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Abstract 

The present work is based on the Visual Routine theory of Shimon Ullman. 

This theory holds that efficient visual perception is managed by first applying 

spatially parallel methods to an initial input image in order to construct the 

basic representation-maps of features within the image. Then, this phase is 

followed by the application of serial methods - visual routines - which are 

applied to the most salient items in these and other subsequently created maps. 

Recent work in the visual routine tradition is reviewed, as well as relevant 

psychological work on preattentive and attentive vision. An analysis is made 

of the problem of devising a visual routine language for computing geometric 

properties and relations. The most useful basic representations to compute 

directly from a world of 2-D geometric shapes are determined. An argument is 

made for the case that an experimental program is required to establish which 

basic operations and which methods for controlling them will lead to the efficient 

computation of geometric properties and relations. 

A description is given of an implemented computer system which can cor

rectly compute, in images of simple 2-D geometric shapes, the properties verti

cal, horizontal, closed, and convex, and the relations inside, outside, touching, 

centred-in, connected, parallel, and being-part-of. The visual routines which 

compute these, the basic operations out of which the visual routines are com

posed, and the important logic which controls the goal-directed application of 

the routines to the image are all described in detail. The entire system is embed

ded in a Question-and-Answer system which is capable of answering questions of 

an image, such as "Find all the squares inside triangles" or "Find all the vertical 

bars outside of closed convex shapes." By asking many such questions about 

various test images, the effectiveness of the visual routines and their controlling 

logic is demonstrated. 
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Chapter 1 

Introduction 

In order to successfully interact with the world we need to correctly judge what 

the world contains, we need to make these judgments quickly, and we need to 

make these judgements with a physical mechanism which has finite storage and 

speed limits. 

This thesis describes an attempt to apply these constraints of correctness, 

efficiency, and finiteness to the problem of visual perception. It has resulted in 

the development of a working computer system as an answer to the question 

of what methods we can use to efficiently find the geometric properties of e-D 
shapes and their geometric relationships in an image. 

The work presented here is based on the Visual Routines theory of Shimon 

Ullman. In this theory, efficient visual perception is managed by first applying 

spatially parallel methods to the initial input image in order to construct the 

most basic representations of features within the image, such as orientation 

and termination. Then, this phase is followed by applying serial methods, 

called visual routines, to the most salient items in these and other subsequently 

created maps. 

This work follows the tradition of Marr (1982) in attempting to clarify the 

computational restrictions underlying vision. Thus, although a working system 

is demonstrated, it was not built as an engineering project to suit some prac

tical needs. Also, although an effort was made to maintain a correspondence 
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with what is currently known about the human visual system, the system is 

not presented as a model of the human system. The philosophy backing this 

work is that much of fundamental value can be learned by creating and testing 

computationally inspired models. 

The domain in which the system searches for properties and relations is the 

2-D world of simple geometric straight-edged shapes, such as squares, triangles, 

and line segments. The properties and relationships which the system suc

cessfully processes are centred-in, closed, connected, convex, horizontal, inside, 

outside, parallel, part-of, touching, and vertical. 

The central goal of the thesis is to show in detail how a small set of visual 

processing operations can be combined to compute a large set of visual prop

erties and relations. A secondary goal is to show how a. certain architecture 

and control strategy effectively manages the images, the routines, the focus of 

attention, the memory of what has been processed in the image, and so on, in 

order to enable the system to demonstrate its competence with visual proper

ties and relations. The primary contribution of this thesis is its account of the 

principles and reasoning behind a working visual routine based system. 

There are two other points that are noteworthy about this research. 

First, in this work it is the properties and relations that are important, 

not the specific objects bearing them. Thus, this work is not directly concerned 

with object representation. Although a form of representation for the geometric 

objects is used to enable the recognition of objects, this representation is crude 

and is not central to the thesis. However, it is of interest that this representation 

is visual routine based. This serves to show that it is possible to define objects 

in terms of the visual routines used to confirm their presence. Although this 

approach to object representation may not be typical, it may have application 

wherever objects are defined in terms of their properties and the relations of 

their parts. This is certainly true of geometric objects like squares and triangles. 

The second noteworthy point is that the visual routine system is tested by 

embedding it in a question-and-answer system and not in a recognition system. 

2 



An argument is made for the advantages of taking this route. The question

and-answer system allows one to conveniently test the visual routine manager. 

Examples of the types of question that can be correctly answered are "Find all 

the triangles inside squares" and "Find any three instances of a vertical bar 

outside a simple closed curve." 
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Chapter 2 

Visual Routines and Attention 

2.1 Visual Routines 

2.1.1 Ullman 

Visual routines are proposed by Shimon Ullman as a means of accounting for 

how abstract shape properties and spatial relations can be derived from early 

visual representations. The early (also called 'base') representations are uniform 

retinotopic maps describing the most basic properties such as depth, orientation, 

colour, and motion at a point. These representations are typically derived 

directly from the image without taking into account any high level information 

about what may be in the scene. Hence they are created by "bottom-up" 

processes. In the human visual system the base representations are thought to 

be computed in a spatially parallel fashion. 

Suppose we wish to compute properties in the image such as which figures 

are inside others, whether a figure is closed, whether two points are connected, 

or whether some curve is longer than some other. Ullman argues that although 

it is possible to compute these properties and relations in a parallel fashion over 

all possible objects in the scene, this would in general be inefficient. Rather, 

we want methods which operate only on the most relevant items in the image. 

These methods are what he calls visual routines. 

For their operation visual routines may make use of parallelism. For ex-
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ample, bounded activation ( colouring~in a region starting from a seed point 

and working out to any boundary) is a basic visual routine operation which is 

likely to be implemented using a form of parallel spreading activation. How

ever, bounded activation is most likely to be initiated from only one or at most 

a few seed points at any one time. So we can anticipate that visual routines 

themselves will be primarily applied sequentially to at most a. few points in an 

image at any one time. 

To a.void indiscriminate application of visual routines to every point in the 

image, we anticipate making use of higher level knowledge to control the place

ment, selection, and sequencing of the appropriate routines. For example, while 

playing golf we may be interested in applying curvature-detection routines to 

white patches of colour. 

We may note that the concept of visual routine implies both the existence of 

basic, elemental, non-decomposable operations and the existence of higher-level 

routines which may be composed from these basic operations and other high 

level routines. Also implicated is the existence of intermediate data structures 

created by applying visual routines to the base representations. Ullman calls 

these intermediate maps "incremental representations." They are both output 

from visual routines and potential input to visual routines. By assembling sets 

of routines and/ or operations and by using incremental representations, Ullman 

anticipates that the visual system can compute an unbounded variety of shape

properties and spatial relations. 

Visual routines are ideally suited to deducing the computational restrictions 

surrounding the task of visual perception. They form a natural language for 

dissecting visual tasks into their component tasks, and at the same time they 

translate naturally into standard computer terminology. This latter feature 

should make them easy for us to build and work with on conventional com

puters. It allows us to draw on our large body of programming experience to 

suggest possible algorithms and approaches, and allows us to make direct use of 

existing theoretical results when we analyze the complexity of the visual routine 

algorithms. Lastly, if we approach the design of the routines in a theoretical 
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task-first fashion (as opposed to working from the constraints of a specific vi

sion task or a specific computer implementation), then we may feel we are truly 

studying the computational task of visual perception and not just writing ad 

hoc programs to do vision. 

Ullman's Five Basic Operations 

In Ullman's inaugural paper (Ullman, 1984) he suggested five basic operations 

out of which visual routines could be assembled.1 

1. Shift of processing focus - This is a family of operations which move 

the location at which attention is directed. The reasons for the move may be 

voluntary and goal-related or else involuntary and feature-related. The need for 

such operations is clear. Because all points in an image are not equal in interest, 

we don't want to initiate many operations simultaneously over the image, for 

this could result in interference. For example, if we are determining whether a 

point is inside some region and we plan to colour-in the region, then we ought 

only to initiate colouring from the given point. 

2. Indexing to a point of interest - This operation is related to the 

former. Here we seek a means of singling out a point so that we can then shift 

our attention to it. This operation determines which point is the odd-man-out 

in an image. Koch and Ullman (1984) describe a fast algorithm which performs 

such an odd-man-out indexing operation. It employs a pyramid network which 

for an nxn digital image computes the maximum or minimum intensity point 

of the image in O(log(n)) steps using 4xn2 processors. 

For the human case, indexing is probably available for all the preattentive 

features that psychologists have isolated.(Treisman, 1985; Julesz, 1984) These 

include colour, intensity, size, motion, stereo disparity, orientation, termination, 

and possibly curvature and closure. Because a unique point possessing one of 
1 In chapter 4 below an alternate set of basic operations is presented and a comparison is 

made between it and Ulbnan's. 
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these features can be quickly brought to our attention, we say these features 

"pop-out". 

3. Bounded Activation (Colouring) - This operation is a spreading ac

tivation initiated from a given point or curve and terminating at some boundary. 

We could use this operation to compute the inside relation and also to separate 

figure from ground. There is a problem with what is admitted as a. boundary 

because broken curves can sometimes act as solid boundaries. Ullman suggests 

a means of performing bounded activation which involves two maps, the map to 

be coloured and the terminating boundary map. The colouring could be done 

by a grid of cells spreading the activation to their inactive immediate neighbours 

except when such a neighbour is in the boundary map. 

4. Boundary Tracing and Activation - This operation is similar to the 

preceding one, but it operates on curves rather than regions. We could use 

it to scan along curves checking for breaks and to check whether two points 

are connected. It is the operation we would use when reading a map to find 

whether a road or river connects two cities. Because contours are so important 

to vision, it is highly desirable that a basic mechanism exist for following along 

them. 

Again, there are problems with broken contours. This operation must some

how determine when it is appropriate to treat broken lines as unbroken curves. 

5. Marking - This operation is a form of memorization. It records and 

keeps track of points that have been indexed or to which attention has been 

addressed. Some such mechanism is imperative if a visual routine is not to 

keep returning to the same salient points and repeating identical operations. A 

simple form of marking would just "switch off" every point visited. 

Marking makes it possible to count salient features. It is also very convenient 

to use while searching an image for instances of a feature, lest we keep noting 

the same instances. When tracing contours, it would be useful to know if we 

7 



had returned to our starting point, which would indicate that the contour forms 

a loop. 

Marking is also invaluable in building high-level property maps, such as 

maps of shape descriptions or high-level property locations. For example, it 

allows us to construct a map of all the squares in an image or a map of where 

objects are inside others. Thus, as we move our focus of attention over local 

portions of an image and uncover non-basic properties, we can build up a map 

of these higher-level properties by marking their location in the original map or 

some other corresponding map. 

Similarly, marking can be used to integrate images obtained by moving an 

eye or camera over a scene too large to be captured in one image. Each local 

image, or at least its essential components, can be copied - that is, marked -

into some internal description of the entire scene. 

These are the five basic operations Ullman suggested. Visual routines would 

be composed from these and other operations. They could also contain other 

visual routines, but all would eventually ground out to basic operations. How

ever, there is more to the problem of using visual routines than just assembling 

basic operations, as we shall see presently. 

Ullman's Control Issues 

One important control problem is that of deciding which sequence of routines 

is appropriate for a particular input. For example, if we are trying to find a 

red vertical bar in an image, we could first look for vertical bars and then test 

for redness. Or else we could first look for red patches and then test for form 

and orientation. Which method turns out faster will depend on the relative 

frequency of vertical bars and red things. If there are fewer red things, then we 

would be wiser to search the red colour map first. Otherwise, we should search 

the vertical orientation map first. 
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There are also general management problems, such as how we store, execute, 

and test visual routines. Sometimes we will want to use skeletal guidelines and 

fill in specific routines as the processing unfolds. At other times we will want to 

save time and apply a complete sequence of routines that worked once before. 

And on truly novel problems we may have to ignore existing guidelines and 

build and test new arrangements of routines. 

Visual routines, as Ullman has described them, are a means of approaching 

the study of intermediate-level vision - the realm of representations between 

the local image measurements and those of objects. Consequently, there are 

also issues that deal with how they interface to the low-level and high-level 

domains: how do they operate on the base representations; how do general 

visual processing goals call on them; and how do object representations link to 

them? 

2.1.2 Jolicoeur et al. 

Recently, other researchers have begun working in the visual routines frame

work. Jolicoeur, Ullman, and Mackay(1986) have performed psychological test

ing of people's ability to trace along curves. They presented to subjects images 

of two intertwined curves with two x's, sometimes on the same curve and some

times on different curves. The x's were placed at the same retinal eccentricity 

but at varying distances apart as measured along the curve. The subjects were 

asked to judge whether the x's were on the same curve or not. The results 

were consistent with the hypothesis that our vision system possesses a basic 

curve-tracing operation. For x's on the same curve, the time to correctly judge 

increased roughly quadratically with separation distance. In these experiments, 

half the stimuli were presented too quickly for eye movements to be initiated, 

while the other half allowed ample time for eye movement. The results were 

similar for both cases, and, surprisingly, the latter experiments did not result 

in significantly longer response times. These results suggested the presence of 

a very rapid internal tracing process which may be used even when it is possi-
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hie to track the curves with the eyes. The internal tracing scan rate averaged 

40° /sec. Additional experiments were done where subjects were asked to judge 

whether a curve with two x's on it had a gap in it between the x's or not. The 

results were similar to the first experiments. 

2.1.3 Koch and Ullman 

Koch and Ullman (1984) have already been mentioned for their odd-man-out 

indexing algorithm. In that work they also propose a mechanism for inducing a 

shift of the processing focus. This is simply to induce a decay in the activation of 

the maximally active unit whereupon the indexing algorithm will automatically 

select a new point, which it then shifts to, induces another decay, and so on. 

Such a mechanism would always shift to the next highest global maximum. 

Koch and Ullman report that for humans the shift of attention is not always 

to the next global optimum, but instead is influenced by both the proximity 

and the similarity to the previous point. In people the shift of attention is 

biased to nearby points and to points that are similar to the last point. Koch 

and Ullman suggest simple modifications to their scheme to enable it to behave 

similarly. An activated unit could simply enhance the activation of its nearby 

units to induce the proximity bias. For the similarity bias, a maximally active 

unit would activate all the active units in the feature maps that shared features 

with this active unit. Thus, for example, if a point which is selected by the 

odd-man-out mechanism is red and part of a vertical edge, then all ( or maybe 

just the nearby) units in the red and vertical-orientation maps would have their 

activation increased. This would increase the chances of the next point selected 

being red or part of a vertical edge. 

2.1.4 Pylyshyn et al. 

Pylyshyn (1987, 1988) summarizes the arguments he and his colleagues have 

been advancing to support the existence of a kind of basic indexing operation in 

human vision which they call FINST indexing. A FINST is a reference or index 
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to a feature or feature-cluster on the retina. There may be several FINSTs 

simultaneously active at any one time. FINSTs have the property of remaining 

attached to a feature or cluster even when it moves over the retina. By this 

means a group of FINSTs is able to indicate the 2-D spatial relations among 

image features independent of the actual retinal location of the features. Also, 

FINSTs afford the vision system the ability to compute spatial relations among 

features before actually evaluating the properties of the specific features being 

pointed to. 

The main empirical support for the FINST hypothesis is the set of visual 

tracking experiments Pylyshyn and his colleagues have performed. Their sub

jects could accurately track at least four, and at times five or six, moving points, 

even in the presence of distracting points. The points were moving sufficiently 

quickly and there were sufficiently many distracting points, so that, if the track

ing were managed by a single attention mechanism serially switching between 

all the points, then errors in tracking would very likely have resulted. 

The FINST hypothesis is most relevant to visual motion studies. For fixed 

images, however, the principle application of FINS Ts is in simultaneously main

taining pointers to several features in an image, thereby making available all 

these features at once to some predicate or relation evaluation function. For 

example, if we are to judge the collinearity of several points, then we need to 

have these points readily available. The same goes for the rapid counting of 

objects (called 'subitizing'). Indeed, the ability of people to rapidly count up 

to six objects lends support to the idea that FINSTs are being used for the 

purpose of relation evaluation. 

Pylyshyn argues that for evaluating relations FINSTs are a significant im

provement over the mechanism proposed by Ullman. But this is debatable. In 

Ullman's scheme a single focus of attention would be serially moved to each 

relevant point. Each point would be marked, and then the set of marked points 

could be processed by the relation evaluation function. So, in the end, with Ull

man's scheme the function gets the same set of simultaneously marked points. 
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The biggest impact the FINST hypothesis makes is in implying that signif

icant features in an image can be marked in parallel prior to and apparently 

without the need of the focusing of attention. Mahoney and Ullman, to whom 

we now tum, propose mechanisms which in parallel build "image chunks" prior 

to being processed sequentially by means of attention. This appears consistent 

with the FINST hypothesis. 

2.1.5 Mahoney and Ullman 

Mahoney and Ullman (1988) have ma.de an elegant refinement to the original 

visual routine proposal. They argue for the presence of an image-chunking stage 

in between the stage of parallel base representation building and the stage of se

rial application of primitive operations. This new stage would quickly assemble 

a variety of simple chunks or subsets of the image, which could then be treated 

as units by the later serial processing stages. By treating a number of spatially 

co-extensive image components as a unit or chunk, considerable savings can be 

had over standard pixel-by-pixel processing. For example, by preprocessing a 

curve into curve-segment chunks, the boundary tracing operation can thus trace 

from chunk to chunk, which, if the chunks are large, is much faster than tracing 

pixel-by-pixel. 

Mahoney and Ullman describe three applications of chunking, one for each 

of the basic operations of boundary tracing, region colouring, and indexing. 

For boundary tracing, they define their chunks as regions which contain a 

single segment of a curve. The chunks are built up iteratively into binary trees 

by merging adjacent regions which are compatible; that is, every curve in one 

meets every curve in the other at a boundary common to both regions. At the 

end of the chunking phase, each remaining root node represents a single curve 

segment. The leaf nodes are the initial elementary regions for the segment as 

well as an assortment of adjacent empty regions. 

For region colouring, a similar algorithm is proposed. This is a form of 

bottom-up quad-tree method, but details are not given. 
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For indexing, Mahoney and Ullman propose the parallel computation of 

crude and approximate measures of salience. Examples of local configurations 

that could draw interest are curve-junctions, regions of free-space, local parallel 

structures (flow patterns), local proximities, local isolations, bilaterally sym

metric regions, and basic shape configurations such as bars, arcs, circles, and 

ellipses. They stress that the computations be crude and approximate, and 

that they provide a quick summary description which can then be explored 

more thoroughly by applying attention. 

Mahoney and Ullman hypothesize that the human visual system describes 

an image at two distinct levels. The crude level is composed of "figural chunks" 

which are approximate shapes with approximate measures of salience. The 

refined level is the more traditional spatially-focused and detailed level of de

scription. They suggest that the detailed information is spatially indexed by 

the crude information. The crude level is responsible for our more nondescript, 

subjective, and qualitative sense of the overall arrangement of an image. 

The figural chunk hypothesis is fascinating and valuable. No algorithms 

describing how it might be accomplished were given, although Mahoney and 

Ullman did suggest that basic shape configurations, such as ellipses and arcs, 

could be computed by the parallel and spatially uniform application of numerous 

template matches. 

2.2 Preattentive Feature Maps 

The second line of research work that this thesis draws inspiration from is the 

psychophysical work supporting the existence of two stages of visual processing: 

the preattentive and the attentive.2 Ullman's visual routines framework is also 

rooted in this work. 3 

2cf. Juleaz (1983, 1984, 1987) and Treisman (1985, 1986b). 
3 At this point we might addresa this question: of what value are human studies to a com

putational investigation? In theory one might be able to deduce a priori the type of algorithms 
and representations needed to solve the vision problem. Such a theory would need to specify a 
long list of auumptions about the type of world to be visualized. Whether or not the assump
tions accurately reflect our world would be difficult to assess without subjecting the theory to 
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One key psychological finding is that when certain features are isolated in a 

sea of distractors, they can be detected in constant time regardless of the size 

of the image or the number of distractors. These so-called "pop-out" features 

include colour, direction of motion, velocity, orientation, size, length, width, 

intensity, binocular disparity (perceived depth), and end-point termination. 

