
The Design and Control of Visual Routines

for the Computation of Simple Geometric

Properties and Relations

by

Marc H.J. Romanycia

Technical Report 87-34

October 1987

Department of Computer Science

The University of British Columbia

Vancouver, BC, Canada V6T 1W5

This report was submitted as a thesis in partial fulfillment of the requirements
for the degree of Master of Science

Abstract

The present work is based on the Visual Routine theory of Shimon Ullman.

This theory holds that efficient visual perception is managed by first applying

spatially parallel methods to an initial input image in order to construct the

basic representation-maps of features within the image. Then, this phase is

followed by the application of serial methods - visual routines - which are

applied to the most salient items in these and other subsequently created maps.

Recent work in the visual routine tradition is reviewed, as well as relevant

psychological work on preattentive and attentive vision. An analysis is made

of the problem of devising a visual routine language for computing geometric

properties and relations. The most useful basic representations to compute

directly from a world of 2-D geometric shapes are determined. An argument is

made for the case that an experimental program is required to establish which

basic operations and which methods for controlling them will lead to the efficient

computation of geometric properties and relations.

A description is given of an implemented computer system which can cor

rectly compute, in images of simple 2-D geometric shapes, the properties verti

cal, horizontal, closed, and convex, and the relations inside, outside, touching,

centred-in, connected, parallel, and being-part-of. The visual routines which

compute these, the basic operations out of which the visual routines are com

posed, and the important logic which controls the goal-directed application of

the routines to the image are all described in detail. The entire system is embed

ded in a Question-and-Answer system which is capable of answering questions of

an image, such as "Find all the squares inside triangles" or "Find all the vertical

bars outside of closed convex shapes." By asking many such questions about

various test images, the effectiveness of the visual routines and their controlling

logic is demonstrated.

ii

Contents

Abstract ii

Table of Contents iii

List of Figures vi

Acknowledgements vii

1 Introduction 1

2 Visual Routines and Attention 4

2.1 Visual Routines . 4

2.1.1 Ullman 4

2.1.2 Jolicoeur et al. 9

2.1.3 Koch and Ullman . 10

2.1.4 Pylyshyn et al. .. 10

2.1.5 Mahoney and Ullman 12

2.2 Preattentive Feature Maps . 13

2.3 The Focus of Attention . . 17

iii

s

4

5

Computing Visual Properties and Relations 19

3.1 The 2-D Geometry World 19

3.2 The Adequacy of a Visual Routine Language 20

3.2.1 Descriptive Adequacy : Completeness 20

3.2.2 Procedural Adequacy: Pragmatics .. 22

3.3 The Rationale for a Question-and-Answer System .. 32

Des~n of the System 34

4.1 System Overview . . 34

4.2 Key Data Structures 35

4.3 The Visual Routine Language . 36

4.3.1 The Basic Operations 36

4.3.2 The Visual Routines 42
4.4 The Question-and-Answer System 53
4.5 Control Logic 58

System Performance and Evaluation 74

5.1 Experiments and Results. 74

5.1.1 TEST 1 : The Performance of the Base Map Calculations 76

5.1.2 TEST SET 2: The Performance of the Structure Routines 79

5.1.3 TEST SET 3: The Performance of the Property Routines 85

5.1.4 TEST SET 4: The Performance of the Relation Routines 88

5.1.5 TEST SET 5: Performance Aspects of the Control Logic 92

5.2 General Evaluation . 95

6 Conclusion 96

Bibliography 101

iv

A Source Programs 104

A.1 The Routines that Build the Base Maps 104

A.2 The Relation Preprocessing Routines . 106

A.3 Miscellaneous Visual Routines 107

A.4 Pascal Subroutines for Selected Basic Operations 107

A.5 The Pascal Program that Builds the 3x3 Masks . .. 115

V

List of Figures

3.1 Edge-crossing patterns with vertices of low-order 27

3.2 Examples of basic features that form significant shapes .

4.1 General Data Flows

4.2 Situations warranting different search strategies .

29

35

59

4.3 Example illustrating the value in choosing the right map to search 60

4.4 The advantages of different task schedules

4.5 The removal of unneeded points from an index map

4.6 An example showing how the minimum-activity heuristic can

60

61

mislead . 64

4. 7 An example showing how the minimum-activity map can change

as search progresses . 65

vi

. ,

Acknowledgements

I would like to thank Prof. Alan K. Mackworth for his advice, financial

support, and supervision throughout the planning and writing of this thesis. I

am also very grateful to Dr. David Lowe for his many constructive comments,

and to Heesoon Bai, Jordan Brooks, and Ron Rensink for reviewing earlier

versions of this work. Fran~ois Jalbert was invaluable in assisting me to prepare

the thesis with Tu\T:ffiX. Finally, I wish to thank the members of my family for

their encouragement and caring .

vii

Chapter 1

Introduction

In order to successfully interact with the world we need to correctly judge what

the world contains, we need to make these judgments quickly, and we need to

make these judgements with a physical mechanism which has finite storage and

speed limits.

