaration■ are not represented in the FDTLVAR structure. 

3.2 Run-time Control Blocks 

Three control blocks are used to represent all of the specification independent bookkeeping 

information during run-time. The following sections describe the three control blocks and 

conclude with a discussion on the improvements made with respect to the old Estelle-C run-
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typedef union { 
■truct { 

int cep_id 
int flag: 
int data: 

} uer_body: 
■truct { 

int count: 
} network_body; 
•truct { 

int time 
int FDT3 
int ■top 
int ■top_bia 

} ti■er_body; 
■truct { 

int cep_id; 
aet_ type EITHER 
int STATE: 
n.data_type buf; 
■■g_type recv_asg 
■■g_type ••nd_■■g 
buf_type recv_buf 
buf_type •end_buf 
int recv_■eq 
int ■end_aeq 

} datax_body; 
■truct { 

int cep_id: 
FDTPCB •ti■er_■odule 
FDTPCB •datax_■odule 

} abit_body; 
■truct { 

FDTPCB •abit_aodule [ 2 ]; 
FDTPCB •uer_■odule [ 2 ]: 
FDTPCB •network_■odule 

} SPECIFICATION 
} FDTLV.il; 

/• NODULE uaer_body •/ 
/•Parameter•/ 
/• Variable •/ 
/• Variable •/ 

/• NODULE network_body •/ 
/• Variable •/ 

/• MODULE timer_body •/ 
/•Parameter•/ 
/•Temporary•/ 
/• Variable •/ 
/• Variable •/ 

/• MODULE datax_body •/ 
/•Parameter•/ 
/• Stateaet •/ 
/• State •/ 
/• Variable •/ 
/• Variable •/ 
/• Variable •/ 
/• Variable •/ 
/• Variable •/ 
/• Variable •/ 
/• Variable •/ 

/• MODULE abit_body •/ 
/•Parameter•/ 
/• Nodvar •/ 
/• Modvar •/ 

/• SPECIFICATION abit_apec •/ 
/• Nodvar •/ 
/• Modvar •/ 
/• Modvar •/ 

Figure 3.2: Module Variable Block Structure 

17 



CHAPTER 3. ESTELLE TO O TRANSLATION 18 

time control blocks. 

S.2.1 Signal Control Block 

Each unit of interaction (or signal) aent through a channel is represented by a signal 

control block (FDTSCB) in conjunction with a 1lgnal parameter block (FDTSVAR) . As 

described in Section 3.1.1, the FDTSVAR is a epecification dependent structure generated from 

the channel type declaration aections in an Estelle specification. In contrast, the FDTSCB is 

a specification independent run-time control block (Figure 3.3). The two blocks are linked 

■tra.c:t FDTSCB_1truct 
{ 

•truct FDTSCB_1truct •next; 
int cid; 
int •id; 
int •■var: 

}; 

typedef ■truct FDTSCB_■truct FDTSCB; 

/• Next signal •/ 
/• Channel id •/ 
/• Primitive id•/ 
/• Parameters •/ 

Figure 3.3: Signal Control Block Structure 

together by the pointer ■var located in the FDTSCB. Since the FDTSVAR contains only 

interaction par&meter fielda (aee Figure 3.1), additional information must be provided within 

the FDTSOB for the identification of interaction primitives. With the FD TS VAR implemented 

u a three-level variant record structure, two identifiers are necessary to uniquely identify the 

interaction being conveyed. The fint identifier, encoded in the field cid, indicates the index 

number of the target interaction point within the target module. Since each interaction point 

is usociated with only one channel type in Eetelle, thia number also identifies the channel type. 

The second identifier, stored in the field aid, is uaed to epecify the interaction primitive within 
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the channel identified by cicl. The uxt field ia Uled for queue manipulation at the target 

interaction point. 

3.2.2 Channel Control Block 

Each interaction point uaociated with a channel ia represented by a channel control block 

(FDTOOB). The number of FDTOOB, neceua.ry to completely specify an Estelle channel at 

run-time depends on the number of CONNECT and ATTACH statements used to build the channel. 

Every CONNECT or ATl'AOH operation involves two FDTOCBs. 

The bookkeeping for interaction point binding ia maintained by three pairs of variables 

within each FDTOCB (See Figure 3.4). The pair (targeta, channela) is used to specify the 

atruct FDTCCB_■truct 
{ 

atruct FDTSCB_atruct •head, •tail: 

}; 

atruct FDTPCB_atruct 
int 
int 

•targeta, •targetc, •targete; 
cha.nnela, cha.nnelc, channele; 
qo.eue_kind: 

typedef ■truct FDTCCB_■truct FDTCCB; 

Figure 3.4: Channel Control Block Structure 

target interaction point of an ATI'AOH operation when the target interaction point is located 

at a child module. The field target• indicates the target module while the field channela 

specifies the index number of the target channel within the target module. Similarly, the pair 

(targetc, channelc) ia used to repraent the target interaction point of a OONNEOT operation 

or the target interaction point of an ATTACH operation when the target interaction point is 

located at a parent module. Because connected interaction points may be further attached to 
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other interaction pointa, in order to be efficient in determining the real target interaction point 

when interaction are aent between module, the pair (targete, channele) is used to specify the 

effective target interaction point directly. Thia tremendous amount of bookkeeping is necessary 

to keep track of the ch&1111el binding between modules 10 that channels may be DISCONNECTed 

and DETACHed afterwards. In contrast, under the old run-time environment for Estelle, where 

channels are prohibited from unbinding, only the effective target interaction point needs to be 

maintain~d in each FDTCCB (Ford85}. 

The other fields with the FDTCCB depicted in Figure 3.4 are used to implement the inter­

action queue. When an interaction, represented by a FDTSCB is sent through one FDTCCB, 

it will be queued at the opposite FDTCCB indicated by the (targete, channele) pair. The 

head and tail fields are pointers to the first and last FDTSCBs in this queue, respectively. 

In Estelle, interaction points may be specified with either COMMON or INDIVIDUAL queueing 

discipline. The queue.Jdnd field ia uaed to indicate this queueing discipline for the interaction 

point. 

3.2.3 Process Control Block 

Each module instance at run-time ia represented by a proceBB control block (FDTPCB) 

in conjunction with a module variable block (FDTLVAR). While the FD TL VAR, as described 

in Section 3.1.2, is a 1pecification dependent 1tructure generated from the various variable 

declaration ■ections in an Eatelle apecification, the FDTPCB is a specification independent 

run-time control block (Figure 3.5). This control block is uaed to store bookkeeping information 

for each module instance for the duration of ite emtence at run-time. 

The fields parent, db and ref are pointers ueed to maintain the static module hierarchical 

structure at run-time. They point to the parent module, the next sibling at the same hierarchical 
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atruct FDTPCB_■truct 
{ 

}: 

atruct FDTPCB_atruct 
■truct FDTPCB_atruct 
atruct FDTPCB_atruct 
■truct FDTCCB_atruct 
int 
int 
int 
int 
int 
int 
int 
int 
int 
int 

•parent; 
•aib; 
•ref; 
•chan; 
ipn11lll; 
ipnext; 
prio; 
aigent; 
delay; 
to, ti: 
apont; 
export; 
C•tr&JU1) 0: 
•Ivar; 

typedef ■tract FDTPCB_atruct FDTPCB; 

/• Parent FDTPCB •I 
/• Hext sibling FDTPCB •I 
/• First child FDTPCB •I 
I• FDTCCB array •I 
/• Size of FDTCCB array •I 
/• Next ip to search •I 
/• Hierarchical level •I 
/• Pending signal count •I 
/• Delay clause id •I 
/• Delay time limits •I 
/• Spontaneous present? •I 
/• Export variables? •I 
/• Tr&JU1ition routine •I 
/• Nodule variable block•/ 

Figure 3.5: Process Control Block Structure 

21 
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level and the head of the lilt of child modulet at the next hierarchical level, respectively. 

The addreu of the tranaition NM1tine which implements the extended finite state machine 

specified for the module is ■tored at the field trana. The field lvar is a pointer to the FDTLVAR 

block. 

Since the number of interaction points in a module can be statically determined, all channel 

control blocks FDTOOB• needed for a module are placed into one common array. The field 

chan is used to point to this FDTOOB array while the field ipnum is used to store the size of 

this array. Each interaction point is usigned an index number into this array starting at the 

index value '1'. The FDTOOB with the index value of '0' is an extra channel control block 

reserved for the COMMON queue. Interactions destined for a target interaction point specified 

with COMMON queueing discipline are queued in this COMMON FDTOCB. Interactions destined 

for a target interaction point specified with INDIVIDUAL queueing discipline are queued in the 

specified target FDTOOB. The field aigcnt indicates the sum of all pending interactions in 

the queues. 

The three fields delay, to and t1 are used to implement DELAYed transitions (See Sec­

tion 4.2.3 for detail). The remaining fields identify the hierarchical level of the module (prio), 

the next interaction queue to examine for the pending interactions (ipnext), and whether or 

not the module hu spontaneous tranaitiona (apont) and export variables (export). 

3.2.4 Improvement over past :Estelle Compilers 

The run-time data 1tructurea Wied in the new Estelle-C compiler represent some of the 

major improvements made to the new compiler u compared to those used in the old compilers 

[Gerb83,Ford85]. 

In the past, the signal parameter block ia placed within the signal control block; and the 
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module variable block is placed within the process control block. Since, these two combined 

control blocks contain 1pecifi.cation dependent information, they are different for different Estelle 

specifications. Furthermore, unce the run-time routines must have access to the control blocks, 

it is necessary for the old run-time routines to be recompiled for different specifications. With 

the arrangement uaed in the new Estelle-C compiler, the specification dependent details are 

isolated into the FDTSVAR and FDTLVAR structures while the control blocks remain the 

same for all specifications. Consequently, the new run-time support routines are specification 

independent and they no longer require recompilation. 

A second improvement is made in the structuring of the FDTCCBs. In the old Estelle 

compiler, the FDTCCBa are linked together into a linear list. Therefore, every channel access 

must involve a linear search along this list for the required FDTCCB. The new Estelle-C 

compiler takes advantage of the fact that the number of channel is fixed for each module and 

assigns a unique index number to each channel. Channel access in the new Estelle-C compiler 

is thus performed by array indexing rather than by linear searching. 

3.3 Run-time Support Routines 

The control blocks described 10 far are co11.1tructed into a run-time data structure that 

reftects the module organization defined in the Estelle specification. This structure is built 

using a aet of pre-written support routines. The calls to these routines are made by codes 

incorporated. within the two aeta of generated module routines. The support routines can be 

divided into three groups, each or which manipulate. one type of control blocks. The following 

sections describe these three groups of eupport routines. 
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s.s.1 Proceas Control Block Routines 

There are two proc- control block routines uaed to create and destroy process control 

blocks. The codea for theae routines are depicted in Appendix D. The routine FDTPCBini t () 

creates and initia.lisee an FDTPCB. Thia routine is used to instantiate a new Estelle module 

and it implement. all of the 1pecification independent operations required for the INIT operation 

defined in E■telle. The fir■t part of the initialization process results in the linking of the newly 

created FDTPCB to the FDTPCB of its parent module and to the FDTPCBa of its other sibling 

modules. Afterwards, the appropriate number of FDTCCB, are created for the module being 

instantiated. Finally, other bookkeeping variables are initialized. The specification dependent 

operations are individually implemented in the initialization routines generated for each defined 

Estelle module (See Section 3.4.1 for detail). 

The routine FDTPCBtera() destroy, a specified module and all its child modules recursively. 

This routine implement, the RELEASE operation defined in Eetelle. 

S.S.2 Channel Control Block Routines 

The channel control blocks are manipulated by a set of seven run-time routines shown in 

Appendix E. These routines can be divided into two functional groups. 