Other features - such as number, inside-outside, curvature, and intersection 

- are thought by some to pop-out. 4 Other features definitely do not. These 

latter include all shape properties ( circle, square, etc.), conjunctions of any 

two features (e.g., red and vertica1) 6, parallelism, convergence, connectedness, 

closure, and T-juncture. 

The pop-out phenomena exhibit a number of interesting complications. 

First, there is an asymmetry between testing for the presence of a pop-out 

feature and testing for its absence. In all cases, only a feature that is present 

pops out. Checking for the absence of a feature requires a serial scan. 

Secondly, there are different pop-out effects for different values of the same 

empirical teete. So, in effect, the person who wants to undertake a computational investigation 
by means of a priori deduction is faced with an experimentalist research path: inventing rea
sonable assumptions, testing these in a working system, revising these assumptions, retesting, 
and so on. The only way to avoid this is to somehow guarantee that one's assumptions are 
right in the first place, but it is doubtful that this is possible. 

So, given that one cannot avoid system-building and experimentation in this endeavor, the 
question becomes whether one can get any hints as to how to proceed. Naturally, our own human 
system suggests itself on the grounde of its having evolved over a long time in a competitive 
environment. Of course, there is the risk of being side-tracked along an accidental approach to 
vision, one characterised by the accidental constraints introduced by our protoplasmic basis or 
the need to develop out of a single cell. But at these initial stages of vision science it would be 
wise to stick to the tried and true - that is, to mold our theories to the human model. There 
is still plenty of room to introduce computational considerations into a human inspired model. 
One needn't just copy the human system verbatim (not that we know enough yet, anyhow); 
one can try to justify it computationally, or else introduce computationally inspired alterations. 

Ulhnan (1986) discusses ways in which computational studies could contribute to biological 
vision science. 

4Treisman (1985) thinks that inside, outside, and curvature all pop out. Julesz {1984) says 
that the intersection of elongated blobs pops out, and he suggests that the counting of groups 
with less than six elements may pop out. Treisman (1985) says that neither does. 

6 Apparently there are exceptions to this rule. Nakayama and Silverman {1986) report that 
both binocular disparity and colour, as well as binocular disparity and motion, pop-out. The 
subjective perception of their subjects is that the pop-out occurs in one of the two depth-planes 
presented. 
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feature. For example, a vertical bar amidst bars tilted slightly off vertical does 

not pop out, but the reverse does. Similarly, for curvature, a straight line amidst 

curved one's does not pop out whereas the reverse does.(Treisman, 1985) 

Another peculiarity is that in the case of the vertical versus tilted bars, this 

effect is largely affected by the perceived frame in which the image is found. 

When the target bar's orientation matches the frame's orientation, there is no 

pop-out. (Ibid.) 

J ulesz and his co-workers have discovered evidence for a variable diameter 

spotlight or aperture of preattentive vision (to be distinguished from the spot

light of attentive vision which we discuss in the next section). The diameter 

of this spotlight is inversely related to the ability to discriminate differences in 

preattentive features. For example, assume we have an image region in which 

are found two texture regions one of which has bars oriented 45° apart. And 

further assume that we can just barely manage to preattentively discriminate 

these two regions. Then, in order to achieve a similar degree of pop-out discrim

ination for an image with two regions where the bars are now only 10° apart, 

the image will have to be substantially smaller. 

Julesz and his co-workers also report that it is possible for subjects to narrow 

the aperture of preattentive vision by "looking more closely" at a smaller portion 

of an image. They report, however, that it takes much longer to perform such 

a discrimination. J ulesz suggests that this is because the preattentive system 

is performing some form of search, but it must be emphasized that this is not 

a serial search. Julesz(1984) also reports that when narrowing the aperture of 

preattentive vision, all the spatial-feature dimensions are identically affected. 

For example, when the threshold of discrimination increases for orientation, it 

will also necessarily be increased for spatial distance. 

What do all these pop-out phenomena tell us about the computations per

formed by our vision system? 

The only reasonable explanation for constant-time properties of pop-out 

phenomena is the use of a parallel-search algorithm. The purpose of rapid 
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search in parallel must be to enable salient points to be noticed more quickly. 

Anything that pops out must hence be salient in some way to subsequent vision 

processing. 

Treisman explains that the asymmetry in presence/absence search is due 

to a positive signalling of the presence and location of a feature, and to no 

signalling of a feature's absence. This explanation is simple and satisfying. 

The different effects for different values of the same feature are explained 

by Treisman as due to recording a feature value by measuring the difference 

between it and some standard. When the value happens to equal the standard, 

the difference is zero, and so the feature is not signalled. The standard value 

can be controlled by global factors such as the tilt of the image frame. This 

is plausible. An alternate explanation is that the standard - for example, the 

perceived orientation of the frame - has the effect of filtering out bars that are 

aligned with it. A simple way to test these two hypotheses would be to measure 

the degree of pop-out with target orientations progressively further from the 

frame orientation. If the pop-out effects increase monotonically with increasing 

difference from the standard, then the difference hypothesis would be supported; 

otherwise the filter hypothesis would be supported. The filter hypothesis is 

somewhat more reasonable. It would be advantageous for an organism to be 

able to filter out irrelevant orientations or velocities. It is difficult to see the 

wisdom in introducing a uniform bias on a feature; why should 60° off apparent 

vertical be more significant than 30° off apparent vertical? 

Finally, let us consider the variable spotlight of preattentive vision reported 

by Julesz and his co-workers. How could decreasing the diameter of the input 

region increase its resolution and its computing time? Numerous mechanisms 

might yield this result. One possibility that explains the increased resolution 

and increased time delay is that the smaller preattentive spotlight must be 

extended more slowly and sensitively in order to discriminate the finer feature 

differences. This would be necessary in the presence of noise - perhaps that 

produced by the microsaccades - in order to integrate sufficient input over time 

to make the signal detectable. 
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2.3 The Focus of Attention 

The psychological literature on the subject of visual search and attention is vast. 

Hurlbert and Poggio (1985, 1986) review some of the recent psychophysical 

and physiological work in this area from the computational perspective. Their 

review suggests that the role of attention in human vision is not well understood 

although there are some interesting theories. Some of these are recounted here. 

Based on their pop-out and illusory conjunction experiments, Treisman and 

her co-workers propose a theory which maintains that a single focus of attention 

can be directed at will (by means of high-level goals) or by the presence of 

discontinuities in preattentive feature maps.6 The discontinuities, however, do 

not directly inform the attention mechanism of their location. At best, they can 

only signal the fact that they exist; for example, that red is present. What the 

discontinuities do instead is to register their location in a special master location 

map. When the attention mechanism interrogates a point in this master location 

map, it may then retrieve the details about what features are present at this 

location in the image. The purpose of the spotlight of attention is to integrate 

information from all around the image into a single consistent percept. Our 

awareness of what is in the scene is a product of both this bottom-up information 

being integrated from around the image, and of our top-down expectations. 

Julesz (1984) believes in a similar role for attention, namely, the role of 

enabling the combination of texture primitives ( "textons"). Only within the 

attention spotlight is form recognition possible. Julesz goes on to describe 

some other interesting properties about the focus of attention. First, a shift of 

attention (at about 50 msec per shift) is about four times faster than a saccadic 

eye movement, indicating that the shift of attention operates independently 

of eye movements. Secondly, the shift occurs for all image sizes - for those 

falling entirely within the fovea as well as for those covering a large portion of 

the visual field. Thirdly, for size of image, the resultant spotlight of attention 

expands or contracts appropriately to attend to the relevant texture difference. 

6 Treisman, 1985, 1986a, 1986b; Treisman & Gelade, 1980; and Treisman & Schmidt, 1982. 
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The diameter of the spotlight can be as narrow as a few minutes of an arc. 

Finally, Julesz observes that in the absence of a pop-out region to attend to 

immediately, the spotlight appears to move about randomly until it finds a 

target of interest. 

Hurlbert and Poggio report on several findings involving monkey attention. 

Apparently, monkey cells in the inferior parietal lobe ( area 7), in V 4, and in IT 

respond differently depending on whether or not the animal attends to a visual 

feature or cue. The researchers of these findings, however, seem very far from 

establishing the exact mechanisms responsible. There is as yet no confirmed 

area of the brain held to be responsible for managing visual attention. This 

contrasts with the preattentive feature maps, where brain regions have been 

found that respond preferentially to specific orientations, colours, and motions. 
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Chapter 3 

Computing Visual Properties 
and Relations 

In this chapter we examine in the abstract the problem of computing visual 

geometric properties and relations. We deduce constraints on the solution. 

These constraints are heeded in the implemented system which is described in 

the next chapter. 

3.1 The 2-D Geometry World 

The goal of this thesis is to find efficient methods of computing the geometric 

properties and relations which can be found in images. To this end it is wise 

to choose a visual domain rich in such properties and relations, but not so rich 

as to overwhelm us with the sideline issues of noise, occlusion, complex shape 

representation, lighting, non-step edge types, variable line widths, perspective 

distortion, motion, and texture. Such a world is the 2-D simple geometric 

shape world of circles, squares, triangles, etc., made of lines of uniform width 

and intensity, and appearing on a uniformly black background. The following 

common properties and relations are among those possible in this world: 

Properties: 

a) shape properties: convex, concave, open, closed, continuous, broken, and 

symmetric (axi~lly, rotationally). 
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b) quantity and possession of specific features: terminators, straight edges, 

curves, inner regions, concavities, and extrema/zeros of curvature. 

c) possession of specific feature values for features of quantity or degree: ori

entation, curvature, density, intensity, numbers of vertices, angle, length, 

width, area, perimeter, diameter, position of centroid, and a variety of 

functions composed from the above values (e.g., ratios, differences). 

d) arrangement and density pattern of features: relative position of centroid, 

endpoints, and zeros of curvature. 

Relations: 

a) collinear, curvilinear, parallel, intersecting, quantity, inside, outside, be

side, touching, aligned, centred, between, over, under, right-of, left-of, 

NNW-of, and so on. 

b) >, <, and = for the assorted numeric feature values. (see c) above.) 

c) equality under transformation: rotation, scaling, translation, smoothing, 

filtering, and so on. 

Of course, it is possible to define more complex properties and relations 

using standard mathematical operators and logical connectives. Thus we could 

define ratios and differences of two values, and also conjunctions of properties, 

negations of properties, and so on. For example, we could define a rhombus as 

an object with the composite property of being a simple closed curve and being 

composed of four equal length line segments. 

3.2 The Adequacy of a Visual Routine Lan
guage 

3.2.1 Descriptive Adequacy : Completeness 

The basic operations from which visual routines are composed, as well as the 

procedural instructions which allow one to string together the basic operations 
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and to otherwise manage their execution, can be thought to comprise a high

level computing language. We call such a language a visual routine language 

(VRL). 

If a VRL for the 2-D geometry world is descriptively adequate1 - that is, 

descriptively complete2 - it must enable us to compute all possible properties 

and relations (such as those from section 3.1 above) for all possible configura

tions of objects in that world. This is a tall order. If one were to try to prove 

descriptive completeness, it would be necessary to ensure that the 2-D geom

etry world could be defined formally and in a recursive fashion. It is doubtful 

that our concepts of grouping, of subpart arrangement, of relative position, etc. 

could stand that sort of precision. Even if they could, the proof of completeness 

would be an enormous undertaking. 

An alternative to a formal proof of descriptive completeness is an argument 

by means of a sufficiently representative set of instances. This route gives up 

on any formal guarantee of completeness, but it does have the advantage of 

tractability. Of course, with this approach we still face the problem of deciding 

what constitutes a sufficiently representative set. Presumably such a set would 

contain a variety of properties and relations from each of the catgories outlined 

in section 3.1 above. 

Lastly, a third approach to the problem of proving a VRL to be descriptively 

complete is the argument from Turing Machine equivalence; that is, we show 

that a VRL can compute anything a general purpose computer can, which, 

by appeal to Church's thesis, means it can compute anything computable at 

all. Although there is some comfort in such a proof - it means one hasn't left 

anything computationally crucial out - it is of no help in showing that the VRL 

1 Mackworth (1987) gives criteria defining descriptive and procedural adequacy for visual 
representations. 

2There are at least two meanings of 'completeneH' when applied to a formal language. The 
first refers to the language's ability to descri'be all that it was intended to describe. This is 
the sense in which it is used here. This type of completeness is a form of descriptive adequacy. 
The second meaning refen to the ability of a computation strategy to apply the language in all 
the fashions it was intended to be applied. This type of completeness is a a fonn of procedural 
adequacy. 
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allows one to naturally and efficiently compute all the properties and relations 

in the 2-D geometry world, which is what we really want to know. 

In chapter 4 below the VRL which was invented as part of this thesis is 

described. No attempt is made to prove this VRL descriptively complete. In any 

language, descriptive adequacy is typically a tradeoff with procedural adequacy. 

Later we shall see, by means of numerous examples, that our invented language 

is capable of representing a variety of properties and relations, and so it does 

have a modicum of descriptive adequacy. The properties and relations that 

can be expressed in our VRL are inside, outside, vertical, horizontal, centred

in, closed, connected, convez, parallel, part-of, and touching. These properties 

and relations were chosen on the grounds that they were common and basic 

properties which people find important and which they compute easily.3 Visual 

routines may in fact only be useful for computing such basic properties and 

relations. The more complex properties and relations ( eg., those involving many 

numeric and logical operators) may best be handled by higher level processes. 

If this is true, then it may well be that descriptive completeness is a relatively 

unimportant characteristic of VRLs. 

3.2.2 Procedural Adequacy : Pragmatics 

Where computers and computation are concerned, there tend to be two sorts of 

pragmatic issues: resource issues - time, space, processor size, available tools, 

and such - and convenience issues - ease of use, conceptual elegance, flexibility, 

and such. Ea.ch of these issues defines competing criteria, and tradeoffs must 

3 Lowe (1985) diacu11e11 in depth the problem of assigning significance to perceptual grouping 
properties and relation11. He concludes that, for the real world, viewpoint invariant properties 
and relations are highly significant. Theee include collinearity, curvilinearity, cotermination of 
curves, curve croesing, parallelism, convergence to a common point, equal spacing of collinear 
points or parallel lines, and the creation of virtual line11 from the alignment of terminators. In the 
case of humans, because of the perceptual significance of these feature grouping properties and 
relations, we can 11uspect that many of them are computed by parallel preattentive operations 
rather than by the slower attention guided visual routines. 

Viewpoint invariance ia a good criterion to u11e in ranking the significance of visual properties 
and relations. It would be valuable to have other criteria as well. 
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be made amongst them. The goals and constraints placed on the system deter

mine what tradeoffs are made. In developing the system, priority was given to 

resource issues because they more closely constrain any solution to the vision 

problem. 

Resources 

The resource issues are simpler to assess than the convenience issues. Complex

ity studies can give us a handle on resource costs, whereas convenience studies 

rely on the weaker subjective methods of psychology. What we want in order 

to assess the procedural adequacy of a VRL, however, is not just a list of algo

rithms to analyze and compare with regard to their resource complexity. We 

would like some assurance that we are on the track of the best algorithm. For 

this we need an analysis of the task itself - the task of computing with a VRL 

the properties and relations in the 2-D geometric world.4 We now begin such 

an analysis. 6 

Image Representation 

The task of computing properties and relations in images of simple 2-D 

geometric shapes starts with the representation of the image. Some finite rep

resentation is needed to permit computation. We have two options: a list of 

the symbolic descriptions of the objects in the scene, or a finitely sampled to

pographic representation of the scene. Since someday we want our algorithms 

to be applied in real environments and to make use of real sensors, and also, 

since we want a correlation to the human condition, then we choose topographic 

image representation. However, we also wish to have some of the advantages of 

the symbolic description. We will see a way to mix the two shortly. 

4Mackworth (1987) discusses the difference between task or problem complexity and algo
rithm complexity. Task complexity is defined as the lowest possible complexity of any algorithm 
for the task. There can be many possible algorithms of varying complexity for any one task. 

6 As we analyze each stage in vision, we will identify those methods we deem moat pro
cedurally adequate for performing that stage. Then in our analysis of subsequent stages we 
will assume we are employing the solution to the earlier stage. Without this methodology the 
analysis would quickly explode into numerous competing paths. 
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It was mentioned above that we desire to avoid imaging complexities in 

choosing the 2-D geometric world so that we can concentrate only on the key 

issues in efficiently computing properties and relations. One such complexity is 

the sampling scheme used to go from a continuous to a digital image. 

Sampling involves at least two issues: where to sample and how to sample. 

Regarding where to sample, a uniform tessellation makes sense since all por

tions of our 2-D geometry world are equally significant. Simplicity will then 

dictate using a regular polygon for each cell, leaving us with three tile options: 

squares, equilateral triangles, or hexagons.6 The second issue we discuss is how 

to sample. This is the problem of how to compute the value of each cell from 

the continuous image. Regardless of the tessellation used, the problem with 

sampling is aliasing. At some orientations a continuous straight line will cross 

the cells in such a way as to generate a jagged effect. Also, there is a broadening 

effect on the width of the lines, which can be very substantial in cases where the 

lines are narrower than the cell diameter. These aliasing effects can be reduced 

by using finer tessellations, but then computational effort increases substan

tially as well. The solution opted for is to bypass the sampling stage altogether 

and to create pixelated lines of constant intensity directly, using techniques well 

known in Computer Graphics. 7 Using these symbolic lines has the advantage of 

both preserving connectivity and keeping lines at a uniform width of one pixel 

on average. Regarding the issue of tessellation type, although each has its own 

advantage, the square grid was chosen because of its conceptual clarity, its long 

tradition in computer vision, and its direct correspondence to the array data 

structure. 

Base Representations 

Now that we have an image representation, we can turn to resource issues 

concerning how best to make use of it. The problem of efficiently computing 

properties and relations dictates that parallelism be used as much as possible. 
6Ballard &: Brown (1982) and Horn (1986) discuH the relative advantages of different 

tessellations. 
7For example, see Hearn &; Baker (1986). 
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Parallelism can be used whenever simple local properties exist. The types of 

local information in an image are simply the infinitude of patterns of variation 

which can exist in a region surrounding any point. Any pattern of variation 

is informative to some extent. The questions we must ask are the following: 

Which patterns are easiest to compute? Which are most likely to occur in 

the image? And which correlate most heavily with "significant" states of the 

organism (e.g., survivally important ones)? 

One of the simplest types of local computation is the single orientation 

gradient measurement, which is the directional derivative. This is the measure 

at a point, for a given orientation, of the change in measured values across the 

region in that orientation. To avoid instabilities in computing this measure for a 

point, we must weigh most heavily the contribution of points nearest this point. 

And for peak stability this weighting must follow a Gaussian distribution with 

the mean at the measuring point. (The choice of sigma influences the diameter 

of the region of relevance.) We can compute this weighted directional derivative 

by cross-correlating the image function with the directional derivative of the 

Gaussian.8 

Other. patterns of variation which are relatively simple to compute and yet 

are quite informative include the following: 

a) the rate of change of the measured variation in all directions- This can be 

accurately computed by cross-correlating the image with the difference of 

two Gaussians. Varying the two sigmas allows one to vary the sensitivity 

of the measurement to lower and higher frequency gradients. 

b) an off-on-off bar pattern in a particular direction, where the bar is of a 

particular width- This allows one to locally indicate the presence of a bar 

element of a particular width. It can be computed by cross-correlating the 

image with the product of a 2-D Gaussian and a 1-D Gaussian along the 

desired orientation. The sigma of the first Gaussian controls the length of 

8Ballard & Brown (1982) and Horn (1986) are two prominent Computer Vision textbooks 
where definitions of these terms can be found. 
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the local bar segment and that of the second controls its width. Of course, 

in practice we would restrict ourselves to a finite set of orientations and 

widths. 

c) an endpoint or terminator pattern - This pattern can be computed by 

combining the computation for b) above with a perpendicular directional 

derivative along the axis of the terminating bar. In this way we can detect 

a bar terminating at a small edge. An alternative computation, which 

measures relative isolation and thus can also be used to detect isolated 

points, is to cross-correlate the image with a 2-D Gaussian from which a 

constant value has been subtracted. 

d) the various edge crossing patterns - Those with low-order vertices, which 

can be seen in Figure 3.1, are apt to occur often in the 2-D Geometric 

world.9 One way to compute each of these properties locally is to apply 

the bar-pattern strategy mentioned in b) above for the appropriate ori

entations. This is in effect template matching. However, given all the 

orientations to be permuted, the number of templates to be computed 

goes up exponentially with the order of the vertex. We shall discuss a 

more efficient approach shortly. 

e) the various arcs of curvature - Again, template matching is an obvious 

and quick way to compute each of these, although this could be expensive 

in the number of computations to be performed simultaneously in each 

locale, especially if we are given a large number of orientations and arc

radii of curvature. 