This thesis describes an attempt to apply these constraints of correctness,

efficiency, and finiteness to the problem of visual perception. It has resulted in

the development of a working computer system as an answer to the question

of what methods we can use to efficiently find the geometric properties of e-D
shapes and their geometric relationships in an image.

The work presented here is based on the Visual Routines theory of Shimon

Ullman. In this theory, efficient visual perception is managed by first applying

spatially parallel methods to the initial input image in order to construct the

most basic representations of features within the image, such as orientation

and termination. Then, this phase is followed by applying serial methods,

called visual routines, to the most salient items in these and other subsequently

created maps.

This work follows the tradition of Marr (1982) in attempting to clarify the

computational restrictions underlying vision. Thus, although a working system

is demonstrated, it was not built as an engineering project to suit some prac

tical needs. Also, although an effort was made to maintain a correspondence

1

with what is currently known about the human visual system, the system is

not presented as a model of the human system. The philosophy backing this

work is that much of fundamental value can be learned by creating and testing

computationally inspired models.

The domain in which the system searches for properties and relations is the

2-D world of simple geometric straight-edged shapes, such as squares, triangles,

and line segments. The properties and relationships which the system suc

cessfully processes are centred-in, closed, connected, convex, horizontal, inside,

outside, parallel, part-of, touching, and vertical.

The central goal of the thesis is to show in detail how a small set of visual

processing operations can be combined to compute a large set of visual prop

erties and relations. A secondary goal is to show how a. certain architecture

and control strategy effectively manages the images, the routines, the focus of

attention, the memory of what has been processed in the image, and so on, in

order to enable the system to demonstrate its competence with visual proper

ties and relations. The primary contribution of this thesis is its account of the

principles and reasoning behind a working visual routine based system.

There are two other points that are noteworthy about this research.

First, in this work it is the properties and relations that are important,

not the specific objects bearing them. Thus, this work is not directly concerned

with object representation. Although a form of representation for the geometric

objects is used to enable the recognition of objects, this representation is crude

and is not central to the thesis. However, it is of interest that this representation

is visual routine based. This serves to show that it is possible to define objects

in terms of the visual routines used to confirm their presence. Although this

approach to object representation may not be typical, it may have application

wherever objects are defined in terms of their properties and the relations of

their parts. This is certainly true of geometric objects like squares and triangles.

The second noteworthy point is that the visual routine system is tested by

embedding it in a question-and-answer system and not in a recognition system.

2

An argument is made for the advantages of taking this route. The question

and-answer system allows one to conveniently test the visual routine manager.

Examples of the types of question that can be correctly answered are "Find all

the triangles inside squares" and "Find any three instances of a vertical bar

outside a simple closed curve."

3

Chapter 2

Visual Routines and Attention

2.1 Visual Routines

2.1.1 Ullman

Visual routines are proposed by Shimon Ullman as a means of accounting for

how abstract shape properties and spatial relations can be derived from early

visual representations. The early (also called 'base') representations are uniform

retinotopic maps describing the most basic properties such as depth, orientation,

colour, and motion at a point. These representations are typically derived

directly from the image without taking into account any high level information

about what may be in the scene. Hence they are created by "bottom-up"

processes. In the human visual system the base representations are thought to

be computed in a spatially parallel fashion.

Suppose we wish to compute properties in the image such as which figures

are inside others, whether a figure is closed, whether two points are connected,

or whether some curve is longer than some other. Ullman argues that although

it is possible to compute these properties and relations in a parallel fashion over

all possible objects in the scene, this would in general be inefficient. Rather,

we want methods which operate only on the most relevant items in the image.

These methods are what he calls visual routines.