One group consiats of the two routinee, FDTCCBini t O and FDTCCBterm O , are used to 

allocate and to release the appropriate number of channel control blocks for a module. These 

two routines are in turn uaed by the routines, FDTPCBinitO and FDTPCBtermO, respectively, 

when modules are created and destroyed. 

The other group is made up of five routines ueed to bind and unbind pairs of communi­

cating channel control blocks. The routines FDTCCBconnect() and FDTCCBdiaconnO are used 
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to bind and unbind FDTCCB• of modules at the same level in the module hierarchy. The 

routines FDTCCBattach(), rDTCCBcletacht () and FDTCCBdetach2 0 are used to bind and un­

bind FDTCCBa of modules at acljacent levels in the hierarchy. Essentially, they implement the 

Estelle operations OONNEOT, DISOONNEOT, ATTAOH, and DETACH respectively. 

3.3.3 Signal Control Block Routines 

Interactions queued at a FDTCCB are manipulated by four pre-written library routines 

shown in Appendix F. In this version of the Estelle-C run-time environment, the interaction 

queues are implemented u ■ingly-linked circular queues. 

The routine FDTSCBaignal () is uaed to dispatch an interaction through a specified channel. 

A call to this routine is generated u the last 1tep in the translation of an OUTPUT statement (See 

also Section 3.5.2). The newly dispatched interaction is placed in either the COMMON channel 

or the specified target channel of the target module depending on the queueing discipline of the 

target interaction point (See also Section 3.2.3). 

The routine FDTSCBapont () is uaed when it is nece■eary to generate a spontaneous signal. 

A call to this routine is iuued, when appropriate, after a transition is completed. 

The routine FDTSCBdiapoae O is used after a transition has been completed in order to 

disposed of a received input interaction or a spontaneous interaction (See also Section 3.4.2 for 

details). 

Finally, the function FDTSCBpending() is used by the global scheduler to search for a pend­

ing signal destined for a particular proce88. 
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3.4 Module Translation 

The module abstraction in an Eatelle •pecification represents the basic unit of protocol 

specification. A module type ia declared u an abstract data type. The external visibility of 

the module is defined in a module header while the internal behavior is specified in a module 

body. The Eatelle language definition allows several different module bodies to be specified 

for each module header. 

As described in Section 3.1.2, the module head and the global declarations within the 

module body are ued to generate declaration •tructures within the module variable block 

(FDTLV.A.R). The two C routines that are generated from each module are translated from 

the initialization parts and the transition parts within the module body. The convention used 

in the Estelle-C compiler ii to name these routines after their corresponding module body. In 

order to distinguish the initialization routine from the transition routine, the prefix FDT is added 

to the name of the initialization routine. There is one exception to this naming convention. 

The two routines translated from the outermost SPEOIFIOATION module are always named 

FDTSPECIFICATION () and SPECIFIC!TION (), respectively. 

The following sections describe the general structure of the two generated implementation 

routines. The diecWl8ion on the translation of the transitions themselves is deferred until Sec­

tion 3.5. 

a.4.1 Initialization Routine 

The lnltlallsatlon routine for a module ii generated from the initialization parts within 

a module body. This routine is used to Bet up the initial states of the extended finite state 

machine representing the module. The initialization routine for a module is executed whenever 
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an INIT statement referencing the module ia executed by its parent module. 

The general •tructure for an initialisation routine ia depicted in Figure 3.6. The first part of 

the routine allocates a control block for the module. Initialization begins by calling the run-time 

support routine FDTPCBinitO to create a FDTPCB. Afterwards, an FDTLVAR is created and 

linked to the FDTPCB. The routine FDTPCBizµt() implements the specification independent 

aspects for the INIT •tatement (See Section 3.3.1 for detail). The rest of the initialization routine 

represents· the specification dependent portion of the initialization process. 

After a FDTPCB and a FDTLVAR has been allocated for the module, the initialization 

routine begins with module parameter initialization. All the module parameters declared in the 

module header section for the module are paased to the initialization routine. These parameters 

are copied into the FDTLVAR by aasignment statements. 

The next section in the routine contains the code for the initialization transitions. These 

transitions are usually responsible for calling other initialization routines which, in turns, instan­

tiate the underlying submodules and then interconnect these submodules to the module being 

initialized. Other activities performed by the initialization transitions includes initializing the 

various global variables and setting the module into the proper state before the subsequent 

transition execution. 

If the module contain spontaneous transitions, a spontaneous signal is generated in the next 

eection. The last step in the initialization routine returns the address of the created FDTPCB 

to the parent module which calls this initialization routine. This pointer is stored within the 

FDTLVAR of the parent module for •ub,equent references to this particular child module . . 
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■tract FDTPCB •FDTbod:, (parent, arg1, arg2, ... ) 
FDTPCB •parent; 

/• type declaration■ for arg1, arg2, ... •/ 
{ 

} 

FDTPCB •pcb; 
.FDTLV.ll •lvar; 

I• Create• control bloc:U •/ 
pcb • FDTPCBinit (parent, ipnu, SPONTbody, XPORTbody, TRANSbody); 
pcb->lvar •(int•) (lvar • (FDTLVAR •) u.lloc(sizeof(FDTLVAR))); 

/• Copying arguent■ to ■odule variable block•/ 
lvar->body.arg1 • arg1; 
lvar->body.arg2 • arg2; 

/• Initialization transitions (See Section 3.6) •/ 

/• Generate■ a apontaneoua interaction if possible•/ 
trana_end: 
if (pcb->■pont) 

FDTSCBspont (pcb); 
return (pcb): 

Figure 3.6: Initialization Routine 
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3.4.2 Transition Routine 

The transition routine for a module ia generated from the transition parts within a 

module body. This part of the Estelle 1pecification i■ used to define the state transitions that 

constitute the extended finite state machine representing the module. The routine itself is called 

whenever the run-time ■cheduler aelects the corresponding module for execution. 

The general structure of a transition routine is depicted in Figure 3. 7. Two parameters 

are passed to each tran1ition routine when the module is executed by the scheduler. The 

parameter procea■ supplies the routine with the correct FDTPCB for the module while the 

parameter signal indicates the interaction selected by the scheduler to be processed by the 

module. Within the routine, the local variables 1 var and a var are used to facilitate access to 

the FDTLVA.R and FDTSVA.R control blocks, respectively. 

The codes in the first part of the routine implements the module transitions. The details 

for these codes are described in Section 3.5. The final section in the routine contains the exit 

sequence for the module. The details for these codes are explained in Section 4.2. 

3.5 Transition Translation 

In Estelle, the transitions for an extended finite 1tate machine may be described in either an 

initialization part or a transition part within the module bodies. There may be zero or more of 

these transition description sections within a module body. A module without any initialization 

part will be initialized with the creation ofit1 FDTPCB and FDTLV.AR blocks and the copying 

of its module parameters, if any, into its FDTLVA.R. A module without any transition part 

are inactive after its initialization. Inactive modules are generally used as structuring devices 

which impose an hierarchical organization to their underlying child modules. 
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body (proceaa, ■ignal) 
FDTPCB •process; 
FDTSCB •■ignal; 

{ 

} 

FDTLVil •lvar • proceaa->lvar; 
FDTSVil ••var• ■ignal->avar; 

I• Code for tran.aitiou (See Section 3.6) •/ 

/• Exit code when no transition was triggered•/ 
if (■ignal->cid •• 0) 

FDTSCBdispoae (process, signal); 
return; 

/• Exit code when a transition was triggered•/ 
trana_end: 
FDTSCBdispoae (process, signal); 
if (procea■->apont) 

FDTSCBspont (proceaa); 

/• Exit code for apontaneoua transition•/ 
■pont_end : 
proceaa->delay • O; 

Figure 3.7: Transition Routine 

30 
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Each transition ia apecified ia twe parts. Tlae actions to be performed by the transition are 

defined by a Pucal style atatement Weck. Thia tranaition block is preceded by zero or more 

transition clauses. The tranaition clauaes are used to specify the enabling conditions which must 

be satisfied before the tranaition block can be executed. This eection describes the translation 

of the transition claUH8 followed by the translation of the transition blocks. 

S.5.1 Transition Clauses 

In Estelle, transition clauses may be used to apecify the enabling conditions of a transition in 

terms of the present state (FROM clause), the input signal (WHEN clause), an enabling predicate 

(PROVIDED clause) or a transition priority (PRIORITY clause). Other clauses may be used to 

specify actions such as going to a specified next state (TO clause) or delaying the action for a 

specified time (DELAY clause). Finally, there is also a clause that can be used as a shorthand 

notation for a sequence of transition (ANY clause). The translation scheme for generating codes 

for the enabling transition clauses ia essentially one of substituting a corresponding boolean 

expression for the clause. The strategy for translating the action transition clauses is to place 

statements that perform the indicated action within the enclosing transition block. Compare 

Appendices B and C for illustrations. 

The translation of most of the transition clauses are straight forward. A FROM clause is 

translated into a boolean expreuion testing for the current state (Figure 3.8). As described 

in Section 3.2, the current state for a module is atored u Uie variable STATE in the module 

variable block (FDTLV.AR) for the module. The WHEN clauae ia also translated into a boolean 

expression (Figure 3.9). Two tests must be made. F~t the specified interaction point is 

tested against the incoming signal (aignal->cid). Then the incoming interaction primitive 

type (signal->sid) must match the primitive specified in the clause. 
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if (lvar->body.STATE •• <FROM atate>) 
{ 

... I• Nested transitions•/ 
} 

Figure 3.8: Codes generated for a FROM clause 

·· if ((aignal->cid •• <channel>) It (signal->sid • • <primitive>)) 
{ 

... I• Nested trauition.a •/ 
} 

Figure 3.9: Codes generated for a WHEN clause 
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Although the natural translation for a PROVIDED clause is also a boolean expression, but 

because of the poesible presence of an OTHERWISE condition, its translation is not straight 

forward (Figure 3.10). The 1trategy taken in thia implementation is to declare and initialize a 

boolean flag to TRUE before the execution of the boolean expressions. After every PROVIDED 

claU1e where a boolean expreuion ii 1pecified, a statement ii added to set the flag to FALSE. If 

the boolean expreaion ii evaluated to TRUE, then the flag will be set to FALSE, otherwise the 

flag will remain TRUE. If an OTHERWISE condition is specified in the final PROVIDED clause, a 

boolean expression ii generated to teat the boolean flag for the TRUE condition. In this way, 

the OTHERWISE tramition ii executed if and only if none of the previous boolean expressions 

are 1atisfied. 

The DELAY clauae ii the most complicated clause to translate (Figure 3.11). Three auxiliary 

variables (delay, to, t1) located in the FDTPCB are used in order to implement this clause. 

Each DELAY clause specified ii aasigned an unique number. The variable delay is always set to 



CHAPTER 3. ESTELLE TO C TRANSLATION 

{ 

} 

if (boolean expre■■ion 1) /• PROVIDED clause 1 •/ 
{ 

} 

flag• 0 /•Fil.SE•/; 
{ 

/• Ne■ted transitions•/ 
} 

if (boolean expression 2) /• PROVIDED clause 2 •/ 
{ 

} 

flag• 0 /•Fil.SE•/; 
{ 

/• •••ted tran■itiona •/ 
} 

if (flag•• 1 /• TaUE •/) I• OTHERWISE clause•/ 
{ 

... I• •••t•4 tran■itiona •/ 
} 

Figure 3.10: Coda generated for a PROVIDED clause 

33 



CHAPTER 3. ESTELLE TO C TRANSLATION 

{ 

} 

proceas->tO • ti■e(O); 

/• Set ti■er if not already set•/ 

if (procesa->delay I• <delay id>) 
{ 

} 

proceaa->t1 • proceaa->tO + <delay time>; 
proc•••->delay • <delay id>; 

I• Teats for ti■er expiration•/ 

if (proce■■->tO >• proce■■->t1) 
{ 

} 

else return; 

Figure 3.11: Coda generated for a DELAY clause 
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the number usigned to the DELAY claue currently in effect. If none is in effect, the variable is 

set to the value '0'. The variable to ii uled to store the current time while the variable t1 is 

used to store the expiration wne for the delay. See Section 4.2.3 for the run-time effect of this 

clause. 