We can be fairly confident in saying that the above are the kinds of informa

tion that ought to be calculated from the initial image, given their usefulness, 

basis on locality, and relative ease of computation . The only problem we will 

encounter is the large number of separate computations needed for complex 

patterns, due to the large number of possible permutations of the positions of 
9 Walters (1986) summarizes psychophysical evidence that people preferentially process such 

curve croaaing patterns over non-croHing patterns. 
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a. 2 edges: ~ L L 
b. 3edges: r ~ y 
c.4edg .. , + -r X V 

Figure 3.1: Edge-crossing patterns with vertices of low-order 

their parts. If we cannot afford extensive processing at each locale, but we still 

want to recognize each such infor~ative pattern, then we are forced to do some 

of our computing in serial. The basic idea behind intelligently serializing the 

process is to find abstract classes for subdividing the input patterns and then to 

use membership in these classes to define the pattern. In practice we must find 

at least two parameters that can categorize all the input patterns, find simple 

means to compute the values for these parameters in a first stage of processing, 

and then pass these parameters to a second stage where they can be reassembled 

to "look-up" the pattern found. For example, in order to compute the angle 

patterns of Figure 3.1.a, we can categorize these patterns by the minimal angle 

( < 180°) and the orientation of the bisector. If we can efficiently compute these 

abstract features, then we have reduced the number of computations at each 

locale from O(n2
) to O(n), where n is the number of orientation categories. 

We have just seen how to quickly compute many simple but useful local 

properties. The next question we must ask is this: are there any non-local 

properties that would be useful to compute in parallel? These properties could 

not be guaranteed to occupy a locale of any fixed size. For example, we might 

want to determine the presence of shapes, locate all connected objects, locate 

all closed objects, or locate all collinear points directly. To do this we must 

introduce an extra stage of processing. We may also have to introduce a large 
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number of processors to handle all possible configurations. 

Because a non-local property can occupy any expanse, it requires a compu

tation insensitive to size. This requires either an enormous number of special 

purpose recognizers - one for each legal instance - or else a more intelligent ap

proach based on an analysis of the non-local property into sub-properties. Since 

the non-local property is insensitive to size, its sub-properties must be either a} 

not locally computable themselves orb} locally computable but can appear any 

distance apart. The a} case is no solution since it only pushes the problem on 

to the sub-properties. In the b} case the locally computable sub-properties can 

signal their existence and location, and thereby, in a Hough Transform fashion, 

they can vote for the existence and location of their parent property. The sec

ond stage of processing must then take these signals and votes and confirm the 

location of the parent property. For example, to find all the collinear points 

in an image we can have each point vote for all orientations of lines that go 

through that point. H any line has had three or more votes, then we take that 

line, intersect it with the image, and thereby recover all the collinear points that 

voted for it. It is uncertain whether all non-local properties can be computed 

quickly by such means. Undoubtedly the complex shape properties would be 

more difficult to handle. However, we have made our point: with a few layers of 

processing even some non-local properties can be computed reasonably quickly. 

Intermediate Representations 

We now continue the analysis and ask ourselves what we ought to compute 

from these new topographic maps of basic information. Of course, we wish to 

apply the same criteria of usefulness and efficient resource usage. 

First, we can consider applying the same local variation detecting operations 

to these new maps themselves. And we could of course try this repetitively. 

However, this would be pointless for most images from the geometry world. It 

would be very useful in the few cases where the alignment of features of the 

objects is itself significant, as in Figure 3.2. Thus we may wish to allow a second 
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a. terminators forming a line: 

/ 
b. crossings forming a curve: 

Figure 3.2: Examples of basic features that form significant shapes 

application of the initial pattern computations to their initial output. 

The first thing we would want from these initial topographic maps of ba

sic features is hints about which features are related to one another to form 

objects, and what objects are formed thereby.10 There are two types of such 

hints. First, there are hints intrinsic to the maps themselves. If two features 

are coincident, then they are likely to belong to the same object. If they are 

relatively· nearby or connected by a line segment, curve, or region, then they 

are also somewhat likely to belong to the same object. The same holds if they 

have similar orientations, intensities, etc.11 The second type of hint suggests 

the type of object the feature belongs to. For example, right angles suggest 

rectangles. With sufficient "extrinsic" hints such as these, a representation for 

the simple object in question could be called forth to verify the hints. The 

extrinsic hints index into high level knowledge, whereas the intrinsic hints can 

be applied without such knowledge. 

Thus many weak constraints are being simultaneously applied both within 

maps and from maps to simple-object memory and back. We can visualize the 

10The purpose of Mahoney and Ullman's "image chunks" (see section 2.5) may be to provide 
hints such as these. 

11These intra-map hints could be quite elaborate. For example, within a single map, say of 
2-edge vertices, we could learn that angles whose bisectors intersect are likely to be part of the 
same object. 
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whole process as a network settling down to a segmentation of the image into 

its separate connected parts or feature groups. This is a first-pass settling, one 

that is not likely to be revised. However, we should allow for further higher

level processing to reinterpret the initial feature groupings and thereby to force 

a resegmentation. 

In the simple 2-D geometry world, this feature-grouping stage of segmenta

tion is somewhat simplified. Because we disallow noise and use uniform shading 

of shapes, we can group all features that are connected. This leaves only the 

cases of overlapping shapes. If we keep overlaps to a minimum, this phase of 

the problem can be effectively solved by a connected region-labelling algorithm. 

Once elementary segmentation has occurred, we can proceed to determine 

properties of, and relations among, the elementary groupings. How can this be 

done in a resource-efficient way? 

If we review the large list of properties and relations we hope to compute, 

we see that many of them cannot be computed efficiently by means of parallel 

algorithms. There are many types of convex or closed shapes, many quantities 

of things, many instances of right-of, on-top-of, etc. There are too many such 

instances to allow one algorithm to search for each instance. Therefore, at least 

for these properties and relations, we need serial methods. The seriality need 

not be very extensive. As we saw earlier in the case of collinearity, a few stages 

of parallel algorithms were all that was needed. The example of collinearity 

should encourage us to look for similar approaches to computing other non

local functions. The hope is that at most a few stages or steps of parallel 

operations would suffice for computing each of them. This idea fits well with 

the concept of visual routines - the idea that a few basic operations applied 

serially can compute these same visual functions. 

At this point in our progress at developing the best resource using algorithms 

by analysis of the task to be performed, analysis must give way to intuition and 

inspired experimentation. Beyond what Ullman (1984) has already said on the 

subject, there is no easy way to deduce which basic operations are best or how 
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they are to be strung together. Such an approach would be like trying to deduce 

what the optimal instruction set and architecture are for a digital computer. 

What is needed are inspired design and test experiments - the acquisition of a 

body of experience from which sound judgments can be made on how to proceed 

in doing computational vision. The system which has been built and which is 

described in the remaining chapters of this thesis is a small contribution to the 

body of experience needed. 

Convenience Issues 

The procedural adequacy of our VRL rests partly on its efficient use of resources 

and partly on its elegance, simplicity, and utility in the eyes of the experimenter. 

To the extent that the visual system must itself design and test new visual rou

tines to suit new image situations and to learn new properties and relations, 

it too is apt to benefit from a convenient VRL.12 We can determine what con

venience features should go into a VRL by analyzing the task at hand, viz., 

the task of designing and testing of visual routines, and their placement into 

production. 

The visual routine programmer and system developer needs to be able to 

perform the following tasks quickly and conveniently: 

1. Create, edit, copy, save, and run routines. 

2. Define subroutines; that is, treat a group of routines as though it were 

a single routine. He will also need to pass parameters to such routines 

and have values returned. These subroutines will need the option of sus

pending themselves prematurely if certain conditions are not being met. 

Subroutines should be nestable and recursively callable. 

3. Conditionally apply a routine. Apply a routine repeatedly until some 

condition is met. 
12For these reasons, convenience issues will become more central to visual routine studies 

when the problem of learning ie addreseed. 
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4. Monitor a routine during execution, stop it and examine it. 

5. Create, edit, copy, save, and process images. We should include the fol

lowing abilities: 

• to retouch individual pixels 

• to globally change all pixels with such arbitrary properties as colour, 

position, context, and all the logical combinations of these 

• to apply standard image transforms 

• to merge two or more images 

No doubt, other features would add to the convenience of the language, but 

if the VRL designer can supply these basic capabilities, he will have done well. 

3.3 The Rationale for a Question-and-Answer 
System 

So far in this chapter we have been looking at the problem of efficiently com

puting visual properties and relations. We have discussed: the image world; the 

base and intermediate representations useful to derive for this world; the basic 

operations out of which a VRL can be composed; and the convenience features 

we would like in a VRL. 

Here we briefly address the metaproblem of how best to go about building 

a system to test visual routines. The position argued is that a question-and

answer approach offers several advantages over the more conventional recogni

tion approach. Others wishing to design and test visual routines may profit 

from considering this argument. 

Visual recognition is fundamentally a process of inferring which of many 

possible interpretations of an image is the correct interpretation. A recognition 

environment can be defined in terms of an image domain and a language for 

describing the domain. A specific task will require choosing which descriptions 
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in the language are correct for a given image. Assuming that we have a language 

with objects, properties, and relations, then the interpretation will be based on 

several activities: 

1. indexing from features in the image into the set of legal object descriptions, 

2. confirming that the indexed objects for a given feature are consistent with 

the interpretation of neighbouring features, 

3. testing the objects found and noting the properties they possess, 

4. indexing from the object locations into a set of legal relations, and 

5. confirming that the indexed relations indeed hold. 

After all these have been performed the system can return a list of sentences 

in the language describing the objects, properties, and relations which were 

recognized in the image. This list will count as the interpretation of the image. 

Activities 1, 3, and 4 can be very time-consuming, and they are independent 

of the ta~k of testing visual routines that compute properties and relations. 

Activity 2 is also independent of this task, but it is necessary for confirming 

the presence of objects. Since we would like to avoid performing activities that 

are unnecessary, we would like a means to test visual routines which does not 

require activities 1, 3, and 4. A question-and-answer approach offers this means. 

If the questions are not so unspecific as to ask "what is in the image?", 

but instead specify what objects, properties, and relations are being sought, 

then activities 1, 3, and 4 are eliminated. All that remains is searching for the 

specified objects, properties, and relations. The problem of indexing from all 

features to all possible objects is eliminated, and there is no need to try out all 

possible properties and relations. These are the principle reasons why we have 

decided to test our visual routines in a question-and-answer system as opposed 

to a recognition system. 
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Chapter 4 

Design of the System 

In this chapter we describe the system which has been developed and imple

mented. We start with an overview and then give details. 

4.1 System Overview 

The system is interactive. The user works at a video display station, entering 

commands at the keyboard and watching the results on the screen. He can easily 

create, edit, and manipulate the images. He can manually apply single basic 

operations or whole visual routines to the image. He can ask questions about 

the image using a simple query language. He can save intermediate results, edit 

a visual routine, and then restore the results to test the revised routine. In 

short, the development environment works well. Sample inputs, queries, and 

responses can be seen in Chapter 5. 

The typical fl.ow of processing is as follows: 

1. A test image is input. 

2. Base representations are built. 

3. Questions are posed about the image. 

4. The system runs from a few seconds to a few minutes, and replies with 

a sequence of responses, one for each instance of the object or relation 
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Image 

Default VRs 

Base Maps 

Goal Directed VRs 

Intermediate Maps 

Query 

Parse Query 

Select Search Strategy 

Move Spotlight as per Strategy 

Applying VRs within Spotlight 

Instances Found 

Figure 4.1: General Data Flows 

found. Relation instances are displayed by simply showing the two objects 

so related. 

The key components of the system and their interrelations are depicted in 

Figure 4.1. 

4.2 Key Data Structures 

Each map, be it an image, a base representation, or an intermediate represen

tation, is composed of 32x32 pixels using 64 shades of grey. This is not so small 

as to preclude sufficient detail, and not so large as to impede response time. 

Maps are treated as units, and can be thought of as registers in a conventional 

computer, indexed by location in high speed memory. Thus, we can copy maps 

from register to register, apply an operator to the map inside some register, 
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and so on. Currently we get by with about sixty registers1, although there is 

no fixed limit. Currently, the registers are used as follows: 

• 12 for base representations, 8 of which are for orientations 22.5° apart 

• 10 for intermediate representations 

• 40 for utility 

The stack can hold any number of registers, limited only by the computer's 

memory. The stack is used as a kind of short term memory for storing temporary 

search results. It enables us to backtrack to a previous decision point in a search. 

Local and final search solutions are stored as lists of maps. 

4.3 The Visual Routine Language 

4.3.1 The Basic Operations 

Basic operations are compiled PASCAL procedures.2 Each basic operation is 

called by issuing a single assembler-like command to an interpreter. A visual 

routine is simply a string of basic operations. 

The following is an annotated list of the basic operations currently available. 

Within each category the operations are sorted by frequency of use. The fre

quencies are measured by counting the occurrences of each operation in the set 

of 36 active visual routines. Appendix A contains the detailed logic for several 

of these commands. 
1 If forced, we could probably get by with about SO registers. But 60 is not an excessive 

number, even if we are modelling the human system. Although only 18 or so orientation maps 
and 10 or so other feature maps have been identified in humans, one can argue that the utility 
maps have not yet been discovered because, by nature, their contents are more transient and 
varying. Hence they would be harder to test for and to recognize using current single cell 
recording technology. 

2 The operatione wnich work on image arrays are parallelizable and woula benefit from 
implementation on a parallel machine, such as the connection machine (Hillis, 1985; Little, 
1986). The parallelism is simulated in PASCAL. 
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Image Manipulation Operations 

Let A, B, C, and R stand for 32x32 image arrays. Let connectivity-type be 1 or 

2, standing for 4-connectivity or 8-connectivity on a square grid, respectively. 

Let mask-name be one of the following: line, grow.a, grow.b, or end.pt. Let 

orientation be an integer from 1 to 8, standing for each of the orientations 0°, 

22.5°, 45°, ... ' 157 .5°. 

Freq Mnemonic Parameters 

92 mov A,B Lnl 

Move registers A, A+ 1, ... , A+ n - 1 to B, B + 1, ... , B + n - l. The default 

for n is 1. 

47 bop A, operator(+ - * / < >), B, R 

Binary Operation: Vi,j, R.; +- (A.; operator B1;). +,-,*,/ are the standard 

numeric operators; < is min and > is max. The frequency breakdown by operator is: 

+{14), -{33) 

33 cbop A, operator(+ - * / < >] [), B, R 

Conditional Binary Operation: Vi,j, if A,;= 0 or B,; = 0 then Ri; +- 0 else~;+

(~; operator B;;). +,-,*,/are the standard numeric operators; < is min and> is 

max; (A;; ] B;;) is ~;; {A;; [ B;;) is B;;. The frequency breakdown by operator is: 

)&[{32). 

30 set_all A, constant 

Set all values of A to the constant. 
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19 sp_act_l_a connectivity-type, A, B, R 

Same as sp...actJin only the process is repeated until R no longer changes. This 

instruction is unnecessary but convenient, as it runs much faster than the interpreted 

equivalent: untiLnc A: sp..actJin 1/2 AB R 

16 sp_act_lin connectivity-type, A, B, R 

R +- A. 'vi,j, if A.; = 0 and (any ,l/8 connected neighbour of Bi; > OJ then 

R;; +- Bi;• 

8 compete_3 A,B,C,R 

Vi,j, R;; +- 0. Vi,j, if B,; ~ A,; and Bi; ~ C.; then R;; +- Bi;• This is a specialty 

routine used for selecting one among neighbouring competitive orientations. 

6 mk_convex A,R 

R +-A. 'r/i,j, i/ A.;= 0 and (A.;'• eight neighbours are active in such a way as to 

suggest A.; is a concavity), then A.; +- 1. 

6 conv3 mask-name, A, R, orientation 

Cross Correlate with a 3x3 mask indexed by the given orientation. The masks are 

prepared off-line and stored in memory prior to use. Appendix A describes the mask 

computations. 

6 oddman_out A,R 

Vi,j, R;; +- 0. For one io,jo, and Vi,j, if Aioio ~ Ai; then R.;0 ; 0 +- Aioio· I.e., R 

is empty except for a single maximum point from A. 
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6 spread connectivity-type, A, R 

W, j, ~; +- A,; + E (the ,I or 8 connected neighbours of Ai;) divided by 5 or 9, 

respectively. 

4 kop k, operator(+ - */<>),A, R 

Vi,j, i/ Ai; = 0 then ~; +- 0 else ~; +- (k operator Ai;). +,-,*,/ are the 

standard numeric operators; < is min and > is max. The frequency breakdown by 

opera.tor is: +(2), <(1), >(1). 

3 most_actv A, B, R 

If EA > E B then R +- A else R +- B, i.e., make R the more active of A or B. 

3 detotal connectivity-type, A, R 

R +-A. W,j, i/ all of Ai; 's ,1/8 connected neighbours are> O, then~;+- 0. 

2 deunit connectivity-type, A, R 

R +-A. W,j, i/ ~; has no active ,1/8 connected neighbour then R;; +- 0, i.e., zero 

all isolated cells. 

2 unitize connectivity-type, A, R 

R +-A. Using 4 or 8 connectivity, reduce each connected region of R to a single 

point. 

2 centroid A,R 

Vi, j, ~; +- 0. Compute zot10 as the centroid of the non-zero points in A. Rxwo +

(the average intensity of the non-zero points in A}. 
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Control Operations 

17 exit_on_z A 

If Vi, j, Ai; = 0 then, if we are within a loop, exit the loop and record the control 

variable's value in parameter SYS; otherwise, exit the visual routine immediately. 

14 call visual-routine-name [,parameters] 

Call the said routine while passing along the parameters. 

13 exit_on_nz A 

If 3i,j, Ai;> 0 then do the same as for ezit_on..z above. 

10 do control-variable, start, stop, step 

The typical do loop statement: while start :5 stop perform the following expression 

(single line or begin/end block) and increment control-variable by step after each pass. 

8 until_nc A, [,n] 

Repeat the following expression (single line or begin/end block) until A stops chang

ing, or until n passes have occurred. The default n is 50. 

5 push A,B 

Push registers A, ... , B onto the stack. 

6 pop A,B 

Pop registers off' the stack into A, ... , B. 

2 if_z A, any-instruction 

If Vi, j, Ai; = 0 then perform the instruction. 

2 if_nz A, any-instruction 

If 3i,j, Ai;> 0 then perform the instruction. 
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Utility Operations 

draw A, draw-mode(p, v) 

Display register A at the terminal. If draw-mode = p then draw an intensity image; 

otherwise, display A's values. 

pause 

Stop execution and ask the user to hit any key to continue. 

As we can see, the most frequently used operations include: moving regis

ters, spreading activation, intersecting registers(cbop ]&[), amalgamating reg

isters(bop +), clearing registers, subtracting out parts from a register(bop -), 

and exiting a routine on some condition. We interpret the popularity of these 

operations to be a sign that they are intrinsically important. We must of course 

be cautious in drawing such a conclusion because it is not easy to separate out 

which operations are essential to a task and which are accidental features of a 

programmer's style or of early system design decisions. However, even though 

an author's programming style will set the frequencies of the operations he uses, 

that the operations he uses frequently are very useful to him must be given some 

weight. It would help to answer the question of which operations are truly im

portant if other researchers were to build systems with their own brands of basic 

operations. We might then learn, by comparing our sets of operations, which 

operations are essential and which are not.3 

A little thought can suggest why these particular operations may be im

portant. Data has to flow from stage to stage; so moving maps is likely to be 

3Preston (1981) surveys image proceHing languages that have been written for parallel 
machines. Some of these languages have operations similar to our basic operations, even though 
they were not written with the visual routine paradigm in mind: This reflects the common need 
to compute properties and relatione in images. We might begin a program of comparing basic 
operations in search of the universal onee by looking at what these image processing languages 
have to offer. 
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important. Spreading activation reflects the basic need to follow paths and re

spect boundaries. Intersection is essential for finding common influence. Amal

gamation is needed for comparison and relating to take place. Clearing maps is 

important for separating tasks so that a former result does not confuse a new 

and unrelated assignment. Removing parts is important for focusing attention 

on something else. And, conditional quitting is necessary to save ourselves 

wasted effort whenever it becomes clear that there is no point in continuing a 

routine. 

