
An Estelle-C Compiler
for

Automatic Protocol Implementation

Robin Isaac Man-Hang Chan

Technical Report 87-36
November 1987

AN ESTELLE-C COMPll,ER FOR AUTOMATIC PROTOCOL IMPLEMENTATION

by

ROBIN ISAAC MAN-HANG CHAN

B.Sc., The Univeraity of British Columbia, 1980

M.Sc., The University of British Columbia, 1983

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUffiEMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in

THE FACULTY OF GRADUATE STUDIES

(DEPARTMENT OF COMPUTER SCIENCE)

We accept this thesis as conforming

to the required standard

····· ···~·····~U······ ·····

........ ~~.:

THE UNIVERSITY OF BRITISH COLUMBIA

October 1987

© Robin Isaac Man-Hang Chan, 1987

Abstract

Over the put few years, much experience has been gained in semi-automatic protocol imple­

mentation U8ing an e:xiating Estelle-C compiler developed at the University of British Columbia.

However, with the continual evolution of the Estelle language, that compiler is now obsolete.

The present 1tudy found 1ubstantial 1yntactic and semantic differences between the Estelle

language u implemented by the existing compiler and that 1pecified in the la.test ISO docu­

ment to warrant the construction of a new Estelle-C compiler. The result is a new compiler

which translates Estelle u defined in the second version of the ISO Draft Proposal 907 4 into

the programming language C. The new Estelle-C compiler addresses issues such as dynamic

reconfiguration of modules and maintenance of priority relationships among nested modules. A

run-time environment capable of 1upporting the new Estelle features is also presented. The im­

plementation strategy uBed in the new Estelle-C compiler is illustrated by using the alternating

bit protocol found in the ISO Draft Proposal 9074 document.

ii

Contents

Abstract

Contents

List of Figures

Acknowledgement

1 Introduction
1.1 Motivations for a New Estelle Compiler
1.2 Thesis Outline

2 Estelle Evolution
2.1 Module Hierarchy

2.1.1 Static Organization ..
2.1.2 Dynamic Organization .

2.2 Module Configuration
2.2.1 Dynamic Module Instantiation
2.2.2 Dynamic Module Interconnection .

2.3 Justification for a New Eatelle-C Compiler .
2.3.1 Syntactic hsuea
2.3.2 Semantics l88Uee . • . . .
2.3.3 Uaer Iuuee

3 Estelle to C Translation
3.1 Global Declaration Blocks

3.1.1 Signal Parameter Block
3.1.2 Module Variable Block .

3.2 Run-time Control Blocks
3.2.1 Signal Control Block ..
3.2.2 Channel Control Block .
3.2.3 Process Control Block .

Ill

il

iii

V

vi

1
1
2

3
5
5
6
7
7
8

9
9

10
11

13
14
14
16
16
18
19
20

3.2.4 Improvement over put Estelle Compilers
3.3 Run-time Support Routines

3.3.1 Proeeu Control Block Routines .
3.3.2 Channel Control Block Routines
3.3.3 Signal Control Block Routines

3.4 Module Translation
3.4.1 Initialiution Routine
3.4.2 Transition Routine .

3.5 Tr&mition Translation ..
3.5.1 Tranlition Clauses
3,5.2 Transition Blocks .

4: Estelle Run-time Execution
4.1 Run-time Organization . . .

4.1.1 Initialisation Routines
4.1.2 Scheduler Routine

4.2 Transition Processing
4.2.1 Input Transitions ...
4.2.2 Spontaneous Transitions .
4.2.3 Delayed Transitions . .
4.2.4 No Enabled Transitions

5 Conclusions
5.1 Thesis Summary
5.2 Future Work

Bibliography

A LL(l} Grammar for Eatelle

B Alternating Bit Protocol - Eatelle Specification

C Alternating Bit Protocol - Generated Codes

D Procea■ Control Block Support Routines

E Channel Control Block Support Routines

F Signal Control Block Support Routines

iv

22
23
24
24
25
26
26
29
29
31
36

37
37
38
39
41
41
42
42
43

44
44
46

48

50

55

65

81

84:

94

List of Figures

3.1 Sjgnal Parameter Block Structure . 15
3.2 Module Variable Block Structure 17
3.3 Signal Control Block Structure . 18
3.4 Channel Control Block Structure 19
3.5 Process Control Block Structure 21
3.6 Initialization Routine 28
3.7 Transition Routine 30
3.8 Codes generated for a FROM clause 32
3.9 Codes generated for a WHEN clause . . 32
3.10 Codes generated for a PROVIDED clause .. 33
3.11 Codes generated for a DELAY clause 34
3.12 Codes generated for an OUTPUT atatement . 36

4.1 Main Driver Routine 37
4.2 Run-time Scheduler Routine . 40

V

Acknowledgement

The author wishes to express his thanks to his supervisor, Dr. Son Vuong, for his guidance

and to Dr. Samuel Chanson for his careful reading of the thesis.

He also wishes to thank his wife, Silvian, for her many helpful suggestions in the preparation

of this manuscript and for her patience and support throughout the course of this work.

Vl

Chapter 1

Introduction

Estelle is a formal description technique (FDT) developed to be used by ISO standards

committees for the specification of communication protocols and services destined to become

international standards. The me of formal methods for protocol specification reduces the risks

of erroneoUB or incompatible implementations of these protocols. In addition, the availability

of precise and unambiguo\18 deac:riptions of protocols allows automatic tools to be built for

generating protocol implementations directly from the formal specifications.

In response to the challenge of realizing automatic implementation of protocols from Estelle

specifications, the first Estelle compiler was developed at the University of Montreal [Gerb83).

This compiler accepts Estelle apecifications and generates implementation codes in Pascal.

Currently, several Estelle compilers, interpreters and simulators have already been developed

(Ansa87,Cour86,Garg87].

1.1 Motivations for a New Estelle Compiler

At the University of British Columbia (UBC), an Estelle-C compiler was developed by

Daniel Ford in 1984 [Ford85). The compiler accepts Estelle u defined by the 1984 Estelle

working document [Este84] and generates target codes in the programming language C. The

1

CHAPTER 1. INTRODUCTION 2

original compiler was found to be erroneous and wu subsequently improved by Alan Lau in

1986 [Lau86). The improved compiler wu succemfully used by Lau in a comparative study on

semi-automatic venue manual implementation [Vuon87,Vuon88] of the ISO class 2 transport

protocol [IS082a,1S082b).

However, the Estelle language has undergone two major changes since 1984 and is currently

in the second draft proposal stage [Este85,Este86]. The UBC Estelle-C compiler is now obsolete

due to the aubstantial differences between the current Estelle specification and the Estelle

language as implemented by Ford. Therefore, it is necessary to build a new UBC Estelle-C

compiler that will conform to the new standards [Este86] and, thus, allow further works in

automatic protocol implementations.

1.2 Thesis Outline

This thesis describes the implementation of a new Estelle-C compiler. Chapter 2 presents

the changes made to the Estelle language since 1984 and the justification for the reimplemen­

tation of a new compiler instead of the modification of the old compiler to conform to the new

standards. Chapter 3 describes the translation scheme used in the new compiler and compares

it with the scheme used in the old compiler. The implementation strategy used in the new

Estelle-C compiler is illuatrated by UBing the alternating bit protocol. Chapter 4 discusses the

run-time environment used in the new compiler. Chapter 5 concludes the thesis with some

insights gained from this project.

Chapter 2

Estelle Evolution

Estelle is a hybrid formal protocol description technique which combines an underlying

extended finite state machine model with the use of a programming language notation. Syntac­

tically, Estelle is based on the programming language Pascal with additional features borrowed

from Ada and Modula-2. An Estelle specification describes a complex protocol specification

as a hierarchical structure of increasingly refined communicating finite state machines called

modules. The syntax provides constructs necessary to specify state transitions within the

modules as well as the means to interconnect the various specified modules. Semantically, these

modules are allowed to be executed in parallel.

The modules communicate with each other through abstract interfaces called interaction

points. A bidirectional communication path between two interacting modules, called a chan­

nel, is formed when two interaction points, one from each module, are connected together.

After a channel is •tablished between two modules, the modules can interact by transmitting

units of information, called lnteractlona, through the channel.

The dynamics of a channel is modeled abstractly u a pair of first-in-first-out queues located

at the two linked interaction points. Each interaction signaled between two modules is routed

3

CHAPTER 2. ESTELLE EVOLUTION 4

from the interaction point at the sending module to the queue in the interaction point at the

receiving module.

Each channel is auociated with a channel type. For each channel type, a set of parameterized

interaction primitives can be specified for generating interaction instances which are to be

transmitted through the channel. Becauae of the bidirectional nature of the channels, two

interaction role identifiers must be specified for each channel in order to distinguish the two

directions. Each of the allowable interaction primitives may be associated with either one or

both of the defined roles. The use of the role identifier allows each interaction primitive to

be specified as either unidirectional or bidirectional. The two corresponding interaction points

for each channel must have opposite roles so that they can be used to send and to receive

interactions of the opposite type.

The abstraction provided by the Estelle channel can be used naturally for modeling the set

of service primitives allowable at the boundaries between two adjacent protocol layers. When

a protocol specification is refined into submodules, the same abstraction can also be used to

specify interactions between any two submodules.

Excellent descriptions of the Estelle features and facilities can be found in Linn [Linn86]

and Courtiat et al. (Cour86]. Thia chapter only describes the changes to the Estelle language

from the 198-4 working document (Este84] to its present 1986 draft proposal form [Este86] and

concludes with a juatification for building a new Estelle-C compiler from scratch instead of

modifying the current UBC Estelle-C compiler.

CHAPTER 2. ESTELLE EVOLUTION 5

2.1 Module Hierarchy

Some of the imjor differences between the Estelle language as defined in the original working

document [Este84) and that defined in the resulting draft proposal documents [Este85,Este86]

are the changes made io the hierarchical 1tructuring of the modules. Since a module is the

basic unit of protocol 1pecification in E.telle, the changes have profound effects on the run-time

environment that the new Estelle-C compiler must support.

2.1.1 Static Organization

A protocol specification is originally defined as a hierarchy of modules of two different

types [Este84). At the bottom of the module hierarchy are processes. A process defines an

atomic unit of protocol specification as an extended finite state machine which cannot be further

subdivided. The behavior of a proceu is specified as a list of possible transitions. All processes

are specified to be executed in parallel. The modules at the higher layers in the module hierarchy

are called refinements. Refinements may be further divided into submodules, each of which

may be either a process or another refinement. Refinements, however, may not contain any

transition specification. The aole purpose of the refinement modules is to impose a structure on

the set of defined procesBeS during 1y1tem initialization time; these modules are inactive during

protocol execution.

The implication of this modular organisation is that a protocol specified in this manner

has a static structure. Since only the bottom layer of the hierarchy contains active modules,

the structure cannot be changed during run-time. Another consequence of this organization is

that the structure is linear. The eet of active modules can be linked together into a linear list.

Simple round-robin acheduling over this list will suffice during run-time to simulate parallelism

CHAPTER 2. ESTELLE EVOLUTION 6

[Ford85].

2.1.2 Dynamic Organization

In the first draft proposal for Estell+ [Este85], transition execution is allowed in the higher

level modules. In addition, provisions are made to allow modules to share common variables.

In order to ensure mutual exclusion between the shared variables, two restrictions are imposed

on the structuring principles of an Estelle protocol specification.

First, two types of modules with different execution semantics are defined. An activity

is a module which ia conaidered to be atomic and cannot be substructured. A process is a

module which may be substructured into either child processes or child activities. Processes at

the same level may be run in parallel, but activities may be run only in an interleaved fashion.

Second, a parent/child priority relation is imposed on the module hierarchy. If a transition of

a parent module is enabled, no child may begin a transition.

The first restriction will ensure mutual exclusion among modules at the same level in the

module hierarchy if they are specified u activities. The second restriction will ensure mutual

exclusion among modules at different levels in the module hierarchy.

In the second draft proposal for Estelle [Este86], the major change to the Estelle language

specification is to forbid the use of shared variables among modules at the same level in the

module hierarchy. The inclusion of this restriction eliminates the concern of mutual exclusion

among modules at the same level. Consequently, there is no further need to distinguish be­

tween processes and activities. However, the concepts of processes and activities are retained

to distinguish the two poesible forms of module execution semantics. The process abstraction

represents a synchronous parallel execution while the activity abstraction represents a nonde­

terministic sequential execution. Because of these new semantics, activity modules may now

CHAPTER 2. ESTELLE EVOLUTION 7

be further substructured into other activities.

The new module synchronisation aemantica defined m the two Estelle draft proposals

[Este85,Este86] imply a more complicated run-time environment than is necessary for Estelle

as defined in the working document (Eate84]. The new run-time scheduler must differentiate

between modules at different levels in order to enforce the parent/child priority relationships.

The scheduler used in the new Estelle-C compiler is discussed in Section 4.1.

2.2 Module Configuration

Module configuration is the proceu of instantiating and interconnecting the modules defined

in an Estelle specification. Module configuration can only be performed by a parent module on

ita immediate child modules. In the original version of Estelle [Este84), module configuration

can only be performed at system initia.lization time. Since all modules above the bottom level

are inactive, the number and the typea of modules will remain unchanged for the life-time of

the specified system. In the later versions (Este85,Este86] where active modules are present in

the higher levels, module configuration may be carried out any time. The potential result of

this enhancement is a protocol specification with a dynamically varying module organization.

2.2.1 Dynamic Module Instantiation

The process of module instantiation includes the declaration of a module variable, the

initialization of a module instance, and the binding of the initialized module instance to the

module variable.

In the working document version of Estelle [E1te84}, module instantiation is an implied oper­

ation associated with the declaration of a module variable. In the later versions [Este85,Este86),

modules are explicitly created and initialized by using the INIT statement. Module termination

CHAPTER 2. ESTELLE EVOLUTION 8

is possible using the RELEASE 1tatement. Theae two special Estelle statements may be used

either at system initialization or within tranaition execution. The use of explicit statements to

perform these two operations in an Estelle protocol specification provides the power to change

the number and the type of modules within the specification dynamically. The need to sup­

port dynamic module creation and termination results in a run-time environment which must

maintain the complete hierarchical module organization at all times. In contrast, under the old

Estelle environment, this information may be discarded after the system has been initialized

[Ford85].

2.2.2 Dynamic Module Interconnection

With the addition of dynamic module imtantiation, it becomes necessary to provide explicit

module interconnection atatements. These operatioJUI are provided in Estelle by the special

statements: CONNECT, DISCONNECT, ATTACH and DETACH. The CONNECT and DISCONNECT

statements are w.ed to alter the interconnections between modules at the same level; and the

ATTACH and DETACH 1tatements are used to alter the interconnections between modules at

adjacent levels.

With the added capabilities for dynamic reconfiguration, the immediate parent of a set

of modules can be specified to act as a supervisory manager. However, these provisions for

dynamic reconfiguration of the various entities in a protocol specification result in an Estelle

run-time environment that is more complex than one which simply maintains a complete module

hierarchy.

CHAPTER 2. ESTELLE EVOLUTION 9

2.3 Justification for a New Estelle-C Compiler

With the basic ideu underlying the •mi-automatic approach to protocol implementation

well understood and demonatrated by the many existing Estelle compilers [Boch87a], the major

motivation for developing a new compiler for Estelle ia to upgrade the UBC Estelle-C compiler

to aupport the latest Eatelle language ■pecification (Este86]. However, it is apparent that there

are many issues which must be addreued in changing from a static run-time environment to a

dynamic one. Thia 1NCtion deecribea the justifications for a complete rewrite of the Estelle-C

compiler instead of modifying the existing compiler.

2.3.1 Syntactic Issues

One of most important reasons for rewriting the new Estelle-C compiler is that the syntax

of Estelle has changed 10 significantly that building a new parser is desirable. The old compiler

was written with the aid of the UNIX utilities lex and r,acc. A significant omission in the

old compiler was the lack of syntax error recovery mechanisms. The building of a new parser

offers an opportunity to incorporate this important compiler feature into the new compiler.

With added error recovery as part of the design goal, the Estelle grammar is rewritten into a

LL(l) form. Then, the parser for the new Estelle-C compiler is hand-coded in C using recursive

descent techniques. Syntax error recovery ia carried out uaing the panic mode technique with a

dynamic stop symbol set. AsJ. unrelated advantage gained from rewriting the compiler without

uaing lex and race ui the pONibility for further development of the new compiler in non-UNIX

environments.