The TO clause ia translated into a statement in the enclosing transition block which changes 

the module atate variable to the indicated at.ate in the TO clause. If there are several transition 

block nested under a TO clause, then the state change statement is replicated in all of the 

enclosing transition blocks. 

The ANY clause ia translated into a simple for statement which steps through all values in 

the specified 1C&lar domain. If more than one domain ia specified, a set of nested for statements 

are used. 

Within a transition routine, the transitions are layed out in the same sequence that they 

are defined in the Estelle specification. Therefore, the transition clauses will be evaluated in 

the order in which that they are specified. The transition that will be executed will be the first 

transition which enabling cla118e8 are all 1&tisfied. The use of this scheme implies that the order 

in which the transitions are specified ia significant. Consequently, the PRIORITY clause is not 

implemented in the Estelle-C compiler. The user can always rearrange the transitions in the 

order of their priority. 

Although the 1eheme used is deterministic, the Estelle definition does allow the protocol 

implementer to make th.ia choice [Eate86). If non-deterministic transition is to be supported, 

all of the transition clauses must be evaluated to determine the enabled set. From the enabled 

set of transitions, the ones with the highest priority and which also satisfy the delay criteria 

are selected. Finally, from this fireable set, a transition must be offered to be executed non-
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deterministically. Thill three -.p aelection proceu will only make for an inefficient protocol 

implementation. 

3.6.2 Tranaitlon Block• 

The tramlation of the Puca.I ■tyle 1tatement11 in a transition block into equivalent C style 

statements is generally done by ■traight 1ubstitution. The problems encountered are already 

noted by Ford and Lau (Ford85,Lau86]. Moat of these difficulties have to do with Pascal 

constructs which have no equivalence in C. 

Most of the special ■tatements provided in Estelle are translated into subroutine calls to the 

appropriate run-time support routines which implement the corresponding functions. These 

routines are described in Sections 3.3.1 and 3.3.2. 

The OUTPUT ■tatement ia tramlated into a C block containing a local pointer variable news­

var (Figure 3.12). Thia local variable is used to allocate a signal parameter block FDTSVAR 

{ 

FDTSVAR •newsvar • (FDTSVAB. •) aalloc(aizeot(FDTSVAR)); 

:newavar-><cha.nnel>.<priaitive>.<para■eter1> • <value1>; 
:newavar-><cha.nnel>.<priaitive>.<parameter2> • <value2>; 

FDTSCBaignal (proceaa, <channel id>, <primitive id>, newsvar); 
} 

Figure 3.12: Codee generated for an OUTPUT statement 

within the block. Then, the parameters ■upplied to the OUTPUT statement are copied into the 

FDTSVAR. Finally, a signal control block (FDTSCB) is constructed and appended to the des­

tination queue specified in the OUTPUT ■tatement using the run-time routine FDTSCBsignal O. 



Chapter 4 

Estelle Run-time Execution 

An executable program generated from the Estelle specification described in Chapter 3 still 

only represents a static description of the Estelle specification. It is only when this C program 

is executed that a dynamic entity will result. This chapter describes the inner working of the 

generated program during execution. 

4.1 Run-time Organization 

The execution of an Estelle specification ia implemented as a two-stage process driven by 

the main driver routine supplied in the Estelle run-time support package (Figure 4.1). First, 

aain() 
{ 

FDTPCB •root: 

root• FDTSPECIFICATION(llULL): 
FDTSCBexec(root): 

) 

Figure 4.1: Main Driver Routine 

the driver constructs a run-time structure to represent the initial module hierarchy for the 

37 



CHAPTER 4. ESTELLE RUN-TIME EXECUTION 38 

specification by calling the initialisation routine, FDTSPECIFICATION (). Then, the driver calls 

the run-time scheduler routine, rDTICBexec (), to take over the execution of the protocol. 

The following aectiont explain how two dependent run-time structures are generated from 

the same set of control blocks and how these 1tructures are used by the run-time scheduler to 

execute an Estelle 1pecification. 

4.1.1 Initialization Routines 

The initialization routines generated from the Estelle module body declarations are invoked 

in a sequence which reflecta the nested module organization defined in the Estelle specification. 

As noted in Section 3.4, the initialisation routine of the specification module is always named 

FDTSPECIFICATION(). This routine is the only specification dependent routine that is directly 

invoked by the run-time aupport ■y'9tem. Consequently, the use of a fixed name for this routine 

is one of the reasona why the new Eatelle run-time aupport system needs not be recompiled for 

every different Estelle ■pecification. 

The function of an initialisation routine for a module is to create the two control blocks, 

FDTPCB and FDTLVAR, which when taken together, represent an instance of the module, and 

to execute the initialisation routines of all ita child modules. The result of each invocation of 

an initialization routine is the aimultaneoua construction of two tree structures which represent 

the initialized module and all ita child modules in two different ways. 

In one system, each tree atructure conatructed by a child module is stored in a module 

variable located in the FDTLVAR of the parent (See Figure 3.2). After the initialization 

process, a parent module can refer to any of ita child modules by name through the use of these 

module variables in its FDTLVAR. This ayatem is uaed within the implementation routines 

generated from the Estelle apecification. The aecond aystem is generated automatically when 
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the initialization routines invoke FDTPCBini t () to create the F DT POBs. This system is used by 

the run-time acheduler to refer to the modules anonymously and in a specification independent 

fashion. 

4.1.2 Scheduler Routine 

The function of the acheduler is to repeatedly select an interaction from the pool of pending 

interactions and to execute the appropriate module to process the selected interaction. The 

scheduling algorithm med is, in essence, a pre-order traversal of the module hierarchy tree in a 

round-robin manner. However, the scheduling algorithm is not straightly round-robin because 

of the parent/child priority relationship which exists in the module hierarchy. The scheduler 

routine is shown in Figure 4.2. 

The scheduler keeps track of a current module for each level in the hierarchy. At any one 

time, the current module at one of these level is the current module in the system. The scheduler 

first checks if there are any pending interactions for the module. If a pending interaction exists, 

then the current module ia eelected to be executed. There is also the concept of a next level. If 

no pending interaction exists, the next level will be one level down. But, if a pending interaction 

exists and the execution of current module affects 10me of its ancestor modules, then the level of 

the ancestor module cloeeet to the specification module will become the next level. Otherwise, 

the next level is still the current level. In any case, the next module to be selected at the current 

level will be the next eibling module of the current module. 

To eummarize, the next level stays at the current level or goes up if a pending interaction 

exists for the current level. Otherwise, the next level becomes one level down. This scheduler 

algorithm eneured that when a module hu the potential to execute transitions, none of its 

child modules can execute. The algorithm aleo eneures against module starvation because it 
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FDTSCHexec (root) 
FDTPCB •root; 

{ 

} 

CurrLeTel • (FDTSCH •) ulloc(aizeof(FDTSCH)); 
CurrLeTel->prev • CurrLevel; 
CurrLeTel->uxt • IULL; 
CurrLeTel->pcb • root; 
while (1) 

} 

{ 

CurrBlock • CurrLevel->pcb; 
CurrS1gnal • FDTSCBpeDding(CurrBlock); 
if ( CurrSignal I • JfULL) 

{ 

} 

if (CurrBlock->export) 
lextLevel • CurrLevel->prev; 

.1 .. 
llextLevel • CurrLevel; 

/• Tranaition routine ■ay change NextLevel *I 
CurrBlock->trana (CurrBlock, CurrSignal); 

elae if (CurrBlock->ref I• NULL) 
{ 

} 

if (CurrLevel->next •• NULL) { 
••xtl.eTel • (FDTSCH •) aalloc(aizeof(FDTSCH)); 
••xtLevel->prev • CurrLevel; 
lextLevel->next • NULL; 
••xtLevel->pcb • CurrBlock->ref; 

} .1 .. { 
••xtLevel • CurrLevel->next; 
if (NextLevel->pcb •• NULL) 

lextLevel->pcb • CurrBlock->ref; 
} 

CurrLeTel->pcb • CurrBlock->aib; 
CurrLeTel • llextLevel; 
while (CurrLeTel->pcb •• NULL) 

CurrLevel • CurrLevel->prev; 

Figure 4.2: Run-time Scheduler Routine 
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is not possible for a module to execute two transitions in a row even if it has several pending 

interactions enqueued at the Nine time. 

4.2 Transition Processing 

After the scheduler executes the transition, routine of the current module, the next step is 

for the transition routine to search for the first transition within the module which satisfies all 

its enabling conditions. This transition is then executed to process the input interaction. The 

following sections elaborate on the procedures for processing transitions in various situations. 

4.2.1 Input Transitions 

When all the enabling condition of an input transition is satisfied, the actions specified in its 

transition block is executed. After the completion of the transition actions, the module performs 

an exit sequence which is common to all input transitions (See Figure 3. 7). First, because the 

interaction which caused the transition has already been processed, it is disposed. Second, 

because the actions of the just completed transition may have enabled one of the spontaneous 

transitions in the module, actions must be taken to ensure that the scheduler will execute the 

module once more in order to check for this situation. If a pending interaction exists for the 

module, nothing needs to be done. However, if none exists then a spontaneous interaction is 

generated for the module by the use of the routine FDTSCBspont(). Finally, because the just 

completed transition would have nullified any pending delayed transition, the variable delay 

in the FDTPOB is cleared. 



CHAPTER 4. ESTELLE RUN-TIME EXECUTION 42 

4.2.2 Spontaneous Transitions 

The exit aequence after the completion of a 1pontaneous transition is a lot simpler than 

that for an input transition. There are two reasons for this difference. Firstly, if the interaction 

selected for the module is an input interaction, then it will not be processed by the spontaneous 

transition. Therefore, the interaction aelected · for the module by the scheduler should not be 

disposed. Secondly, if the interaction is a 1pontaneous interaction, then another spontaneous 

interaction must be needed to check for more enabled spontaneous transitions. Again, there is 

no need to dispose the interaction. The only action necessary after a spontaneous interaction 

is to nullify any pending delayed transition (See Figure 3.7). 

4.2.3 Delayed Transitions 

Delayed transitions are spontaneous transitions with additional timing constraints. How­

ever, unlike other transitions, delay transition also has a entry code sequence (See Figure 3.11). 

If the transition is newly enabled, then the delay parameters are saved by this entry sequence 

into the FDTPCB of the module. A desirable side effect of this action is that it will also nullify 

another pending delayed transition in the module. In the next step, the delay timer is checked. 

H the delay con■trainta are satisfied, the transition is executed. In this case, the exit sequence 

for it is identical to that for a regular spontaneous transition. Otherwise, control is immediately 

returned to the acheduler. This bypassing of the exit sequence will cause the selected interaction 

for the module to remain pending and to cauae the scheduler to execute the module at a future 

time. 
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4.2.4 No Enabled Transitions 

The final situation which muat be taken into account is the situation in which the interaction 

selected by the 1eheduler does not trigger any transitions. This situation can occur because 

the scheduler has no knowledge of the transitions within the transition routines. Therefore, 

the availability of a pending interaction does not guarantee its processing and disposal. This 

situation is most likely caused by a •pontaneous interaction which is used only to check for 

enabled spontaneous transitions. The actions needed to handle this situation is to dispose the 

interaction if it is spontaneous, and to leave it pending in the queue if it is not. In order to help 

prevent deadlock, when the module is again selected for execution, the scheduler will search for 

pending interactions at other interaction points first. 
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Conclusions 

The present study found substantial syntactic and semantic differences between the Estelle 

language as implemented by the existing UBC Estelle-C compiler and that specified in the latest 

ISO document [Este86] and cumulated in the construction of a new Estelle-C compiler. The 

new compiler supports a large subset of the latest Estelle language specification. The following 

sections summarize the present work and suggest possible future studies. 