At this point it is instructive to stop and compare our list of basic oper

ations with Ullman's. The two operations we more or less have in common 

are: spreading activation and indexing to the odd-man-out.• Ullman makes no 

mention of such mundane operations as moving maps or clearing them. He also 

makes no mention of less mundane operations like intersecting or amalgamating 

maps. This may be a mistake on his part. The point of taking a computational 

view is to make clear the exact nature of the computations involved. It is 

valuable to specify every detail of the computation. If two features are to be 

compared, then we will need operations for bringing them together. If we are 

someday in position to test whether visual routines operate in the human visual 

system, then we will want to know exactly what basic operations we are trying 

to correlate with brain processes. Since the more complex operations may rely 

on simpler ones, it will be very valuable to know what these simpler operations 

might be. 

Let us now see how these basic operations are actually assembled to perform 

interesting tasks. 

4.3.2 The Visual Routines 

There are certain deep logical problems which confront the designer of visual 

routines. Before we can get on with writing routines to compute properties and 

4Our single form of spreading activation can be applied to curves as well as regions. In 
conjunction with a few other basic operations we are thus able to simulate Ullman's basic 
operation #3, bounded activation, and hia basic operation #4, boundary tracing. 
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relations, we have to settle on the logical status and logical interrelationships 

of objects, properties, and relations. Some tough questions that arise are: 

• What is an object independent of its form and properties? Is the form of 

an object a property? 

• Are objects single connected things, or can they also be groups of things? 

• Properties and relations apply to objects. But, can properties and rela

tions also apply to properties and relations? For instance, a property of 

the relation greater than is asymmetry, and properties of colours are their 

brightness and hue. 

• Do we admit relations of arity greater than two, or can we get away with 

defining these in terms of :properties and binary relations? For instance, 

we could define COLLINEAR(dotl,dot2,dot3) as COLLINEAR(GROUP

OF(dotl,dot2,dot3)); and BETWEEN(A,B,C) as WITHIN(A,GROUP

OF(B,C)). 

The solution to these problems is motivated by the desire to avoid effort 

and complexity. Accordingly, the response to each of the above problems is as 

follows: 

• Objects are forms with properties; hence, the form of an object is not a 

property. To confirm the presence of a form, you start with a location 

or region, and try to construct a shape of that form within or near that 

starting point. For a property, there is no question of going beyond the 

input since the location of what we must look at is given. 

• Currently, there is no allowance for the definition of group objects. For 

instance, there is no means to handle a row of dots or a square made of 

little triangles. 

• Properties and relations only apply to objects. 
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• Only binary relations are admitted. 

Within these limits, however, there is much room left for expressing our

selves. 

We will now examine all the visual routines that were written for computing 

properties and relations and for recognizing objects. There are other visual 

routines that were written but do not appear here. Some of these are used 

internally by the search logic. For instance, a routine was written for computing 

the parts of an object which do not touch any other object. This is useful for 

deciding what to trim from index maps after an object has been found. Others 

are used for generating the base maps. All of these additional routines can be 

found in Appendix A. 

Each routine is called with a certain parameter passing convention. For 

relations, the convention is to pass the register numbers of the registers which 

contain the original image, of two registers containing the forms or structures5 

to be tested, and of a register containing the union of both these structures. 

The convention is that, if the structures fail the relation test, then the register 

whose number is passed as parameter #6 is to be set to zero; otherwise, it is 

set to the union register. 

The reader may disagree with an interpretation that is given here to a par

ticular property, relation, or structure. There are many definitions of 'inside', 

'outside', 'touching', and so on. In order to keep things manageable, one popular 

definition was chosen to represent each term and a clue to the specific meaning 

is given in parentheses wherever necessary. One difficult problem for Visual 

Routine Science will be accounting for the many subtle and context dependent 

shades of meaning that visual properties and relations can have. 

61 use the term 'structure' henceforth as it has fewer alternate meanings. 

44 



Relations 

Each partial relation routine below is to be completed by placing the following 

command skeleton around it: 

{%1 • img reg 
{%2 • struct1 reg 
{%3 c struct2 reg 
{%4 .. union reg 
{%6 • match reg 
set_all %6 0 

{Input 
{ , , 
{ , , 
{ , , 
{Output 
{clear answer in case of exit-fail 

[operations unique to routine] 

exit_ifiiz/nz 
mov %4 ,-6 

{exit if relation(struct1,struct2) is not true . 
{o.w. return the union as the answer 

1. Inside ( within the convex hull of) 

mov Y.S 29 
until_nc 29 

mk_convex 29 29 
cbop 29 [ o/.2 28 
exit_on_z 28 
bop %2 - 28 27 
exit_on_nz 27 

{store struct2 in 29 

{make struct2 into a convex blob 
{intersect with struct1 
{if nothing in common, then not inside 
{o.w., compare the intersctn with the original 
{if any d.if, then st1 is not inside convex st2 

2. Outside (not entirely Inside) 

mov o/.3 29 
until_nc 29 

mk_convex 29 20 
cbop 29 [ %2 28 
exit_on_nz 28 

{store struct2 in 29 

{make struct2 into a convex blob 
{take intersection 
{if something in common, then st1 is not outside 
{the scope of st2 

3. Touching ( crossing or immediately adjacent) 

mov %2 20 
spread 2 20 20 
cbop 20 ] %3 21 
exit_on_z 21 

{create immediate neighbourhood of struct1 
{and see if it intersects struct2 
{if not, then not touching 
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4. Centred In ( centroids intersect precisely) 

centroid %2 20 
centroid %3 21 
cbop 20 [ 21 20 {inter■ect centroids 
exit_on_z 20 {if they don't overlap, then not centred 
(Note, we could loosen our standards on what stands as being 
centred by smoothing either centroid·before the intersection) 

5. Connected 

mov %2 20 
sp_act_l_a FG_PARM 20 %1 {generate the entire structure connected 

{to pt-reg 
mov %3 21 

{intersect it with struct2 cbop 20 [ 21 22 
exit_on_z 22 {if nothing in intersection, then not connected 

6. Parallel 

( Note, we might first want to ensure that both str1 and str2 are 
{ bars: but here, for efficiency, we remove these tests. 
{ Hence we must be sure to only query " ... bar parallel to bar" 
{-----------------------{mov %2 20 {teat atr1 • bar 
{call bar ~o 20 21 22 23 
{exit

11
on_z 23 

{mov ~3 20 {teat atr2 • bar 
{call bar 20 20 21 22 23 
{exit_on_z 23 
{-----------------------mov %2 20 
do y 1 8 

begin 
cbop 20 ] y 21 

bop 20 - 21 21 
exit_on_z 21 

end 

{find atr2'a orientation 

{intersect with orientation map y 
{and aet all values to those in strc1 
{remove ally oriented edges from strc1 
{exit loop when orientation found (sets SYS• y) 

{-----------------------cbop %3] SYS 22 {now verify that SYS is str3's orientation too 
bop %3 - 22 22 
exit_on_nz 22 

'T. Part of (a proper subset of) 

cbop %2 ] %3 20 
bop %2 - 20 20 
exit_on_nz 20 
cbop %2 [ %3 20 
bop %3 - 20 20 
exit_on_z 20 

{find portion of part shared by whole 

{exit if part contains extras not in whole 
{find portion of whole shared by part 

{exit if the whole is not greater than the part 
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Properties 

The parametera passed to properties are somewhat fewer. We only pass the 

image, the image boundary, and the structure. The convention is that, if the 

structure does not have this property, then the register whose number is passed 

as parameter #4 is to be set to zero; otherwise, it is set to the structure register. 

Each partial property routine below is to be completed by placing the fol-

lowing command skeleton around it: 

{l1 • 1mg reg {Input 
{t2 • boundary reg { '' 
{%3 • etruct reg { '' 
{%4 • match reg {Output 
set_all %4 0 {clear &nawer in case of ex.it-fail 

[operations unique to routine] 

exit_if_z/nz 
mov %3 %4 

{exit i.f property(struct) is not true. 
{return the object in %4 to indicate success 

1. Horizontal ( the dominant orientation) 

mov %3 20 
cbop 20 [ 6 21 
mov 21 22 do y 8 

begin 
cbop 20 [ y 23 
most_actv 23 22 22 

end 
bop 22 - 21 22 
exit_on_nz 22 

2. Vertical 

{intersect with horiz orientation map (•6) 

{intersect with orientation map y 
{keep moat active orientation map in 22 

{if horiz component(21) -. most 
{ active orientation(22), then exit 

(Same as Horizontal only use 11 cbop 20 [ 1 21 11 for line 2 in order 
to intersect the structure with the vertical orientation map (•1).) 

3. Closed (is a simple closed curve) 

mov ~ 20 
aet_all 21 1 
bop 21 - XS 21 {create inverse image 
sp_act_l_a BG_PARM 20 21 {ap_act out from bndry within the inv.img 
bop 21 - 20 22 . {remove activated part, leaves inner parts 
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exit_on_z 22 {if no inner regions, then not closed 
unitize BG_PARM 22 23 {reduce each inner region to a single 
oddman_out 23 24 {find one such point 
bop 23 - 24 23 {remove it 
exit_on_nz 23 {if more than one inner region exist, then 

{the struct ia not a simple closed curve 
{---- now teat that no protrusions exist 
mov 22 26 {need inner regions map computed above 
sp_act_lin FG_PARM 26 %2 {spread activate out twice to include 
sp_act_lin FG_PARM 26 %2 { the object portions adjacent to the 

bop %3 - 26 28 
exit_on_nz 28 

{ inner regions and any small protrusions 
{remove all this from the object 
{exit if (large) protrusions exist 

4. Convex (no concavities & needn't be closed) 

mov %3 20 
until_nc 20 

{create convex hull of object 
{remove interior of hull 

pt. 

mk_convex 20 20 
detotal 1 20 21 
bop 21 - %3 22 
exit_on_nz 22 

{remove object, leaves edge of hull in concavity 
{exit if such an edge exists 

Structural Forms 

The parameters passed to structure routines are rather different from those 

passed to properties. They include: the image; the image boundary; the spot

light of attention, which is usually a single point from an index map that the 

type of structure is expecting (e.g., squares expect corners in the spotlight); and 

the index register itself in the event that the routine sees fit to remove some 

points that needn't be examined any further. For output, each routine always 

fills the structure register with whatever relevant structure it has found under 

the spotlight. The match register is filled with either nothing, if the sought 

structure was not found, or with the structure, if it was found. 

Each partial structure routine below is to be completed by placing the fol

lowing command skeleton in front of it: 

{FIND any Structure attached to the pt in pt-reg 
{%1 = i~g reg {Input 
U,2 • boundary reg { ' 1 

{13 • pt reg { • • 
{%4 ~ index reg {Input/Output 
{%6 = struct reg {Output 
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{ " {%6 • match reg 
set_all %6 0 {clear in case of exit-fail 

[operations unique to routine] 

Base Map Features 

1. Terminator 

2. Crossing 

3. Comer 

4. Concavity Vertex 

{For all four of the above: 
{the indexed base map is the one corresponding to the feature 
{So, for terminators, replace MAPID below with 9; for crossings, 
{replace it with 10, and so on. 
sp_act_l_a 2 %3 MAPID {recover entire feature attached to spotlight 
mov ~ %6 {return it as the solution 
mov ~ %6 

Background Regions 

5. Inner Region 

{the indexed base map is concavity vertex 
mov ~ 20 
sp_act_l_a FG_PARM 20 %1 {sp_act in img (backgrnd: hence conn-4) 
mov 20 %6 {return the region found 
cbop %2] 20 21 {intersect with boundary 
exit_on_nz 21 {if intersects bndry, then not an inner rgn 
mov 20 %6 

6. Concavity 

{the indexed base map is concavity vertex 
mov Y.3 20 
spread BG_PARM 20 21 {widen index point 
cbop 21 [ 0 21 {recover portion in image near concavity vertex 
sp_act_l_a 2 21 0 {recover entire parent object nearby 
{- - - - -- First teat that region is not an inrgn of parent 
push 20 21 
push 60 66 {save regs 
set_all 60 1 
bop 60 - 21 60 {create inverted image of parent object 
mov U 60 
mov %2 61 
mov ~ 62 
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mov %3 63 
call inrgn 60 61 
mov 66 26 
pop 66 60 
pop 21 20 
mov 26 %6 
exit_on_nz 26 

{set up parms 
62 63 64 66 

{aave reply 

{restore regs 
{prepare to return whatever was found 
{if the region is a closed inner region, then 
{it is not a concavity, so exit 

{--------------------------{-- now recover concave region 
mov 21 22 
until_nc 22 

mk_convex 22 22 
bop 22 - 21 23 
mov o/.3 l6 

{find entire convex region about the object 
{remove object (leaves concave regions) 

sp_act_l_a FG_PARM %6 23 {recover the concav region attached to 
mov ts 16 { the index point; return it as the answer 

Foreground Structures 

7. Square (vertical & isolated) 

{the indexed base maps are corners, horizontal, and vertical 
mov %3 20 {iaolate the 
sp_act_l_a 1 20 %1 {struct attached to pt_reg; 4-c bee of vert sqr 
mov 20 %6 {prepare to return the isolated 

{struct as the struct found 
{--------------------------{ The basic strategy here is to start from the corner and 
{ trace both vertically and horizontally until we reach the 
{ end. Then we tr ce horizontally and vertically from those 
{endpoints until we reach a new set of endpoints. 
{ lf those endpoints are the same, then we have found a square! 
{--------------------------set_all 21 0 {interim path trace stored here: init to 0 
mov %3 29 {set up sp_act_lin start point for vert pass 
mov %3 26 {save start point 
mov %3 26 {set up sp_act_lin start point for horiz pass 
mov %3 22 {save start point 
{--- First vertically/horizontally 
unti1

1
nc 29 

beg n 
mov 28 27 {record laat frame 
mov 20 28 
sp_act_lin 1201 {sprd act out vert: trick: use 4-c 
mov 24 23 {record last frame 
mov 26 24 
sp_act_lin 1 26 6 {sprd act out horiz; trick: use 4-c 

end 
bop 29 + 21 21 
bop 29 - 27 29 {compute last point(s) activated 
bop 26 - 20 26 
exit_on_z 26 {if last•start, then exit-fail 
bop 26 + 21 21 
bop 26 - 23 26 {Ibid for vert path 
bop 22 - 26 22 
exit_on_z 22 {if laat•start, then exit-fail 
{--- Next, horizontally/vertically 
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mov 29 26 
mov 26 22 
untn

1
nc 29 

{save start points 

beg n 
mov 28 27 
mov 29 28 
sp_act_lin 1 29 6 
mov 24 23 
mov 26 24 
sp_act_lin 1 26 1 

end 

{record last frame 

{sprd act out horiz; 
{record last frame 

{sprd act out vert; 

trick: use 4-c 

trick: use 4-c 

bop 29 + 21 21 
{compute last point(s) activated 

{if last=start, then exit-fail 

{Ibid for vert path 

bop 29 - 27 29 
bop 26 - 29 26 
exit_on_z 26 
bop 26 + 21 21 
bop 26 - 23 26 
bop 22 - 26 22 
exit_on_z 22 {if last•start, then exit-fail 
{--- finally test that two final termination points are the same 
cbop 29] 26 28 
exit_on9.z 28 
mov 21 6 
mov 21 .e 

8. Triangle (isolated) 

{return the square! 

{the indexed base map is corners 
mov %3 20 
sp_act_l_a 2 20 %1 
mov 20 %6 

{recover the full isolated object in 20 
{prepare to return the isolated 
{struct as the struct found 

~-Fi;;t - ~h;~k-th;~-~;i;-~h;;e terminator regions exist 
cbop 20] 11 21 {intersect with corner map 
unitize 2 21 21 {8-conn, make each term rgn a single point 
oddman_out 21 22 {pick one terminator 
bop 21 - 22 21 {remove it 
oddman_out 21 22 {pick another 
bop 21 - 22 21 {remove it 
exit_on_z 21 {if there were only 2 terminators, then exit 
oddman_out 21 22 {pick another 
bop 21 - 22 21 {remove it 
exit_on_nz 21 {if there were> 3 terminators, then exit 
{---------------------------
mov 20 27 
call closed %1 %2 27 28 {verify that the object is simple closed. 

{Closed uses temp regs 20-26; so using 
{27 28 is a dangerous but efficient hack; 
{we should really use a push/pop sequence. 

exit_on_z 28 {if nothing returned, then obj is not closed 
{---------------------------
mov 28 %6 {return the triangle 
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9. Line Segment (Bar) 

{the indexed base map is the input image 
mov %3 16 {prepare to return index pt as object found 
mov %3 20 
do y 1 8 

begin 
cbop 20] y 21 
sp_act_lin 2 21 y 
oddman_out 21 22 
bop 21 - 22 21 
exit_on_nz 21 

end 
exit_on_z 21 
sp_act_l_a 2 21 
cbop U ] 21 16 
mov Y.S %6 

10. Dot 

SYS 

{for each orientation 

{intersect with orientation map y 
{sprd act :8-conn, in this orientation 
{find one point 
{remove it 
{exit loop if some remain 
{ ■eta SYS parm toy 

{if none found active, then only a dot 
{recover object in this orientation 
{renormalize to image intensity 
{return the bar 

{the indexed base 
mov %3 20 
sp_act_l_a 2 20 11 
IIIOV 20 %6 

map is the input image 

{recover attached object 
{return the struct found 
{set index point to image intensity 
{remove it from the struct found 

here 

cbop 13 [ %1 21 
bop 20 - 21 22 
exit_on_ru: 22 
mov 20 16 

{11 any remain, then the struct was not 
{return the dot 

a dot 

11. Isolated Arbitrary Object (IAO) 

{the indexed base map is the input image 
mov o/.3 29 
sp_act_l_a 2 20 11 
mov 29 16 
mov 29 16 

{recover the object attached to the index pt 
{return it as the found struct 
{return it as the IOA 

The reader may wonder why we bother with so many structure types when 

the goal of this thesis is to compute properties and relations and is not to do 

object recognition. The point of being able to recognize several objects is to 

enable us to test our control logic in the presence of objects having common 

features, such as edges and corners. Hence, we have two types of closed object 

- square and triangle; two types of background region - concavity and inner 

region; and two types of simple 1-D shape - bar and dot. The feature objects 

are available for free, and we should he able to recognize them, given that we 

can index to them. 

52 



It is not a failing that we artificially define our squares and triangles to be 

isolated and the squares to be not tilted. It saves us from having to spend 

undue effort rotating the image or removing lines in the hope of finding the 

object. In the opinion of the author, objects should be remembered as a series 

of prototypical views, with recognition managed by template matching, and 

visual routines play no central role in this. The reasons it was decided to do 

recognition by means of visual routines are the following: the routines were 

readily available and using them would save the additional programming effort 

of a recognition system; it was desirable to see if visual routines were powerful 

enough to do it; and this approach might clarify the relationship between certain 

types of defined object and the routines used to confirm the presence of the 

defining ingredients. This last reason is particularly applicable in the case of 

geometric objects. For example, a parallelogram is hard to define prototypically, 

but is relatively easy to define in terms of its number of corners, its being a 

simple closed curve, and its having two instances of parallelism. Likewise, there 

are many triangles, but a.11 have three corners and are simple closed curves. 

So, in these cases the object representation is likely to have "hooks" into the 

visual routine calling mechanism. Thus, by doing visual routine based object 

recognition, one can explore the interface between object representations and 

visual routines. 

4.4 The Question-and-Answer System 

In Chapter 3 we saw arguments for why we would do well to apply our visual 

routines to interrogating images - for specific objects' properties and relations -

rather than to recognizing whatever the image contains. Here we briefly sketch 

the design for a query language which is to facilitate such interrogation. We 

provide motivation for the design by first looking at the interrogation task the 

language is to solve. 