CHAPTER 2. ESTELLE EVOLUTION 10

2.3.2 Semantic, h1ue1

Another important reuon for rewriting the new compiler relates to semantics issues. Being

a formal description technique for protocol apecification, the Estelle language must have precise

meaning; otherwiae, protocols specified in Estelle will not have a sound foundation and may

be opened to different interpretationa. In order to satisfy this requirement, the second draft

proposal for Estelle is published with a new aection on formal semantics [Este86]. When the

implementation of the old Estelle-C compiler is compared with the new formal semantics, several

features are found to be incompatible.

The major area of incompatibility has to do with the scoping rules for variables. The old

Estelle compiler did not pay particular attention to the scoping of many variables. Variables

local to individual transitions were not supported. Module parameters were not made available

to the module tranaitiona. Procedures and functions defined within a module were not allowed

access to global variables declared within the same module. Furthermore, the old Estelle-C

compiler is still erroneoua despite the improvements made by Alan Lau [Lau86]. In particular,

the old compiler lacks some important Estelle features, such as the data types SET and multi­

dimensional ARRAY. Solutions to these and other problems are all part of the redesign of the

new Estelle-C compiler.

Other semantics issues deal with error checking. The old Estelle-C compiler has no provision

for checking semantic errors beaidea Estelle specific aemantic errors. Since the code generated

by the Estelle compiler would have to be further compiled by the C compiler, the rationale

was that the C compiler can be uaed for most of the aemantic checks. However, by placing

most of semantic checking burden on the C compiler, the error messages from the C compiler

become cryptic. Users of the compiler without firm understanding of the organization of the

CHAPTER 2. ESTELLE EVOLUTION 11

generated C-codes frequently have trouble understanding errors detected during the subsequent

C compilation. In order to build a more •user-friendly" Estelle compiler, more emphasis is

placed on semantic checking in the new Estelle-C compiler.

2.3.3 User Issues

Building extensive error checking facilities into the new Estelle-C compiler is not adequate

to make -the new compiler user-friendly. The old Estelle-C compiler produces a C program

which is not readily compilable by the C compiler without extensive user modifications. Also,

the old Estelle run-time support routines contain specification dependent details which must

be modified for each Estelle ■pecification. In order to generate an executable implementation

from an Estelle specification, the user must recompile the run-time support routines using the

C compiler along with the C-code generated by the Estelle-C compiler. In the new Estelle-C

compiler, it is no longer neceasary for the user to modify any of the generated codes. Be­

sides improving and extending the run-time routines to support the new Estelle features, all

specification dependent details have been extracted from these run-time support routines. The

specification independent routinee have been precompiled into a single object library. After

the generated C-codes. have been compiled by the C compiler, they can be easily linked to this

object library to form the final executable program.

In summary, the new E1telle-C compiler is written to incorporate the features in the latest

version of the Estelle language and to improve the user-friendliness of the compiler. The user­

friendliness upect of the improvement includes the use of effective error diagnostics for the

user and the freeing of the user from the need to know the details in the underlying run-time

environment. The goal is to increase the degree of automation than that achieved in the previous

eemi-automatic implementationa of protocols from formal specifications. With regards to the

CHAPTER Z. ESTELLE EVOLUTION 12

shortcomings in the old Estelle-C compiler, a complete rewrite of the compiler is desirable as

well as necessary.

Chapter 3

Estelle to C Translation

The translation of Estelle to C in the new Estelle-C compiler follows the implementation

strategy used by Gerber (Gerb83], a strategy which was also adopted by Ford [Ford85]. Each

Estelle module is tranalated into two separate C routines. One routine is used for transition

execution while the other is used for module initialization. The transition routine implements

the finite state machine specified for the module. The Initialization routine sets up the

internal states of the module before it is ready for the subsequent transition execution.

Beaides generating executable codes to implement the modules, the Estelle-C compiler also

generates two sets of global declaration structures. One structure, called the signal parameter

block (FDTSVAR), is used for storing the parameter information carried in the interactions

passed between modules. The other structure, called the module variable block (FDTLVAR),

is used by each module for etoring local variables. Mter these four sets of generated C codes

are compiled and then linked together with a set of pre-compiled run-time support routines, an

executable protocol implementation results.

The Estelle run-time environment is constructed &om three major control blocks represent­

ing the three major abstractions defined in the Estelle language. The interactions which are

13

CHAPTER 3. ESTELLE TO C TRANSLATION 14

signaled between modules are repreNnted by ■lgn.al control blocks (FDTSCBs). The chan­

nels through which the interactiom are tr&111mitted are represented by channel control blocks

(FDTCCB,). Finally, the modules which aend and receive the interactions are represented by

process control blocb (FDTPCB,) .

The following aections present the Alternating Bit Protocol as an example in Estelle to

C translation. The complete Estelle ■pecification for the Alternating Bit Protocol and the C

program generated from it are included in Appendices B and C, respectively. The sections

begin with the explanation on the generation of the two global declaration blocks followed by a

description of the three control blocks and the ways in which they are combined with the gen­

erated declaration codes and with each other to form the run-time environment. Subsequently,

the translation of an Estelle module into an initialization and a transition routine is discussed.

3.1 Global Declaration Blocks

Two global declaration blocks are generated to represent all of the specification dependent

variables needed during run~time. To facilitate the ease of understanding the generated code,

the identifiers used in the generated C code retain their Estelle names. The elaborate variant

structures described below is neceeaary to protect the Estelle names from identifier conflicts

when used within a C program.

3.1.1 Signal Parameter Block

The signal parameter block (FDTSV.AR) is a three-level variant record structure repre­

aenting the combination of all specified parametere in all interaction primitives for all channel

types within an Estelle apecification. The FDTSV.AR generated for the alternating bit protocol

is shown in Figure 3.1.

CHAPTER 3. ESTELLE TO C TRANSLATION

typedef union {

/• CHAlflraL U_acceaa_point primitive■ and their identity numbers•/

union {
atruct {

int udata
. } SEND_B.EQ;
int RECV_B.EQ;
struct {

int udata:
} RECV_BSP;

} U_acces■_point

/• 1. SEND_REQ (udata udata_type); •/

I• 2. llECV_REQ; •I

/• 3. llECV_RSP (udata udata_type); •/

/• CHANNEL N_acceaa_point primitives and their identifiers•/

union {
struct {

ndata_type ndata
} DJ.TJ._REQ;
■truct {

ndata_type ndata
} DJ.TJ._BSP;

} N_acce■■-point;

/• 1. DATA_REQ (ndata ndata_type); •/

/• 2. DJ.TJ._RSP (ndata ndata_type); •/

I• CHANNEL s_acceaa_point priaitivea and their identifiers•/

union {
int TINER_llEQ
int TINER_BSP

} S_acceaa_point

} FDTSV.lR;

TIMER_REQ; •I
TIMER_BSP; •/

Figure 3.1: Signal Parameter Block Structure

15

CHAPTER 3. ESTELLE TO C TRANSLATION 16

The first level variant 1tructune identify the channel types while the second level variant

structures identify the interaction primitives within the channels. For easy identification, the

interaction primitives defined for uch channel type are numbered. The identity numbers as­

signed by the Eatelle-C compiler for the iDteraction primitives are shown in Figure 3.1. The

innermost structure■ repreeent an enumeration of the parameters for the interaction primitives.

These innermoet 1tructures are abeent for interaction primitives without parameters.

3.1.2 Module Variable Block

The module variable block (FDTLVAR) is a two-level variant record structure that

contains the complete global state variables for all module bodies. The module variable block

generated for the alternating bit protocol is presented in Figure 3.2.

The outer level variant structures identify the module bodies in the Estelle specification. The

inner structures ,tore all ~or and minor state variables declared for the module bodies. The

variables are collected from the various Estelle declaration sections. The first set of variables is

extracted from the module parameter declaration and the exported variable declaration sections

in the associated module header declarations. The rest of the variables are derived from the

STATE, STATESET, VAR and MODVAR declaration sections in the module bodies. The origins of

the various variables in the FDTLVAR are shown in Figure 3.2 as comments. Module bodies

without any variable declaration■ are not represented in the FDTLVAR structure.

3.2 Run-time Control Blocks

Three control blocks are used to represent all of the specification independent bookkeeping

information during run-time. The following sections describe the three control blocks and

conclude with a discussion on the improvements made with respect to the old Estelle-C run-

CHAPTER 3. ~TELLE TO O TRANSLATION

typedef union {
■truct {

int cep_id
int flag:
int data:

} uer_body:
■truct {

int count:
} network_body;
•truct {

int time
int FDT3
int ■top
int ■top_bia

} ti■er_body;
■truct {

int cep_id;
aet_ type EITHER
int STATE:
n.data_type buf;
■■g_type recv_asg
■■g_type ••nd_■■g
buf_type recv_buf
buf_type •end_buf
int recv_■eq
int ■end_aeq

} datax_body;
■truct {

int cep_id:
FDTPCB •ti■er_■odule
FDTPCB •datax_■odule

} abit_body;
■truct {

FDTPCB •abit_aodule [2];
FDTPCB •uer_■odule [2]:
FDTPCB •network_■odule

} SPECIFICATION
} FDTLV.il;

/• NODULE uaer_body •/
/•Parameter•/
/• Variable •/
/• Variable •/

/• NODULE network_body •/
/• Variable •/

/• MODULE timer_body •/
/•Parameter•/
/•Temporary•/
/• Variable •/
/• Variable •/

/• MODULE datax_body •/
/•Parameter•/
/• Stateaet •/
/• State •/
/• Variable •/
/• Variable •/
/• Variable •/
/• Variable •/
/• Variable •/
/• Variable •/
/• Variable •/

/• MODULE abit_body •/
/•Parameter•/
/• Nodvar •/
/• Modvar •/

/• SPECIFICATION abit_apec •/
/• Nodvar •/
/• Modvar •/
/• Modvar •/

Figure 3.2: Module Variable Block Structure

17

CHAPTER 3. ESTELLE TO O TRANSLATION 18

time control blocks.

S.2.1 Signal Control Block

Each unit of interaction (or signal) aent through a channel is represented by a signal

control block (FDTSCB) in conjunction with a 1lgnal parameter block (FDTSVAR) . As

described in Section 3.1.1, the FDTSVAR is a epecification dependent structure generated from

the channel type declaration aections in an Estelle specification. In contrast, the FDTSCB is

a specification independent run-time control block (Figure 3.3). The two blocks are linked

■tra.c:t FDTSCB_1truct
{

•truct FDTSCB_1truct •next;
int cid;
int •id;
int •■var:

};

typedef ■truct FDTSCB_■truct FDTSCB;

/• Next signal •/
/• Channel id •/
/• Primitive id•/
/• Parameters •/

Figure 3.3: Signal Control Block Structure

together by the pointer ■var located in the FDTSCB. Since the FDTSVAR contains only

interaction par&meter fielda (aee Figure 3.1), additional information must be provided within

the FDTSOB for the identification of interaction primitives. With the FD TS VAR implemented

u a three-level variant record structure, two identifiers are necessary to uniquely identify the

interaction being conveyed. The fint identifier, encoded in the field cid, indicates the index

number of the target interaction point within the target module. Since each interaction point

is usociated with only one channel type in Eetelle, thia number also identifies the channel type.

The second identifier, stored in the field aid, is uaed to epecify the interaction primitive within

CHAPTER 3. ESTELLE TO O TRANSLATION 19

the channel identified by cicl. The uxt field ia Uled for queue manipulation at the target

interaction point.

3.2.2 Channel Control Block

Each interaction point uaociated with a channel ia represented by a channel control block

(FDTOOB). The number of FDTOOB, neceua.ry to completely specify an Estelle channel at

run-time depends on the number of CONNECT and ATTACH statements used to build the channel.

Every CONNECT or ATl'AOH operation involves two FDTOCBs.

The bookkeeping for interaction point binding ia maintained by three pairs of variables

within each FDTOCB (See Figure 3.4). The pair (targeta, channela) is used to specify the

atruct FDTCCB_■truct
{

atruct FDTSCB_atruct •head, •tail:

};

atruct FDTPCB_atruct
int
int

•targeta, •targetc, •targete;
cha.nnela, cha.nnelc, channele;
qo.eue_kind:

typedef ■truct FDTCCB_■truct FDTCCB;

Figure 3.4: Channel Control Block Structure

target interaction point of an ATI'AOH operation when the target interaction point is located

at a child module. The field target• indicates the target module while the field channela

specifies the index number of the target channel within the target module. Similarly, the pair

(targetc, channelc) ia used to repraent the target interaction point of a OONNEOT operation

or the target interaction point of an ATTACH operation when the target interaction point is

located at a parent module. Because connected interaction points may be further attached to

CHAPTER 3. ESTELLE TO C TRANSLATION 20

other interaction pointa, in order to be efficient in determining the real target interaction point

when interaction are aent between module, the pair (targete, channele) is used to specify the

effective target interaction point directly. Thia tremendous amount of bookkeeping is necessary

to keep track of the ch&1111el binding between modules 10 that channels may be DISCONNECTed

and DETACHed afterwards. In contrast, under the old run-time environment for Estelle, where

channels are prohibited from unbinding, only the effective target interaction point needs to be

maintain~d in each FDTCCB (Ford85}.

The other fields with the FDTCCB depicted in Figure 3.4 are used to implement the inter­

action queue. When an interaction, represented by a FDTSCB is sent through one FDTCCB,

it will be queued at the opposite FDTCCB indicated by the (targete, channele) pair. The

head and tail fields are pointers to the first and last FDTSCBs in this queue, respectively.

In Estelle, interaction points may be specified with either COMMON or INDIVIDUAL queueing

discipline. The queue.Jdnd field ia uaed to indicate this queueing discipline for the interaction

point.

3.2.3 Process Control Block

Each module instance at run-time ia represented by a proceBB control block (FDTPCB)

in conjunction with a module variable block (FDTLVAR). While the FD TL VAR, as described

in Section 3.1.2, is a 1pecification dependent 1tructure generated from the various variable

declaration ■ections in an Eatelle apecification, the FDTPCB is a specification independent

run-time control block (Figure 3.5). This control block is uaed to store bookkeeping information

for each module instance for the duration of ite emtence at run-time.

The fields parent, db and ref are pointers ueed to maintain the static module hierarchical

structure at run-time. They point to the parent module, the next sibling at the same hierarchical

CHAPTER a. ESTELLE TO C TRANSLATION

atruct FDTPCB_■truct
{

}:

atruct FDTPCB_atruct
■truct FDTPCB_atruct
atruct FDTPCB_atruct
■truct FDTCCB_atruct
int
int
int
int
int
int
int
int
int
int

•parent;
•aib;
•ref;
•chan;
ipn11lll;
ipnext;
prio;
aigent;
delay;
to, ti:
apont;
export;
C•tr&JU1) 0:
•Ivar;

typedef ■tract FDTPCB_atruct FDTPCB;

/• Parent FDTPCB •I
/• Hext sibling FDTPCB •I
/• First child FDTPCB •I
I• FDTCCB array •I
/• Size of FDTCCB array •I
/• Next ip to search •I
/• Hierarchical level •I
/• Pending signal count •I
/• Delay clause id •I
/• Delay time limits •I
/• Spontaneous present? •I
/• Export variables? •I
/• Tr&JU1ition routine •I
/• Nodule variable block•/

Figure 3.5: Process Control Block Structure

21

CHAPTER 3. ESTELLE TO C TRANSLATION 22

level and the head of the lilt of child modulet at the next hierarchical level, respectively.

The addreu of the tranaition NM1tine which implements the extended finite state machine

specified for the module is ■tored at the field trana. The field lvar is a pointer to the FDTLVAR

block.

Since the number of interaction points in a module can be statically determined, all channel

control blocks FDTOOB• needed for a module are placed into one common array. The field

chan is used to point to this FDTOOB array while the field ipnum is used to store the size of

this array. Each interaction point is usigned an index number into this array starting at the

index value '1'. The FDTOOB with the index value of '0' is an extra channel control block

reserved for the COMMON queue. Interactions destined for a target interaction point specified

with COMMON queueing discipline are queued in this COMMON FDTOCB. Interactions destined

for a target interaction point specified with INDIVIDUAL queueing discipline are queued in the

specified target FDTOOB. The field aigcnt indicates the sum of all pending interactions in

the queues.

The three fields delay, to and t1 are used to implement DELAYed transitions (See Sec­

tion 4.2.3 for detail). The remaining fields identify the hierarchical level of the module (prio),

the next interaction queue to examine for the pending interactions (ipnext), and whether or

not the module hu spontaneous tranaitiona (apont) and export variables (export).