5.1 Thesis Summary 

As stated in Section 2.3, the major motivation for developing the new compiler is to upgrade 

an existing UBC Estelle-C compiler to support the latest Estelle language specification. The 

new compiler fulfills this goal by 1upporting dynamic reconfiguration of the various entities in 

a protocol specification. However, there are aeveral Estelle features not included in this new 

compiler. The PRIORITY clause iii not BUpported due to the reasons given in Section 3.5.1. 

Additional Estelle features missing are the ALL statement, the FORONE statement and the 

EXIST expression which are uaed for implicit accea to module instances by types rather than 

by names. A general solution that implements these constructs would require a module directory 

service to associate module types with module names. The module directory would be further 
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complicated by the presence of indexed module names. In view of the fact that these constructs 

can usually be replaced by a mixture of iterative and conditional statements designed for specific 

situations, their general support would not be cost effective in terms of run-time overhead. 

Other issues reeolved in the new Estelle-C compiler include problems cited by Lau in regards 

to the old compiler [Lau86]. The old compiler handles module parameter passing very clumsily. 

In the new compiler, module parameters are automatically accessible in the module initialization 

routines, the module tranaition routines and the subroutines nested within the Estelle module. 

Global variables are a1ao 1Upported as defined by the formal semantics in the new Estelle 

language specification. The Pascal multi-dimensional ARRAY type is now available for user 

defined variables as well u MODULE and IP types. However, the data type SET is only partially 

supported in the form of STATESET. Other Pucal-to-C translation problems that remained 

are in the areas of SET expreasions and nested procedures and functions. These limitations are 

certainly not unsolvable but their solutions are beyond the scope of protocol implementation. 

The new compiler is hand-coded in C without using the UNIX utilities lex and yacc. It 

consists of approximately 300 subroutines totaling to just under 11,000 lines of source code and 

just under HK bytes of object code. The sue of the new compiler compares favorably with 

that of the old compiler which contains over 14,000 lines of 110urce code and just over 14K bytes 

of object code. 

The new Estelle run-time 1upport routines are a1ao ~plemented in C. There are 40 routines 

in the package with approximately 1,600 lines of 110urce code and 7K bytes of object code. In 

contrast, there are only 17 routines in the old run-time 1upport routines with 1,400 lines of 

source code and 2K bytes of object code. 

AB part of the redesign of the Estelle-C compiler, the user operation of the compiler has been 



CHAPTER 5. CONCLUSIONS 46 

greatly simplified. In the old compiler, the user is required to modify certain sections of the 

generated C code u well u the run-time support routines. Consequently, the old compiler was 

labeled with the term "aemi-automatic. • The new compiler translates an Estelle specification 

directly into a compilable C program. Modification of any of the generated C code is no longer 

necessary. In addition, the new run-time aupp.ort routines have been rewritten to contain only 

specification independent detaila and they can be directly linked to the compiled C program 

without the need for recompilation. With these two user-friendly improvements, "automatic" 

implementation of protocola from formal protocol specifications is now realized. 

5.2 Future Work 

Although an executable program can be generated automatically from a formal protocol 

11pecification Wling the new Estelle-C compiler, formal protocol specifications are usually in­

complete. It is the nature of formal specifications to be "completely independent of methods of 

implementation, so that the technique itself does not provide any undue constraints on imple­

menters" [Este86). Examples of implementation dependent properties that are almost always 

left unspecified are functions BUch u user data management routines, timer management rou­

tines and protocol data unit encoding and decoding routines. The user must provide customized 

versions of these functiona manually for the actual implementations in different machine envi­

ronments. However, it may be p088ible to define generic interfaces for these functions to be 

usable from within a formal Estelle specification. The user data management example in the 

Estelle language specification [Este86) presents one poesibility. Another direction for research 

may be in the area of incorporating ASN.l [00186) into Estelle for the specification of protocol 

data unit encoding and decoding functions. 
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The usefulness of E■telle compilers hu already been demonstrated for semi-automatic gen­

eration of communication protocols [Boch86,Lau86,Boch87b] and for automatic generation of 

test skeletons from protocol 1pecificationa [Favr87]. The pouible enhancements of these Estelle 

compilers for the production of emulaton for protocol testing and monitors for protocol perf or­

mance evaluation would be invaluable. Therefore, the further development of novel applications 

using these compilen in other areu of protocol development should be encouraged. 
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spec class 
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t1me_opts 
mod_head_dcl 
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mod-parm ltst 
export_dcl 
mod head 1dent 
mod-body-dcl 
mod-body-tdent 
body def­
declaration 

mod var dcl 
mod-var-def 
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transition 
transition1 
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SPECIFICATION abp_•pec SYBTEMPIOCESS; TIMESCALE •econda; 

CONST 
LO\f_CEP 
HIGH_CEP 

• 1; { Nini.au cep •ub•cript } 
• 2; { NaxillUJI cep •ub■cript} 

TYPE 
cep_type • LOV_CEP .. BIGH_CEP; 
aeq_type • 0 .. 1; 
pid_type • (DATA, ACKN); 
udata_type • INTEGER; 
ndata_type • RECORD 

pid 
cid 
••q 
dat 

END; 

pid_type; 
cep_type; 
Hq_type; 
udata_type 

{ CoDUction end point} 
{ Sequen~e number } 
{ Packet type } 

{ Type of ■e■■age} 
{ Cep of ■ender } 
{ Sequence number} 
{ User data } 

{ Channel between user and alternating bit protocol provider} 

CHANNEL U_acceaa_point (user, provider); 
BY user : 

SEND_REQ (udata: udata_type); 
JlECV_REQ; 

BY provider 
RECV_RSP (udata udata_type); 

{ Channel between alternating bit protocol provider and the network} 

CHANNEL N_accea■_point (uaer, provider); 
BY user: 

DATA_REQ (ndata: ndata_type); 
BY provider 

DATA_RSP (ndata: ndata_type); 

NODULE uaer_type PROCESS (cep_id: cep_type); IP 
U: U_acceH_point(uaer) INDIVIDUAL QUEUE; 

END; { NODULE uaer_type} 

BODY ueer_body FOR uaer_type; 

VAR 
data udata_type; 
flag BOOLEAN; 
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INITIALIZE 

BEGIN 
data:• O; 
flag:• TRUE 

END i { INITIALIZE } 

TRANS 

WHEN U.RECV_RSP 

{ Received data from peer and proceed• to aend next data to peer} 

NAME uaer1 : BEGIN 
data:• data+ 1; 
OUTPUT U.SEND_REQ (data); 
OUTPUT U.RECV_REQ 

END; { uaer1} 

TRANS 

PROVIDED flag 

{ Spontauoua trauition to ••nd initial data} 

NAME uaer2 : BEGIN 
flag:• FALSE; 
OUTPUT U.SEND_REQ (data); 
OUTPUT U.RECV_IEQ 

END; { uaer2 } 

END; { BODY uaer_body} 

NODULE network...type PROCESS; IP 
N: ARRAY [cep_type] OF N_acceaa_point (provider) CONNON QUEUE; 

END; { NODULE network...type} 

BODY network_body POK network..type; 

VAR 
count INTEGER; 

TRANS 

ANY i cep_type DO 
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WHEN N[i].DATA...REQ 

NAME network1 : DOIN 
count:• count+ 1: 
IF count<> 4 THEN 

OUTPUT N[BIOB_CEP-i+1].DATA...ISP (Ddata) 
END: { network1 } 

END: { BODY network_body} 

MODULE abit_type PROCESS (cep_id: cep_type): IP 
U: U_acceaa_point (proviur) INDIVIDUAL QUEUE; 
N: N_acceaa_point (uer) INDIVIDUAL QUEUE: 

END: { NODULE abit_type} 

BODY abit_body FOR abit_type; 

CONST 
RETRAN_TINE • 30; { Retranami■■ion time} 

CHANNEL S_acce■■-point Cu.er, provider); 
BY uer : 

TINER_REQ; 
BY provider: 

TINER_RSP: 

NODULE tiaer_type ACTIVITY (time: INTEGER); IP 
S : S_acceaa_point (provider) INDIVIDUAL QUEUE: 

END: { NODULE tiaer_type} 

BODY timer_body FOR tiaer_type; 

VAR 
■top, ■top_bi■ BOOLEAN; 

INITIALIZE 

BEGIN 
atop :• TRUE: 
atop_bi■ :• TRUE 

END; {INITIALIZE} 

TRANS 

WHEN S.TINER_REQ 
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NAME tiaer1 : BEGIN 
■top :• TRUE; 
■top_bi ■ :• PAI.SE 

END: { ti•r1 } 

TRANS 

PROVIDED NOT ■top_bi■ 

NAME ti■er2: BEGIN 
■top :• PAI.SE; 
■top_bis :• TRUE 

END; { timer2} 

PROVIDED NOT ■top 
DELAY (time, time) 

NAME tiaer3: BEGIN 
■top:• TRUE: 
OUTPUT S.TINER_RSP 

END; { timer3 } 

END; { BODY tiaer_body} 

NODULE datax_type ACTIVITY (cep_id: cep_type): IP 
U U_acce■■-point (provider) INDIVIDUAL QUEUE; 
N : N_acce■■-point (uer) INDIVIDUAL QUEUE; 
S : S_acce■■-point (uer) INDIVIDUAL QUEUE; 

END: { NODULE datax_type} 

BODY datax_body POI datax_type; 

TYPE 
ug_type • RECORD 

ugcid 
..... q 
ugdat 

END; 
buf_type • IECOID 

eapty ....... 
END; 

VAR 
eend_seq ■eq_type; 

recv_■eq ■eq_type; 

cep_type: 
■eq_type; 

udata_type 

BOOLEAN; 
.. ._type 

{ Bend ■equence number } 
{ Receive ■equence number} 
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aend..buf buf_type; { ACICN pending flag 
recv_buf buf_type; { DATA pending flag 
Hnd_ug ug_type; { N•••age being ■ent 
recv_ug ug_type; { Neaaag• nceiTe 
buf ndata_type; { Network buffer 

STATE 
ACK_WAIT, ISTAB; 

STATESET 
EITHER• [ACK_WAIT, ISTAB]; 

PURE .FUNCTION ack..ok (buf: ndata_type) : BOOLEAN; 

{ Check■ ACKN Ma■age in the network buffer} 

BEGIN { ack..ok} 

} 
} 
} 
} 
} 

ack..ok :• (buf.pid • ACKN) AND (buf.aeq • aend_eeq) 
END; { ack..ok } 

PROCEDURE format_data (ug: ug_type; VAR buf : udata_type); 

{ Format• a DATA ••••1• into the network buffer} 

BEGIN { foraat_data} 
buf.pid :• DATA; 
buf.cid :• cep_id; 
buf.eeq :• ug.ugeeq; 
buf.dat :• ug.ugdat 

END; { format_data} 

PROCEDURE format_ack (ug: ug_type; VAR buf : ndata_type); 

{ Place■ an ACICN ■eaaage into the network buffer} 

BEGIN { foraat_ack} 
buf .pid :• ACICN; ' 
buf.cid :• ug.ugcid; 
buf.aeq :• ug.ugHq; 
buf.dat :• ug.ugdat 

END; { for■at_ack } 

PROCEDURE ■tore (VAR buf: buf_type; ug ug_type); 

{ Store■ ••••1• into the 'bllffer} 

BEGIN { atore} 
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buf.eapty :• PAI.SE; 
buf.•-■•1• :• .. g; 