First, let us look at the sort of question we ask when we search for an object 

on which to focus. Here a.re some examples. 
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A.1 What objects are in the scene? 

A.2 What is the distribution pattern of objects in the scene? 

A.3 How many objects are in the scene? 

A.4 Are there any objects in the scene with some property or some combi

nation of properties? How many of these are there, and what is their 

distribution? 

A.5 What are the most salient, striking, peculiar, or interesting objects in the 

scene? 

A.6 Does a specific relation hold between any two objects? 

A. 7 Do some objects in the scene share properties? 

A.8 What objects, properties, and relations are present in some subportion of 

the scene? 

Then, let us look at the sort of question we ask when we want to learn more 

about an object or objects which is or are already brought to our attention. 

B.1 What are all the object's properties? 

B.2 How many objects are there in this group? 

B.3 Which properties of this object are striking, peculiar, or interesting? 

B.4 Does the object have some specific property or some combination of prop

erties? 

B.5 Does some specific relation hold between any two objects in this group? 

B.6 Are there some properties which the objects have in common? 

B.7 Does some logical combination of properties and relations hold for the 

members of this group of objects? 

54 



This list is no doubt incomplete, but it will allow us to infer the general 

features we want in our language. 

We notice the following about our questions: 

• Question A.1 is the general recognition request all over again. Hence, we 

will prefer to disqualify such questions from being in our language, and 

request that at least some restrictive search information be provided in 

the question, be it a specification of a structure, of a property, or of a 

relation. We disqualify questions with the character of "what is this?" 

and only admit questions with the character of "what meets such and 

such conditions?" Hence, we disqualify question A.2 as well. The most 

general question we will allow ourselves to ask for our 2-D domain is: 

"what arbitrary isolated objects are there in the scene?" There is no 

object recognition required to answer this; all we need is knowledge of 

what it means to be isolated. 

• Questions A.3, A.5, and B.3 are bipartite questions. For question A.3, 

we must first find all the objects and then count them. For question 

A.5, we must at least cursorily consider all the objects, sort them by some 

standard, and then return those highest on the list. Likewise, for question 

B.3, we must find all the applicable properties, and then sort and evaluate 

them. We should be on the look out for such questions and, for clarity's 

sake, decompose them into their constituent queries. 

• All the A Questions can be phrased in the form: "find me some X with the 

following properties and/or relations." In contrast, in all the B questions, 

the objects to be considered are provided for them. These questions can 

be phrased in the form: "give me information about Xo", where Xo is 

known. Our language will therefore have two basic question forms - the 

FIND form and the GIVE information form. The FIND form is concerned 

with objects, and the GIVE form, with properties and relations (Ps&Rs). 

To manage the distinction between known and unknown objects, our lan

guage will need constants and variables. In order to disambiguate the 
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variable scopes, we will also need parentheses and/ or scope conventions. 

In addition, we will need to type the constants and variables. The vari

ables for the FIND requests range over image objects. Those for GIVE 

requests range over Ps&Rs. A FIND request will return a list of the 

objects, the ordered pairs of objects, the ordered triples of objects, etc., 

depending on the number of quantifiers used. Similarly, a GIVE request 

returns a list of Ps&Rs. An Object-constant can be a single object or a 

list of objects. A P&R-constant can be a single property or relation, or 

it can be a list of these, so long as the members are all of the same arity. 

The idea of admitting lists is to enable us to ask complicated questions 

by assembling a sequence of simpler ones. The results of one query can 

thereby be made into the constant terms of another. 

• Questions A.3, A.4, and B.2 seek quantitative information. So we will need 

a counting function which we can apply to a list of objects, properties, or 

relations. 

• Questions A.5 and B.3 ask us to rank the values of properties. So we will 

need a sorting function which we can apply to a list of property values for 

objects, properties, or relations. Indeed, after introducing counting and 

sorting, we might as well admit any list-processing function. 

• Question B. 7 requires the expression of a logical combination of properties. 

Hence, we must have a convenient and complete set of logical operators. 

There are no doubt other useful features we should include in a good Ques

tion-and-Answer language, but those above represent a good start.6 Regretfully, 

little of the language which is sketched here was implemented. The only com

mand that was partially implemented was the FIND command. Only as much 

of it was implemented as was necessary to achieve the goals of testing VRs 

6We might acquire good features from the l.a.nguages developed by researchers on Picture 
Grammars (see Nake and Roaenfeld (1972) a.nd Kaneff (1969) for a representative sample). For 
instance, Stanton (1972) describes a language, RAMOS, which was built to recover structures 
from images. Among other commands it posaesees a FIND command similar to the one de
scribed here. It also includes descriptions for points, Iinea, terminators, triangles, and squares. 
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and their control logic. Completing the language and providing visual routines 

which can answer every query within the language would bring us a long way 

toward a complete set of visual routines and control strategies. How do we vi

sually count objects, sort objects, process lists or groups of objects, and manage 

logical combinations of properties? If we are to apply visual routines to these 

tasks, and if testing is to be thorough, then we will need a language in which 

we can express all the myriad variations of the task. 

The precise grammar of the query language currently developed is as follows: 

query 
find-object-query 

find-object-pair-query 
quantifier 

n 
object 

structure 

property 
relation 

find-object-query I find-object-pair-query 
FIND quantifier object 
FIND quantifier object object: relation 
ALL I ANY-n 
1,::l,3, ... ,100 
structure[/property[/property[/property]]] 
TERM I CROSS I CORNER I INVTX I INRGN I 
SQR I TRI I BAR I DOT IX 
HDRIZ I VERT I CLOSED I CONVEX 
INSIDE I OUTSIDE I TOUCH I CENTRED 
CONNECT I PARLL I PARTOF 

So, for example, to ask the question, 'find all vertical line segments', we 

would actually type at the keyboard, 'FIND ALL BAR/VERT'. Likewise, 'find 

any three closed and convex inner regions inside any square' would be entered 

as 'FIND ANY-3 INRGN/CLOSED/CONVEX SQR: INSIDE'7• 

The logic of the Question-and-Answer system is simple but adequate: 

1. Parse the query. 

2. Pass the parsed query to the FIND routine. 

3. Display all the successful finds returned from the FIND routine, and save 

these finds in memory for possible user examination. 

7 Any combination of lower and upper cue is accepted. 
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4.5 Control Logic 

In this section we describe the control executive which manages the user's 

queries and manages where and when visual routines are applied. 

In Ullman's visual routines framework there are two basic operators which 

together control the spotlight of attention. These are the "index to a point of 

interest" and the "shift processing focus" operators. The former does the impor

tant work of deciding where to focus attention. Koch and Ullman (1984) discuss 

three criteria for deciding where to focus attention: the criterion of maximum 

peculiarity, or "oddest man out", in some feature map; the criterion of prox

imity to the previously indexed point; and the criterion of similarity in feature 

values to the previously indexed point. These are valuable but are incomplete 

as an account of how to manage the search which is required to intelligently 

answer the queries in our query language. From experimental experience the 

author has found that the following problems arise. These problems are suf

ficiently universal that any method for controlling attention would likely face 

them. 

1. The problem of deciding which search strategy to use when searching for 

an obiect - We could search randomly; or search with guidance from heuristics, 

such as the proximity and similarity heuristics mentioned by Ullman; or we 

could search by following a specific search pattern, e.g., a raster scan, or a 

pattern that spirals out from the centre. Figure 4.2 illustrates situations where 

different search strategies would be advantageous. Raster scan search suits 

Figure 4.2.a because we want to find all instances of an object in an image of 

evenly spaced shapes. Proximity search suits Figure 4.2. b because right angles 

occur back-to-back in images of crossing lines. And, random search suits Figure 

4.2.c because we only have to find one instance of an object in an image where 

they are plentiful. 

The problem of deciding on a search strategy may be faced repeatedly during 

a search, not just upon initiating the search. Portions of an image may benefit 

from different strategies. Also, we may want to change strategy mid search if 
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a. Raster scan search is suited to the following 
image for query 'Find all squares': 

CJ □ 

□ □ 
□ DD 
DD □ 

b. Proximity ~earch is suited to the following 
image for query 'Find any two right angles': 

c. Random search is suited to the following 
image for query 'Find any one square': 

D C 

□ □ 
D 
□ 

□ 
□ 
□ 
□ 

Figure 4.2: Situations warranting different search strategies 

we find we are making no progress. 

2. The problem of spotlight diameter - The reason why we need to focus 

attention at all is that we cannot afford to apply visual routines uniformly across 

an image. Yet it is clear that we want to apply some basic operations over an 

area, and not just at a point. So the problem becomes, what is the optimum 

size area or spotlight within which we can apply a routine? Also, does this size 

depend on the problem to be solved 7 

9. The problem of which feature map we should be indexing within - For 

example, in the query of Figure 4.3 we would be best off searching the vertical 

bar map rather than the terminator map. Ullman (1984) also mentions this 

problem. 

4. The problem of different search formats when trying to find a single 

object as compared to finding a pair of related objects - This problem arises 

because relations and objects are intrinsically different sorts of thing. Finding 

an instance of a relation requires finding objects first; whereas, in the 2-D 
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For the query 'Find all vertical bars' we are better off 
searching the vertical map over the terminator map. 

Figure 4.3: Example illustrating the value in choosing the right map to search 

a For the query 'Find all triangles outside squares' 
we may want to find triangles and squares first 
before computing the outside relation. 

b. For the query 'Find all right angle triangles inside 
vertically oriented squares' we may want to compute 
the inside relation first. 

□ 1 □ 1 □ 1~ 1 □ 1 0 1 □ 
Figure 4.4: The advantages of different task schedules 

geometry world at least, objects have existence independent of any relations 

they enter into. 

5. The problem of task scheduling - For example, when trying to find a 

relation, should we first look for the objects, verify their properties, and then 

see if they are related? Or, should we instead look for general objects, confirm 

the relation between or among them, and then confirm that these general objects 

indeed have all the desired properties? In Figure 4.4 we see examples of when it 

is advantageous to use each strategy. The scheduling problem also arises when 

trying to find an object with several properties. In what order should we test 

for the properties? The task scheduling problem is addressed by Ullman with 

his suggestion of "skeletal guidelines" (Ullman, 1984). 

6. The problem of what to remove from a map in which we are indexing, 

after we have found or failed to find something at the indexed point - Provided 

that we are not working with a reflexive relation, we can certainly remove the 
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If we are searching for isolated triangles and 
we find pl is not attached to one, then we may 
legitimately remove p2, p3, and p4 from the 
index map we are searching. 

p2□ p3 

pl p4 

Figure 4.5: The removal of unneeded points from an index map 

indexed point; but if we are clever, we can also remove some nearby points that 

are no longer worth indexing to. For example, in Figure 4.5, when we find there 

is no isolated8 triangle attached to point pl, we can remove points p2, p3, and 

p4 as well. 

7. The problem of duplicate examinations - No matter how carefully one 

trims the search maps after each search step, situations can still arise where 

the search sequence brings you back to a previously examined object. This is 

because one cannot legitimately trim all points from each object examined, and 

also because objects are often larger than the spotlight radius, and so one can 

return to them from a different route. In the case of relations, it is likely that, 

having considered R(objl,obj2), one will then encounter R(obj2,objl). If R is 

symmetric, this is a waste of time. 

8. The problems of what to do when a search pass fails - Should we just 

quit; try a new search strategy; use a new resolution scale; rotate the image; 

lengthen lines; or otherwise modify the image? 

Our response to the above eight control problems is as follows. 

81 define an object to be isolated when it ia in no way embedded within any other shape and 
has no other appendages than those defining it. 
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Problem 1: Selecting a Search Strategy 

It is clear that selecting a search strategy must be done early, and then be open 

to reconsideration after some searching has been done. Accordingly, the control 

logic does exactly this. There are two loops. Within the first loop we select a 

strategy, and within the second one we carry out the last strategy selected. 

1. While we have not yet succeeded k the situation is hopeful 
~- While the search is proceeding well k we have not yet succeeded 
3. Select search strategy 
4. Move spotlight as per strategy 
6. Search for instance of item, starting at spotlight location 

(Thia may entail moving the spotlight as well.) 
6. Done. 

In the current implementation we have not addressed the problem of which 

strategy to select. We have allowed for the addition of new strategies, but the 

only one we use is the simple odd-man-out strategy without heuristics. It is 

adequate for the size of image we handle. For large images in which "needle 

in a haystack" problems can be presented, the patterned searches would be 

useful. As for the heuristic approaches, it is not clear exactly when they would 

be useful, although, as we saw in Figure 4.2, there are particular images and 

questions for which they do help. For the entire class of 2-D geometry world 

images we cannot think of any obviously useful heuristic. 

Problem 2: Choice of Spotlight Diameter 

The solution to the problem of choosing a spotlight diameter will likely emerge 

only after we have acquired much experience working with visual routines. Ac

cordingly, our interim solution to the problem is to allow for the freedom to 

experiment by leaving the control of the spotlight diameter up to the individ

ual routines. Sometimes a routine will apply a basic operation over the entire 

image. For example, this is done as a preprocessing stage prior to computing 

the INSIDE relation. Most other times the routines will expand the spotlight 

out to cover the relevant region. For an object this relevant region is its convex 

hull. 
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To facilitate this freedom of control, what the system passes to visual rou

tines is an initial spotlight which is the point or region it is currently attending 

to and which the routine can modify as it sees fit. For visual routines of struc

tures, such as square and bar, this initial spotlight is a single point, usually the 

last point the system indexed to. The routine then expands the spotlight to 

cover the object it hopes to find. For visual routines that compute properties, 

such as closed and convex, this initial spotlight is larger; it covers the object to 

be evaluated for the presence of this property. For visual routines that com

pute relations, such as inside and connected, this spotlight covers the subimage 

( of the input image) which contains only the two objects to be tested for the 

relation. 

Problem 3: Which Base Map Should We Index Within 

For this problem our guiding principles ought to be to use those maps most 

likely to contain evidence of the objects we are seeking, and to use those maps 

least cluttered by the presence of objects which we do not seek. Accordingly, 

we solve problem 3 in the following manner. Upon receiving a query the system 

takes note of all the objects and properties mentioned. For each of these it 

looks up in a table the base maps which indicate the presence of these objects 

and properties. It thus constructs a list of base maps which are pertinent to 

answering the query. Its only concern then is to choose a map which minimizes 

search. Given that it does not know how many distractor objects may be in 

the image, one good piece of advice is to guarant~e some lowest upper bound 

on the required search by choosing a map with lowest overall activity, and this 

is just what the system does. 

This heuristic rule - use the base map which has least activity - works well, 

although it does mislead us whenever the relative activities between maps are 

not directly comparable. For example, a long vertical bar will activate only two 

terminator map points but many vertical map points. If we are looking for a 

vertical bar amidst a number of horizontal ones, our heuristic might have us 
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If we are searching for a horizontal bar, then, 
because there are fewer points active in the 
terminator map than the horizontal map, we will 
search inefficiently. 

Figure 4.6: An example showing how the minimum-activity heuristic can mis
lead 

look at the relatively inactive terminator map instead of the vertical map, as 

it should (see Figure 4.6). Therefore, a better heuristic rule would weigh the 

activities in each map, based on its experience with the domain, before doing 

the comparison. Such a superior rule was not implemented since the simple rule 

works reasonably well. 

From the control perspective, where should we apply this heuristic rule? It 

is best to apply it regularly and not just once at the beginning when selecting 

the strategy. This is because it is possible for situations to change dynamically 

as one is searching. For example, in Figure 4. 7 we see a situation where initially 

the least active map is the comers map. But as we eliminate some of the long 

vertical rectangles, the vertical map becomes the least active map and we would 

save effort if, at that point, we switched to searching the vertical base map. 

Accordingly, we choose the map in which to search at this point: 

1. While we have not yet succeeded~ the situation is hopeful 
2. While the search is proceeding well~ we have not yet succeeded 
3. Select search strategy 
4 . Move spotlight as per strategy 

a. Choose minimally active map 
b .... 

6. Search for instance of item, starting at spotlight location 
(This may entail moving the spotlight as well.) 

6. Done. 
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For the query 'Find all vertical bars inside triangles' 
the minimal map is initially the corners map. If we 
employ the minima.I-activity heuristic, we will begin 
searching this map for triangle vertices. If we 
eliminate a few rectangles, then the vertical map 
will become minimal and we will benefit by 
switching to searching it instead. 

n 6 6 6 n 
6U~ 6 & 6Li& 

Figure 4.7: An example showing how the minimum-activity map can change as 
search progresses 

Problem 4: Finding Relations is Different from Finding 
Objects 

Now that we have selected the map in which to index, we can get on with the 

search. At this point control problem 4 presents itself. If we are looking for a 

relation, we have more things to look for than if we are simply looking for an 

object. This forces us to devise two logic streams. For objects we must confirm 

the existence of a shape with properties. For relations we have to do this twice, 

as well as to confirm the relation between the two objects. 9 This latter task 

presents additional control and memory management problems because, when 

we find one of the sought objects, we must remember this and then shift our 

attention to the new search problem of finding the second object. This second 

search may employ a search strategy different from the one the first search 

employs. For example, the second search may take advantage of the knowledge 

of where the first object is and of the relation which the first object is supposed 

to bear to the second object. For example, it might now employ a proximity 

guided search. Moreover, for certain relations - e.g., inside, touching, and 

connected - the search can be constrained to fall within a certain subimage. 

0 We don't do things neceuarily in that order, as we shall see shortly. 
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We take advantage of this whenever poasible by having these relations trigger 

a visual routine which limits the second search to the relevant subimage. By 

this means an order n 2 search problem can be reduced to an order n problem, 

provided there is a good proportion of subimages. 

So now our control logic appears as follows. 

1. While we have not yet succeeded Ir the situation is hopeful 
2. While the search is proceeding well Ir we have not yet succeeded 
3. Select search strategy 
4. Move spotlight as per strategy 

6. 

a. Choose minimally active map 
b. . . J, 

Search zor instance of item, starting at spotlight location 
(Thia may entail moving the spotlight aa well.) 

Cllae 1: Object 
Case 2: Object - Relation - Object 

a. Find one object 
b. Perform secondary search on the relevant 

6. Done. 
subimage for the second object 

Problem 5: Task Scheduling 

We will treat separately the task scheduling considerations for each of Cases 1 

and 2. 

Case 1, the simpler of the two, is the problem of deciding in what order 

to confirm the properties and structure of an object. For example, if we are 

looking for a vertical bar, do we first check that whatever is under the spotlight 

is vertical, or do we first check that it is a bar? Ideally, we would like to 

perform all such checks simultaneously, with any failure cancelling all remaining 

work. However, assuming that resources constrain us to perform one test at 

a time, then clearly we want to perform those tests earliest which are least 

expensive and which have the greatest chance of disqualifying the region under 

the spotlight, thereby saving us from having to do the remaining tests. In the 

hwnan system, for instance, it appears colour is computed first, preferentially 

over form. This picture is also complicated by the fact that some properties are 

dependent on others having been completed. If we want to find a red triangle, 

and the spotlight of attention is only over one vertex, then we have to recover 

the entire triangle shape before we test for redness. Otherwise, if the triangle 
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had two red sides and one green, and the red vertex was under the spotlight, 

we might accept the whole triangle as red on the evidence of the one vertex. 

In general, in the 2-D geometry world at least, structures take precedence over 

properties. That is, before we determine whether an object is closed, convex, 

vertical, symmetric, etc., we must have computed its isolated form. Later we 

can verify that this form meets the definition of a tria:Q.gle, square, or such. 

The task scheduling problem for Case 1 is a difficult one. The relative cost of 

performing a property or structure test, and the chance of the test failing, will 

doubtlessly vary according to the input. Attempting to solve these problems 

could amount to a thesis in itself. Therefore, in the present implementation it 

was decided to make do with a crude solution to this problem. What we do 

is to avoid all comparisons of relative cost or chance of disqualification, and 

just to impose an order on the tasks. It was decided to compute the structure 

first because, as mentioned above, for many properties a minimal structure is a 

prerequisite. We then compute the properties in the order in which they occur in 

the query. We make no attempt to order the computations by cost or by chance 

of failing. However, we did design the program to allow the addition of such 

logic, should it ever become available. These choices have no big consequences 

for the current implementation since there are so few properties available that 

one is hard pressed to find two that one would naturally apply to any one object. 