3.2.4 Improvement over past :Estelle Compilers

The run-time data 1tructurea Wied in the new Estelle-C compiler represent some of the

major improvements made to the new compiler u compared to those used in the old compilers

[Gerb83,Ford85].

In the past, the signal parameter block ia placed within the signal control block; and the

CHAPTER 3. ESTELLE TO C TRANSLATION 23

module variable block is placed within the process control block. Since, these two combined

control blocks contain 1pecifi.cation dependent information, they are different for different Estelle

specifications. Furthermore, unce the run-time routines must have access to the control blocks,

it is necessary for the old run-time routines to be recompiled for different specifications. With

the arrangement uaed in the new Estelle-C compiler, the specification dependent details are

isolated into the FDTSVAR and FDTLVAR structures while the control blocks remain the

same for all specifications. Consequently, the new run-time support routines are specification

independent and they no longer require recompilation.

A second improvement is made in the structuring of the FDTCCBs. In the old Estelle

compiler, the FDTCCBa are linked together into a linear list. Therefore, every channel access

must involve a linear search along this list for the required FDTCCB. The new Estelle-C

compiler takes advantage of the fact that the number of channel is fixed for each module and

assigns a unique index number to each channel. Channel access in the new Estelle-C compiler

is thus performed by array indexing rather than by linear searching.

3.3 Run-time Support Routines

The control blocks described 10 far are co11.1tructed into a run-time data structure that

reftects the module organization defined in the Estelle specification. This structure is built

using a aet of pre-written support routines. The calls to these routines are made by codes

incorporated. within the two aeta of generated module routines. The support routines can be

divided into three groups, each or which manipulate. one type of control blocks. The following

sections describe these three groups of eupport routines.

CHAPTER S. ESTELLE TO C TRANSLATION 24

s.s.1 Proceas Control Block Routines

There are two proc- control block routines uaed to create and destroy process control

blocks. The codea for theae routines are depicted in Appendix D. The routine FDTPCBini t ()

creates and initia.lisee an FDTPCB. Thia routine is used to instantiate a new Estelle module

and it implement. all of the 1pecification independent operations required for the INIT operation

defined in E■telle. The fir■t part of the initialization process results in the linking of the newly

created FDTPCB to the FDTPCB of its parent module and to the FDTPCBa of its other sibling

modules. Afterwards, the appropriate number of FDTCCB, are created for the module being

instantiated. Finally, other bookkeeping variables are initialized. The specification dependent

operations are individually implemented in the initialization routines generated for each defined

Estelle module (See Section 3.4.1 for detail).

The routine FDTPCBtera() destroy, a specified module and all its child modules recursively.

This routine implement, the RELEASE operation defined in Eetelle.

S.S.2 Channel Control Block Routines

The channel control blocks are manipulated by a set of seven run-time routines shown in

Appendix E. These routines can be divided into two functional groups.

One group consiats of the two routinee, FDTCCBini t O and FDTCCBterm O , are used to

allocate and to release the appropriate number of channel control blocks for a module. These

two routines are in turn uaed by the routines, FDTPCBinitO and FDTPCBtermO, respectively,

when modules are created and destroyed.

The other group is made up of five routines ueed to bind and unbind pairs of communi­

cating channel control blocks. The routines FDTCCBconnect() and FDTCCBdiaconnO are used

CHAPTER 3. ESTELLE TO C TRANSLATION 25

to bind and unbind FDTCCB• of modules at the same level in the module hierarchy. The

routines FDTCCBattach(), rDTCCBcletacht () and FDTCCBdetach2 0 are used to bind and un­

bind FDTCCBa of modules at acljacent levels in the hierarchy. Essentially, they implement the

Estelle operations OONNEOT, DISOONNEOT, ATTAOH, and DETACH respectively.

3.3.3 Signal Control Block Routines

Interactions queued at a FDTCCB are manipulated by four pre-written library routines

shown in Appendix F. In this version of the Estelle-C run-time environment, the interaction

queues are implemented u ■ingly-linked circular queues.

The routine FDTSCBaignal () is uaed to dispatch an interaction through a specified channel.

A call to this routine is generated u the last 1tep in the translation of an OUTPUT statement (See

also Section 3.5.2). The newly dispatched interaction is placed in either the COMMON channel

or the specified target channel of the target module depending on the queueing discipline of the

target interaction point (See also Section 3.2.3).

The routine FDTSCBapont () is uaed when it is nece■eary to generate a spontaneous signal.

A call to this routine is iuued, when appropriate, after a transition is completed.

The routine FDTSCBdiapoae O is used after a transition has been completed in order to

disposed of a received input interaction or a spontaneous interaction (See also Section 3.4.2 for

details).

Finally, the function FDTSCBpending() is used by the global scheduler to search for a pend­

ing signal destined for a particular proce88.

CHAPTER 3. ESTELLE TO C TRANSLATION 26

3.4 Module Translation

The module abstraction in an Eatelle •pecification represents the basic unit of protocol

specification. A module type ia declared u an abstract data type. The external visibility of

the module is defined in a module header while the internal behavior is specified in a module

body. The Eatelle language definition allows several different module bodies to be specified

for each module header.

As described in Section 3.1.2, the module head and the global declarations within the

module body are ued to generate declaration •tructures within the module variable block

(FDTLV.A.R). The two C routines that are generated from each module are translated from

the initialization parts and the transition parts within the module body. The convention used

in the Estelle-C compiler ii to name these routines after their corresponding module body. In

order to distinguish the initialization routine from the transition routine, the prefix FDT is added

to the name of the initialization routine. There is one exception to this naming convention.

The two routines translated from the outermost SPEOIFIOATION module are always named

FDTSPECIFICATION () and SPECIFIC!TION (), respectively.

The following sections describe the general structure of the two generated implementation

routines. The diecWl8ion on the translation of the transitions themselves is deferred until Sec­

tion 3.5.

a.4.1 Initialization Routine

The lnltlallsatlon routine for a module ii generated from the initialization parts within

a module body. This routine is used to Bet up the initial states of the extended finite state

machine representing the module. The initialization routine for a module is executed whenever

CHAPTER 3. ESTELLE TO C TRANSLATION 27

an INIT statement referencing the module ia executed by its parent module.

The general •tructure for an initialisation routine ia depicted in Figure 3.6. The first part of

the routine allocates a control block for the module. Initialization begins by calling the run-time

support routine FDTPCBinitO to create a FDTPCB. Afterwards, an FDTLVAR is created and

linked to the FDTPCB. The routine FDTPCBizµt() implements the specification independent

aspects for the INIT •tatement (See Section 3.3.1 for detail). The rest of the initialization routine

represents· the specification dependent portion of the initialization process.

After a FDTPCB and a FDTLVAR has been allocated for the module, the initialization

routine begins with module parameter initialization. All the module parameters declared in the

module header section for the module are paased to the initialization routine. These parameters

are copied into the FDTLVAR by aasignment statements.

The next section in the routine contains the code for the initialization transitions. These

transitions are usually responsible for calling other initialization routines which, in turns, instan­

tiate the underlying submodules and then interconnect these submodules to the module being

initialized. Other activities performed by the initialization transitions includes initializing the

various global variables and setting the module into the proper state before the subsequent

transition execution.

If the module contain spontaneous transitions, a spontaneous signal is generated in the next

eection. The last step in the initialization routine returns the address of the created FDTPCB

to the parent module which calls this initialization routine. This pointer is stored within the

FDTLVAR of the parent module for •ub,equent references to this particular child module . .

CHAPTER S. ESTELLE TO C TRANSLATION

■tract FDTPCB •FDTbod:, (parent, arg1, arg2, ...)
FDTPCB •parent;

/• type declaration■ for arg1, arg2, ... •/
{

}

FDTPCB •pcb;
.FDTLV.ll •lvar;

I• Create• control bloc:U •/
pcb • FDTPCBinit (parent, ipnu, SPONTbody, XPORTbody, TRANSbody);
pcb->lvar •(int•) (lvar • (FDTLVAR •) u.lloc(sizeof(FDTLVAR)));

/• Copying arguent■ to ■odule variable block•/
lvar->body.arg1 • arg1;
lvar->body.arg2 • arg2;

/• Initialization transitions (See Section 3.6) •/

/• Generate■ a apontaneoua interaction if possible•/
trana_end:
if (pcb->■pont)

FDTSCBspont (pcb);
return (pcb):

Figure 3.6: Initialization Routine

28

CHAPTER 3. ESTELLE TO C TRANSLATION 29

3.4.2 Transition Routine

The transition routine for a module ia generated from the transition parts within a

module body. This part of the Estelle 1pecification i■ used to define the state transitions that

constitute the extended finite state machine representing the module. The routine itself is called

whenever the run-time ■cheduler aelects the corresponding module for execution.

The general structure of a transition routine is depicted in Figure 3. 7. Two parameters

are passed to each tran1ition routine when the module is executed by the scheduler. The

parameter procea■ supplies the routine with the correct FDTPCB for the module while the

parameter signal indicates the interaction selected by the scheduler to be processed by the

module. Within the routine, the local variables 1 var and a var are used to facilitate access to

the FDTLVA.R and FDTSVA.R control blocks, respectively.

The codes in the first part of the routine implements the module transitions. The details

for these codes are described in Section 3.5. The final section in the routine contains the exit

sequence for the module. The details for these codes are explained in Section 4.2.

3.5 Transition Translation

In Estelle, the transitions for an extended finite 1tate machine may be described in either an

initialization part or a transition part within the module bodies. There may be zero or more of

these transition description sections within a module body. A module without any initialization

part will be initialized with the creation ofit1 FDTPCB and FDTLV.AR blocks and the copying

of its module parameters, if any, into its FDTLVA.R. A module without any transition part

are inactive after its initialization. Inactive modules are generally used as structuring devices

which impose an hierarchical organization to their underlying child modules.

CHAPTER 3. ESTELLE TO C TRANSLATION

body (proceaa, ■ignal)
FDTPCB •process;
FDTSCB •■ignal;

{

}

FDTLVil •lvar • proceaa->lvar;
FDTSVil ••var• ■ignal->avar;

I• Code for tran.aitiou (See Section 3.6) •/

/• Exit code when no transition was triggered•/
if (■ignal->cid •• 0)

FDTSCBdispoae (process, signal);
return;

/• Exit code when a transition was triggered•/
trana_end:
FDTSCBdispoae (process, signal);
if (procea■->apont)

FDTSCBspont (proceaa);

/• Exit code for apontaneoua transition•/
■pont_end :
proceaa->delay • O;

Figure 3.7: Transition Routine

30

CHAPTER 3. ESTELLE TO C TRANSLATION 31

Each transition ia apecified ia twe parts. Tlae actions to be performed by the transition are

defined by a Pucal style atatement Weck. Thia tranaition block is preceded by zero or more

transition clauses. The tranaition clauaes are used to specify the enabling conditions which must

be satisfied before the tranaition block can be executed. This eection describes the translation

of the transition claUH8 followed by the translation of the transition blocks.

S.5.1 Transition Clauses

In Estelle, transition clauses may be used to apecify the enabling conditions of a transition in

terms of the present state (FROM clause), the input signal (WHEN clause), an enabling predicate

(PROVIDED clause) or a transition priority (PRIORITY clause). Other clauses may be used to

specify actions such as going to a specified next state (TO clause) or delaying the action for a

specified time (DELAY clause). Finally, there is also a clause that can be used as a shorthand

notation for a sequence of transition (ANY clause). The translation scheme for generating codes

for the enabling transition clauses ia essentially one of substituting a corresponding boolean

expression for the clause. The strategy for translating the action transition clauses is to place

statements that perform the indicated action within the enclosing transition block. Compare

Appendices B and C for illustrations.

The translation of most of the transition clauses are straight forward. A FROM clause is

translated into a boolean expreuion testing for the current state (Figure 3.8). As described

in Section 3.2, the current state for a module is atored u Uie variable STATE in the module

variable block (FDTLV.AR) for the module. The WHEN clauae ia also translated into a boolean

expression (Figure 3.9). Two tests must be made. F~t the specified interaction point is

tested against the incoming signal (aignal->cid). Then the incoming interaction primitive

type (signal->sid) must match the primitive specified in the clause.

CHAPTER 3. ESTELLE TO C TRANSLATION

if (lvar->body.STATE •• <FROM atate>)
{

... I• Nested transitions•/
}

Figure 3.8: Codes generated for a FROM clause

·· if ((aignal->cid •• <channel>) It (signal->sid • • <primitive>))
{

... I• Nested trauition.a •/
}

Figure 3.9: Codes generated for a WHEN clause

32

Although the natural translation for a PROVIDED clause is also a boolean expression, but

because of the poesible presence of an OTHERWISE condition, its translation is not straight

forward (Figure 3.10). The 1trategy taken in thia implementation is to declare and initialize a

boolean flag to TRUE before the execution of the boolean expressions. After every PROVIDED

claU1e where a boolean expreuion ii 1pecified, a statement ii added to set the flag to FALSE. If

the boolean expreaion ii evaluated to TRUE, then the flag will be set to FALSE, otherwise the

flag will remain TRUE. If an OTHERWISE condition is specified in the final PROVIDED clause, a

boolean expression ii generated to teat the boolean flag for the TRUE condition. In this way,

the OTHERWISE tramition ii executed if and only if none of the previous boolean expressions

are 1atisfied.

The DELAY clauae ii the most complicated clause to translate (Figure 3.11). Three auxiliary

variables (delay, to, t1) located in the FDTPCB are used in order to implement this clause.

Each DELAY clause specified ii aasigned an unique number. The variable delay is always set to

CHAPTER 3. ESTELLE TO C TRANSLATION

{

}

if (boolean expre■■ion 1) /• PROVIDED clause 1 •/
{

}

flag• 0 /•Fil.SE•/;
{

/• Ne■ted transitions•/
}

if (boolean expression 2) /• PROVIDED clause 2 •/
{

}

flag• 0 /•Fil.SE•/;
{

/• •••ted tran■itiona •/
}

if (flag•• 1 /• TaUE •/) I• OTHERWISE clause•/
{

... I• •••t•4 tran■itiona •/
}

Figure 3.10: Coda generated for a PROVIDED clause

33

CHAPTER 3. ESTELLE TO C TRANSLATION

{

}

proceas->tO • ti■e(O);

/• Set ti■er if not already set•/

if (procesa->delay I• <delay id>)
{

}

proceaa->t1 • proceaa->tO + <delay time>;
proc•••->delay • <delay id>;

I• Teats for ti■er expiration•/

if (proce■■->tO >• proce■■->t1)
{

}

else return;

Figure 3.11: Coda generated for a DELAY clause

34

CHAPTER S. ESTELLE TO C TRANSLATION 35

the number usigned to the DELAY claue currently in effect. If none is in effect, the variable is

set to the value '0'. The variable to ii uled to store the current time while the variable t1 is

used to store the expiration wne for the delay. See Section 4.2.3 for the run-time effect of this

clause.

The TO clause ia translated into a statement in the enclosing transition block which changes

the module atate variable to the indicated at.ate in the TO clause. If there are several transition

block nested under a TO clause, then the state change statement is replicated in all of the

enclosing transition blocks.

The ANY clause ia translated into a simple for statement which steps through all values in

the specified 1C&lar domain. If more than one domain ia specified, a set of nested for statements

are used.

Within a transition routine, the transitions are layed out in the same sequence that they

are defined in the Estelle specification. Therefore, the transition clauses will be evaluated in

the order in which that they are specified. The transition that will be executed will be the first

transition which enabling cla118e8 are all 1&tisfied. The use of this scheme implies that the order

in which the transitions are specified ia significant. Consequently, the PRIORITY clause is not

implemented in the Estelle-C compiler. The user can always rearrange the transitions in the

order of their priority.

Although the 1eheme used is deterministic, the Estelle definition does allow the protocol

implementer to make th.ia choice [Eate86). If non-deterministic transition is to be supported,

all of the transition clauses must be evaluated to determine the enabled set. From the enabled

set of transitions, the ones with the highest priority and which also satisfy the delay criteria

are selected. Finally, from this fireable set, a transition must be offered to be executed non-

CHAPTER 3. ESTELLE TO C TRANSLATION 36

deterministically. Thill three -.p aelection proceu will only make for an inefficient protocol

implementation.