END; { ■tore } 

PROCEDURE r .. ove (VAR buf buf_type; ug .. ,_type); 

{ lmpti•• the buffer} 

BEGIN { reaove} 
buf.eapty :• TRUE 

END; 

FUNCTION retrieve (buf : buf_type) : ug_type; 

{ Retrieve ■ th• --■■age fro■ the buffer} 

BEGIN {retrieve} 
retrieve:• buf.ae■■age 

END; {retrieve} 

FUNCTION buffer_empty (buf: buf_type) BOOLEAN; 

{ Check■ for ••pty buffer} 

BEGIN { buffer_eapty} 
buffer_eapty :• buf.empty 

END; { buffer_empty} 

PROCEDURE inc_aend...aeq; 

{ Increment• the ■end aequence number } 

BEGIN { inc_aend..■eq} 
aen.d..aeq :• C■•nd...••q + 1) MOD 2 

END; { inc_■end... ■eq} 

PROCEDURE inc_recv_■eq; 

{ Increaent■ tbe receive ■equence number} 

BEGIN { iDC_recv_■eq} 
recv-~•q :• (recv_■eq + 1) NOD 2 

END; { inc_recv_Hq } 

INITIALIZE { data_body} 
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END; { datax3} 

FROM ESTAB TD ESTAB 
WHEN S.TINER_BSP 

{ The aeHag• that cauaed thi• tiaer to be Ht has been acknowledged } 

HANE datu4: BEGIN 
IND; { datax4} 

PROM ACK_WAIT TD ESTAB 
WHEN N.DATA_ISP 

PROVIDED ack_ok(:a.data) 

{ Acknowlegeaent for th• la•t --■■age •ent baa been received} 

NAME datax6: BEGIN 
■end....ug :• r•trieve (■end_buf); 
remove C•encLbuf, ■end_ug); 
inc_aend....Hq 

IND; { datax6 } 

FROM EITHER TO SAME 
WHEN N.DATA_RSP 

PROVIDED :a.data.pid • DATA 

{ Proce•■ea ae■•age received from peer} 

NAME datax6: BEGIN 
recv_a•g.ugdat :• :a.data.dat; 
recv_■■g.ug■eq :• ndata. ■eq; 
format_ack (recT_ug, buf); 
OUTPUT H.DATA_REQ (buf); 
IF Ddata. ■eq • recv_■eq THEN BEGIN 

■tore Cr•cv_buf, ncv_ug); 
inc_recv_■eq 

END { IP } 
IND; { datax6 } 

IND; { BODY datax_body } 

NDDVAR 
datax_ac,dule 
tiMr_aodul• 

datu_type; 
tiaer_type; 

INITIALIZE { abit_body} 
BEGIN 
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INIT datax_aodule WITH datax_body (cep_id); 
INIT tiaer_aodule WITH tiaer_body (RETRAN_TINE); 

CONNECT datax_aodule.S TO tiMr_aodule.S; 
ATTACH U TO datax..aodule.U; 
ATTACH N TO datax_aodule.N; 

END; {INITIALIZE} 
END; { abit_body} 

MODY.AR 
network..aodule 
uaer_module 
abi t_aodule 

network.type; 
ARRAY [cep_type] OF uaer_type; 
ARRAY [cep_type] OF abit_type; 

INITIALIZE { abp_■pec} 

BEGIN 
INIT network...aodul• WITH network.body: 
ALL cep: cep_type DO BEGIN 

INIT u■er_aodule[cep] WITH uaer_body(cep): 
INIT abit_aodule[cep] WITH abit_body(cep); 

CONNECT uaer_aodule[cep].U TO abit_aodule[cep].U; 
CONNECT abit_aodule[cep] . N TO network...■odule.N[cep]: 

END: { ALL} 
END; {INITIALIZE} 

END. { abp_■pec} 
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#include <•tdio.h> 
#include "fdtNt.h" 
#include "fdt1cb. h" 
#include "fdtccb.h" 
#include "fdtpcb.h" 
#include "fdt■ch.h" 

/• Type declaratiou •/ 

typedef int cep_type 
typedef int 1eq_type 
typedef int pid..type 
typedef int udata_type 
typedef •truct { 

int dat 
int ■-q 
int cid 
int pid; 

} ndata_type 
typedef •truct { 

int ugdat 
int ugHq 
int ugcid 

} ug_type ; 
typedef •truct { 

ug_type --■■age 
int empty ; 

} buf_type ; 

/• Signal paraaeter block declaration■ •/ 

typedef union { 
union { 

■truct { 
int udata; 

} SEND_reque■t 
int UCV_reque•t 
■truct { 

int udata; 
} IECV_rHpon■e 

} U_acce■•-point 
union { 

•truct { 
ndata_type ndata 

} DATA_reque■t 
■truct { 
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Ddata_type Ddata 
} DATA_reepoue : 

} N_acc•••-point : 
union { 

int TINEJLrequa ■t 

int TINEJLn■poue 

} S_accH■_point 

} PDTSVAR: 

/• Variable block declaratiou •/ 

typedef union { 
•truct { 

int cep_id 
int flag: 
int data; 

} UHr_body 
atruct { 

int dummy 
} 

■truct { 
int time 
int PDT3 
int atop 
int ■top_bi■ 

} timer_body; 
■truct { 

int cep_id: 
■et_type EITHER 
int STATE; 
ndata_type buf : 
ug_type recv__..g 
Ug_ type HDd_aag 
buf_type recv_buf 
buf_type ■encLbuf 
int ncv_aeq 
int HDcLHq 

} datax_body; 
•truct { 

int cep_id; 
•truct PDTPCB •tiMr_aodule 
■truct PDTPCB •datax_aodule 

} abit_body; 
•truct { 

•truct PDTPCB •abit_aodule [ 2 ]; 
•truct PDTPCB •u■er_aodule [ 2 ]; 
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■truct FDTPCB •network..,aodul• 
} SPECIFICATION 

} FDTLV.AR; 

/• Niacellaneou■ declaratiou •/ 

#define XPORTuaer_body 
#define BPONTuaer_body 
extern int u■er_body(); 
#define TRANSwaer_body 
#define XPORTnetwork...body 
#define SPONTnetwork_body 
extern int network...body(); 
#define TRANSnetwork_body 
#define XPORTtimer_body 
#define SPONTti■er_body 
extern int timer_body(); 
#define TRANStimer_body 
#define XPORTdatax_body 
#define SPONTdatax_body 
extern int datax_body(); 
#define TRANSdatax_body 
#define XPORTabit_body 
#define SPONTabit_body 
#define TRANSabit_body 
#define XPORTSPECIFICATION 
#define SPONTSPECIFICATION 
#define TRANSSPECIFICATION 

0 
0 

uer_body 
0 
0 

network...body 
0 
1 

tiaer_body 
0 
0 

datax_body 
0 
0 
NULL 
0 
0 
NULL 

/• Procedure and function declaration■ •/ 

int ack_ok ( buf) 
ndata_type buf; 
{ 

} 

PDnV.AR •lvar • CurrBlock->lyar; 
int FUNCTION; 

FUNCTION• ( buf .pid - 1 /• ACKM •/) U 
( buf . ■■ q - lvar->datax_body. Hnd_Hq ) 

return (FUNCTION) ; 

format_data ( ug, buf) 
mag_ type mag ; 
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ndata_type •buf: 
{ 

} 

FDTLVAR •lvar • CurrBlock->lvar; 

(•buf) .pid • 0 /•DATA•/: 
(•buf) .cid • lnr->datax_body.cep_id 
C•buf ) ... q • ug .ug■-q 
(•buf ) .dat • ug .ugdat : 

format_ac.k ( ug, buf) 
ug_type aag; 
ndata_type •buf ; 
{ 

} 

FDTLVAR •lvar • CurrBlock->lvar; 

(•buf) .pid • 1 /• ACKM •/: 
(•buf) .cid • ug .ugcid 
(•buf) .aeq • ug .ugaeq 
(•buf) .dat • ug .ugdat 

■tore ( buf, ug) 
buf_type •buf ; 
m■g_type ••g: 
{ 

} 

FDTLVAR •lvar • CurrBlock->lvar; 

(•buf) .empty• 0 /•FALSE•/; 
(•buf) ·-·••ge - .. , ; 

remove ( buf, ug) 
buf_type •buf: 
aag_type ug: 
{ 

FDTLVAR •lvar • CurrBlock->lvar; 

} 

ug_ type retrieve ( buf ) 
buf_type buf ; 
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{ 

} 

FDTLVAR •lvar • CurrBlock->lvar: 
ug__type FUNCTION; 

FUNCTION• buf ... aaage 
return (FUNCTION) ; 

int buffer_eapty ( buf) 
buf_type buf ; 
{ 

} 

FDTLVAR •lvar • CurrBlock->lvar: 
int FUNCTION; 

FUNCTION• buf .empty 
return (FUNCTION) ; 

inc_Hnd..Hq () 
{ 

FDTLVAR •lvar • (FDTLVAR •) CurrBlock->lvar: 

lvar->datax_body.aend..Hq • ( lvar->datax_body.Hnd..■eq + 1 ) % 2 
} 

inc_recv_Hq () 
{ 

FDTLVAR •lvar • (PDTLVAR •) CurrBlock->lvar; 

lvar->datax_body.recv_•eq • ( lvar->datax_body.recv_•eq + 1) % 2 
} 

/• Specification declaration.a•/ 

FDTPCB •FDTuaer_body (parent, cep_id) 
FDTPCB •parent; 
int cep_id; 
{ 

FDTPCB •pcb; 
PDTLVAR •lvar; 
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} 

lvar->uaer_body.cep_id • cep_id 
{ 

} 

lvar->uaer_body.data • 0 
lvar->wier_body.flag • 1 /•TRUE•/: 
goto trana_end 

trana_end: 
if (pcb->■pont) 
FDTSCB■pont (pcb): 

return (pcb): 

uaer_body ( process, ■ignal) 
FDTPCB •procHa; 
PDTSCB ••ignal: 
{ 

FDTLVAR •lvar • (FDnVAR •) proce■■->lvar: 
FDTSVAR ••var• (FDTSVAR •) ■ignal->■var: 

{ 

if ( ( ■ignal->cid - 1) U ( ■ignal->■ id •• 3)) 
{ /• uaer1 •/ 

lvar->uaer_body.data • lvar->uaer_body.data + 1 : 
{ 

FDTSVAR •new■var • (FDTSVAR •) aalloc(■izeof(PDTSVAR)): 

newavar->U_acce■■-point.BEND_IEQ.udata • lvar->uer_body.data 
FDTSCB■ignal ( proce■-, 1 , 1 , new■var): 
} 
{ 

FDTBVAR •new■var • (FDTSVAR •) aalloc(■izeof(PDTSVAR)): 

PDTSCB■ignal ( proce■■ , 1, 2, uw■var): 
} 
goto trau_eDd: 

} 
} 
{ 

int PDT1 • 1 : 

if (lvar->uaer_body.flag) 
{ 

FDT1 • O: 
{ /• user2 •/ 

lvar->uaer_body.flag • 0 /•PAI.SE•/: 
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} 

} 

} 
} 

{ 
FDTSVAR. •uw•var • (FDTSVil •) aalloc(•iseof(FDTSVAR)); 

new•v•r->U_acc•••-point.SIND_IEQ.udata • lvar->uaer_body.data 
FDTSCBaignal ( proc•••• 1, 1 , uw■var); 
} 
{ 
PDTSVAR •uw■var • (FDTSVil •) aalloc(aiseof(FDTSVAR)); 

FDTSCB■ignal ( proc•••• 1, 2, Dew■var); 
} 
goto ■pont_end; 

if (aignal->cid - 0) 
FDTSCBdi•po•• (proce••• •ignal); 

return; 

trana_end 
FDTSCBdi■po•• (proce■■ , ■ignal); 
if (proce••->■pont) 