The addition of colour, intensity, motion, or depth properties would change this 

situation.10 

The task scheduling problem for Case 2 is an expansion on the Case 1 

problem. The variety of task permutations is larger in Case 2 because, in 

computing the properties of two objects, we could conceivably alternate between 

them, and also because at various points we could try to compute the relation. 

Whichever way ·we manage this, we must be careful to keep apart the results 

of each ongoing computation. Case 2 is also complexified by the addition of a 

10Our solution to Problem 7, the problem of avoiding duplicate examinations, also makea it 
advantageous to compute the form before any other properties. Without the form one cannot 
really compare the object in question with the objects one has previously encountered. As 
aearch progreHes, these appeals to memory can save one much needless computation. 
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second search task. That is, whenever one of the objects is found, the search 

problem changes its nature. The found object becomes a pivotal point around 

which the search for the second object takes place. 

Our solution to the Case 2 problem is to make four types of schedule. As 

with the Case 1 problem, we decided to ignore the scheduling of property checks. 

However, experience with early versions of the system revealed that great sav

ings could be had by properly scheduling the relation computation. Let us 

assume that object #1 is the first object found and that it becomes the pivotal 

object. Let 0 1 stand for the complete computation of object #l's presence; 

let 0 2 stand for the complete computation of object #2's presence; and let R 

stand for the completion of the computation of the relation between object #1 

and #2. Then, the four possible schedules are 0 1-02-R, 0 1-R-02 , 0 2-R-01, 

and R-01-02 • In the last three schedules the relation is given an abstract form 

to relate before that form has been entirely confirmed to be the desired object. 

(For example, we could thereby determine that some object is inside some other 

before actually inspecting closely to see which objects they are.) The choice of 

schedule is determined by the relative cost of computing the relation as com

pared to computing the objects. Experience with a variety of test images was 

the basis for judging the relative cost. 

The way we handle the problem of the secondary search about the pivotal 

object, namely, the first object found, is rather elegant. After finding one of the 

objects we define a second search task, and then we recursively call the entire 

FIND algorithm on that task. This task is no longer a task of finding a relation 

between two objects. Instead it is the task of finding the object not yet found, 

where this object also has the property of being related to the pivotal object. 

We manage this by creating a property out of the relation by instantiating one 

of its variables with the found object. We then simply add this new property 

to the list of properties to be confirmed. This approach has the advantage of 

simplicity. There is no need to define new methods of managing a second search 

within a search, no need to keep separate working memories, etc. Pascal, with 

its ability to handle recursive calls, does this automatically for us. All that 
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is needed is manually to Push a few images onto the image stack and then 

to Pop them back upon returning. Incidentally, we also copy the termination 

conditions from the main task to this subtask. Thereby, if the required number 

of objects is found, the subtask will terminate as it should. 

Now our control logic appears as follows. 

1. While we have not yet succeeded t the situation is hopeful 
2. While the search ia proceeding well t we have not yet succeeded 
3. Select eearch strategy 
4. Move spotlight as per strategy 

a. Choose minimally active map 

6. 

1. 
2. 

1. 

2 . 

3. 

4. 
6 . 

6. 
7 . . 
8. 
9 . 

10. 
11. 

12. 
13. 

14. 
16. 

16 . 
17. 

18. 
10. 
20. 

21. 
22. 

b .... 
Search for instance of item, starting at spotlight location 
(This may entail moving the spotlight as well.) 

Case 1: Object 
- Confirm structure present at spotlight 
- Confirm propertiea for this structure 

Case 2: Relation(Object1,0bject2) 
- If Object1 is costly to compute and an 

isolated object (i.e., triangle and square) 
then 

Find the isolated region under the 
spotlight; call it X1. 

If Object2 is costly to compute and an 
isolated object 

then (R-01-02 ca■e) 
Compute relevant aubimage to search 
Perfo~m a new search task to find ALL 

iaolated objects, X~a. having the property 
of being R(X1,obj). 

If Xl ia indeed Objectl then 
While termination conditions are not satisfied 

If X2 ia indeed an ObJect2. 
Accept each R(X1,X2) as a solution 

else (02-R-Ol case) 
Compute relevant subimage to search 
Perform a new search task to find as many 

Object2's as are necessary, each also 
having the property of being .R(X1,object2). 

If X1 ia indeed Object1 then 
Accept each R(X1,0bject2) as a solution 

else 
If Object1 is under the spotlight then 

lt Oblect2 is costly to compute and an 
iao ated object 

then (01-R-02 case) 
Compute relevant subimage to search 
Perform a new search task to find ALL 

isolated objects, X2s, having the property 
of being R(X1,obj). 

While termination conditions are not satisfied 
If X2 ia indeed an Object2. 

Accept each R(Object1,X2) as a solution 
else (01-02-R case) 

Compute relevant subimage to search 
Perform a new search task to find as many 

Object2's as are necessary, each also 
having the property of being 
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23. 
24 . 

6. Done. 

Problem 6: 

R(Object1,0bject2). Accept each of these 
as a solution 

- If Objectl was not found under spotlight, then 
Repeat the above, except now look for Object2 

first and Object1 second. (This step is not 
necessary, but it is added to preserve some sym
metry between Objects 1 and 2. Without this step, 
if we don't find Object1 under the spotlight, 
then we move the spotlight elsewhere. With this 
step, we would instead switch to looking for 
Object2 under the spotlight. Ideally, both 
objects would have equal chance from the start, 
but this is not possible in this serial model.) 

What to Remove from the Index Maps as 
Search Progresses 

Inattention to this problem leads to wasted effort because points that were 

previously evaluated as parts of an object are repeatedly inspected. But an 

overzealous solution to the problem can have the unwanted effect of trimming 

potential solutions. The key to solving this problem is knowing what one is 

searching for and what its properties allow one to get away with while trimming. 

First, let us consider Case 1 searches only. If one is looking for an isolated object, 

then, whether or not one finds it, one can remove from consideration all those 

points connected to the object found within the spotlight. If the object one 

seeks is not an isolated object, then, when the object is found, all those points 

that are part of the object and are isolated (ie., that do not abut onto some 

other form) can be removed. And, if the object is not found attached to any 

point within the spotlight, then all these points within the spotlight can be 

removed.11 

The only additional consideration needed for Case 2 searches is whether or 

not the relation can be reflexive. If it is not, then as one performs the second 

search, one had better not find the pivot object. We solve this problem simply 

enough: whenever we are dealing with a non-reflexive relation, we remove the 

11 Incidentally, all points that are removed are removed from copies of the base maps and 
not from the original base maps. This is neceSBary because, if we are searching for a relation, 
finding one object must not interfere with the search for the other object. We must be able to 
call up a fresh base map when searching for the other object. 
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isolated portions of the pivot object from the subimage which is given to the 

second search task. 

Problem 7: Duplicate Examinations 

The way to avoid making duplicate examinations of the same object is simply 

to remember the essential aspects of one's previous activity. Our solution is 

to remember every successful object found and every failed object found. In 

the case of relations, if the relation is symmetric, then we also remember every 

pair of related objects and every pair of objects not so related.12 If ever we 

find the same object or pair of objects, we make sure to stop reconsidering it 

or them immediately. Successes, incidentally, are treated exactly like failures, 

except that a single flag is set to distinguish them. For Case 1 searches, we 

find that remembering failures is as important as remembering successes. For 

Case 2 searches, this holds only if R is symmetric. If R is symmetric (such as 

touching, outside, connected, or paralle~, then knowing whether R(A,B) is true 

will tell us whether R(B,A) is true, and hence saves us from having to compute 

this directly. If R is not symmetric, then we have to go ahead and test R(B,A) 

independently. 

This strategy for handling symmetric relations can at times strain the re

sources of memory since, for n objects in the image, up to n( n -1) /2 pairs have 

to be remembered. This has not been a problem for the small images we have 

worked with. On larger problems we could give up on this strategy and only 

remember the pivot objects. 

Now our control logic can be updated to appear as follows: 

1. While we have not yet succeeded t the situation is hopeful 
2. While the search is proceeding well k we have not yet succeeded 
3. Select search strategy 
4. Move spotlight as per strategy 

12Whether the relation ia symmetric or not, we m118t of course remember the successful 
relations since we have to report these back to the user. However, we do not need to remember 
them in order to avoid duplicate examinations. This is done automatically by remembering the 
pivot objects and, for each pivot object, by locally remembering the second objects which we 
attempted to relate to i~. 
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a. Choose minimally active map 

6. Se~rch'tor instance of item, starting at spotiight location 
(Thia may entail moving the spotlight as well . ) 

1. 
2 . 

3. 

1. 
2. 

3 . 
6. Done . 

Case 1: Object 
Con1irm structure present at spotlight 
If we haven't examined it before then 

Contirm the 1;>ropertiea for this structure 
Remember the object examined 

Case 2: Object - Relation - Object 
Find a pivot object 
If we haven't examined the pivot before then 

Perform a secondary search on the relevant 
aubimage tor the second object. 
During this second search, if R is symmetric, 
then remember all pairs we attempt to 
relate and do not bother attempting to relate 
pairs that are already on this list . 

Remember the pivot object 

Problem 8: What to Do When a Search Pass Fails 

The final control problem which faces us is what to do in the event we fail to 

find what we seek. The failure could be indicated to the system by the user's 

dissatisfaction with a response or by some internal trigger of non-confidence. 

If the system has confidence in its detection ability, it could simply quit while 

insisting it has found everything findable. Even people, however, fail to detect 

things in images, and we would expect our system to perform less well than a 

person. Therefore, some provision should be made for returning to the assigned 

task and seeing if a new approach might not yield better results. 

The failure to find something can be the result of several things. The image 

could be noisy; it could be a trick image; or the item sought could occur at a 

lower scale of resolution. A sought object could appear in an unnatural position 

or orientation. The system's definition of an object, property, or relation might 

disagree with the user's. The system might have used a heuristic search strategy 

that did not guarantee a thorough search. Then again, maybe the system is 

just defective: it is blind to certain objects or is incapable of reliably detecting 

certain properties and relations. 

For whatever reason a search can fail, the ideal system response would be 

to diagnose the cause of failure, remove the cause, and then to try again. If the 
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image is noisy, we could try smoothing the image or lengthening lines to fill any 

gaps. As a matter of course, we should probably examine the image at a variety 

of scales and orientations. To handle trick problems we should try not to be 

misled by context. This could mean artificially removing or distorting parts of 

the image in the hope of chancing upon the correct "view". If we previously 

used a heuristic search scheme, then we could return and try a patterned search, 

one that is guaranteed to cover the entire image, such as a raster scan search. 

If we keep failing at a particular type of query, then we could simply admit our 

failing and ask for guidance, clues, or a simpler request. 

Unfortunately, none of these methods were implemented. These problems 

are rather beyond our immediate aims of devising efficient means of computing 

properties and relations. This control problem is nonetheless a very important 

one and we should plan for it. The programs were designed to accommodate 

the future addition of such logic. For now, whenever the initial search stops, 

the program simply returns whatever has been found. 
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Chapter 5 

System Performance and 
Evaluation 

The system1 has undergone numerous tests in order to evaluate the ability of the 

visual routine language to compute a wide variety of properties and relations, 

and in order to evaluate the control logic described in Section 4.D. In this 

chapter the results of these tests are presented and these results are evaluated. 

5.1 Experiments and Results 

Privately, the system has been tested on numerous small images. To save space 

all the test figures have been merged into four images: 

Tn,Ima .. 1 Tut Image 2 

1The program is written in Borland lntemational's Turbo Pascal, version 3.0. The computer 
on which the system currently runs is a standard IBM pc. 
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Tutlmap S Te■' lmap 4 

The first image is specialized to test the performance of the base map cal

culations. The remaining three images contain a variety of figures. Each of 

these three is subjected to 28 questions. Twenty-two of those questions are 

each designed to evaluate a particular visual routine. The remaining six are 

designed to exercise the control logic and confirm that it can handle a mixture 

of structures, properties, and relations. 

All the queries are of the "FIND ALL" variety since these are more in

structive than the "FIND ANY" variety. The system responds to each query 

by individually displaying each instance found. To save space here all the re

sponses are overlayed into one image. Unfortunately this makes it difficult to 

separate the responses. A count of the number of instances that were found 

by the system is provided, and with a little work the reader can compute these 

himself. If the system makes any errors, these are explained. 
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5.1.1 TEST 1 : The Performance of the Base Map Cal
culations 

The following base maps were computed: 

Tl : vertical base map Tl ; 22.11 ' baee map Tl : 46' base map 

Tt : 67.61 bu• map Tl : horiaontal baae map Tl ; 112.&' baae map 

Tl : 167.6' baae map Tl : tenninatora baae map 

76 



Tl: concavity vertices ba.ae map 

Discussion: 

The purpose of the base map algorithms2 is to give us sufficiently accurate 

base maps with which we can carry on the business of testing visual routines. 

To this end we could have appealed to some magic mechanism and created the 

base maps manually. However, it was felt that generating base maps ought to 

be a task within the scope of visual routines, and that it would be a good test 

of their ability. Furthermore, there may actually be times when one wants to 

create second order maps from the original base maps; for example, as when 

looking for edges in the terminator maps (see Figure 3.2 above). In those cases 

it would be nice to have the operations managed by the general purpose visual 

routines rather than by some special purpose mechanism. 

As we can see from our test, the base map algorithms work well enough for 

our purpose. The oriented edge computations do get confused somewhat in the 

presence of a block of active pixels, as we can see in the centre of the star. This 

can be excused, given that there is no real edge present there. 

Failures also occur for edges whose orientation does not fall into exactly 

one of the eight categories, as we can see in the lines along the bottom of the 

image. In such cases part of the line is given one orientation and the other part, 

a nearby orientation. Part of this problem is due to the low resolution image 

and the use of 3x3 masks; another part is due to the lack of a good iterative 

competitive scheme which would have neighbouring active pixels "settle down" 

within a common orientation map. 

2 You can find the actual baee map algorithllUI in Appendix A. 

77 



Of course, the problem with the oriented edges propagates to those base 

maps which depend on these edges for their own computation. All the non

orientation base maps - corners, cr088ings, terminators, a.nd concavity vertices 

- a.re affected in this wa.y. 

But, if we just remember these mild troubles, we should feel confident in 

relying on our base maps. 

Note: the solid block on the right edge of the image is not a. legitimate object 

in our 2-D geometric world. We were curious to see how the algorithms would 

behave for such an object. Presumably, passing the image through an edge 

detector and thereby reducing solid blocks to edge figures would allow us to 

handle such objects. In section 5.1.3 below, another solid object was included 

to test the CONVEX and CLOSED visual routines. The routines handle it 

properly; it is convex but not simple-closed. 
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5.1.2 TEST SET 2: The Performance of the Structure 
Routines 

a. Find all terminators 

Instances found: T2-37, T3-42, T4-56. All are correct. 

T2: Find all terminatol'tl T!: Find all terminators T♦: Find all tenni.nators 

b. Find all corners 

Instances found: T2-25, T3-28, T4-27. All are correct. 

'l'S1 Find all comers T-4: Find 11-ll comers 
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c. Find all crossings 

Instances found: T2-3, T3-5, T4-5. 

The instances for T2 and T3 are correct. The base map calculations had 
trouble with the "N" figure of T4. 

d. Find all concavity vertices 

Instances found: T2-36, T3-48, T4-37. All are correct. 

T2: Find all conc.avlty-vertice11 T~: F ind nil conco.vity-verticea 

80 



e. Find all inner-regions 

Instances found: T2-7, T3-9, T4-5. All are correct. 

T2: Find all lnner-region■ T3: Find all innel"-regione 

f. Find all concavities 

Instances found: T2-12, T3-10, T4-14. All are correct. 

T2: Find all concavities T3: Find all concavities 
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g. Find all dots 

Instances found: T2-3, T3-0, T4-4. All are correct. 

T2: Find all dota 

h. Find all bars 

Instances found: T2-31, T3-40, T4-44. 

The errors made in the base map calculations influence the results here. In 
T3 the solid region generates five bars: the four outer edges and one large solid 
diagonal. Also in T3 the little box in the centre generates one vertical box on 
the left side. The remainder is recognized as a single horizontal bar. In T4 we 
lose the diagonal part of the bottom-centre figure; the 'N' figure in the square 
generates one horizontal bar; and the triangle gnerates five bars, two of which 
are the small vertical bars near the two lower vertices. 

Tl: Find oU b11.n 
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i. Find all isolated-triangles 

Instances found: T2-3, T3-0, T4-1. All are correct. 

T2: Find all tri11n1IH T3: Find all triangl 1 

j. Find all isolated-vertical-squares 

Instances found: T2-3, T3-1, T4-3. 

The square in T3 is not isolated, but was recognized nonetheless. It would 
be trivial to alter the visual routine which computes squares so that it does not 
recognize such cases, but there would be little point in that. 

T2: Find all ■quara TS: Find all 1quara T4; Find all square■ 
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k. Find all isolated-arbitrary-objects (IAOs) 

Instances found: T2-13, T3-8, T4-18. All are correct. 

T2: Find all 1A01 ·T.c: Find o.ll IAO• 

Discussion on the structure routines: 

The preceding batch of tests thoroughly exercises each of the visual routines 

used to confirm the presence of an object or a feature. It is important that 

we be able to trust our basic object finding logic before moving on to test the 

property and relation finding logic. Allowing for errors in the base maps, all 

the queries were correctly answered. 
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5.1.3 TEST SET 3: The Performance of the Property 
Routines 

a. Find all vertical bars 

Instances Found: T2-8, T3-16, T 4-18. 

In T4 the two vertical tips at the base of the triangle generate small vertical 

bars. 

b. Find all horizontal bars 

Instances Found: T2-10, T3-17, T4-21. 

The little box in T3 generates a single horizontal bar. The same happens 
for the 'N' figure in T4. 

'1'2 : Find All horisonti!il ban TSt Find all horu:o ~J ban T•: Find aU horisontal bnra 
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c. Find all simple-closed IAOs 

Instances Found: T2-7, T3-4, T4-5. All are correct. 

T•: Find ~11 simpl&-doaed JAOe 

d. Find all convex IA Os 

Instances Found: T2-9, T3-5, T4-10. 

In both T2 and T 4, the triangles which are inside squares are both inter
preted to possess concavities on their outer edge. In T2 this is on the bottom 
vertex. In T4 it is on the two bottom vertices. The problem lies with the narrow 
locality of the make-convex basic operation. 

T4 : tlnd all convex lAOe 
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Discussion on the property routines: 

Allowing for the errors in the base maps, the property routines all work. 

The time required to find the vertical bars was found to be about half 

that to find the horizontal bars. This anomaly is due to the task scheduling 

convention employed where structures are always found before properties. In 

order to confirm the presence of a horizontal bar attached to the spotlight, we 

first find any bar there, and then apply the horizontal test. To find the bar 

means iterating through all the orientation maps, the vertical map being first, 

the horizontal one being fifth. A superior method would only look at bars in 

the horizontal map from the start.3 

3This situation is alleviated somewhat by our indexing only within the horizontal map. The 
problem is that some of these points are also attached to non-horizontal bars. For instance, 
take the corners of squ8:l'e11. 
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6.1.4 TEST SET 4: The Performance of the Relation 
Routines 

a. Find all IAOs inside IAOs 

Instances Found: T2-5, T3-0, T4-13. All are correct. 

Note that 'inside' is defined as "being within the scope of". According to 

this definition, the containing object need not be closed and the contained object 

must be entirely within the convex hull of the containing object. 

T3: find II xx : inaid• T4: find all xx : imide 

b. Find all triangles outside squares 

Instances Found: T2-8, T3-0, T4-2. All are correct. 

Tl:flnd oil trl 1qr : outeide Tll:ftt1d P-11 tri eqr:c;mtlide Tt:Find all tri sqr:outside 
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c. Find all IAOs centred-in IAOs 

Instances Found: T2-0, T3-0, T4-4. All are correct. 

T!:Find aD x x :centre T,:Find 11-II x x :centre 

d. Find all bars touching bars 

Instances Found: T2-28, T3-48, T4-34. 

Allowing for the base maps, all the instances are correct. 