3.6.2 Tranaitlon Block•

The tramlation of the Puca.I ■tyle 1tatement11 in a transition block into equivalent C style

statements is generally done by ■traight 1ubstitution. The problems encountered are already

noted by Ford and Lau (Ford85,Lau86]. Moat of these difficulties have to do with Pascal

constructs which have no equivalence in C.

Most of the special ■tatements provided in Estelle are translated into subroutine calls to the

appropriate run-time support routines which implement the corresponding functions. These

routines are described in Sections 3.3.1 and 3.3.2.

The OUTPUT ■tatement ia tramlated into a C block containing a local pointer variable news­

var (Figure 3.12). Thia local variable is used to allocate a signal parameter block FDTSVAR

{

FDTSVAR •newsvar • (FDTSVAB. •) aalloc(aizeot(FDTSVAR));

:newavar-><cha.nnel>.<priaitive>.<para■eter1> • <value1>;
:newavar-><cha.nnel>.<priaitive>.<parameter2> • <value2>;

FDTSCBaignal (proceaa, <channel id>, <primitive id>, newsvar);
}

Figure 3.12: Codee generated for an OUTPUT statement

within the block. Then, the parameters ■upplied to the OUTPUT statement are copied into the

FDTSVAR. Finally, a signal control block (FDTSCB) is constructed and appended to the des­

tination queue specified in the OUTPUT ■tatement using the run-time routine FDTSCBsignal O.

Chapter 4

Estelle Run-time Execution

An executable program generated from the Estelle specification described in Chapter 3 still

only represents a static description of the Estelle specification. It is only when this C program

is executed that a dynamic entity will result. This chapter describes the inner working of the

generated program during execution.

4.1 Run-time Organization

The execution of an Estelle specification ia implemented as a two-stage process driven by

the main driver routine supplied in the Estelle run-time support package (Figure 4.1). First,

aain()
{

FDTPCB •root:

root• FDTSPECIFICATION(llULL):
FDTSCBexec(root):

)

Figure 4.1: Main Driver Routine

the driver constructs a run-time structure to represent the initial module hierarchy for the

37

CHAPTER 4. ESTELLE RUN-TIME EXECUTION 38

specification by calling the initialisation routine, FDTSPECIFICATION (). Then, the driver calls

the run-time scheduler routine, rDTICBexec (), to take over the execution of the protocol.

The following aectiont explain how two dependent run-time structures are generated from

the same set of control blocks and how these 1tructures are used by the run-time scheduler to

execute an Estelle 1pecification.

4.1.1 Initialization Routines

The initialization routines generated from the Estelle module body declarations are invoked

in a sequence which reflecta the nested module organization defined in the Estelle specification.

As noted in Section 3.4, the initialisation routine of the specification module is always named

FDTSPECIFICATION(). This routine is the only specification dependent routine that is directly

invoked by the run-time aupport ■y'9tem. Consequently, the use of a fixed name for this routine

is one of the reasona why the new Eatelle run-time aupport system needs not be recompiled for

every different Estelle ■pecification.

The function of an initialisation routine for a module is to create the two control blocks,

FDTPCB and FDTLVAR, which when taken together, represent an instance of the module, and

to execute the initialisation routines of all ita child modules. The result of each invocation of

an initialization routine is the aimultaneoua construction of two tree structures which represent

the initialized module and all ita child modules in two different ways.

In one system, each tree atructure conatructed by a child module is stored in a module

variable located in the FDTLVAR of the parent (See Figure 3.2). After the initialization

process, a parent module can refer to any of ita child modules by name through the use of these

module variables in its FDTLVAR. This ayatem is uaed within the implementation routines

generated from the Estelle apecification. The aecond aystem is generated automatically when

CHAPTER 4. ESTELLE RUN-TIME EXECUTION 39

the initialization routines invoke FDTPCBini t () to create the F DT POBs. This system is used by

the run-time acheduler to refer to the modules anonymously and in a specification independent

fashion.

4.1.2 Scheduler Routine

The function of the acheduler is to repeatedly select an interaction from the pool of pending

interactions and to execute the appropriate module to process the selected interaction. The

scheduling algorithm med is, in essence, a pre-order traversal of the module hierarchy tree in a

round-robin manner. However, the scheduling algorithm is not straightly round-robin because

of the parent/child priority relationship which exists in the module hierarchy. The scheduler

routine is shown in Figure 4.2.

The scheduler keeps track of a current module for each level in the hierarchy. At any one

time, the current module at one of these level is the current module in the system. The scheduler

first checks if there are any pending interactions for the module. If a pending interaction exists,

then the current module ia eelected to be executed. There is also the concept of a next level. If

no pending interaction exists, the next level will be one level down. But, if a pending interaction

exists and the execution of current module affects 10me of its ancestor modules, then the level of

the ancestor module cloeeet to the specification module will become the next level. Otherwise,

the next level is still the current level. In any case, the next module to be selected at the current

level will be the next eibling module of the current module.

To eummarize, the next level stays at the current level or goes up if a pending interaction

exists for the current level. Otherwise, the next level becomes one level down. This scheduler

algorithm eneured that when a module hu the potential to execute transitions, none of its

child modules can execute. The algorithm aleo eneures against module starvation because it

CHAPTER 4. ESTELLE RUN-TIME EXECUTION

FDTSCHexec (root)
FDTPCB •root;

{

}

CurrLeTel • (FDTSCH •) ulloc(aizeof(FDTSCH));
CurrLeTel->prev • CurrLevel;
CurrLeTel->uxt • IULL;
CurrLeTel->pcb • root;
while (1)

}

{

CurrBlock • CurrLevel->pcb;
CurrS1gnal • FDTSCBpeDding(CurrBlock);
if (CurrSignal I • JfULL)

{

}

if (CurrBlock->export)
lextLevel • CurrLevel->prev;

.1 ..
llextLevel • CurrLevel;

/• Tranaition routine ■ay change NextLevel *I
CurrBlock->trana (CurrBlock, CurrSignal);

elae if (CurrBlock->ref I• NULL)
{

}

if (CurrLevel->next •• NULL) {
••xtl.eTel • (FDTSCH •) aalloc(aizeof(FDTSCH));
••xtLevel->prev • CurrLevel;
lextLevel->next • NULL;
••xtLevel->pcb • CurrBlock->ref;

} .1 .. {
••xtLevel • CurrLevel->next;
if (NextLevel->pcb •• NULL)

lextLevel->pcb • CurrBlock->ref;
}

CurrLeTel->pcb • CurrBlock->aib;
CurrLeTel • llextLevel;
while (CurrLeTel->pcb •• NULL)

CurrLevel • CurrLevel->prev;

Figure 4.2: Run-time Scheduler Routine

40

CHAPTER 4. ESTELLE RUN-TIME EXECUTION 41

is not possible for a module to execute two transitions in a row even if it has several pending

interactions enqueued at the Nine time.

4.2 Transition Processing

After the scheduler executes the transition, routine of the current module, the next step is

for the transition routine to search for the first transition within the module which satisfies all

its enabling conditions. This transition is then executed to process the input interaction. The

following sections elaborate on the procedures for processing transitions in various situations.

4.2.1 Input Transitions

When all the enabling condition of an input transition is satisfied, the actions specified in its

transition block is executed. After the completion of the transition actions, the module performs

an exit sequence which is common to all input transitions (See Figure 3. 7). First, because the

interaction which caused the transition has already been processed, it is disposed. Second,

because the actions of the just completed transition may have enabled one of the spontaneous

transitions in the module, actions must be taken to ensure that the scheduler will execute the

module once more in order to check for this situation. If a pending interaction exists for the

module, nothing needs to be done. However, if none exists then a spontaneous interaction is

generated for the module by the use of the routine FDTSCBspont(). Finally, because the just

completed transition would have nullified any pending delayed transition, the variable delay

in the FDTPOB is cleared.

CHAPTER 4. ESTELLE RUN-TIME EXECUTION 42

4.2.2 Spontaneous Transitions

The exit aequence after the completion of a 1pontaneous transition is a lot simpler than

that for an input transition. There are two reasons for this difference. Firstly, if the interaction

selected for the module is an input interaction, then it will not be processed by the spontaneous

transition. Therefore, the interaction aelected · for the module by the scheduler should not be

disposed. Secondly, if the interaction is a 1pontaneous interaction, then another spontaneous

interaction must be needed to check for more enabled spontaneous transitions. Again, there is

no need to dispose the interaction. The only action necessary after a spontaneous interaction

is to nullify any pending delayed transition (See Figure 3.7).

4.2.3 Delayed Transitions

Delayed transitions are spontaneous transitions with additional timing constraints. How­

ever, unlike other transitions, delay transition also has a entry code sequence (See Figure 3.11).

If the transition is newly enabled, then the delay parameters are saved by this entry sequence

into the FDTPCB of the module. A desirable side effect of this action is that it will also nullify

another pending delayed transition in the module. In the next step, the delay timer is checked.

H the delay con■trainta are satisfied, the transition is executed. In this case, the exit sequence

for it is identical to that for a regular spontaneous transition. Otherwise, control is immediately

returned to the acheduler. This bypassing of the exit sequence will cause the selected interaction

for the module to remain pending and to cauae the scheduler to execute the module at a future

time.

CHAPTER 4. ESTELLE RUN-TIME EXECUTION 43

4.2.4 No Enabled Transitions

The final situation which muat be taken into account is the situation in which the interaction

selected by the 1eheduler does not trigger any transitions. This situation can occur because

the scheduler has no knowledge of the transitions within the transition routines. Therefore,

the availability of a pending interaction does not guarantee its processing and disposal. This

situation is most likely caused by a •pontaneous interaction which is used only to check for

enabled spontaneous transitions. The actions needed to handle this situation is to dispose the

interaction if it is spontaneous, and to leave it pending in the queue if it is not. In order to help

prevent deadlock, when the module is again selected for execution, the scheduler will search for

pending interactions at other interaction points first.

Chapter 5

Conclusions

The present study found substantial syntactic and semantic differences between the Estelle

language as implemented by the existing UBC Estelle-C compiler and that specified in the latest

ISO document [Este86] and cumulated in the construction of a new Estelle-C compiler. The

new compiler supports a large subset of the latest Estelle language specification. The following

sections summarize the present work and suggest possible future studies.

5.1 Thesis Summary

As stated in Section 2.3, the major motivation for developing the new compiler is to upgrade

an existing UBC Estelle-C compiler to support the latest Estelle language specification. The

new compiler fulfills this goal by 1upporting dynamic reconfiguration of the various entities in

a protocol specification. However, there are aeveral Estelle features not included in this new

compiler. The PRIORITY clause iii not BUpported due to the reasons given in Section 3.5.1.

Additional Estelle features missing are the ALL statement, the FORONE statement and the

EXIST expression which are uaed for implicit accea to module instances by types rather than

by names. A general solution that implements these constructs would require a module directory

service to associate module types with module names. The module directory would be further

44

CHAPTER 5. CONCLUSIONS 45

complicated by the presence of indexed module names. In view of the fact that these constructs

can usually be replaced by a mixture of iterative and conditional statements designed for specific

situations, their general support would not be cost effective in terms of run-time overhead.

Other issues reeolved in the new Estelle-C compiler include problems cited by Lau in regards

to the old compiler [Lau86]. The old compiler handles module parameter passing very clumsily.

In the new compiler, module parameters are automatically accessible in the module initialization

routines, the module tranaition routines and the subroutines nested within the Estelle module.

Global variables are a1ao 1Upported as defined by the formal semantics in the new Estelle

language specification. The Pascal multi-dimensional ARRAY type is now available for user

defined variables as well u MODULE and IP types. However, the data type SET is only partially

supported in the form of STATESET. Other Pucal-to-C translation problems that remained

are in the areas of SET expreasions and nested procedures and functions. These limitations are

certainly not unsolvable but their solutions are beyond the scope of protocol implementation.

The new compiler is hand-coded in C without using the UNIX utilities lex and yacc. It

consists of approximately 300 subroutines totaling to just under 11,000 lines of source code and

just under HK bytes of object code. The sue of the new compiler compares favorably with

that of the old compiler which contains over 14,000 lines of 110urce code and just over 14K bytes

of object code.

The new Estelle run-time 1upport routines are a1ao ~plemented in C. There are 40 routines

in the package with approximately 1,600 lines of 110urce code and 7K bytes of object code. In

contrast, there are only 17 routines in the old run-time 1upport routines with 1,400 lines of

source code and 2K bytes of object code.

AB part of the redesign of the Estelle-C compiler, the user operation of the compiler has been

CHAPTER 5. CONCLUSIONS 46

greatly simplified. In the old compiler, the user is required to modify certain sections of the

generated C code u well u the run-time support routines. Consequently, the old compiler was

labeled with the term "aemi-automatic. • The new compiler translates an Estelle specification

directly into a compilable C program. Modification of any of the generated C code is no longer

necessary. In addition, the new run-time aupp.ort routines have been rewritten to contain only

specification independent detaila and they can be directly linked to the compiled C program

without the need for recompilation. With these two user-friendly improvements, "automatic"

implementation of protocola from formal protocol specifications is now realized.

5.2 Future Work

Although an executable program can be generated automatically from a formal protocol

11pecification Wling the new Estelle-C compiler, formal protocol specifications are usually in­

complete. It is the nature of formal specifications to be "completely independent of methods of

implementation, so that the technique itself does not provide any undue constraints on imple­

menters" [Este86). Examples of implementation dependent properties that are almost always

left unspecified are functions BUch u user data management routines, timer management rou­

tines and protocol data unit encoding and decoding routines. The user must provide customized

versions of these functiona manually for the actual implementations in different machine envi­

ronments. However, it may be p088ible to define generic interfaces for these functions to be

usable from within a formal Estelle specification. The user data management example in the

Estelle language specification [Este86) presents one poesibility. Another direction for research

may be in the area of incorporating ASN.l [00186) into Estelle for the specification of protocol

data unit encoding and decoding functions.

CHAPTER 5. CONCLUSIONS 47

The usefulness of E■telle compilers hu already been demonstrated for semi-automatic gen­

eration of communication protocols [Boch86,Lau86,Boch87b] and for automatic generation of

test skeletons from protocol 1pecificationa [Favr87]. The pouible enhancements of these Estelle

compilers for the production of emulaton for protocol testing and monitors for protocol perf or­

mance evaluation would be invaluable. Therefore, the further development of novel applications

using these compilen in other areu of protocol development should be encouraged.

Bibliography

[Ansa87] Ansart, J.P., Amer, P., Chari, V., Lenotre, J.F., Lumbroso, L., Mariani, E. and
Mattera, E., "Software Tools for Estelle," Protocol Specification, Testing, and Veri­
fication, VI, (IFIP /WG6.l), B. Sarikaya and G.V. Bochmann, Eds., North Holland,
pp. 55-61, 1987.

[Boch86] Bochmann, G.v., "Semi-Automatic Implementation of Transport and Session Proto­
cols," Computer Standards k Interfaces, 5:343-349, 1986.

[Boch87a] Bochmann, G.v., "Usage of Protocol Development Tools: The Results of a Survey,"
Protocol Specification, TeBting, and Verification, VII, (IFIP/WG6.l), H. Rudin and
C.H. West, Eds., North Holland, 1987.

[Boch87b] Bochmann, G.v., Gerber, G.W. and Serre, J.M., "Semiautomatic Implementation of
Communication Protocols," IEEE 7rans. on Software Engineering, SE-13:989-1000,
1987.

[CCl86] CCITT, "Data Communication Networks - Message Handling Systems - Recom­
mendations X.4.~X.'30," Red Book, Vol. VIII, Fascicle VIII.7, Ganeva, 1986.

[Cour86] Courtiat. J.P., Pedroza, A. and Ayache, J.M., "A Simulation Environment for Pro­
tocol Specifications Described in Estelle," Protocol Specification, Testing, and Veri­
lication, V, (IFIP/WG6.1), M. Diaz, Ed., North Holland, pp. 297-312, 1986.

[Este84) ISO/TC97/SC21/WG1/Subgroup B, "A Formal Description Technique Based on an
Extended State 'l'l'anaition Model,• Working Document, 1984.

[Este85) JSO/TC97/SC21/WG1/Subgroup B, •Estelle - A Formal Description Technique
Baaed on an Extended State Transition Model," DP 9074, 1985.

[Este86) ISO/TC97/SC21/WG1/Subgroup B, •Estelle - A Formal Description Technique
Based on an Extended State Transition Model," 2nd DP 9074, 1986.