FDTSCBapont (proce■ a); 
epont_end: 
proce■■->delay • O; 

FDTPCB •FDTnetwork..body (parent) 
FDTPCB •parent; 
{ 

} 

FDTPCB •pcb; 
FDTLVAR •lvar; 

pcb • FDTPCBinit (parent, 2, BPONTnetwork..body, 
XPORTJUttwork..body, TllNSnetwork..body) 

pcb->lvar •(int•) (lvar • (PDTLVAR •) aalloc(■i:uof(FDTLVAR))); 

trana_end: 
if (pcb->■pont) 

FDTSCBspont (pcb); 
return (pcb); 

network_body ( proceH, ■ignal) 
PDTPCB •proce-■; 
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FDTSCB • aignal: 
{ 

} 

FDTLVAR •lvar • (FDnVAR •) proc•••->lvar; 
FDTSVAR •■var• (FDTSVAR •) ■ignal->■var: 

{ 

} 

inti 

for ( i • 1 : i <• 2 : i++) 
{ 

if ( ( ■ignal->cid - 1 + i - 1) U ( ■ignal->■id - 1) ) 
{ /• networkl •/ 

} 
} 

{ 
PDTSVAR •new■var • (FDTSVAR •) •lloc(sizeof(FDTSVAR)); 

newavar->N_acc•••-point.DATA..RSP.ndata • ■var->N_acc•••-point.DATA_REQ.ndata 

FDTSCBaignal ( proc•••• 1 + 2 /• HIGH_CEP •/- i + 1 - 1 , 2 , newsvar); 
} 

goto trana_end: 

if (■ignal->cid - 0) 
FDTSCBdi■po■e (proce■s, ■ignal); 

return: 

trans_end 
FDTSCBdi•po•• (proc•••• ■ignal): 
if (proce■•->■pont) 

FDTSCBspont (proce■a): 
■pont_end: 

proceaa->delay • O; 

PDTPCB •FDTtiMr_body (parent, ti■•) 
PDTPCB •parent: 
int time ; 
{ 

FDTPCB •pcb; 
FDnVAR *Ivar; 

pcb • FDTPCBinit ( parent , 1 • SPDNTtt.er_body, 
XPORTti•r_body, TRANStiur_body ); 

pcb->lvar •(int•) (lvar • (FDTLVAR •) ■alloc(■izeof(FDTLVAR))): 

lvar->ti■er_body.tiae •ti•; 
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} 

{ 

} 

lvar->tiaer_body.•top • 1 /•TIDE•/: 
lvar->tiaer_body.•top_bi• • 1 /•TRUE•/; 
goto trana_end 

trana_end: 
if (pcb->•pont) 

FDTSCBapont (pcb) ; 
return (pcb) : 

timer_body ( procea1, •ignal) 
FDTPCB •procH1; 
FDTSCB •signal; 
{ 

FDTLVAR •lvar • (FDnVAR •) proce•■->lvar: 
FDTSVAR ••var• (FDTSVAR •) •ignal->avar; 

{ 

if ( ( •ignal->cid - 1) U ( aignal->•id •• 1)) 
{ /• timer1 •/ 

lvar->timer_body.•top • 1 /•TRUE•/; 
lvar->timer_body.•top_bi• • 0 /•FALSE•/; 
goto trana_end : 

} 
} 
{ 

int FDT2 • 1 : 

if (llvar->tiMr_body.•top_bia) 
{ 

FDT2 • O: 
{ /• tiaer2 •/ 

} 
} 

lvar->timer_body.atop • 0 /•FALSE•/: 
lvar->timer_body.atop_bia • 1 /•TRUE•/: 
goto •pont_eDd: 

if (llvar->tiMr_body.atop) 
{ 

FDT2 • O: 
{ 

proceaa->tO • tiae(O); 

if ( proce••->delay I• 3) 
{ 
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} 

} 
} 

} 

} 

procea■->t1 • proce■a->tO + ( lvar->ti■er_body.time ); 
proce■■->delay • 3 

if (proce■■->tO >• proce■■->t1) 
{ /• tiHr3 •/ 

lvar->tiaer_body. ■top • 1 /• TBUE •/: 
{ 

FDTSVAR •new■var • (FDTSVAR •)- ,aalloc (■izeof (FDTSVAR)); 

FDTSCBaignal ( proce■■, 1 , 2, newavar); 
} 

goto ■pont_end 
} 

el■- return; 

if (aignal->cid - 0) 
PDTSCBdi■po■e (proceaa, aignal); 

return; 

trana_end 
FDTSCBdi■po■e (proc•••• ■ipal); 
if (proce■■->■pont) 
FDTSCB■pont (proce■■); 

■pont_end: 

proce■a->delay • O; 

FDTPCB •FDTdatax_body (parent, cep_id) 
FDTPCB •parent; 
int cep_id: 
{ 

FDTPCB •pcb; 
PDTLVAR •lvar; 

pcb • FDTPCBinit ( parent , 3, SPONTdatax_body, 
XPORTdatax_body, TIANSdatax_body ); 

pcb->lvar •(int•) (lvar • (FDTLVil •) aalloc(■izeof(FDTLVAR))); 

lvar->datax_body.cep_id • cep_id; 

a■aigii_■et ( l(lvar->datax_body.lITRER) , 2 , 1 /•!STAB•/, 0 /• ACK_WAIT •/); 

{ 
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} 

} 

lvar->datax_body. ■•nd..••q • 0; 
lvar->datax_body.recv_■eq • 0: 
lvar->datax_body.Hnd_buf ... pty • 1 /• TIIJE •/; 
lvar->datax_laody.ncv_buf ·••pty • 1 /•TRUE•/; 
lvar->datax_body.STATE • 1 /• IST.AB •/ ; 
goto tr&m1_•Dd 

tran■_end: 

if (pcb->■pont) 
FDTSCB•pont (pcb); 

return (pcb); 

datax_body ( procHa, ■ignal) 

FDTPCB •proc•-■: 
FDTSCB •signal; 
{ 

FDTLVAR •lvar • (FDTLVAR •) proceaa->lvar; 
FDTSVAR •avar • (FDTSVAR •) •ignal->avar: 

{ 

if ( ( lvar->datax_body.BTATE - 1 /• F.STAB •/) ) 
{ 

if ( ( ■ignal->cid - 1 ) U ( ■ignal->■id - 1 ) ) 
{ /• datax1 •/ 

} 
} 

lvar->datax_body.aend_ug .ugdat • ■var->U_acce■a_point.SEND_REQ.udata 

lvar->datax_body.••nd....ug .ug■•q • lvar->datax_body. ■end_aeq; 

store ( I( lvar->datax_body. ■end_buf) , lvar->datax_body.aend_msg ); 
format_data ( lvar->datax_body.aend_aag, I( lvar->datax_body.buf) ); 
{ 

FDTBVAR •newavar • (FDTSVAR •) aalloc(■izeof(FDTSVAR)); 

new•var->N_acc•••-point.DATA..IEQ.ndata • lvar->datax_body.buf 
PDTSCBaign.al ( proc•••• 2. 1 • newavar); 
} 
{ 

FDTSVAR •uw•var • (FDTSVil •) ulloc(•izeof(FDTSVAR)); 

PDTSCB■ign.al ( proc•••• 3. 1 • uw■var); 
} 

lnr->datax_body.BTATI • 0 /• ACK_V.UT •I 
goto trami_end 

if ( ( i■-■et_aeaber ( l(lvar->datax_body.EITHER) • lvar->datax_body.STATE))) 
{ 
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if ( ( ■ ignal->cid - 1) U ( ■ignal->■id •• 2)) 
{ 

} 
} 

int PDT4 • 1 ; 

if (lbuffer_ellJ)ty ( lvar->datax_body.recv_buf)) 
{ 

PDT4 • O; 
{ /• datax2 •/ 

} 
} 

lvar->datax_body.recv_ug • retrieve ( lvar->datax_body.recv_buf) 
{ 

FDTSVAl •new■var • (FDTSVAR •) aalloc(■izeof(FDTSVAR)); 

nev■var->U_acc•••-point.UCV_ISP.udat■ 

• lvar->datax_body.recv_aag .ugdat 
FDTSCB■ignal ( proc•••• 1, 3, nevavar); 
} 

re1110ve ( t( lvar->datax_body.recv_buf) , lvar->datax_body.recv_msg ); 
goto tr&DS_end; 

if ( ( lvar->datax..body.BTATE - 0 /• ACK_WAIT •/)) 
{ 

if ( ( ■ignal->cid - 3) U ( aignal->■id - 2)) 
{ /• datax3 •/ 

} 
} 

lvar->datax_body.Hnd_ug • retrieve ( lvar->datax_body. aend_buf ) ; 
format_data ( lvar->datax_body.Hnd..-■g, ill( lvar->datax_body.buf) ); 
{ 

} 
{ 

} 

FDTSVAR •nevavar • (FDTBVAR •) •lloc(aizeof(FDTSVAR)); 

nev■var->N_acc•••-point.DATA_IEQ.ndata • lvar->datax_body.buf 
FDTBCB■ignal ( proce••• 2, 1, uw■var); 

PDTSVAR •n•v■var • (FDTBVAR •) •lloc(■izeof(PDTSVAR)); 

FDTSCB■ipal ( proc•••• 3, 1, uw■var); 

lvar->datax_body.STATE • 0 /• .ACK_VAIT •/; 
goto tr&DS_end; 

if ( ( lvar->datax_body.STATE - 1 /• EST.AB •/) ) 
{ 

if ( ( ■ignal->cid - 3) U ( ■ignal->■ id - 2)) 
{ /• datax4 •/ 
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} 
} 

lvar->datax_body.STATE • 1 /•EST.AB•/ 
goto trana_elld 

if ( ( lvar->clatax..body.STATE - 0 /• ACK_WilT •/)) 
{ 

if ( ( ■ipal->cid - 2) U ( ■ipal->■id - 2)) 
{ 

} 
} 

int PDT6 • 1 ; 

if (ack_ok ( ■var->N_accea■_point.DATA..RSP.nclata)) 
{ 

PDT6 • O; 
{ /• clataxS •/ 

} 

} 

lvar->clatax_body.1■nd_■■g • retrieve ( lvar->clatax_body.send_buf) ; 
re.ove ( I( lvar->datax_body. ■end_buf) , lvar->datax_body.aend_msg ); 
inc_■end_■eq ( ); 
lvar->clatax_body.STATE • 1 /•EST.AB•/ 
goto $rana_elld 

if ( ( i■_nt_ .. aber ( i(lnr->datax..body.EITHER) , lvar->datax_body.STATE)) ) 
{ 

if ( ( ■ignal->cid - 2) U ( ■ignal->■ id - 2)) 
{ 

int PDT6 • 1 ; 

if (■Tar->N_acce■■-point.DATA..UP.ndata .pid - 0 /•DATA•/) 
{ 

PDT6 • O; 
{ /• clatax6 •/ 

lvar->clatax_body.recv_ug .ugclat 
• ■nr->N_accea,_point.DATA..UP.ndata .dat 

lvar->clatax_body.recv_..g .ug■eq 
• ■var->N_acce■■-point.DATA..ISP.ndata . ■eq 

foraat_ack ( lvar->datax_body.recv_ug, I( lvar->clatax_body.buf) ); 
{ 

PDTSVAR. •new■var • (PDTSVil •) •lloc(■izeof(PDTSVAR)): 

new■var->N_acce■■-point.DAT.A_IEQ.ndata • lvar->datax_body.buf 
PDTSCB■ignal ( process, 2, 1 , uw■var); 
} 

if ( avar->N_acce,a_point.DATA..ISP.ndata .seq-• 
lvar->clatax_body.recv_■eq) 