T2:Find all bar bar :touch TS:Find all bar bar :touch T4:Find all bar bar :touch 
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e. Find all cross-points connected-to cross-points 

Instances Found: T2-0, T3-6, T4-3. All are correct. 

T2:Flnd aU croa1 croa1:conned TS:l'ind au croa1 croe1:connect T,:Find nll croe, croee:connect 

f. Find all bars part-of triangles 

Instances Found: T2-9, T3-0, T4-5. 

In T4, the two tips at the base of the triangle are recognized as vertical bars. 

T!:Flnd all bar tri :panof T4:Find all bar trl ~partof 
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g. Find all bars parallel-to bars 

When applied to the entire images of T2, T3, and T4, this query caused a 
stack-overflow system crash. There are simply too many sets of parallel bars in 
each image. The following tests were done with only a portion of each image. 

Instances Found: T2-10, T3-11, T4-9. All are correct. 

T2B: Find all bar bar : parll T8B:Find all bar bar ; parU T4B;Flnd all bar bll.r ; parll 

Discussion on the relation routines: 

Allowing for what the structure and property routines recognize, the relation 

routines all work. 
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5.1.5 TEST SET 5: Performance Aspects of the Control 
Logic 

a. Find all vertical bars connected-to vertical bars 

Instances Found: T2-3, T3-13, T4-9. 

In T4, the two vertical tips of at the base of the triangle were recognized as 

vertical bars. 

'1"2:f.a. bBr/vert. bar/vert:eonneet TS:f.a. bar/vert bar/vert:eonneet T-t:h •. bar vert bar/vert:conned 

b. Find all convex IAOs inside closed IAOs 

Instances Found: T2-4, T3-0, T 4-4. 

The triangles in T2 and T 4 were not considered convex because of the per
ceived concavities near some of their vertices. 

T2:f.a. x/cnvx x/et.d:iruiide TS:f.a. x cnvx x/ cltd:lnaide T4:f.a. x/cnvx x/eloaed:inside 
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c. Find all horizontal bars inside triangles 

Instances Found: T2-2, T3-0, T4-2. All are correct. 

T2:f.a. ba.r/horu hi:inilide TS:f.a. bu/bona tri: ineido 

d. Find all corners part-of convex IAOs 

Instances Found: T2-22, T3-20, T4-16. 

Apart from the previously mentioned problem with the non-convex triangles, 
and the peculiarities of the the base map computations of the corners, the 
instances found are correct. 

T2:f.a. comer x/c:onvax:pa.rtof TS:t .... comer x/conve1e p..rtof T4:f.a. comer x/convex:partof 
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e. Find all vertical crosses outside squares 

Instances Found: T2-3, T3-4, T4-12. All are correct. 

T2:f.a. croia/vert ,qr:oubide T3:f. a. croa■/vert. aqr :outaide T4:f.a. croBB/ver1; 4qr:outeide 

f. Find all convex inner-regions inside closed IAOs 

Instances Found: T2-7, T3-3, T4-7. 

In T 4 the interior of the triangle is not considered convex. Again, this is 
due to the narrow locality of the mk-convex operation. 

: .• nrsn convex X C OH :uunde 

Discussion on the performance of the control logic: 

The control logic successfully manages a mixture of structures, properties, 

and relations. 
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5.2 General Evaluation 

We found that the visual routines were strained somewhat at the task of com

puting base maps. Although visual routines were never intended to compute 

base maps, the maps they produced were adequate for our purposes. 

The routines for confirming the presence of geometric objects work well 

enough. The bar routine's failings were caused by the failings in the base map 

computations. 

The property and relation routines appear to work correctly. They were 

only limited by the structures they were given. The base map computation for 

convexity vertices could be improved by expanding the region of locality of the 

make-convez operation. This would solve the problem of the two triangles ( one 

in T2 and the other in T4) not _being recognized as convex. 

The control logic successfully manages the search. However, it is inefficient 

in certain respects. For example, when searching for vertical bars, we should 

not use the vertical map solely to guide the search for bars in the image; we 

should search for the vertical bars in the vertical map as though it were an 

image. Also, when watching the system search, it is apparent that much time 

is spent reevaluating the properties and structures of regions we have already 

examined. A major revision to the control logic would have it create a high-level 

semantic map of what objects are in the image. For example, it could label all 

the points in a square as "square points". Another possibility would have it 

create a map of object locations. The search could then proceed in this much 

simpler map rather than in the image. 
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Chapter 6 

Conclusion 

We set out to see what methods within the visual routine paradigm are suited 

to the task of efficiently finding the geometric properties and relationships of 

figures in an image. To this end we reviewed the work that had been done on 

visual routines, preattentive vision, and the spotlight of attention, the latter 

two being key components of visual routine thinking. We then embarked upon 

our own study of the problem in hopes of constraining the form these meth

ods should take. We chose a visual domain rich in geometric properties and 

relations and free of other distracting problems. This was the world of simple 

2-D geometric shapes, constructed from lines of uniform width and intensity. 

We then approached the problem of designing efficient visual routines from the 

perspective of language design. We asked ourselves what would make such a 

visual routine language descriptively and procedurally adequate. 

We saw that a visual routine language was descriptively complete for a 

visual domain if it could compute every property and relation imaginable in that 

domain. However, we discovered that establishing such completeness would be 

difficult. We then saw reasons why descriptive adequacy might not be all that 

important a property of a visual routine language, especially in comparison to 

procedural adequacy. 

Turning then to procedural adequacy, we divided this issue into concerns 

over resources and concerns over convenience. We decided that our visual rou-
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tine language would be resource-efficient if it had some guarantee of containing 

the best algorithms possible for computing visual properties and relations in 

the 2-D geometric shape world. We decided that establishing such a guarantee 

would require a thorough study of the task of computing visual properties and 

relations. So we embarked on this difficult course and ended up going part way. 

We first looked at image representation and decided that a square grid tessella

tion on which only one-pixel-width lines appear was suitable. We then looked 

at what basic features could be efficiently computed directly from the image. 

We found that simple local properties could make ready use of parallelism and 

thus could be efficiently computed. Such properties include: the orientation of 

any single line at a point; whether or not a line is present at the point; whether 

the point is an end point of some line; whether two, three, or more lines cross at 

a point; the type of pattern that can occur when lines cross; and the curvature 

at a point. We found that to compute some of the orientation-independent local 

properties, like curvature or crossing pattern, it was space-efficient to introduce 

further stages of processing rather than to match for one of possibly thousands 

of individually oriented patterns. We then moved on to consider non-local prop

erties that could be computed directly from the image. We saw how, by using 

a Hough· transform type of technique, we could again introduce several stages 

of processing and thereby efficiently compute the presence of some size and 

position invariant properties. 

We continued on to look at second-order properties and relations which could 

be computed once the initial properties had been computed and positioned in 

a topographic map. Beyond the obvious reapplication of the previous local 

computations to these new maps, we determined that the efficient computation 

of complex geometric properties and relations would have to emerge out of a 

combination of parallel and serial methods. But just which parallel and serial 

methods was not obvious. Therefore, it was argued, we should put a temporary 

end to a priori analysis and go gather some experience - go try assorted methods 

and see which ones work. 

We then turned from discussing resource issues to convenience issues. A 
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number of capabilities were outlined which we would hope to find in a visual 

routine language. The language which was subsequently developed had all these 

features. 

An argument was made for why we would be wise to embed the visual routine 

system in a system which interrogated images about what they contained rather 

than tried to recognize what they contained. In an interrogation system, since 

we were given the objects, properties, and relations which we sought, we had 

only to locate their defining characteristics in the image. This problem was 

much more constrained than the problem of examining all the image features 

and indexing them to all the candidate properties, objects, and relations in 

order to see which ones were present in the image. 

We then began a study of the visual routine system which was developed as 

part of this thesis. After reviewing the overall design and the key data struc

tures, we looked at the basic operations. We saw that several of these operations 

were used frequently in the writing of the visual routines. In particular these 

were: moving maps, spreading activation, intersecting maps, combining maps, 

clearing maps, removing portions of a map, and exiting a routine when a map 

is empty or non-empty. An argument was made that this finding signified the 

genuine importance of these particular basic operations. We then compared 

our set of basic operations with that given in Ullman (1984) and concluded 

that Ullman's was incomplete in that it failed to include the most elementary 

operations. 

Next we turned to the visual routines which were written with these opera

tions. We gave all twenty-two property, relation, and structure visual routines 

in detail. 

Next we saw what would make an ideal query language, and we were shown 

the actual, much simpler, query language which had been implemented. 

We were then introduced to eight key control issues which were encountered 

during development. These issues were: 

1. deciding on a search strategy, both initially and as search progresses 
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2. setting the diameter of the attention spotlight 

3. choosing the feature map to index within 

4. treating object searches differently from relation searches 

5. scheduling tasks when several tasks are required to confirm an instance 

of an object or of a relation over objects. 

6. deciding what parts of an index map can be removed after we have 

searched for an instance at the index point 

7. managing memory to avoid duplicate examinations of the same area of 

the image 

8. deciding what to do when a particular search pass fails 

Each of these issues was explained in detail. It was conjectured that they 

represent universal issues which would arise for anyone trying to apply visual 

routines to the problem of searching and matching objects and relations in an 

image. 

Finally, we were shown the system in action. We saw that the visual routines 

worked well, and that the search control logic worked well too. We finished by 

evaluating the system's overall performance. We found that the visual routines 

were strained somewhat at the task of computing base maps. At computing 

object descriptions, properties, and relations they worked well. At computing 

object descriptions, they probably managed as well as they did only because 

geometric objects were definable in terms of geometric properties and relations. 

We also saw aspects of the control logic which could be improved. In particu

lar, it would be advantageous to be able to search base maps or intermediate 

maps as though they were images. Also, it would be effort saving to create 

representations locating the objects in the image and to conduct our search in 

these representations and not in the image. 

In summary: We set out to find efficient methods to compute visual proper

ties and relations w~ile working in the visual routine paradigm. After choosing 
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a suitable experimental domain we deduced some constraints on the input to 

our visual routine language. When deduction seemed no longer appropriate, 

we turned to experimentation and developed a number of actual routines and 

a strategy for controlling their application; these together made an effective 

working system. We gave a complete account of the heart of this system: the 

basic operations, the visual routines, and their controlling logic. By developing 

the system we discovered a number of control issues which we believed were 

intrinsic to the visual search problem. The discovery of the basic operations, 

the visual routines, and the control issues constituted the principle contribution 

of this thesis to vision science. 

Directions for future development 

The work in this thesis presents opportunities for a number of natural ex

tensions. One of top priority is the working-out of a consistent and powerful 

visual query language. With such a language we could develop more complete 

control strategies for managing groups of objects, groups of properties, patterns 

within groups, properties of properties, and so on. The addition of negation 

to our language would create interesting control problems. But even with the 

simple language we employed, there is much progress that can be made. We 

could implement methods for handling different scales of objects and also ro

tated objects (e.g., square versus diamond). The visual routines could be made 

more robust. They could be made to operate on noisier images, images with 

objects of variable intensity, partial objects, and occluding objects. They could 

be made to return degrees of match rather than the binary yes/no that they 

currently return. We could add new search strategies, such as raster search. We 

could add search heuristics like the proximity and similarity heuristics Koch and 

Ullman (1984) mention. In the domain of search control, we could add means 

to remember interpretations of features and thus avoid their reinterpretation. 

There are also numerous visual routines to be written for handling curvature, 

density, number, size, symmetry, relative position, and so on. The beauty of 

the visual routine paradigm is that it gives structure to all these pursuits. 
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Appendix A 

Source Programs 

The structure, property, and relation visual routines were given in Chapter 

4. Here we present miscellaneous other visual routines, Pascal subroutines 

for selected basic operations, and the Pascal program that computes the 3x3 

convolution masks. 

A.1 The Routines that Build the Base Maps 

BASEMAPS.VR 
----------{------------------ -------
{Directory of Register Maps 
{--------------------------{ 0 • input image 
{ 1-8 • orientation maps 1• vertical, 2=22.6 deg NE, ... 
{ 9 = composite of all terminators in each orientation map 
{ 10 ~ crosaiJ18s intersections of two or more oriented edges 
{ which aren't corners 
{ 11 =corners: intersections of two or more oriented edges 
{ which are also terminators 
{ 12 = concavity vertices 
{ 13-17 = Reserved for future base maps 
{ 18,19 • Internal System Utility 
{ 20-29 • Work registers free for use by the visual routine programmer 
{ 30-40 • FIND/MATCH local work registers 
{ 41-49 = Unused 
{ 60-62 = Index maps: markable copies of base registers to be searched 
{--------------------------
call orient {place orientation maps in regs 1-8 
call endpts {place composite (all orients) terminator map in reg 9 
call intersec {place composite (all orients) crossing rgns in reg 10; 

{place composite (all orients) corners map in reg 11 
call invertex {place all inner pts of concave vertices in reg 12 

{invertex makes use of crossing regions 
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ORIENT.VR 

{*** BUILD ORIENTATION MAPS in regs 1-8 
doz 1 8 

begin 

conv3 line Oz (z-1) 
cbop O ( z z 
kop -20 + z z 
deunit 2 z z 
kop 20 + z z 

end 

{- find oriented narrow bars 
{convolve with oriented narrow-bar 
{remove any points not in image} 
{clip weak points ( < 20) part 1 
{singletons are not bars 
{clip weak points(< 20) : part 2 

detector 

mov 1 11 8 
call compete 
doz 1 8 

{save 1-8 in 11-18 for future use 
{have each compete with his two neighbors for dominance 

begin 
deunit 2 z z 
{-- 11conv3 line" above 
{-- endpoints ot lines. 
conv3 grow.a z 20 (z-1) 
cbop O ( 20 20 
conv3 grow.b z 21 (z-1) 
cbop O [ 21 21 
bop z + 20 z 
bop z + 21 z 

end 

{remove units introduced by competition 
followed by clipping typically removes the 

Here we grow them back again. 
{ grow the "right" side of the map 

{ grow the "left" side of the map 

{ add these points back in 

call compete { repeat competion 
{-- now, if any are left out we had better replace them: a hack 
set_all 20 0 
doz 1 8 

bop 20 + :z 20 
kop 1 < 0 21 
bop 21 - 20 20 
doz l 8 

begin 
mov .z 22 
sp_act_lin 2 22 (z+10) 
cbop 22 ] 20 22 
bop z + 22 z 
cbop OJ z z 

end 

ENDPTS.VR 
set_all g O 
doz 1 8 

begin 

{take union of all orientations 
{aet all image points to 1 
{20 now has the points to be re-included 

{grow out in original precompetition edge 
{recover points to be re-included 
{add them back in 
{reset to image intensity 

{clear terminator map} 

conv3 end.pt z (z+20) (z-1) 
cbop z ] (z+20) (z+20) 

{convolve with end.pt finder 
{constrain to oriented bar 
{add to terminator map bop 9 + (z+20) 0 

end 

INTERSEC.VR 

set_all 10 0 
set_all 11 0 
do x 1 8 

if_nz x call interae2 x 

mov 11 20 
mov 11 21 
{------------- corners 

{init crossings map 
{init corners map 

{put in 10 all interaectn orient regions 
{and in 11 all intersectng orient points 
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cbop 9 [ 11 11 
cbop 11 [ 0 11 
mov 11 26 
sp_act_l_a 2 26 

{corners are crossing terminators 
{reset values to initial image values 

{-------------
20 
croBBinga 
10 

{find intersec regns attached to corners 

ap_act_l_a 2 20 
bop 10 - 20 10 
bop 10 + 21 10 
cbop 10 [ 0 22 
bop 22 - 26 10 

{recover normal cornrs t crossng regions 
{erase these, leavng captured trouble regns 
{add back normal crossing points 
{reset intersects to initial image values 
{crossings are intersecting non-corners 

INTERSEC2.VR 
{%1 is outside calling loop parm (1-8) 
mov %1 20 
spread 2 20 21 
do y (%1+1) 8 

begin 
{-- find intersect regions 
spread 2 y 22 
bop y + 20 26 {take union of both orientations 
cbop 21] 22 23 {intersect the two smoothed orientations 
cbop 23] 26 26 {intersect with the original two orientations 
bop 10 + 26 10 {add anything in common to crossings map 
{-- now find intersect point• 
cbop 20] y 26 
bop 11 + 26 11 {add anything in common to temp map 

end 

COMPETE.VR 
{*** Have each orientation map compete with his two immediate neighbors 
compete_3 8 1 2 21 
compete _3 1 2 3 22 
compete_3 2 3 4 23 
compete_3 3 4 6 24 
compete_3 4 6 6 26 
compete_3 6 6 7 26 
compete_3 6 7 8 27 
compete_3 7 8 1 28 
mov 21 1 8 

INVERTEX.VR 
bop 10 + 11 20 
sp_act_lin 2 20 0 
sp_act_lin 2 20 0 
mk_convex 20 21 
bop 21 - 20 12 

{take all crossings and corners 
{sp act for two steps in image 

{make this convex 
{remove the foreground material done 

A.2 The Relation Preprocessing Routines 

Each such routine uses the following parameter passing conventions: 
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{%1 • img reg 
{%2 • pt reg 
{%3 • local img reg 
{%4 • d unuaed (aaaume 6 for now) 

INSIDE1. VR 
{return in local img reg the convex hull portion 
{of the image containing pt reg 
mov %1 20 
mov ~ 21 
until_nc 20 

mk convex 20 20 
untiI_nc 21 60 

ap_act_lin 2 21 20 {using a-conn, sp act to recover this rgn 
cbop 21 [ %1 %3 

CONNECT1.VR, PARTOF1.VR, and TOUCH1.VR 
{return in local img reg all that is connected to pt-reg 
mov %2 %3 
sp_act_l_a 2 %3 %1 

A.3 Miscellaneous Visual Routines 

The following routine removes the isolated portion of the structure in register 

STR from the map in register MAP which is a subset of the image register 

IMG. 

mov STR 20 
:g~ ~~! ~; 
mov MAP 23 
sp_act_lin 2 20 22 
bop 20 - STR 20 
sp_act_lin 2 20 21 

set_all 24 1 
bop 24 - 20 26 
cbop 26 [ 21 26 

kop 63 > 26 26 
bop MAP - 26 MAP 

{20 is widened at points touching anything else. 
{remove the struct 
{reactivate points instruct that touch something 
{20 now has what we want to keep 

{create inverse of what we want to keep 
{find portion of inverse which is touching STR 
{this is what we can discard 
{set these to max intensity 
{and remove them from MAP 

A.4 Pa~cal Subroutines for Selected Basic Op
erations 

The following represents but a small portion of the complete system which 

is currently about 4000 lines in size. Included are declarations of the more 

important data stru~tures used by the basic operation subroutines. 
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The map registers have been partitioned into pyramids. This was an early 

design decision intended to treat each register as an "image pyramid" (Tanimoto 

& Klinger ,1980). The d parameter which appears in the parameter list of most 

subroutines selects the level of the pyramid at which the basic operation is 

applied. Level 0 is lxl, level 1 is 2x2, level 2 is 4x4, and so on up to level 5 

which is 32x32. As development progressed other issues grew in prominence and 

the pyramid idea fell by the wayside. In the current system all the operations 

operate at level 5. The idea of applying visual routines to image pyramids 

remains a worthwhile one. 