[Favr87] Favreau, J.P. and Linn, R.J ., • Automatic Generation of Test Skeletons from Protocol
Specification Written in Estelle,• Protocol Specification, Testing and Verification, VI
(IFIP/WG 6.1), B. Sarikaya and Bachmann, G.v., Eds., North Holland (1987).

48

[Ford85] Ford, D.A., "Semi-Automatic Implementation of Network Protocols," Master Thesis,
University of Britiah Columbia, 1985.

[Ga.rg87] Garguilo, J., Fauneau, J.P., Hobbs, M. and Linn, R.J. "Automated Protocol De­
velopment Through Use of the NBS Prototype Estelle Compiler," !CST/ APM-87-2,
National Bureau of Standards, Guithenburg, 1987.

(Gerb83] Gerber, G.W., "Une Methode D'Implantation Automatique de Systemes Specifies
Fonnellement," Muter Thesis, University of Montreal, 1983.

[1SO82a] ISO/TC97/SC16, "Transport Protocol Specification," DP 8073, 1982.

(ISO82b] ISO/TC97 /SC16, "Transport Service Definition," DP 8072, 1982.

[Lau86] Lau, A.C. "A Semi-Automatic Approach to Protocol Implementation - The ISO
Class 2 Transport Protocol as an Example," Master Thesis, University of British
Columbia, 1986.

(Linn86] Linn, R.J ., Jr., "The Features and Facilities of Estelle," Protocol Specification, Test­
ing, and Verification, V, (IFIP /WG6.1), M. Diaz, Ed., North Holland, pp. 271-296,
1986.

[Vuon87] Vuong, S.T. and Lau, A.C., "A Semi•Automatic Approach to Protocol Implementa­
tion - The ISO Clau 2 Transport Protocol u an Example," INFOCOM '87, San
Francisco, 1987.

[Vuon88] Vuong, S.T., Lau, A.C. and Chan, R.I., "Semi-Automatic Implementation of Pra.
tocols using an Estelle-C Compiler," IEEE Trans. on Software Engineering,, to be
published, 1988.

49

Appendix A

LL{l) Grammar for Estelle

60

spec 1f t cat 1 on

spec class
defaul t_opts
t1me_opts
mod_head_dcl

mod class
mod-parm ltst
export_dcl
mod head 1dent
mod-body-dcl
mod-body-tdent
body def­
declaration

mod var dcl
mod-var-def
mod-var-type
mod-var-group
mod-var-group1
mod-var-access
mod-var-1dent
channel-dcl
channel-head
channel-1dent
trole_11st
1role tdent
channel block
tprtm_group
tprtm_role
tprtm_def
tpr1m_1dent
1prtm_pltst
tpo1nt dcl
tpotnt-def
1po1nt:1dent
tpotnt_type
tpotnt_group
1potnt_group1
new tpotnt type
queue_d1sc1p11ne
tpotnt access
tpoint:select
state dcl
state=def
state_1dent
sset_dcl

: -=
: : .
:•

:•

:•

:•
: •
:-=
:•

; •

: •
: •

: ; C

: .
: .
:•
: .
!'"

:=

:=
: =
: =

·=
: =
: ..

: ,.
: •

: =
·=

SPECIFICATION !dent spec class ";"
[default opts) [ttme opts)
body def-ENO "." -
[SYSTEMACTIVITY i SYSTEMPROCESS)
DEFAULT queue dtsclpltne ";"
TIMESCALE tdent ";"
MODULE tdent mod class["(" mod parm ltst ")"] "·"
[tpotnt dcl J [export dcl] END ":" - ·
[SYSTEMACTIVITY i SYSTEMPROCESS : ACTIVITY i PROCESS]
parm_group {";" parm_group}
EXPORT var_def {var_def}
tdent
BODY !dent FDR mod_head_tdent ";" (EXTERNAL
1dent

body_def END) II • n

dec l aration 1n 1tlal t zat t on trans i t ion
const_dcl I t ype_dcl I var_dcl : pure_dc l
channe l_dcl I mod_head_dcl I mod_body_dc l
state dcl I sset dcl

proc_dcl : func_dcl
ipotnt_dc l : mod_var_dcl

MODVAR +{mod va r -def ": "}
tdent (•,• mod var_def : •:• mod_var_t ype)
mod var group T mod head 1dent
ARRAY ·T· mod var groupt­
ord t na l type T• . ., - mod var grou p 1
mod var- t dent [index-se lect]

"]" OF mod_head_tdent)

tdent - -
channel head channel block
CHANNEL-tdent "(" trole 11st ")" " · "
tdent -
tdent •," tdent
tdent
tprtm_group {tpr l m_group}
BY tprt m_ r ole ": • i prtm_def {1pr1m_def}
trole tden t ["." trole tdent]
tdent-("(" 1pr1m_p 11st-")") " · "
tdent
parm_group {";" parm_group}
IP+{ tpotnt def}
tdent ("." ipotnt_def : " : " tpotnt_type
ldent
fpotnt_group I new_fpotnt_type
ARRAY "(" tpotnt group1
ordtnal_type (".~ ordlnal_type : "]" OF new_ipotnt_type)
channel tdent "(" trole tdent ")" [queue dtsctpl tne]
(COMMON-I INDIVIDUAL) QUEUE -
(mod var access ".") lpotnt select
tpotnt tdent [index select]-
STATE state def ■• ■-
1dent {"," 1dent} •
tdent
STATESET sset_def {sset_def}

>
~
~
t::i
~
~

~
-;::--
~

I
~

g
~
~
~

01

""""

sset def
sset-ident
state list
state-element
initialization
init proc
transition
transition1

when_clause
input access
input-parm list
any cTause­
froiii cl a•Jse
from-1 ist
from:element
to_clause
to element
provided clause
delay_clause
delay range
priority clause
trans_block
trans name
const-dcl
const-def
const- ident
constant
ord const
type dcl
type=def
type denoter
old_type
new_type
new pointer type
ordinal type
new_ordfnal_type
new_enum_type
enum list
enumerator
new_subr_type
new_struct_type
new_set_type
new array type
new=array=type1
new_record_type
field 11st
fixedyart
field group
variant_part

: .

:=
: =
:z

: .,
: •

=-
:z
:•
: ::

: : a

: : .
: .
:=

: : .
:a

: =
: : .
: ::a:

: .
: =
: .

: : e:

:•
:e
: .
:"'

: .
: .
:•
: .
: .
:z
:•
: .
: .
:=

1dent ••• "[" state list ")"
ident -
state {"," state}
1dent
{INI TIAL I ZE in1t p r oc}

It • H

to_c l ause : p r ovi ded_clause : t rans_b l oc k
{TRANS t r ans ltl on1 }
when c l au se l f r om c l ause ! p r ov ided c l a use I priority clause
any_c l ause : de l a y=clause I tra ns_b l ock -
+(WHEN input access ["(" input parm l is t•) •] trans}
1point_select " . " 1prim_1dent - -

+{ANY domain list DO trans}
+ (F ROM from li s t tra ns}
fr om element {". •• fr.om e l ement}
sta t e_1den t l s t a t e_set_ i dent
+{TO t o e l emen t t rans }
sta t e_ ld e n t : SAME
+(PROV I DED (e xp r l OTHERWIS E) tr a ns }
+{DELAY delay range trans}
•(• expr [•,•-(expr l •••)] ")"
+{PRIORITY expr trans}

to_clause

[label dcl] [const dcl] [type dell [var dcl] {proc dcl} [trans name] cmpd stmt
NAME i dent • : " - - - - - -
CONST const def {canst def}
ident ••• constant ";"-
ident
const_fdent ! fntconst l realconst : charconst : strconst
const_1dent I intconst I charconst
TYPE type_def {type_def}
ident ••• type denoter ":"
old_type l new=type l new_subr_type
type ident
new_ordinal_type l new_struct_type l new_pointer_type
•·• t ype..,_t dent
ident l new_ordinal_type
new_enum_ t ype : new_subr_type
"(" enum 11 st ")"
enumerator {"," enumerator}
1dent
constant" . . • constant
[PACKED] (new_array_type l new_record_type l new_set_type
SET OF ordinal type
ARRAY "(" new array type1
ord1nal_type ("," new_array_type1 l "]" OF type_denoter)
RECORD field list ENO
[(fixed_part-[";" variant_part] l variant_part) [";"]]
field group{";" field ~roup}
fdent-("," field_group-, ":" type_denoter)
CASE variant_selector OF variant_list

n • 11

~
f3
><
~

~
-;:--C')
::ti
>

f
::ti

g
~
~
t'1

~

C}1
ts,

variant selector
vartant:11st
variant
case list
var_dcl
var_def
var_group
domain_ltst
domatn_group
var_access
var 1dent
index select
tndex-expr
component select
pointer_select
pure dcl
proc:dcl

func_dcl

formal _parm_ 11st
parm_def
parm_group
proc_directive
proc_block
nested dcl
label dcl
cmpd_stmt
stmt_seq
statement
sfmple_stmt

struct_stmt
cond stmt
loop-stmt
module_stmt

asst_stmt
proc_stmt
func stmt
if_stmt
case stmt
for _stmt
repeat stmt
while stmt
wt th_stmt
fnit stmt
release_stmt
connect stmt
disconn:stmt

: •
: •
: =-
·=

: =-
; :.

: =

: =
: =

:'"'
: .

: :c
: :11:
: : .
: : .
: : s

.. -
: : s ...
: ::z
.... ...

;,o,

:=
: =

: =

[tdent ":"] ordinal type fd
variant {";" variant} -

case 11st •:••(•field lfst ")"
constant { •. • constant}-
VAR + {var _def}
var group";"
ident ("," var _group i •:" type_denoter)
domain group {";" domain qroup}
ident ("," domain_group-T ":" ordinal_type)
var_ident {index_select i component_select : pointer select}
ident
•[• index_expr {"," index_expr} "]"
expr
•.• ident ...
PURE (proc_dcl l func_dcl)
PROCEDURE ident ["(" formal parm 11st ")"] ";"
(proc_direct1ve l proc_block) ":"
FUNCTION tdent ["(" formal parm 11st ")"] ":" fdent "·"
(proc_d1 rect tve l proc_bl ock) ";"
parm def {":" parm def}
[VAR) parm group -
1dent (", "ii parm_group l " :" old_ type)
[FORWARD l PRIMITIVE l EXTERNAL]
[lebel dcl] [const dcl] [type dcl J [var dcl] {proc dcl} cmpd stmt
{ [PUREJ (proc_dcl-: func_dcl)} - - -
LABEL tntconst {"," tntconst} ":"
BEGIN stmt seq ENO
statement 1•:• statement}
[stmt label ":"] (s impl e stmt I struct stmt)
empty:stmt : asst_stmt : -proc_stmt i tunc_,stmt
module stmt I channel stmt I output stmt
cmpd_stmt l cond_stmt- i loop_stmt : -w1th_ stmt
if stmt l case stmt
repeat_stmt I whlle_stmt l for_stmt I al l_stmt
lnlt stmt l release s tmt
attach_stmt I detach_stmt l connect_stmt r di s conn_s tmt
var access ":=" expr
proc 1dent ["(" actual parm list ")"]
func-ident ":=" expr - -
IF expr THEN statement [ELSE statement}
CASE expr OF case
FOR var access ":=" expr (TO i OOWNTO) expr DO statement
REPEAT stmt seq UNTIL expr
WHILE expr DO statement
WITH var access {"," var access} DO statement
INIT mod-var access WITH-mod body ident ["(" actual parm pl 1st ")" J
RELEASE var~access - - - -
CONNECT tpoint access TO fpofnt access
DISCONNECT ipoint_access -

>
~
~
><
>
t'-1
t-.

-;:--~
~

i
~
"!j
0
~

~
~
t'-1

~

CTI
~

attach stmt
detach:stmt
output_stmt
output_access
output_parm_11st
output_parm
al l_stmt
expr
rel_op
sexpr
slgn_op
add_op
term
mult op
factor
factor1
func access
actual parm 11st
actual:parm-

: •
:z

t =
: =
:=

:=
! =

: "'
; .
: =

ATTACH 1po1nt select TO fpofnt access
DETACH fpo1nt-access -
OUTPUT output-access l"(" output parm 11st ")")
fpofnt select-•.• fprim 1dent - -
output:parm {"," output:parm}
expr
ALL domain list DO statement
sexpr (rel-op sexpr]
11< n : H: ~ T ">'' : "<:~ : " <>" J •1,= 11 l IN
[slgn_op] term {add_op term}
tt+•' I n_ n

• +. ! . -" I OR
factor {mult op factor}
•·· I "/" l 5rv I MOD l AND
factor 1 I constant I " (" expr •)" I NOT factor
constant : var_access : func_access
func !dent ["(" actual parm 11st ") "]
actua l_parrn ("." actual_par~}
expr : var_access

>

~
~
><
?ii-

~
~ -C)

i
~

~
El
~
t-i
t-i
tz.l

C1t
~

Appendix B

Alternating Bit Protocol - Estelle
Specification

55

APPENDIX B. ALTERNATING BIT PROTOCOL - ESTELLE SPECIFICATION 56

SPECIFICATION abp_•pec SYBTEMPIOCESS; TIMESCALE •econda;

CONST
LO\f_CEP
HIGH_CEP

• 1; { Nini.au cep •ub•cript }
• 2; { NaxillUJI cep •ub■cript}

TYPE
cep_type • LOV_CEP .. BIGH_CEP;
aeq_type • 0 .. 1;
pid_type • (DATA, ACKN);
udata_type • INTEGER;
ndata_type • RECORD

pid
cid
••q
dat

END;

pid_type;
cep_type;
Hq_type;
udata_type

{ CoDUction end point}
{ Sequen~e number }
{ Packet type }

{ Type of ■e■■age}
{ Cep of ■ender }
{ Sequence number}
{ User data }

{ Channel between user and alternating bit protocol provider}

CHANNEL U_acceaa_point (user, provider);
BY user :

SEND_REQ (udata: udata_type);
JlECV_REQ;

BY provider
RECV_RSP (udata udata_type);

{ Channel between alternating bit protocol provider and the network}

CHANNEL N_accea■_point (uaer, provider);
BY user:

DATA_REQ (ndata: ndata_type);
BY provider

DATA_RSP (ndata: ndata_type);

NODULE uaer_type PROCESS (cep_id: cep_type); IP
U: U_acceH_point(uaer) INDIVIDUAL QUEUE;

END; { NODULE uaer_type}

BODY ueer_body FOR uaer_type;

VAR
data udata_type;
flag BOOLEAN;

APPENDIX B. ALTERNATING BIT PROTOCOL - ESTELLE SPECIFICATION 57

INITIALIZE

BEGIN
data:• O;
flag:• TRUE

END i { INITIALIZE }

TRANS

WHEN U.RECV_RSP

{ Received data from peer and proceed• to aend next data to peer}

NAME uaer1 : BEGIN
data:• data+ 1;
OUTPUT U.SEND_REQ (data);
OUTPUT U.RECV_REQ

END; { uaer1}

TRANS

PROVIDED flag

{ Spontauoua trauition to ••nd initial data}

NAME uaer2 : BEGIN
flag:• FALSE;
OUTPUT U.SEND_REQ (data);
OUTPUT U.RECV_IEQ

END; { uaer2 }

END; { BODY uaer_body}

NODULE network...type PROCESS; IP
N: ARRAY [cep_type] OF N_acceaa_point (provider) CONNON QUEUE;

END; { NODULE network...type}

BODY network_body POK network..type;

VAR
count INTEGER;

TRANS

ANY i cep_type DO

APPENDIX B. ALTERNATING BIT PROTOCOL - ESTELLE SPECIFICATION 58

WHEN N[i].DATA...REQ

NAME network1 : DOIN
count:• count+ 1:
IF count<> 4 THEN

OUTPUT N[BIOB_CEP-i+1].DATA...ISP (Ddata)
END: { network1 }

END: { BODY network_body}

MODULE abit_type PROCESS (cep_id: cep_type): IP
U: U_acceaa_point (proviur) INDIVIDUAL QUEUE;
N: N_acceaa_point (uer) INDIVIDUAL QUEUE:

END: { NODULE abit_type}

BODY abit_body FOR abit_type;

CONST
RETRAN_TINE • 30; { Retranami■■ion time}

CHANNEL S_acce■■-point Cu.er, provider);
BY uer :

TINER_REQ;
BY provider:

TINER_RSP:

NODULE tiaer_type ACTIVITY (time: INTEGER); IP
S : S_acceaa_point (provider) INDIVIDUAL QUEUE:

END: { NODULE tiaer_type}

BODY timer_body FOR tiaer_type;

VAR
■top, ■top_bi■ BOOLEAN;

INITIALIZE

BEGIN
atop :• TRUE:
atop_bi■ :• TRUE

END; {INITIALIZE}

TRANS

WHEN S.TINER_REQ

APPENDIX B. ALTERNATING BIT PROTOCOL - ESTELLE SPECIFICATION 59

NAME tiaer1 : BEGIN
■top :• TRUE;
■top_bi ■ :• PAI.SE

END: { ti•r1 }

TRANS

PROVIDED NOT ■top_bi■

NAME ti■er2: BEGIN
■top :• PAI.SE;
■top_bis :• TRUE

END; { timer2}

PROVIDED NOT ■top
DELAY (time, time)

NAME tiaer3: BEGIN
■top:• TRUE:
OUTPUT S.TINER_RSP

END; { timer3 }

END; { BODY tiaer_body}

NODULE datax_type ACTIVITY (cep_id: cep_type): IP
U U_acce■■-point (provider) INDIVIDUAL QUEUE;
N : N_acce■■-point (uer) INDIVIDUAL QUEUE;
S : S_acce■■-point (uer) INDIVIDUAL QUEUE;

END: { NODULE datax_type}

BODY datax_body POI datax_type;

TYPE
ug_type • RECORD

ugcid
..... q
ugdat

END;
buf_type • IECOID

eapty
END;

VAR
eend_seq ■eq_type;

recv_■eq ■eq_type;

cep_type:
■eq_type;

udata_type

BOOLEAN;
.. ._type

{ Bend ■equence number }
{ Receive ■equence number}

APPENDIX B. ALTERNATING BIT PROTOCOL - ESTELLE SPECIFICATION 60

aend..buf buf_type; { ACICN pending flag
recv_buf buf_type; { DATA pending flag
Hnd_ug ug_type; { N•••age being ■ent
recv_ug ug_type; { Neaaag• nceiTe
buf ndata_type; { Network buffer

STATE
ACK_WAIT, ISTAB;

STATESET
EITHER• [ACK_WAIT, ISTAB];

PURE .FUNCTION ack..ok (buf: ndata_type) : BOOLEAN;

{ Check■ ACKN Ma■age in the network buffer}

BEGIN { ack..ok}

}
}
}
}
}

ack..ok :• (buf.pid • ACKN) AND (buf.aeq • aend_eeq)
END; { ack..ok }

PROCEDURE format_data (ug: ug_type; VAR buf : udata_type);

{ Format• a DATA ••••1• into the network buffer}

BEGIN { foraat_data}
buf.pid :• DATA;
buf.cid :• cep_id;
buf.eeq :• ug.ugeeq;
buf.dat :• ug.ugdat

END; { format_data}

PROCEDURE format_ack (ug: ug_type; VAR buf : ndata_type);

{ Place■ an ACICN ■eaaage into the network buffer}

BEGIN { foraat_ack}
buf .pid :• ACICN; '
buf.cid :• ug.ugcid;
buf.aeq :• ug.ugHq;
buf.dat :• ug.ugdat

END; { for■at_ack }

PROCEDURE ■tore (VAR buf: buf_type; ug ug_type);

{ Store■ ••••1• into the 'bllffer}

BEGIN { atore}

APPENDIX B. ALTERNATING BIT PROTOCOL - ESTELLE SPECIFICATION 61

buf.eapty :• PAI.SE;
buf.•-■•1• :• .. g;

END; { ■tore }

PROCEDURE r .. ove (VAR buf buf_type; ug .. ,_type);

{ lmpti•• the buffer}

BEGIN { reaove}
buf.eapty :• TRUE

END;

FUNCTION retrieve (buf : buf_type) : ug_type;

{ Retrieve ■ th• --■■age fro■ the buffer}

BEGIN {retrieve}
retrieve:• buf.ae■■age

END; {retrieve}

FUNCTION buffer_empty (buf: buf_type) BOOLEAN;

{ Check■ for ••pty buffer}

BEGIN { buffer_eapty}
buffer_eapty :• buf.empty

END; { buffer_empty}

PROCEDURE inc_aend...aeq;

{ Increment• the ■end aequence number }

BEGIN { inc_aend..■eq}
aen.d..aeq :• C■•nd...••q + 1) MOD 2

END; { inc_■end... ■eq}

PROCEDURE inc_recv_■eq;

{ Increaent■ tbe receive ■equence number}

BEGIN { iDC_recv_■eq}
recv-~•q :• (recv_■eq + 1) NOD 2

END; { inc_recv_Hq }

INITIALIZE { data_body}

APPENDIX B. ALTERNATING BIT PROTOCOL - ESTELLE SPECIFICATION 63

END; { datax3}

FROM ESTAB TD ESTAB
WHEN S.TINER_BSP

{ The aeHag• that cauaed thi• tiaer to be Ht has been acknowledged }

HANE datu4: BEGIN
IND; { datax4}

PROM ACK_WAIT TD ESTAB
WHEN N.DATA_ISP

PROVIDED ack_ok(:a.data)

{ Acknowlegeaent for th• la•t --■■age •ent baa been received}

NAME datax6: BEGIN
■end....ug :• r•trieve (■end_buf);
remove C•encLbuf, ■end_ug);
inc_aend....Hq

IND; { datax6 }

FROM EITHER TO SAME
WHEN N.DATA_RSP

PROVIDED :a.data.pid • DATA

{ Proce•■ea ae■•age received from peer}

NAME datax6: BEGIN
recv_a•g.ugdat :• :a.data.dat;
recv_■■g.ug■eq :• ndata. ■eq;
format_ack (recT_ug, buf);
OUTPUT H.DATA_REQ (buf);
IF Ddata. ■eq • recv_■eq THEN BEGIN

■tore Cr•cv_buf, ncv_ug);
inc_recv_■eq

END { IP }
IND; { datax6 }

IND; { BODY datax_body }

NDDVAR
datax_ac,dule
tiMr_aodul•

datu_type;
tiaer_type;

INITIALIZE { abit_body}
BEGIN

APPENDIX B. ALTERNATING BIT PROTOCOL - ESTELLE SPECIFICATION 64

INIT datax_aodule WITH datax_body (cep_id);
INIT tiaer_aodule WITH tiaer_body (RETRAN_TINE);

CONNECT datax_aodule.S TO tiMr_aodule.S;
ATTACH U TO datax..aodule.U;
ATTACH N TO datax_aodule.N;

END; {INITIALIZE}
END; { abit_body}

MODY.AR
network..aodule
uaer_module
abi t_aodule

network.type;
ARRAY [cep_type] OF uaer_type;
ARRAY [cep_type] OF abit_type;

INITIALIZE { abp_■pec}

BEGIN
INIT network...aodul• WITH network.body:
ALL cep: cep_type DO BEGIN

INIT u■er_aodule[cep] WITH uaer_body(cep):
INIT abit_aodule[cep] WITH abit_body(cep);

CONNECT uaer_aodule[cep].U TO abit_aodule[cep].U;
CONNECT abit_aodule[cep] . N TO network...■odule.N[cep]:

END: { ALL}
END; {INITIALIZE}

END. { abp_■pec}

Appendix C

Alternating Bit Protocol -
Generated Codes

65

APPENDIX C. ALTERNATING BIT PROTOCOL - GENERATED CODES

#include <•tdio.h>
#include "fdtNt.h"
#include "fdt1cb. h"
#include "fdtccb.h"
#include "fdtpcb.h"
#include "fdt■ch.h"

/• Type declaratiou •/

typedef int cep_type
typedef int 1eq_type
typedef int pid..type
typedef int udata_type
typedef •truct {

int dat
int ■-q
int cid
int pid;

} ndata_type
typedef •truct {

int ugdat
int ugHq
int ugcid

} ug_type ;
typedef •truct {

ug_type --■■age
int empty ;

} buf_type ;

/• Signal paraaeter block declaration■ •/

typedef union {
union {

■truct {
int udata;

} SEND_reque■t
int UCV_reque•t
■truct {

int udata;
} IECV_rHpon■e

} U_acce■•-point
union {

•truct {
ndata_type ndata

} DATA_reque■t
■truct {

66

APPENDIX C. ALTERNATING BIT PROTOCOL - GENERATED CODES

Ddata_type Ddata
} DATA_reepoue :

} N_acc•••-point :
union {

int TINEJLrequa ■t

int TINEJLn■poue

} S_accH■_point

} PDTSVAR:

/• Variable block declaratiou •/

typedef union {
•truct {

int cep_id
int flag:
int data;

} UHr_body
atruct {

int dummy
}

■truct {
int time
int PDT3
int atop
int ■top_bi■

} timer_body;
■truct {

int cep_id:
■et_type EITHER
int STATE;
ndata_type buf :
ug_type recv__..g
Ug_ type HDd_aag
buf_type recv_buf
buf_type ■encLbuf
int ncv_aeq
int HDcLHq

} datax_body;
•truct {

int cep_id;
•truct PDTPCB •tiMr_aodule
■truct PDTPCB •datax_aodule

} abit_body;
•truct {

•truct PDTPCB •abit_aodule [2];
•truct PDTPCB •u■er_aodule [2];

67

APPENDIX C. ALTERNATING BIT PROTOCOL - GENERATED CODES

■truct FDTPCB •network..,aodul•
} SPECIFICATION

} FDTLV.AR;

/• Niacellaneou■ declaratiou •/

#define XPORTuaer_body
#define BPONTuaer_body
extern int u■er_body();
#define TRANSwaer_body
#define XPORTnetwork...body
#define SPONTnetwork_body
extern int network...body();
#define TRANSnetwork_body
#define XPORTtimer_body
#define SPONTti■er_body
extern int timer_body();
#define TRANStimer_body
#define XPORTdatax_body
#define SPONTdatax_body
extern int datax_body();
#define TRANSdatax_body
#define XPORTabit_body
#define SPONTabit_body
#define TRANSabit_body
#define XPORTSPECIFICATION
#define SPONTSPECIFICATION
#define TRANSSPECIFICATION

0
0

uer_body
0
0

network...body
0
1

tiaer_body
0
0

datax_body
0
0
NULL
0
0
NULL

/• Procedure and function declaration■ •/

int ack_ok (buf)
ndata_type buf;
{

}

PDnV.AR •lvar • CurrBlock->lyar;
int FUNCTION;

FUNCTION• (buf .pid - 1 /• ACKM •/) U
(buf . ■■ q - lvar->datax_body. Hnd_Hq)

return (FUNCTION) ;

format_data (ug, buf)
mag_ type mag ;

68

APPENDIX 0. ALTERNATING BIT PROTOCOL - GENERATED CODES

ndata_type •buf:
{

}

FDTLVAR •lvar • CurrBlock->lvar;

(•buf) .pid • 0 /•DATA•/:
(•buf) .cid • lnr->datax_body.cep_id
C•buf) ... q • ug .ug■-q
(•buf) .dat • ug .ugdat :

format_ac.k (ug, buf)
ug_type aag;
ndata_type •buf ;
{

}

FDTLVAR •lvar • CurrBlock->lvar;

(•buf) .pid • 1 /• ACKM •/:
(•buf) .cid • ug .ugcid
(•buf) .aeq • ug .ugaeq
(•buf) .dat • ug .ugdat

■tore (buf, ug)
buf_type •buf ;
m■g_type ••g:
{

}

FDTLVAR •lvar • CurrBlock->lvar;

(•buf) .empty• 0 /•FALSE•/;
(•buf) ·-·••ge - .. , ;

remove (buf, ug)
buf_type •buf:
aag_type ug:
{

FDTLVAR •lvar • CurrBlock->lvar;

}

ug_ type retrieve (buf)
buf_type buf ;

69

APPENDIX C. ALTERNATING BIT PROTOCOL - GENERATED CODES

{

}

FDTLVAR •lvar • CurrBlock->lvar:
ug__type FUNCTION;

FUNCTION• buf ... aaage
return (FUNCTION) ;

int buffer_eapty (buf)
buf_type buf ;
{

}

FDTLVAR •lvar • CurrBlock->lvar:
int FUNCTION;

FUNCTION• buf .empty
return (FUNCTION) ;

inc_Hnd..Hq ()
{

FDTLVAR •lvar • (FDTLVAR •) CurrBlock->lvar:

lvar->datax_body.aend..Hq • (lvar->datax_body.Hnd..■eq + 1) % 2
}

inc_recv_Hq ()
{

FDTLVAR •lvar • (PDTLVAR •) CurrBlock->lvar;

lvar->datax_body.recv_•eq • (lvar->datax_body.recv_•eq + 1) % 2
}

/• Specification declaration.a•/

FDTPCB •FDTuaer_body (parent, cep_id)
FDTPCB •parent;
int cep_id;
{

FDTPCB •pcb;
PDTLVAR •lvar;

70

pcb • FDTPCBinit (parent, 1, SPONTu•er_body, XPORTuaer_body, TRANSuser_body):
pcb->lvar •(int•) (lvar • (PDTLVAR •) aalloc(•izeof(FDTLVAR))):

APPENDIX C. ALTERNATING BIT PROTOCOL - GENERATED CODES

}

lvar->uaer_body.cep_id • cep_id
{

}

lvar->uaer_body.data • 0
lvar->wier_body.flag • 1 /•TRUE•/:
goto trana_end

trana_end:
if (pcb->■pont)
FDTSCB■pont (pcb):

return (pcb):

uaer_body (process, ■ignal)
FDTPCB •procHa;
PDTSCB ••ignal:
{

FDTLVAR •lvar • (FDnVAR •) proce■■->lvar:
FDTSVAR ••var• (FDTSVAR •) ■ignal->■var:

{

if ((■ignal->cid - 1) U (■ignal->■ id •• 3))
{ /• uaer1 •/

lvar->uaer_body.data • lvar->uaer_body.data + 1 :
{

FDTSVAR •new■var • (FDTSVAR •) aalloc(■izeof(PDTSVAR)):

newavar->U_acce■■-point.BEND_IEQ.udata • lvar->uer_body.data
FDTSCB■ignal (proce■-, 1 , 1 , new■var):
}
{

FDTBVAR •new■var • (FDTSVAR •) aalloc(■izeof(PDTSVAR)):

PDTSCB■ignal (proce■■ , 1, 2, uw■var):
}
goto trau_eDd:

}
}
{

int PDT1 • 1 :

if (lvar->uaer_body.flag)
{

FDT1 • O:
{ /• user2 •/

lvar->uaer_body.flag • 0 /•PAI.SE•/:

71

APPENDIX C. ALTERNATING BIT PROTOCOL - GENERATED CODES

}

}

}
}

{
FDTSVAR. •uw•var • (FDTSVil •) aalloc(•iseof(FDTSVAR));

new•v•r->U_acc•••-point.SIND_IEQ.udata • lvar->uaer_body.data
FDTSCBaignal (proc•••• 1, 1 , uw■var);
}
{
PDTSVAR •uw■var • (FDTSVil •) aalloc(aiseof(FDTSVAR));

FDTSCB■ignal (proc•••• 1, 2, Dew■var);
}
goto ■pont_end;

if (aignal->cid - 0)
FDTSCBdi•po•• (proce••• •ignal);

return;

trana_end
FDTSCBdi■po•• (proce■■ , ■ignal);
if (proce••->■pont)

FDTSCBapont (proce■ a);
epont_end:
proce■■->delay • O;

FDTPCB •FDTnetwork..body (parent)
FDTPCB •parent;
{

}

FDTPCB •pcb;
FDTLVAR •lvar;

pcb • FDTPCBinit (parent, 2, BPONTnetwork..body,
XPORTJUttwork..body, TllNSnetwork..body)

pcb->lvar •(int•) (lvar • (PDTLVAR •) aalloc(■i:uof(FDTLVAR)));

trana_end:
if (pcb->■pont)

FDTSCBspont (pcb);
return (pcb);

network_body (proceH, ■ignal)
PDTPCB •proce-■;

72

APPENDIX 0. ALTERNATING BIT PROTOCOL - GENERATED CODES

FDTSCB • aignal:
{

}

FDTLVAR •lvar • (FDnVAR •) proc•••->lvar;
FDTSVAR •■var• (FDTSVAR •) ■ignal->■var:

{

}

inti

for (i • 1 : i <• 2 : i++)
{

if ((■ignal->cid - 1 + i - 1) U (■ignal->■id - 1))
{ /• networkl •/

}
}

{
PDTSVAR •new■var • (FDTSVAR •) •lloc(sizeof(FDTSVAR));

newavar->N_acc•••-point.DATA..RSP.ndata • ■var->N_acc•••-point.DATA_REQ.ndata

FDTSCBaignal (proc•••• 1 + 2 /• HIGH_CEP •/- i + 1 - 1 , 2 , newsvar);
}

goto trana_end:

if (■ignal->cid - 0)
FDTSCBdi■po■e (proce■s, ■ignal);

return:

trans_end
FDTSCBdi•po•• (proc•••• ■ignal):
if (proce■•->■pont)

FDTSCBspont (proce■a):
■pont_end:

proceaa->delay • O;

PDTPCB •FDTtiMr_body (parent, ti■•)
PDTPCB •parent:
int time ;
{

FDTPCB •pcb;
FDnVAR *Ivar;

pcb • FDTPCBinit (parent , 1 • SPDNTtt.er_body,
XPORTti•r_body, TRANStiur_body);

pcb->lvar •(int•) (lvar • (FDTLVAR •) ■alloc(■izeof(FDTLVAR))):

lvar->ti■er_body.tiae •ti•;

73

APPENDIX 0. ALTERNATING BIT PROTOCOL - GENERATED CODES

}

{

}

lvar->tiaer_body.•top • 1 /•TIDE•/:
lvar->tiaer_body.•top_bi• • 1 /•TRUE•/;
goto trana_end

trana_end:
if (pcb->•pont)

FDTSCBapont (pcb) ;
return (pcb) :

timer_body (procea1, •ignal)
FDTPCB •procH1;
FDTSCB •signal;
{

FDTLVAR •lvar • (FDnVAR •) proce•■->lvar:
FDTSVAR ••var• (FDTSVAR •) •ignal->avar;

{

if ((•ignal->cid - 1) U (aignal->•id •• 1))
{ /• timer1 •/

lvar->timer_body.•top • 1 /•TRUE•/;
lvar->timer_body.•top_bi• • 0 /•FALSE•/;
goto trana_end :

}
}
{

int FDT2 • 1 :

if (llvar->tiMr_body.•top_bia)
{

FDT2 • O:
{ /• tiaer2 •/

}
}

lvar->timer_body.atop • 0 /•FALSE•/:
lvar->timer_body.atop_bia • 1 /•TRUE•/:
goto •pont_eDd:

if (llvar->tiMr_body.atop)
{

FDT2 • O:
{

proceaa->tO • tiae(O);

if (proce••->delay I• 3)
{

74

APPENDIX 0. ALTERNATING BIT PROTOCOL - GENERATED CODES

}

}
}

}

}

procea■->t1 • proce■a->tO + (lvar->ti■er_body.time);
proce■■->delay • 3

if (proce■■->tO >• proce■■->t1)
{ /• tiHr3 •/

lvar->tiaer_body. ■top • 1 /• TBUE •/:
{

FDTSVAR •new■var • (FDTSVAR •)- ,aalloc (■izeof (FDTSVAR));

FDTSCBaignal (proce■■, 1 , 2, newavar);
}

goto ■pont_end
}

el■- return;

if (aignal->cid - 0)
PDTSCBdi■po■e (proceaa, aignal);

return;

trana_end
FDTSCBdi■po■e (proc•••• ■ipal);
if (proce■■->■pont)
FDTSCB■pont (proce■■);

■pont_end:

proce■a->delay • O;

FDTPCB •FDTdatax_body (parent, cep_id)
FDTPCB •parent;
int cep_id:
{

FDTPCB •pcb;
PDTLVAR •lvar;

pcb • FDTPCBinit (parent , 3, SPONTdatax_body,
XPORTdatax_body, TIANSdatax_body);

pcb->lvar •(int•) (lvar • (FDTLVil •) aalloc(■izeof(FDTLVAR)));

lvar->datax_body.cep_id • cep_id;

a■aigii_■et (l(lvar->datax_body.lITRER) , 2 , 1 /•!STAB•/, 0 /• ACK_WAIT •/);

{

75

APPENDIX C. ALTERNATING BIT PROTOCOL - GENERATED CODES

}

}

lvar->datax_body. ■•nd..••q • 0;
lvar->datax_body.recv_■eq • 0:
lvar->datax_body.Hnd_buf ... pty • 1 /• TIIJE •/;
lvar->datax_laody.ncv_buf ·••pty • 1 /•TRUE•/;
lvar->datax_body.STATE • 1 /• IST.AB •/ ;
goto tr&m1_•Dd

tran■_end:

if (pcb->■pont)
FDTSCB•pont (pcb);

return (pcb);

datax_body (procHa, ■ignal)

FDTPCB •proc•-■:
FDTSCB •signal;
{

FDTLVAR •lvar • (FDTLVAR •) proceaa->lvar;
FDTSVAR •avar • (FDTSVAR •) •ignal->avar:

{

if ((lvar->datax_body.BTATE - 1 /• F.STAB •/))
{

if ((■ignal->cid - 1) U (■ignal->■id - 1))
{ /• datax1 •/

}
}

lvar->datax_body.aend_ug .ugdat • ■var->U_acce■a_point.SEND_REQ.udata

lvar->datax_body.••nd....ug .ug■•q • lvar->datax_body. ■end_aeq;

store (I(lvar->datax_body. ■end_buf) , lvar->datax_body.aend_msg);
format_data (lvar->datax_body.aend_aag, I(lvar->datax_body.buf));
{

FDTBVAR •newavar • (FDTSVAR •) aalloc(■izeof(FDTSVAR));

new•var->N_acc•••-point.DATA..IEQ.ndata • lvar->datax_body.buf
PDTSCBaign.al (proc•••• 2. 1 • newavar);
}
{

FDTSVAR •uw•var • (FDTSVil •) ulloc(•izeof(FDTSVAR));

PDTSCB■ign.al (proc•••• 3. 1 • uw■var);
}

lnr->datax_body.BTATI • 0 /• ACK_V.UT •I
goto trami_end

if ((i■-■et_aeaber (l(lvar->datax_body.EITHER) • lvar->datax_body.STATE)))
{

76

APPENDIX C. ALTERNATING BIT PROTOCOL - GENERATED CODES

if ((■ ignal->cid - 1) U (■ignal->■id •• 2))
{

}
}

int PDT4 • 1 ;

if (lbuffer_ellJ)ty (lvar->datax_body.recv_buf))
{

PDT4 • O;
{ /• datax2 •/

}
}

lvar->datax_body.recv_ug • retrieve (lvar->datax_body.recv_buf)
{

FDTSVAl •new■var • (FDTSVAR •) aalloc(■izeof(FDTSVAR));

nev■var->U_acc•••-point.UCV_ISP.udat■

• lvar->datax_body.recv_aag .ugdat
FDTSCB■ignal (proc•••• 1, 3, nevavar);
}

re1110ve (t(lvar->datax_body.recv_buf) , lvar->datax_body.recv_msg);
goto tr&DS_end;

if ((lvar->datax..body.BTATE - 0 /• ACK_WAIT •/))
{

if ((■ignal->cid - 3) U (aignal->■id - 2))
{ /• datax3 •/

}
}

lvar->datax_body.Hnd_ug • retrieve (lvar->datax_body. aend_buf) ;
format_data (lvar->datax_body.Hnd..-■g, ill(lvar->datax_body.buf));
{

}
{

}

FDTSVAR •nevavar • (FDTBVAR •) •lloc(aizeof(FDTSVAR));

nev■var->N_acc•••-point.DATA_IEQ.ndata • lvar->datax_body.buf
FDTBCB■ignal (proce••• 2, 1, uw■var);

PDTSVAR •n•v■var • (FDTBVAR •) •lloc(■izeof(PDTSVAR));

FDTSCB■ipal (proc•••• 3, 1, uw■var);

lvar->datax_body.STATE • 0 /• .ACK_VAIT •/;
goto tr&DS_end;

if ((lvar->datax_body.STATE - 1 /• EST.AB •/))
{

if ((■ignal->cid - 3) U (■ignal->■ id - 2))
{ /• datax4 •/

77

APPENDIX C. ALTERNATING BIT PROTOCOL - GENERATED CODES

}
}

lvar->datax_body.STATE • 1 /•EST.AB•/
goto trana_elld

if ((lvar->clatax..body.STATE - 0 /• ACK_WilT •/))
{

if ((■ipal->cid - 2) U (■ipal->■id - 2))
{

}
}

int PDT6 • 1 ;

if (ack_ok (■var->N_accea■_point.DATA..RSP.nclata))
{

PDT6 • O;
{ /• clataxS •/

}

}

lvar->clatax_body.1■nd_■■g • retrieve (lvar->clatax_body.send_buf) ;
re.ove (I(lvar->datax_body. ■end_buf) , lvar->datax_body.aend_msg);
inc_■end_■eq ();
lvar->clatax_body.STATE • 1 /•EST.AB•/
goto $rana_elld

if ((i■_nt_ .. aber (i(lnr->datax..body.EITHER) , lvar->datax_body.STATE)))
{

if ((■ignal->cid - 2) U (■ignal->■ id - 2))
{

int PDT6 • 1 ;

if (■Tar->N_acce■■-point.DATA..UP.ndata .pid - 0 /•DATA•/)
{

PDT6 • O;
{ /• clatax6 •/

lvar->clatax_body.recv_ug .ugclat
• ■nr->N_accea,_point.DATA..UP.ndata .dat

lvar->clatax_body.recv_..g .ug■eq
• ■var->N_acce■■-point.DATA..ISP.ndata . ■eq

foraat_ack (lvar->datax_body.recv_ug, I(lvar->clatax_body.buf));
{

PDTSVAR. •new■var • (PDTSVil •) •lloc(■izeof(PDTSVAR)):

new■var->N_acce■■-point.DAT.A_IEQ.ndata • lvar->datax_body.buf
PDTSCB■ignal (process, 2, 1 , uw■var);
}

if (avar->N_acce,a_point.DATA..ISP.ndata .seq-•
lvar->clatax_body.recv_■eq)

{

78

APPENDIX C. ALTERNATING BIT PROTOCOL - GENERATED CODES

}

}
}

}

}
}

}

atore (t(lvar->datax_body.recv_buf) , lvar->datax_body.recv_msg);
inc_recv_aeq ();

goto truua_end

if (aignal->cid - 0)
FDTSCBdi■po■e (proceae, aignal);

return;

trane_end
FDTSCBdi■po■e (proce■■, ■ignal);
if (proceaa->■pont)

FDTSCBepont (proce■■);
apont_end:
proce■■->delay • O;

FDTPCB •FDTabit_body (parent, cep_id)
FDTPCB •parent;
int cep_id;
{

PDTPCB •pcb;
PDTLVAR •Ivar;

pcb • PDTPCBinit (parent , 2, SP0NTabit_body,
XPDRTabit_body, TRANBabit_body);

pcb->lvar •(int•) (lvar • (FDTLVAR •) aalloc(■izeof(FDTLVAR)));

lvar->abit_body.cep_id • cep_id;
{

lvar->abit_body.datax_aodule • FDTdatax_body(pcb, lvar->abit_body.cep_id);
lvar->abit_body.ti■er_aodule • FDTtiaer_body(pcb, 30 /• RETRAN_TIME •/);
FDTCCBconnect (lvar->abit_body.datax_aodule, 3, 1 ,

lvar->abit_body.tiaer_aodule, 1, 1);
PDTCCBattach (pcb, 1 , 1 ,

lvar->abit_body.datax_aodule , 1 , 1);
FDTCCBattach (pcb, 2·, 1 ,

lvar->abit_body.datax_aodule , 2, 1);
goto tran■_eDd

}

trane_end:
if (pcb->apont)

79

APPENDIX 0. ALTERNATING BIT PROTOCOL - GENERATED CODES

}

PDTSCBapont (pcb);
return (pcb);

PDTPCB •PDTSPECIPIC.A.TION (parent)
PDTPCB •parent;
{

}

PDTPCB •pcb;
PDTLVAR •lvar;

pcb • PDTPCBinit (parent , 0, SPONTSPECIFICATION,
XPORTSPECIPICATION, TRANSSPECIPICATION);

pcb->lvar •(int•) (lvar • (PDTLVAR •) aa.lloc(aizeof(FDTLVAR)));
{

}

lvar->SPECIFICATION.network..■odule • FDTnetwork_body(pcb);
{

}

int cep;
for (cep • 1 ; cep <• 2 ; cep++)
{

lvar->SPECIFICATION.uaer_■odule [cep - 1] • FDTuaer_body(pcb, cep);
lvar->SPECIPICATION.abit_aodule [cep - 1] • FDTabit_body(pcb, cep);
PDTCCBconnect (lvar->SPECIFICATION.uaer_aodule [cep - 1] , 1 , 1 ,

lvar->SPECIPICATION.abit_aodule [cep - 1] , 1 , 1);
PDTCCBconnect (lvar->SPECIFICATION.abit_aodule [cep - 1] , 2, 1 ,

lvar->SPECIFICATION.network..■odule , 1 + cep - 1 , 0);
}

goto trana_end

trana_end:
if (pcb->apont)

FDTSCBapont (pcb);
return (pcb);

80

Appendix D

Process Control Block Support
Routines

81

APPENDIX D. PROCESS CONTROL BLOCK SUPPORT ROUTINES

I•
• Create• and initialize• a uw proc••• control block (PCB)
• Place• the PCB at the head of the aibling liat
• If proc••• contaiu trauitiom, in•erta PCB into the acheduler's lists
• Return■ the new PCB
•I

PDTPCB •PDTPCBinit (parent, ipnum, apont, export, tranaition)
PDTPCB •parent;
int ipnum;
int apont;
int export:
int ·c•tranaition) ():

{

PDTPCB •newpcb • (PDTPCB •) ulloc(aizeof(FDTPCB));

/••••• Linka new proce•• control block to the aodule hierarchy•••••/

newpcb->pid • Pid++:
newpcb- >parent • parent;
if (parent I• HULL)

{

}

newpcb->aib • parent->ref;
parent->ref • newpcb;
newpcb->prio • parent->prio + 1;

else /• Thi• i• the root aodule •/
{

}

newpcb->aib • mwpcb;
newpcb->prio • 1;

newpcb->ref • NULL;

/••••• Allocate• enough interaction point• for the aodule •••••/

newpcb->ipnwa • ipDUII;
if (ipnua > 0)

newpcb->chan • PDTCCBinit (newpcb->ipnum);
else

uwpcb->chan • NULL;

/••••• Initialize• other aodule 1tate variable■•••••/

newpcb->ipuxt • O;
newpcb->■igcnt • O;
newpcb->delay • O;
newpcb->apont • apont:

82

APPENDIX D. PROCESS CONTROL BLOCK SUPPORT ROUTINES

}

newpcb->export • export;
newpcb->tru■ • trana1t1on;

return (nevpcb);

• Releaeee the ■pecified proc••• control ·block and all its deecendenta

FDTPCBterm (pcb)
FDTPCB •pcb;

{

}

FDTPCB •p;

if (pcb - NULL)
return;

if ((p • pcb->parent) - NULL)
FDTLIBerror ("Root aodule attempting to kill iteelf\n");

if (p->ref - pcb)
{

p->ref • pcb->■ib;
}

elee
{

}

p • p->ref;
while ((p I• NULL) U (p->■ib I• pcb))

p • p->■ib;

if (p - NULL)
PDTLIBerror ("Error in link to parent\n");

p->■ib • pcb->■ib;

/••••• Terainat•• all children recur■ively ud then deallocates itself•••••/

while (pcb->ref I• NULL)
FDTPCBtera (pcb->nf);

if (pcb->chan I• NULL)
FDTCCBtera (pcb);

free (pcb);

83

Appendix E

Channel Control Block Support
Routines

84

APPENDIXE. CHANNELCONTROLBLOCKSUPPORTROUTINES

• Create ■ and initialise■ a uw channel control block

FDTCCB •FDTCCBiDit C•ize)
int ■ize;

{

}

I•

FDTCCB •1, •ccb • (PDTCCB •) calloc(■ize+1, •izeof(FDTCCB));

for (i-ccb; i<ccb+■ize+1; i++)
{

}

1->head • i->tail • NULL;
i~>targeta • i->targetc • i->targete • NULL;
1->channela • i->channelc • i->cbaDDele • O;
1->qdi■pl • CONNON;

return (ccb);

• Remove■ a channel li■t fro■ a proc••• control block
•I

FDTCCB •FDTCCBtera (proce■■)
FDTPCB •proce■■;