{ 

78 



APPENDIX C. ALTERNATING BIT PROTOCOL - GENERATED CODES 

} 

} 
} 

} 

} 
} 

} 

atore ( t( lvar->datax_body.recv_buf) , lvar->datax_body.recv_msg ); 
inc_recv_aeq ( ); 

goto truua_end 

if (aignal->cid - 0) 
FDTSCBdi■po■e (proceae, aignal); 

return; 

trane_end 
FDTSCBdi■po■e (proce■■, ■ignal); 
if (proceaa->■pont) 

FDTSCBepont (proce■■); 
apont_end: 
proce■■->delay • O; 

FDTPCB •FDTabit_body (parent, cep_id) 
FDTPCB •parent; 
int cep_id; 
{ 

PDTPCB •pcb; 
PDTLVAR •Ivar; 

pcb • PDTPCBinit ( parent , 2, SP0NTabit_body, 
XPDRTabit_body, TRANBabit_body ); 

pcb->lvar •(int•) (lvar • (FDTLVAR •) aalloc(■izeof(FDTLVAR))); 

lvar->abit_body.cep_id • cep_id; 
{ 

lvar->abit_body.datax_aodule • FDTdatax_body( pcb, lvar->abit_body.cep_id ); 
lvar->abit_body.ti■er_aodule • FDTtiaer_body( pcb, 30 /• RETRAN_TIME •/); 
FDTCCBconnect (lvar->abit_body.datax_aodule, 3, 1 , 

lvar->abit_body.tiaer_aodule, 1, 1 ); 
PDTCCBattach (pcb, 1 , 1 , 

lvar->abit_body.datax_aodule , 1 , 1 ); 
FDTCCBattach (pcb, 2·, 1 , 

lvar->abit_body.datax_aodule , 2, 1 ); 
goto tran■_eDd 

} 

trane_end: 
if (pcb->apont) 
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} 

PDTSCBapont (pcb); 
return (pcb); 

PDTPCB •PDTSPECIPIC.A.TION (parent) 
PDTPCB •parent; 
{ 

} 

PDTPCB •pcb; 
PDTLVAR •lvar; 

pcb • PDTPCBinit ( parent , 0, SPONTSPECIFICATION, 
XPORTSPECIPICATION, TRANSSPECIPICATION ); 

pcb->lvar •(int•) (lvar • (PDTLVAR •) aa.lloc(aizeof(FDTLVAR))); 
{ 

} 

lvar->SPECIFICATION.network..■odule • FDTnetwork_body( pcb ); 
{ 

} 

int cep; 
for ( cep • 1 ; cep <• 2 ; cep++) 
{ 

lvar->SPECIFICATION.uaer_■odule [ cep - 1] • FDTuaer_body( pcb, cep ); 
lvar->SPECIPICATION.abit_aodule [ cep - 1] • FDTabit_body( pcb, cep ); 
PDTCCBconnect (lvar->SPECIFICATION.uaer_aodule [ cep - 1] , 1 , 1 , 

lvar->SPECIPICATION.abit_aodule [ cep - 1] , 1 , 1 ); 
PDTCCBconnect (lvar->SPECIFICATION.abit_aodule [ cep - 1] , 2, 1 , 

lvar->SPECIFICATION.network..■odule , 1 + cep - 1 , 0 ); 
} 

goto trana_end 

trana_end: 
if (pcb->apont) 

FDTSCBapont (pcb); 
return (pcb); 
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I• 
• Create• and initialize• a uw proc••• control block (PCB) 
• Place• the PCB at the head of the aibling liat 
• If proc••• contaiu trauitiom, in•erta PCB into the acheduler's lists 
• Return■ the new PCB 
•I 

PDTPCB •PDTPCBinit (parent, ipnum, apont, export, tranaition) 
PDTPCB •parent; 
int ipnum; 
int apont; 
int export: 
int ·c•tranaition) (): 

{ 

PDTPCB •newpcb • (PDTPCB •) ulloc(aizeof(FDTPCB)); 

/••••• Linka new proce•• control block to the aodule hierarchy•••••/ 

newpcb->pid • Pid++: 
newpcb- >parent • parent; 
if (parent I• HULL) 

{ 

} 

newpcb->aib • parent->ref; 
parent->ref • newpcb; 
newpcb->prio • parent->prio + 1; 

else /• Thi• i• the root aodule •/ 
{ 

} 

newpcb->aib • mwpcb; 
newpcb->prio • 1; 

newpcb->ref • NULL; 

/••••• Allocate• enough interaction point• for the aodule •••••/ 

newpcb->ipnwa • ipDUII; 
if (ipnua > 0) 

newpcb->chan • PDTCCBinit (newpcb->ipnum); 
else 

uwpcb->chan • NULL; 

/••••• Initialize• other aodule 1tate variable■•••••/ 

newpcb->ipuxt • O; 
newpcb->■igcnt • O; 
newpcb->delay • O; 
newpcb->apont • apont: 
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} 

newpcb->export • export; 
newpcb->tru■ • trana1t1on; 

return (nevpcb); 

• Releaeee the ■pecified proc••• control ·block and all its deecendenta 

FDTPCBterm (pcb) 
FDTPCB •pcb; 

{ 

} 

FDTPCB •p; 

if (pcb - NULL) 
return; 

if ((p • pcb->parent) - NULL) 
FDTLIBerror ("Root aodule attempting to kill iteelf\n"); 

if (p->ref - pcb) 
{ 

p->ref • pcb->■ib; 
} 

elee 
{ 

} 

p • p->ref; 
while ((p I• NULL) U (p->■ib I• pcb)) 

p • p->■ib; 

if (p - NULL) 
PDTLIBerror ("Error in link to parent\n"); 

p->■ib • pcb->■ib; 

/••••• Terainat•• all children recur■ively ud then deallocates itself•••••/ 

while (pcb->ref I• NULL) 
FDTPCBtera (pcb->nf); 

if (pcb->chan I• NULL) 
FDTCCBtera (pcb); 

free (pcb); 
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• Create ■ and initialise■ a uw channel control block 

FDTCCB •FDTCCBiDit C•ize) 
int ■ize; 

{ 

} 

I• 

FDTCCB •1, •ccb • (PDTCCB •) calloc(■ize+1, •izeof(FDTCCB)); 

for (i-ccb; i<ccb+■ize+1; i++) 
{ 

} 

1->head • i->tail • NULL; 
i~>targeta • i->targetc • i->targete • NULL; 
1->channela • i->channelc • i->cbaDDele • O; 
1->qdi■pl • CONNON; 

return (ccb); 

• Remove■ a channel li■t fro■ a proc••• control block 
•I 

FDTCCB •FDTCCBtera (proce■■ ) 
FDTPCB •proce■■; 

{ 

} 

PDTCCB •ccb1, •ccb2; 
int i; 

for (1•1; i<proce■■->ipnua+1; i++) 
{ 

} 

ccb1 • proce■■->chan + 1; 
if (ccb1->targetc I• NULL) 

{ 
ccb2 • ccb1->targetc->cban + ccb1->chumelc; 
if ((ccb2->targetc - proce■■) U (ccb~->chumelc - i)) 

PDTCCBdi■CODD (proc••·· i); 
el■e 

PDTCCBdetacb2 (proc•••• i); 
} 

free (proce■■->chan); 
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I• 
• Implement■ the Eetelle connect 1tateaent 
•I 

PDTCCBconnect 
FDTPCB 

(proce111, chumel1, 
•proce■■ 1, •proce■■2; 

chalmel1, cb.annal2; 
qdi1pl1, qdi■pl2; 

qdi■pl1, proceaa2, channel2, qdispl2) 

int 
queue_kind 

{ 

PDTCCB •ccb1, •ccb2; 

/••••• Locate• chum.el control bloclm •••••/ 

ccb1 • proce■■1->chan. + cbannel1; 
ccb2 • proc•••2->chan. + cbannel2; 

ccb1->qdiapl • qdi■pl1; 
ccb2->qdi■pl • qdi■pl2; 

/••••• Te■t• for prior connection■•••••/ 

if ((ccb1->targetc I• NUU) 11 (ccb2->targetc I• NULL)) 
PDTLIBerror ("Channel i■ already connected"); 

/••••• Nak•• foraal connectiou •••••/ 

ccb1->targetc • proce■■2; 
ccb2->targetc • proc•••1; 

ccb1->channelc • channel2; 
ccb2->channelc • ch.annel1; 

/••••• Find■ actual target channel control bloclm •••••/ 

if (ccb1->targeta I• NUU) 
{ 

} 

proc•••1 • ccb1->tar1•t•; 
chan.nel1 • ccb1->cbannele; 
ccb1->targete • NUU; 
ccb1->channele • O; 
ccb1 • proce■■1->cball + cbannel1; 

if (ccb2->targeta I• NULL) 
{ 

procea ■2 • ccb2->targete; 
channel2 • ccb2->cbannele; 
ccb2->targete • HUU.; 
ccb2->channele • O; 
ccb2 • proce■■2->cball + cbannel2; 
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} 

I• 

} 

/••••• Nab• actual coD1Wctiou •••••/ 

ccb1->targete • proce■a2; 
ccb2->targete • proceaa1; 

ccb1->charlllele • cbauuel2; 
ccb2->charlllele • cbaDDel1; 

• Implement• the Eatelle ATTACH atatement 
•I 

FDTCCBattach 
FDTPCB 

(proceaa1, channel1, qdi■pl1, 
•proc•■•1, •proce■ a2; 

channel1, chamwl2; 

proceaa2, channel2, qdispl2) 

int 
queue_kiud qdiapl1, qcliapl2; 

{ 

PDTCCB •ccb1, •ccb2; 

/••••• Locate• cbaDDel control blocks•••••/ 

ccb1 • proceaa1->chan + channel1; 
ccb2 • procea■2->chan·+ chanuel2; 

ccb1->qcli■pl • qdi■pl1; 

ccb2->qcliapl • qdiapl2; 

/••••• Teat■ for prior comwctiou •••••/ 

if ((ccb1->targeta I• NULL) 11 (ccb2->targetc I• NULL)) 
FDTLIBerror ("Channel i• already attached"); 

/••••• Nake■ fora.al attacbJMnt■ •••••/ 

ccb1->targeta • proce■■2; 

ccb2->targetc • proce■■1: 

ccb1->chamlela • channel2; /• attach down•/ 
ccb2->cbarmelc • channel1; /• couuect up •/ 

/••••• Pinda actual tar1et cbamlel• •••••/ 

if (ccb1->targetc I• NULL) 
{ 

proce■•1 • ccb1->targete; 
chumel1 • ccb1->channele; 
ccb1->targete • NUU.; 
ccb1->channele • O; 
ccb1 • proce■■ 1->chan + chauuel1; 
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} 

I• 

} 

if (ccb2->tarpta I• NULL) 
{ 

} 

proc•••2 • ccb2->targete; 
chamlel2 • ccb2->chamlele; 
ccb2->targete • NULL; 
ccb2->chumel• • O; 
ccb2 • proc•••2->cban + cbamlel2; . 