{--------------------------------------------------} Const 
max_id 
max_id_log2 
max_regs 

Type 
ireg_array 
reg_array 
reg_pointer 
reg_stack_ptr 
reg_stack_rec 

• 31; 
• 6; 

{max image dimension} 
{1og2(max_id +1)} 

• 63; {# of map regs, minus one (O))} 

• array[0 .. 47,0 .. 31] of integer; 
• array[0 .. 47,0 .. 31] of byte; 
• '"reg_array; 
• ·reg_stack_rec; 
• record 

reg 
reg_stk_ptr 

end; 

reg_array; 
reg_stack_ptr; 

reg_dim_poa • array[O .. max_id_log2] of integer; 
mask_3x3_array • array[0 .. 3,0 .. 7,-1 .. 1,-1 .. 1] of integer; 
connectvty_arr • array[1 .. 2,-1 .. 1,-1 .. 1] of boolean; 

Const 
{-- partitioning of registers into subregisters --} 
rdx_st reg_dim_poa • (32,32,32,32,32,0 ): 
rdx_fn: reg_dim_poa • (32,33,36,39,47,31); 
rdy_st: reg_dim_pos • (30,28,24,16, 0,0 ); 
rdy_fn: reg_dim_pos • (30,29,27,23,16,31); 
rd_lng: reg_dim_poa • ( 1, 2, 4, 8,16,32); 
connected : connectvty_arr • (((false, true,false), {4-connectivity} 

( true.false, true), 
(false, true,false)), 

(( true, true, true), {8-connectivity} 
( true,false, true), 
( true, true, true))); 

{--------------------------------------------------} 
{---- --- Centroid -- - ----------------------------} 
{--------------------------------------------------} 
Procedure Centroid(r1,rea,d:integer); 
{return in res a point whose location is the centroid of the 
figure in r1, and whose value is the average value of the figure.} 

Var 
1, j, val ,n : integer; 
sum,sumx,sumy: real; 

Begin 
with EXP do 
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begin 
n · • O· 
sum :. 0

1 

O· 
BUIDX ;. o:0; 
sumy :• 0 . 0; 
for 1 :• rd.x_at[d] to rdx_fn[d] do 
for j :• rdy_at[d] to rdy_fn[d] do 

if reg[rl] - [1, j] > C) then 
begin 

n :• n + 1; 
val:• reg[rt]·[i.j]; 
sum :• sum + val: 
SWDX :• sumx + i * val: 
sumy :• sumy + j • val: 

end; 
FillChar(reg[res]•,1&36,black); 
reg[res]·[Round(aumx/aum), Round(sumy/sum)] : • Round(sum/n); 

end; 
End; 

{--------------------------------------------------} 
{---- -- - Compete_3 --------------- - - - - ------ - - --} 
{--------------------------------------------------} Procedure Compete_3(r1,r2,r3,rea,d:1nteger); 
{for each pt, if r2 >• r1 and r3 then retain r2 in res, ow zero res.} 

Var 
i,j : integer: 

Begin 
with EXP do 
begin 

FillChar(temp_reg,1636,black); 
for 1 :• rd.x st[d] to rd.x_fnfdl do 
for j :• rdy:st[d] to rdy_fn d] do 

if (reg[r1]·[1.j] <• reg[r2]·[1.j]) and 
(reg[rs] · [i,j] <• reg[r2]·[1,j]) then 
temp_reg[i,j] :• reg[r2]·[i,j]; 

re3[res]· :• temp_reg: 
end· 

End; I 

{-------- ------------------------------- ----------} 
{------- Cond...Bin_Op_&egs ------ ------ ---- --- - --~} 
{--------------------------------------------------} Procedure Cond_Bin_0p_Regs(op: char; r1,r2,res,d:1nteger); 

Va:r 
1, j ,ii : integer; 

Begin 
with EXP do 
begin 

FillChar(temp_reg,1636 ,black); 
for i :• rd.x st[d] to rdx_fn(d] do 
for j :• rdy:st[d] to rdy_fn(d] do 
if reg[r1] · [1.j] > 0 then 
if reg[r2]·[t,j] > 0 the~ 

case op of 
'+': begin 

' - ' . 

11 :• reg[rt] · [t,j] + reg[r2]·[1,j]; 
if ii> white then temp_reg[i,j] :• white 

else temp_reg[i .j] := ii; 
end; 
begin 

ii :• reg(rt]·[i,j] 
if 11 < black then 

else 

- reg[r2] • [1, j]; 
temp_reg(i,j] :• black 
temp_reg[i,j] := ii; 
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end; 
'*': begin 

ii :• reg[r1]-[1,j] * reg[r2]-[i,j]; 
if ii> white then temp_reg[i,j] := white 

else temp_reg[i,j] :• ii; 
end; 

'/' : ii:• Round(reg[rt]A(i,j] / reg[r2]A[i,j]); 
'<': if reg[r1]·[i,j] < reg[r2J-[i,j] then 
{min} temp_reg[i,j] :• reg[r1J-(i,j] 

else temp_reg[i,j] :• reg[r2]·[1,j]: 
1 > 1 : if reg[rt]•[i,j] > reg[r2]-(i,j] then 
{max} temp_reg(i,j] :• reg(r1]·[1,j] 

else temp_reg[i,j] :• reg[r2J-[i,j]; 
']': temp_reg[i,j] :• reg[r1J-[i,j]; 
'[': te■p_reg[i,j] :• reg[r2]-[i,j]: 

end; 
reg[res]- :• temp_reg; 

end; 
End; 

{-------------------------------------------------} 
{------- Convolve_Sx3_S2 -----------------------} 
{-------------------------------------------------} Procedure Convolve_3x3_32(mask_name: string_10; rl,res,a 

Var 
i,j,m,n,ix,iy,ii,14,j4,iii,mask_id: integer: 
ireg : ireg_array: 

Begin 
if mask_name • 
if mask_name • 
if mask_name • 
if mask_name • 

'line• 
'grow.a' 
'grow. p' 
'end.pt' 

if mask_id >• 0 then 
begin 

then maak_id 
then maak_id 
then maak_id 
then maak_id 

maak_id 

if a< 0 then a:• a+ 8; 
FillChar(ireg,3072,black); 
with EXP do 
be§in 

i~~ ii: 81~ Bl a~ 
if reg[r1]-[i,j] > O then 

form:• -1 to 1 do 
begin 

ix:• i - m; 

:• 0 else 
:• 1 else 
:• 2 else 
:• 3 else 
:• -1: 

if (ix >•O) and (ix< 32) then 
fo~ n :• -1 to 1 do 

begin 
iy :• j - n; 

integer): 

if (iy >•O) and (iy < 32) then 
ireg[ix,iy] :• ireg(ix,iy] + reg(rt]·[i,j] * 

mask_3x3[mask_id,a,m,n]; 
end: 

end; 
FillChar(reg[res]-,1636,0); 
for i :• 0 to 31 do 
for j :• 0 to 31 do 

begin 
{iii : 2 abs(ireg[i,j]);} 
if ireg[i,j] > 0 then 

begin 
iii :• ireg[i,j] shr 8; 
if iii> white then reg[res]·[i,j] :• white 
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End; 

end; 
end; 

end; 

else reg[res]·[i,j] := iii; 
end; 

{-------------------------------------------------} 
{------- K_Op_Reg ------------------------------} 
{-------------------------------------------------} 
Procedure K_Op_Reg(op: char; k,r1,rea,d:integer); 

Var 
i,j,ii: integer; 

Begin 
with EXP do 
begin 

FillChar(temp_reg,1636,black); 
for i :• rdx_st[d] to rdx_fn[d] do 
for j :• rdy_st(d] to rdy_fn(d] do 

if (reg[r1]·[i,j] > 0) then 
case op of 

1 + 1
: begin 

, - t • 

'*': 

ii :• k + reg[r1]·[i,j]; 
if ii> white then temp_reg[i,j] :• white else 
if ii< black then temp_reg[i,j] := black else 

end; 
begin 

temp_reg[i,j] :• ii; 

ii:• k - reg[r1]·[i,j]; 
if ii> white then temp_reg[i,j] :• white else 
if ii< black then temp_reg[i,j] :• black else 

end; 
begin 

temp_reg[i,j] :• ii; 

ii:• k * reg[r1]·[1,j]; 
if ii> white then temp_reg[i,j] := white else 
if ii< black then temp_reg[i,j] :• black else 

temp_reg[i,j] :• ii; 
end; 

1
/

1
: begin{--- NB. Reverse Division---} 

ii:• Round(reg[r1]·[1,j] / k); 
if 11 > white then temp_reg[i,j] :• white else 
if 11 < black then temp_reg[i,j] :• black else 

temp_reg[i,j] := ii; 
end· 

1 <1
: if k < reg[r1] • [1,j] then 

{min} temp_reg[i,j] :• k 
else temp_reg[i,j] :• reg[r1]·[1,j]; 

1 >1
: if k > reg[rt]·[1,j] then 

{max} temp_reg[i,j] :• k 
else temp_reg[i,j] :• reg[r1]•[i,j]; 

end; 
reg[rea]· :• temp_reg; 

end; 
End; 

{--------------------------------------------------} 
{------- Make Convex Step-------------- -- --------} 
{--------------------------------------------------} 
Procedure Make_Convex_Step(r1,r_rea,d:integer); 
{Note, the las.t points found should signal the biggest gaps} 
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{NB, One could gain speed by performing this in place, with no 
diffence in the result, if one performs until no change in rt. 
However, since I plan to use the single step function, 
I leave it as is. 
-----------------------} Var i,j : integer; 
t: reg_array; 
Label Found, NotFound; 
Begin 

t :• EXP.reg[r1]·: 
EXP.reg[r_rea]· :• EIP.reg[r1]·; 
for i :• rdx_st[d]+1 to rdx_fn[d]-1 do 
for j :• rdy_at[d]+1 to rdy_fn[d]-1 do 

if t[i,j] • 0 then 
begin 

End; 

if t[i+1,j] > o then 
if t(i,j-1] > 0 then 

'begin if (t[i-1,j-1] > 0) or (t[i -1 ,j] > 0) then 
goto l"ound; end 

else 
if t[i,j+1] > 0 then 

begin if (t[i-1,j+1] > 0) or (t[i-1,j] > 0) then 
goto Found; end; 

if t[i-1,j] > 0 then 
if t[i,j-1] > 0 then 

begin if (t[i+1,j-1] > 0) or (t[i+1,j] > 0) then 
goto Found; end 

else 
if t[i,j+1] > O then 

begin if (t[i+1,j+1] > 0) or (t[i+1,j] > 0) then 
goto Found; end; 

if t[i,j+1] > 0 then 
if t[i-1,j] > 0 then 

begin if (t[i-1,j-1] > 0) or (t[i,j-1] > 0) then 
goto Found; end 

else 
if t[i+1,j] > 0 then 

begin if (t[i+1,j-1] > 0) or (t[i,j-1] > 0) then 
goto Found; end; 

if t[i,j-1] > 0 then 
if t[i-1,j] > 0 then 

begin if (t[i-1,j+1] > 0) or (t[i,j+1] > 0) then 
goto Found; end 

else 
if t[i+1,j] > 0 then 

begin if (t[i+1,j+1] > 0) or (t[i,j+1] > 0) then 
goto Found; end; 

goto NotFound; 
Found: EIP.reg[r_rea]·[i,j] :• 1; 
NotFound: 
end; 

{--------------------------------------------------} 
{------- Odd Man Out - ---------------------------} 
{--------------------------------------------------} 
Procedure Odd_Man_Out(r1,r_rea,d:integer); 
{Return, in an entier reg to itself, a point with highest value} 

Var i,j,max,imax,jmax: integer; 
Begin 

max :• O; 
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imax :• rdx_st[d]; 
j max : • rdy_st [d]; 
for i :• rdx_st[d] to rdx_fn[d] do 
for j : • rdy_at[d] to rdy_fn[d] do 

if EXP.reg[rl]A[i,j] > max then 
begin 

max:• EXP.reg[r1]·[i,j]; 
imax:• i; 
jmax: • j; 

end; 
FillChar(temp_reg,1636,black); 
temp_reg[imax,jmax] :• EXP.reg[rl]A[imax,jmax]: 
EXP.reg[r_rea]· :• temp_reg: 

End; 
{--------------------------------------------------} 
{------- Sp_Activate_Line -----------------------} 
{--------------------------------------------------} Procedure Sp_Act_Lin(con_typ,r_sp,r_rel,d:integer): 
{For one time step all 4/8 neighpors of any activated point are tested. 
If any is active in r_rel, then it is also activated in r_ep} 
Var 

i,j ,m,n,ii,jj : integer; 
Begin 

with EXP do 
begin 

temp_reg :• reg[r_sp]A ; 
:for i : • rdx_st [d] to rdx_:fn [d] do 
:for j :• rdy_st[d] to rdy_:fn(d] do 

if reg[r_sp]·[i,j] > 0 then 
form:• -1 to 1 do 

befin 
i :• m + i; 

if (ii>• rdx_at[d]) and (ii<• rdx_fn[d]) then 
for n:• -1 to 1 do 

end; 

if connected[con_typ,m,n] then 
begin 

j:J :• n + j: 
if (jj >• rdy_st[d]) and (jj <• rdy_fn[d]) then 

if reg[r_re1]·[ii,jj] > 0 then 
temp_reg[ii,jj] :• reg[r_rel]·[ii,jj]: 

end; 

reg[r_ap]· :• temp_reg; 
end; 

End; 

~---------Sp_Activate_Line_All---------------------~ 
{--------------------------------------------------} Procedure Sp_Act_Lin_All(con_typ,r_sp,r_rel,d:integer); 
{Same as above, but rune until no change in r_ep} 
{This is substantially faster than interpreting UNTIL_NC} 

Var 
i,j,m,n,ii,jj : integer: 

Begin 
with EXP do 

repeat 
temp_reg :• EXP.reg[r_sp]•; 
for i :• rdx_st[d] to rdx_fn[d] do 
for j :• rdy_st[d] to rdy_fn[d] do 

if reg[r_sp]·[i,j] > 0 then 
form:• -1 to 1 do 
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End; 

begin 
ii :• m + i; 
if (ii>• rdx_st[d]) and (ii<• rdx_fn[d]) then 
for n:• -1 to 1 do 

if connected[con_typ,m,n] then 
begin 

end; 

jj :• n + j; 
if (jj >• rdy_st[d]) and (jj <• rdy_fn[d]) then 

if reg[r_rel]·[ii,jj] > O then 

end; 

reg[r_ap] •[ii, j j] : • reg(r_rel] ·[ii, j j] ; 
{note how r_sp is updated on the fly 
within the nested array passes: trick!} 

until Identical_Regs(temp_reg,EXP.reg[r_sp]·,d): 

{--------------------------------------------------} 
{------- Unitize --------------------------------} {--------------------------------------------------} 
Procedure Unitize(con_typ,rl,r_rea,d:integer); 
{very inefficiently implemented, but adequate.} 

Var i, j ,m,n, tal, m.in_next_ta.1, mnt_i ,mnt_j. ib,ie, jb, je integer: 
none_elim: boolean; 

Label A1; 
Begin 

temp_reg :• EXP.reg[rt]·; 
{elim any boundary points} 
for i :• rdx..st[d] to rdx..fn[d] do 

begin 
temp_reg(i,rdy_st(d]] :• O; 
temp_reg(i,rdy_fn[d]] :• O; 

end; 
for j :• rdy_st[d] to rdy_fn[d] do 

begin 
temp_reg(rdx_st(d],j] :• O; 
temp_reg(rdx_fn[d],j] :• O; 

end; 
ib := rdx_at[d]+1; 
ie :• rdx_fn[d]-1; 
jb :• rdy_st[d]+1; 
j e : • rdy_'fn[d]-1; 
Al: {eliminate all point■ with only 1 neighbor} 
Repeat 

none_elim :• true; 
for f :• fb to ie do for :• b to je do 

if temp_reg[i,J] > 0 then 
begin 

tal :• O; 
tor m:• -1 to l do for n:• -1 to do 

if connected con_typ,m,n] then 
if temp_reg[i+m,j+n] > 0 then tal :• tal + 1; 

if tal • 1 then {delete} 
begin 

temp_reg[i,j] :• O; 
none_elim :• false; 

end; 
end; 

Until none_elim; 
{- eliminate one point with min next higher# of neighbors-} 
i :"" ib; 
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none_elim :• true; 
min_next_tal :• 10; 
while (i<•ie) and none_elim do 

begin 
j :• jb; 
while (j<•je) and none_elim do 

begin 
if temp_reg[i,j] > 0 then 

begin 
tal :• O; 
form:• - 1 to 1 do 
for n:• - 1 to 1 do 

if connected[con_typ,m,n] then 
if temp_reg[i+m,j+n] > 0 then tal :• tal + 1; 

if tal • 2 then 
begin 

temp_reg[i,j] :• O; 
none_elim :• false; 

end 
else 

begin 
if tal > 2 then 

if tal < min_next_tal then 

end; 
end; 
j :• j + 1; 

end; 
i :• i + 1; 

end; 

begin 
min_next_tal :• tal; 
mnt_i :• 1; 
mnt_j :• j: 

end;• 

if not none_elim then 
goto A1 

else 
if min_next_tal < 10 then 

begin {go and elim a higher n_touch} 
temp_reg[mnt_i,mnt_j] :• O; 
goto Al; 

end; 
EXP.reg[r_rea]· :• te■p_reg; 

End; 

A.5 The Pascal Program that Builds the 3x3 
Masks 

Program MASK_Builder; 
Const 

pi_by_8 • 0.30269G; 
Type 

maak_3x3_array • array[0 .. 3,0 .. 7,-1 .. 1,-1 .. 1] 
Var 

a,i,j integer; 
maak_3x3_array: 

of integer; 

mask_3x3 
aigma,sigaq 
x,y,t, 
temp,temp2, 

array[1 .. 26] of real; {.2 increments of sigma 1=>.2} 

temp3,temp4, 
theta,result r:eal; 
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orient,diat : array[-1 .. 1,-1 .. 1] of real; 
{-----------------------------------------------------} { P R O C E D U R E S } 

~:::::::--;;~;;;=Nii--::::::::::::::::::::::::::::>----> 
Function arctan_MR(y.x:real): real; 

Const 
pi_by_2 • 1.6707063; 
pi • 3.1416927; 

Var a: real; 
Begin 

if x • 0.0 then 
begin 

if y > 0 then a:• pi_by_2 
else a:• -pi_by_2; 

end 
else a:• arctan(y/x); 
if x < 0.0 then arctan_MR. :=a+ pi 

elae arctan_MR :• a; 
End; 

{------- Gausa_1D -----------------------------} 
Function Gausa_1D(x.aigma_aqrd:real): real; 

Const 
two_pi • 6.2831864; 

Begin 
Gauas_1D :• exp(sqr(x)/(-2 * sigma_aqrd)) / 

sqrt(two_pi * sigma_sqrd); 
End; 

{------- Gausa_2D -----------------------------} 
Function Gausa_2D(x,y.aigma_aqrd:real): real; 
{NB. unlike the 1D case. the constant factor has been removed} 

Begin 
Gauss_2D :• exp((aqr(x) + aqr(y))/(-2 * sigma_sqrd)): 

End; 
{-----------------------------------------------------} 
{-----------------~----~----! ____ ! ____________________ } 
BEGIN 

Clrscr; 
for i :• -1 to 1 do 
for j :• -1 to 1 do 
begin 

orient[i,j] :• arctan_MR(j,i); 
dist[i.j] :• sqrt(i*i + j*j): 

end; 
fo~ i :• 1 to 26 do 

begin 
aigma[i] :• i/6; 
aigsq[i] :• aqr(sigma[i]): 

end; 
t::----c~;;i~~i-;;;-M;;;;·-----::~ 
{---------------------------------} for a:• 0 to 7 do {for each orientation 1 .. 8} 

begin 
t :• pi_by_8 • a; 
for i :• -1 to 1 do 
for j :• -1 to 1 do 

begin 
theta:• orient[i,j] - t; 
x :• cos(theta) * diat[i.j]; 
y :• ain(theta) * diat[i.j]; 
{--- 0: LINE: oriented DOG* 2-D gaussian} 
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end; 
End. 

temp :• Gausa_1D(x,sigsq[3]) - Gauss_1D(x,sigsq[6]): 
temp2 :• 400 * Gauss_2D(x,y,sigsq[7]): 
result:• temp* temp2; 
mask_3x3[0,a,i,j] :• Round(result); 
{- -- 1: GROWa: 1_D Gaussian* directional step fn -->} 
temp3 :• 150 * Gauss_1D(x,sigsq[1]): 
result:• temp3 * (1.4 * y - 1); 
if result< -300 then result:• -300; 
mask...3x3[1,a,i,j] : • Round(result); 
{--- 2: GROWb: 1_D Gaussian* directional step fn <--} 
result:• temp3 * (-1.4 * y - 1); 
if result< -300 then result:• -300; 
maak_Sx3[2,a,i,j] :• Round(result); 
{--- 3: ENDPT: simple Gaussian with constant removed; 

has+ spike and - surround} 
result:• 100 * (Gauss_2D(x,y,sigsq[1]) - 0.4); 
maak_3x3[3,a,i,j] :• Round(result); 

end; 
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