{

}

PDTCCB •ccb1, •ccb2;
int i;

for (1•1; i<proce■■->ipnua+1; i++)
{

}

ccb1 • proce■■->chan + 1;
if (ccb1->targetc I• NULL)

{
ccb2 • ccb1->targetc->cban + ccb1->chumelc;
if ((ccb2->targetc - proce■■) U (ccb~->chumelc - i))

PDTCCBdi■CODD (proc••·· i);
el■e

PDTCCBdetacb2 (proc•••• i);
}

free (proce■■->chan);

85

APPENDIX E. CHANNEL CONTROL BLOCK SUPPORT ROUTINES

I•
• Implement■ the Eetelle connect 1tateaent
•I

PDTCCBconnect
FDTPCB

(proce111, chumel1,
•proce■■ 1, •proce■■2;

chalmel1, cb.annal2;
qdi1pl1, qdi■pl2;

qdi■pl1, proceaa2, channel2, qdispl2)

int
queue_kind

{

PDTCCB •ccb1, •ccb2;

/••••• Locate• chum.el control bloclm •••••/

ccb1 • proce■■1->chan. + cbannel1;
ccb2 • proc•••2->chan. + cbannel2;

ccb1->qdiapl • qdi■pl1;
ccb2->qdi■pl • qdi■pl2;

/••••• Te■t• for prior connection■•••••/

if ((ccb1->targetc I• NUU) 11 (ccb2->targetc I• NULL))
PDTLIBerror ("Channel i■ already connected");

/••••• Nak•• foraal connectiou •••••/

ccb1->targetc • proce■■2;
ccb2->targetc • proc•••1;

ccb1->channelc • channel2;
ccb2->channelc • ch.annel1;

/••••• Find■ actual target channel control bloclm •••••/

if (ccb1->targeta I• NUU)
{

}

proc•••1 • ccb1->tar1•t•;
chan.nel1 • ccb1->cbannele;
ccb1->targete • NUU;
ccb1->channele • O;
ccb1 • proce■■1->cball + cbannel1;

if (ccb2->targeta I• NULL)
{

procea ■2 • ccb2->targete;
channel2 • ccb2->cbannele;
ccb2->targete • HUU.;
ccb2->channele • O;
ccb2 • proce■■2->cball + cbannel2;

86

APPENDIXE. CHANNELCONTROLBLOGKSUPPORTROUTINES

}

I•

}

/••••• Nab• actual coD1Wctiou •••••/

ccb1->targete • proce■a2;
ccb2->targete • proceaa1;

ccb1->charlllele • cbauuel2;
ccb2->charlllele • cbaDDel1;

• Implement• the Eatelle ATTACH atatement
•I

FDTCCBattach
FDTPCB

(proceaa1, channel1, qdi■pl1,
•proc•■•1, •proce■ a2;

channel1, chamwl2;

proceaa2, channel2, qdispl2)

int
queue_kiud qdiapl1, qcliapl2;

{

PDTCCB •ccb1, •ccb2;

/••••• Locate• cbaDDel control blocks•••••/

ccb1 • proceaa1->chan + channel1;
ccb2 • procea■2->chan·+ chanuel2;

ccb1->qcli■pl • qdi■pl1;

ccb2->qcliapl • qdiapl2;

/••••• Teat■ for prior comwctiou •••••/

if ((ccb1->targeta I• NULL) 11 (ccb2->targetc I• NULL))
FDTLIBerror ("Channel i• already attached");

/••••• Nake■ fora.al attacbJMnt■ •••••/

ccb1->targeta • proce■■2;

ccb2->targetc • proce■■1:

ccb1->chamlela • channel2; /• attach down•/
ccb2->cbarmelc • channel1; /• couuect up •/

/••••• Pinda actual tar1et cbamlel• •••••/

if (ccb1->targetc I• NULL)
{

proce■•1 • ccb1->targete;
chumel1 • ccb1->channele;
ccb1->targete • NUU.;
ccb1->channele • O;
ccb1 • proce■■ 1->chan + chauuel1;

87

APPENDIXE. CHANNELCONTROLBLOCKSUPPORTROUTINES

}

I•

}

if (ccb2->tarpta I• NULL)
{

}

proc•••2 • ccb2->targete;
chamlel2 • ccb2->chamlele;
ccb2->targete • NULL;
ccb2->chumel• • O;
ccb2 • proc•••2->cban + cbamlel2; .

/••••• Make• actual attacluunt •••••/

ccb1->targ•t• • proceaa2;
ccb2->targete • proceaa1;

ccb1->chamlele - chamlel2;
ccb2->chamiele • chaDDel1;

• Implement• the Eatelle DISCONNECT atateMnt
•I

PDTCCBdiaconn (proc•••1c, channel1c)
FDTPCB •proceaa1c;
int cb&Jmel1c;

{

FDTCCB •ccb1c, •ccb2c;
FDTCCB •ccb1e, •ccb2e;
FDTPCB •proceaa1e, •proc•••2c, •proc•••2e;
int chamutl1e, channel2c, chaDDel2e;

if (cb&Jmel1c - 0)
{

int i;

for (i•1; i<proc•••1c->ipn11111; i++)
PDTCCBcliaconn (proc•••1c, i);

}

else
{

/••••• Locate• actual chamwl control blocka •••••/

ccb1c • proceaa1c->cban + channel1c;

proc•••2c • -ccb1c->targetc;
channel2c • ccb1c->channelc;
if (proceaa2c - NULL)

88

APPENDIX E. CHANNEL CONTROL BLOCK SUPPORT ROUTINES

FDTLIBerror (11Atteapt to di•connect unbound channel"):
ccb2c • proce■■2c->ch&n + channel2c;

/••••• Te•t• for prior co:mwctiou •••••/

if ((ccb2c->targetc I• proce■■1c) II (ccb2c->channelc !• channel1c))
FDTLIBerror ("Atteapt to di•comaect attached channel"):

/••••• Locate• effective channel control block■•••••/

ccb1e • ccb1c;
wllile (ccb1e->targ•t• - HULL)

{

proce■•1• • ccb1e->targeta;
chumel1e • ccb1e->channela;
ccb1e • proce■•1e->chan + channel1e;

}

ccb2e • ccb2c;
while (ccb2e->targete - HULL)

{

}

proce■■2e • cc~e->targeta;
channel2e • cc~e->cbanmla;
ccb2e • proce■■2e->ch&n + channel2e;

/••••• Di■comwct■ actual channel■•••••/

ccb1c->targetc • HULL;
ccb2c->targetc • HULL;

ccb1c->channelc • O;
ccb2c->chumelc • O;

/••••• lebillda effective channel■, if nec••••ry •••••/

if (ccb1c I• ccble)
{

}

elee
{

}

ccblc->target• • proce■■1e; ccb1c->channele • channel1e;
ccb1e->targete • proce■■1c; ccble->channele • channel1c;

ccb1e->targete • HULL: ccb1e->chanmle • O;

if (ccb2c I• cc~e)
{

ccb2c->targete • proce■■2e;
ccb2e->targete • proce■■2c;

ccb2c->channele • channel2e;
ccb2e->channele • channel2c;

89

APPENDIX E. CHANNEL CONTROL BLOCK SUPPORT ROUTINES

}

el•e
{

ccb2e->targete • NULL; ccb2e->chanule • O;
}

}
}

I•
• Implement• tha llatell• DETACH ■tate .. nt for an external interaction point
•I

FDTCCBdetachl (proce■•1a, chumella)
PDTPCB •proce••1•;
int chamlel1a;

{

•ccb1a, •ccb2a;
•ccble, •ccb2e;

/• Poraal attacbllent• •/
/• Actual attachment■•/

PDTCCB
FDTCCB
PDTPCB
int

•proce■■1e, •proc•••2a, •proce■■2e;
channel1e, channel2a, cbannel2e;

/••••• Locate■ channel control blocka for actual attachments•••••/

ccb1a • proce■■la->cban + chamlel1a;

proce■■2a • ccb1a->targeta;
chaDDel2a • ccb1a->cbannela;
if (proce■■2• - NUU.)

PDTLIBerror ("Attempt to detach unbound channel");
ccb2a • proce■■2a->chan + chanul2a;

/••••• Teat■ for prior attachaant■ •••••/

if ((ccb2a->targetc I• proce•■1a) I I (ccb2a->cbannelc !• channel1a))
PDTLIBerror ("Attempt to detach iiiproperly attached channel");

/••••• Locate■ channel control blocka for effective attachments•••••/

ccb2e • ccb2a;
while (ccb2e->targete - NUU.)

{

}

proce■■2e • ccb2e->targeta;
chumel2e • ccb2e~>chumela;
ccb2e • proce■■2e->chan + chumel2e;

proces■1e • ccb2e->targete;

90

APPENDIXE. CHANNELOONTROLBLOOKSUPPORTROUTINES

}

I•

chamiel1• • ccb2e->claannel•;
ccb1e • proce■■1e->chan + claannel1e;

/••••• Dett■cbe■ actual channel■•••••/

ccb1■->t■rgeta • NULL;
ccb2a->t.argetc • NULL;

ccb1a->channela • O;
ccb2a->channelc • O;

/••••• Rebinda effective channel ■, if nece■■ary •••••/

if (ccb1■ I• ccb1e)
{

}

else
{

}

ccb1a->t■rgete • proce■■ 1e;

ccb1e->targete • proce■■1a;
ccb1a->channele • channel1e;
ccb1e->channele • channel1a;

ccb1e->targete • NULL; ccb1e->channele - O;

if (ccb2a I• ccb2e)
{

}

el■e
{

}

ccb2a->t.argete • proce■■2e;
ccb2e->t■rgete • proce■■2a;

ccb2a->channele • channel2e;
ccb2e->channele • channel2a;

ccb2e->targete - NULL; ccb2e->channele • O;

• Implement■ the Eatelle DETACH ■tat■Mnt for a child' ■ external interaction point
•I

PDTCCBdetach2 (proce■■2a, channel2a)
FDTPCB •proce■■2a;

int channal2a;
{

FDTCCB
PDTCCB
PDTPCB
int

•ccb1■, •ccb2a; /• Fo:naal att■chllent■ •/
•ccb1e, •ccb2e; /• Actual attachaent■ •/
•proce■■ 1a, •proce■■1e, •proce■■2e;

chaml■ l1a, chamlel1e, chamlel2•:

/••••• Locate■ channel control bloclm for actual attachment■•••••/

91

APPENDIXE. CHANNELCONTROLBLOCKSUPPORTROUTINES

ccb2a - procesa2a->chan + channel2a;

procesa1a • ccb2a->targeta:
channel1a • ccb2a->channela;
if (proceaa1a - NULL)

FDTLIBerror ("Attempt to detach unbound channel"):
ccb1a • proceaa1a->chan + channel1a;

/••••• Teats for prior attachaent• •••••/

if ((ccb1a->targetc I• proce■s2a) II (ccb1a->cbannelc !• channel2a))
FDTLIBerror ("Atte■pt to detach i■properly attached channel");

/••••• Locates channel control blockll for effective attachments•••••/

ccb2e • ccb2a:
while (ccb2e->targete - NULL)

{

proceaa2e • ccb2e->targeta:
channel2e • ccb2e->channela:
ccb2e • proce■■2e->chan + channel2e:

}

proceaa1e • ccb2e->targete:
channel1e • ccb2e->channele;
ccb1e • proceaa1e->chan + channel1e;

/••••• Dettachea actual channel■•••••/

ccb1a->targeta • NULL:
ccb2a->targetc • NULL;

ccb1a->channela • O:
ccb2a->channelc • O:

/••••• Rebind■ effective channels, if nece•••ry •••••/

if (ccb1a I• ccb1e)
{

}

el■e
{

ccb1a->targete • proceas1e:
ccb1e->targete • procea■1a:

ccb1a->channele • channel1e;
ccb1e->channele • channel1a:

ccb1e->targete • NULL; ccb1e->channele • O:
}

if (ccb2a I• ccb2e)
{

ccb2a->targete • proce•a2e;
ccb2e->targete • proce■■2a;

ccb2a->channele • channe12e;
ccb2e->channele • channel2a;

92

APPENDIX E. CHANNEL CONTROL BLOCK SUPPORT ROUTINES 93

}

else
{

ccb2e->targ•t• • NULL: ccb2e->chanmle • O:
}

}

Appendix F

Signal Control Block Support
Routines

94

APPENDIX F. SIGNAL CONTROL BLOCK SUPPORT ROUTINES

I•
• Create■ a new ■ipal control block on tbe target of tbe ■pecified channel
•I

FDTSCB■ignal (proce■■, cid, ■id, ■var)
FDTPCB •proce■■;
int cid;
int ■ id;

int ••var;

I•

{

FDTCCB
FDTSCB
FDTPCB

•ccb1, •ccb2;
•■cb;
•target;

/••••• Detendne■ tbe location of tbe target channel•••••/
ccb1 • proce■■->chan + cid;
target• ccb1->targete;
ccb2 - target->chan + ccb1->cbumele;
if (ccb2->qdi■pl - CONNON)

ccb2 • target->cban;

/••••• Conatruct■ an outgoing ■ignal control block•••••/
■cb • (FDTSCB •) ulloc(■izeof(FDTSCB));
■cb->cid • ccb1->cbannele;
■cb->■id • ■id;

■cb->■var • ■var;

/••••• Queue ■ the ■ignal control block to the tail of the target channel•••••/
■cb->next • NULL;
if (ccb2->tail - NULL)

ccb2->head • ■cb;

el ■e

ccb2->tail->mxt • ■cb;

ccb2->tail • ■cb;

/••••• Increaent■ the peDdiq ■ipal counter•••••/
(target->■igcnt)++;

}

• Create■ a ■pontauo1111 ■ignal at the co11111on channel for the process
• if there are DO pending ■ipal■ for tbe proc•••
•I

FDTSCBspont (proce■■)
FDTPCB •proce■■;

95

APPENDIX F. SIGNAL CONTROL BLOCK SUPPORT ROUTINES

I•

{

FDTCCB •ccb;
FDTSCB ••cb;

/••••• Exit• if there ar• pending •ignal■ •••••/
if (proc•••->•igcnt > 0)

return;

/••••• Coutruct• • •pontauoua ■ ignal control block•••••/
■cb • (PDTSCB •) -lloc(■is■of(FDTSCB)):
■cb->cid • O;
acb->■id • O:
■cb->•var • MUU.:

/••••• Quue■ th• ■ignal control block at the coamon channel•••••/
ccb • proce■■->chan;
■cb->next • ccb->head:
ccb->head • ■cb;

if (ccb->tail - NUU.)
ccb->tail • ■cb;

/ Increaent• the pending signal counter ,
(proce■a->■igcnt)++;

}

• lemove■ a ■ipal control block fro■• channel
•I

FDTSCBdi■po■e (proce■■ , ■ipal)
FDTPCB •pz-oce■■:

PDTSCB ••ignal;
{

FDTCCB •ccb;
PDTSCB •■cb:

/••••• Determine■ the location of the ■ignal queWt •••••/
ccb • proce■a->chan + •ignal->cid:
if (ccb->qdi■pl - COMMON)

ccb • procea■->chan:

/••••• leaoTe■ the •ipal control block at the head of the queue•••••/
■cb • ccb->uad;
ccb->head • ■cb->next;

if (ccb->head - NULL)
ccb->tail • NUU.;

96

APPENDIX F. SIGNAL CONTROL BLOCK SUPPORT ROUTINES

I•

if (acb->•••r I• NUU.)
free (acb->avar);

free (acb);

/••••• Decre-nt• the pending aipal counter•••••/
(proc•••->•iscat)--;

}

• Searches for a pending •1111&1 for the procea ■

•I

PDTSCB •PDTSCBpencling (proce■a)
PDTPCB •proce■a;

{

}

FDTCCB •ccb;

if (proc•••->•igcnt - 0)
return (NULL);

ccb • proc•••->chan + proc•••->ipnext;
while (ccb <• pro~•••->cban + proceaa->ipnum)

if (ccb->head I• NUU.)
{

}

elae
{

}

proc•••->ipnext • ccb - proceea->chan + 1;
return (ccb->uad);

ccb++;

ccb • proc•••->chan;
while (ccb < proceaa->chan + proc•••->ipnext)

if (ccb->head I• NUU)
{

}

.1 ••
{

}

proc•••->ipnext • ccb - proc•••->chan + 1;
return (ccb->head);

ccb++;

return (NULL);

97