/••••• Make• actual attacluunt •••••/ 

ccb1->targ•t• • proceaa2; 
ccb2->targete • proceaa1; 

ccb1->chamlele - chamlel2; 
ccb2->chamiele • chaDDel1; 

• Implement• the Eatelle DISCONNECT atateMnt 
•I 

PDTCCBdiaconn (proc•••1c, channel1c) 
FDTPCB •proceaa1c; 
int cb&Jmel1c; 

{ 

FDTCCB •ccb1c, •ccb2c; 
FDTCCB •ccb1e, •ccb2e; 
FDTPCB •proceaa1e, •proc•••2c, •proc•••2e; 
int chamutl1e, channel2c, chaDDel2e; 

if (cb&Jmel1c - 0) 
{ 

int i; 

for (i•1; i<proc•••1c->ipn11111; i++) 
PDTCCBcliaconn (proc•••1c, i); 

} 

else 
{ 

/••••• Locate• actual chamwl control blocka •••••/ 

ccb1c • proceaa1c->cban + channel1c; 

proc•••2c • -ccb1c->targetc; 
channel2c • ccb1c->channelc; 
if (proceaa2c - NULL) 
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FDTLIBerror ( 11Atteapt to di•connect unbound channel"): 
ccb2c • proce■■2c->ch&n + channel2c; 

/••••• Te•t• for prior co:mwctiou •••••/ 

if ((ccb2c->targetc I• proce■■1c) II (ccb2c->channelc !• channel1c)) 
FDTLIBerror ("Atteapt to di•comaect attached channel"): 

/••••• Locate• effective channel control block■•••••/ 

ccb1e • ccb1c; 
wllile (ccb1e->targ•t• - HULL) 

{ 

proce■•1• • ccb1e->targeta; 
chumel1e • ccb1e->channela; 
ccb1e • proce■•1e->chan + channel1e; 

} 

ccb2e • ccb2c; 
while (ccb2e->targete - HULL) 

{ 

} 

proce■■2e • cc~e->targeta; 
channel2e • cc~e->cbanmla; 
ccb2e • proce■■2e->ch&n + channel2e; 

/••••• Di■comwct■ actual channel■•••••/ 

ccb1c->targetc • HULL; 
ccb2c->targetc • HULL; 

ccb1c->channelc • O; 
ccb2c->chumelc • O; 

/••••• lebillda effective channel■, if nec••••ry •••••/ 

if (ccb1c I• ccble) 
{ 

} 

elee 
{ 

} 

ccblc->target• • proce■■1e; ccb1c->channele • channel1e; 
ccb1e->targete • proce■■1c; ccble->channele • channel1c; 

ccb1e->targete • HULL: ccb1e->chanmle • O; 

if (ccb2c I• cc~e) 
{ 

ccb2c->targete • proce■■2e; 
ccb2e->targete • proce■■2c; 

ccb2c->channele • channel2e; 
ccb2e->channele • channel2c; 
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} 

el•e 
{ 

ccb2e->targete • NULL; ccb2e->chanule • O; 
} 

} 
} 

I• 
• Implement• tha llatell• DETACH ■tate .. nt for an external interaction point 
•I 

FDTCCBdetachl (proce■•1a, chumella) 
PDTPCB •proce••1•; 
int chamlel1a; 

{ 

•ccb1a, •ccb2a; 
•ccble, •ccb2e; 

/• Poraal attacbllent• •/ 
/• Actual attachment■•/ 

PDTCCB 
FDTCCB 
PDTPCB 
int 

•proce■■1e, •proc•••2a, •proce■■2e; 
channel1e, channel2a, cbannel2e; 

/••••• Locate■ channel control blocka for actual attachments•••••/ 

ccb1a • proce■■la->cban + chamlel1a; 

proce■■2a • ccb1a->targeta; 
chaDDel2a • ccb1a->cbannela; 
if (proce■■2• - NUU.) 

PDTLIBerror ("Attempt to detach unbound channel"); 
ccb2a • proce■■2a->chan + chanul2a; 

/••••• Teat■ for prior attachaant■ •••••/ 

if ((ccb2a->targetc I• proce•■1a) I I (ccb2a->cbannelc !• channel1a)) 
PDTLIBerror ("Attempt to detach iiiproperly attached channel"); 

/••••• Locate■ channel control blocka for effective attachments•••••/ 

ccb2e • ccb2a; 
while (ccb2e->targete - NUU.) 

{ 

} 

proce■■2e • ccb2e->targeta; 
chumel2e • ccb2e~>chumela; 
ccb2e • proce■■2e->chan + chumel2e; 

proces■1e • ccb2e->targete; 
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} 

I• 

chamiel1• • ccb2e->claannel•; 
ccb1e • proce■■1e->chan + claannel1e; 

/••••• Dett■cbe■ actual channel■•••••/ 

ccb1■->t■rgeta • NULL; 
ccb2a->t.argetc • NULL; 

ccb1a->channela • O; 
ccb2a->channelc • O; 

/••••• Rebinda effective channel ■, if nece■■ary •••••/ 

if (ccb1■ I• ccb1e) 
{ 

} 

else 
{ 

} 

ccb1a->t■rgete • proce■■ 1e; 

ccb1e->targete • proce■■1a; 
ccb1a->channele • channel1e; 
ccb1e->channele • channel1a; 

ccb1e->targete • NULL; ccb1e->channele - O; 

if (ccb2a I• ccb2e) 
{ 

} 

el■e 
{ 

} 

ccb2a->t.argete • proce■■2e; 
ccb2e->t■rgete • proce■■2a; 

ccb2a->channele • channel2e; 
ccb2e->channele • channel2a; 

ccb2e->targete - NULL; ccb2e->channele • O; 

• Implement■ the Eatelle DETACH ■tat■Mnt for a child' ■ external interaction point 
•I 

PDTCCBdetach2 (proce■■2a, channel2a) 
FDTPCB •proce■■2a; 

int channal2a; 
{ 

FDTCCB 
PDTCCB 
PDTPCB 
int 

•ccb1■, •ccb2a; /• Fo:naal att■chllent■ •/ 
•ccb1e, •ccb2e; /• Actual attachaent■ •/ 
•proce■■ 1a, •proce■■1e, •proce■■2e; 

chaml■ l1a, chamlel1e, chamlel2•: 

/••••• Locate■ channel control bloclm for actual attachment■•••••/ 
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ccb2a - procesa2a->chan + channel2a; 

procesa1a • ccb2a->targeta: 
channel1a • ccb2a->channela; 
if (proceaa1a - NULL) 

FDTLIBerror ("Attempt to detach unbound channel"): 
ccb1a • proceaa1a->chan + channel1a; 

/••••• Teats for prior attachaent• •••••/ 

if ((ccb1a->targetc I• proce■s2a) II (ccb1a->cbannelc !• channel2a)) 
FDTLIBerror ("Atte■pt to detach i■properly attached channel"); 

/••••• Locates channel control blockll for effective attachments•••••/ 

ccb2e • ccb2a: 
while (ccb2e->targete - NULL) 

{ 

proceaa2e • ccb2e->targeta: 
channel2e • ccb2e->channela: 
ccb2e • proce■■2e->chan + channel2e: 

} 

proceaa1e • ccb2e->targete: 
channel1e • ccb2e->channele; 
ccb1e • proceaa1e->chan + channel1e; 

/••••• Dettachea actual channel■•••••/ 

ccb1a->targeta • NULL: 
ccb2a->targetc • NULL; 

ccb1a->channela • O: 
ccb2a->channelc • O: 

/••••• Rebind■ effective channels, if nece•••ry •••••/ 

if (ccb1a I• ccb1e) 
{ 

} 

el■e 
{ 

ccb1a->targete • proceas1e: 
ccb1e->targete • procea■1a: 

ccb1a->channele • channel1e; 
ccb1e->channele • channel1a: 

ccb1e->targete • NULL; ccb1e->channele • O: 
} 

if (ccb2a I• ccb2e) 
{ 

ccb2a->targete • proce•a2e; 
ccb2e->targete • proce■■2a; 

ccb2a->channele • channe12e; 
ccb2e->channele • channel2a; 
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} 

else 
{ 

ccb2e->targ•t• • NULL: ccb2e->chanmle • O: 
} 

} 



Appendix F 

Signal Control Block Support 
Routines 
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I• 
• Create■ a new ■ipal control block on tbe target of tbe ■pecified channel 
•I 

FDTSCB■ignal (proce■■, cid, ■id, ■var) 
FDTPCB •proce■■; 
int cid; 
int ■ id; 

int ••var; 

I• 

{ 

FDTCCB 
FDTSCB 
FDTPCB 

•ccb1, •ccb2; 
•■cb; 
•target; 

/••••• Detendne■ tbe location of tbe target channel•••••/ 
ccb1 • proce■■->chan + cid; 
target• ccb1->targete; 
ccb2 - target->chan + ccb1->cbumele; 
if (ccb2->qdi■pl - CONNON) 

ccb2 • target->cban; 

/••••• Conatruct■ an outgoing ■ignal control block•••••/ 
■cb • (FDTSCB •) ulloc(■izeof(FDTSCB)); 
■cb->cid • ccb1->cbannele; 
■cb->■id • ■id; 

■cb->■var • ■var; 

/••••• Queue ■ the ■ignal control block to the tail of the target channel•••••/ 
■cb->next • NULL; 
if (ccb2->tail - NULL) 

ccb2->head • ■cb; 

el ■e 

ccb2->tail->mxt • ■cb; 

ccb2->tail • ■cb; 

/••••• Increaent■ the peDdiq ■ipal counter•••••/ 
(target->■igcnt)++; 

} 

• Create■ a ■pontauo1111 ■ignal at the co11111on channel for the process 
• if there are DO pending ■ipal■ for tbe proc••• 
•I 

FDTSCBspont (proce■■) 
FDTPCB •proce■■; 
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I• 

{ 

FDTCCB •ccb; 
FDTSCB ••cb; 

/••••• Exit• if there ar• pending •ignal■ •••••/ 
if (proc•••->•igcnt > 0) 

return; 

/••••• Coutruct• • •pontauoua ■ ignal control block•••••/ 
■cb • (PDTSCB •) -lloc(■is■of(FDTSCB)): 
■cb->cid • O; 
acb->■id • O: 
■cb->•var • MUU.: 

/••••• Quue■ th• ■ignal control block at the coamon channel•••••/ 
ccb • proce■■->chan; 
■cb->next • ccb->head: 
ccb->head • ■cb; 

if (ccb->tail - NUU.) 
ccb->tail • ■cb; 

/ ..... Increaent• the pending signal counter ..... , 
(proce■a->■igcnt)++; 

} 

• lemove■ a ■ipal control block fro■• channel 
•I 

FDTSCBdi■po■e (proce■■ , ■ipal) 
FDTPCB •pz-oce■■: 

PDTSCB ••ignal; 
{ 

FDTCCB •ccb; 
PDTSCB •■cb: 

/••••• Determine■ the location of the ■ignal queWt •••••/ 
ccb • proce■a->chan + •ignal->cid: 
if (ccb->qdi■pl - COMMON) 

ccb • procea■->chan: 

/••••• leaoTe■ the •ipal control block at the head of the queue•••••/ 
■cb • ccb->uad; 
ccb->head • ■cb->next; 

if (ccb->head - NULL) 
ccb->tail • NUU.; 
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I• 

if (acb->•••r I• NUU.) 
free (acb->avar); 

free (acb); 

/••••• Decre-nt• the pending aipal counter•••••/ 
(proc•••->•iscat)--; 

} 

• Searches for a pending •1111&1 for the procea ■ 

•I 

PDTSCB •PDTSCBpencling (proce■a) 
PDTPCB •proce■a; 

{ 

} 

FDTCCB •ccb; 

if (proc•••->•igcnt - 0) 
return (NULL); 

ccb • proc•••->chan + proc•••->ipnext; 
while (ccb <• pro~•••->cban + proceaa->ipnum) 

if (ccb->head I• NUU.) 
{ 

} 

elae 
{ 

} 

proc•••->ipnext • ccb - proceea->chan + 1; 
return (ccb->uad); 

ccb++; 

ccb • proc•••->chan; 
while (ccb < proceaa->chan + proc•••->ipnext) 

if (ccb->head I• NUU) 
{ 

} 

.1 •• 
{ 

} 

proc•••->ipnext • ccb - proc•••->chan + 1; 
return (ccb->head); 

ccb++; 

return (NULL); 
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