For their operation visual routines may make use of parallelism. For ex-

4

ample, bounded activation (colouring~in a region starting from a seed point

and working out to any boundary) is a basic visual routine operation which is

likely to be implemented using a form of parallel spreading activation. How

ever, bounded activation is most likely to be initiated from only one or at most

a few seed points at any one time. So we can anticipate that visual routines

themselves will be primarily applied sequentially to at most a. few points in an

image at any one time.

To a.void indiscriminate application of visual routines to every point in the

image, we anticipate making use of higher level knowledge to control the place

ment, selection, and sequencing of the appropriate routines. For example, while

playing golf we may be interested in applying curvature-detection routines to

white patches of colour.

We may note that the concept of visual routine implies both the existence of

basic, elemental, non-decomposable operations and the existence of higher-level

routines which may be composed from these basic operations and other high

level routines. Also implicated is the existence of intermediate data structures

created by applying visual routines to the base representations. Ullman calls

these intermediate maps "incremental representations." They are both output

from visual routines and potential input to visual routines. By assembling sets

of routines and/ or operations and by using incremental representations, Ullman

anticipates that the visual system can compute an unbounded variety of shape

properties and spatial relations.

Visual routines are ideally suited to deducing the computational restrictions

surrounding the task of visual perception. They form a natural language for

dissecting visual tasks into their component tasks, and at the same time they

translate naturally into standard computer terminology. This latter feature

should make them easy for us to build and work with on conventional com

puters. It allows us to draw on our large body of programming experience to

suggest possible algorithms and approaches, and allows us to make direct use of

existing theoretical results when we analyze the complexity of the visual routine

algorithms. Lastly, if we approach the design of the routines in a theoretical

5

task-first fashion (as opposed to working from the constraints of a specific vi

sion task or a specific computer implementation), then we may feel we are truly

studying the computational task of visual perception and not just writing ad

hoc programs to do vision.

Ullman's Five Basic Operations

In Ullman's inaugural paper (Ullman, 1984) he suggested five basic operations

out of which visual routines could be assembled.1

1. Shift of processing focus - This is a family of operations which move

the location at which attention is directed. The reasons for the move may be

voluntary and goal-related or else involuntary and feature-related. The need for

such operations is clear. Because all points in an image are not equal in interest,

we don't want to initiate many operations simultaneously over the image, for

this could result in interference. For example, if we are determining whether a

point is inside some region and we plan to colour-in the region, then we ought

only to initiate colouring from the given point.

2. Indexing to a point of interest - This operation is related to the

former. Here we seek a means of singling out a point so that we can then shift

our attention to it. This operation determines which point is the odd-man-out

in an image. Koch and Ullman (1984) describe a fast algorithm which performs

such an odd-man-out indexing operation. It employs a pyramid network which

for an nxn digital image computes the maximum or minimum intensity point

of the image in O(log(n)) steps using 4xn2 processors.

For the human case, indexing is probably available for all the preattentive

features that psychologists have isolated.(Treisman, 1985; Julesz, 1984) These

include colour, intensity, size, motion, stereo disparity, orientation, termination,

and possibly curvature and closure. Because a unique point possessing one of
1 In chapter 4 below an alternate set of basic operations is presented and a comparison is

made between it and Ulbnan's.

6

these features can be quickly brought to our attention, we say these features

"pop-out".

3. Bounded Activation (Colouring) - This operation is a spreading ac

tivation initiated from a given point or curve and terminating at some boundary.

We could use this operation to compute the inside relation and also to separate

figure from ground. There is a problem with what is admitted as a. boundary

because broken curves can sometimes act as solid boundaries. Ullman suggests

a means of performing bounded activation which involves two maps, the map to

be coloured and the terminating boundary map. The colouring could be done

by a grid of cells spreading the activation to their inactive immediate neighbours

except when such a neighbour is in the boundary map.

4. Boundary Tracing and Activation - This operation is similar to the

preceding one, but it operates on curves rather than regions. We could use

it to scan along curves checking for breaks and to check whether two points

are connected. It is the operation we would use when reading a map to find

whether a road or river connects two cities. Because contours are so important

to vision, it is highly desirable that a basic mechanism exist for following along

them.

Again, there are problems with broken contours. This operation must some

how determine when it is appropriate to treat broken lines as unbroken curves.

5. Marking - This operation is a form of memorization. It records and

keeps track of points that have been indexed or to which attention has been

addressed. Some such mechanism is imperative if a visual routine is not to

keep returning to the same salient points and repeating identical operations. A

simple form of marking would just "switch off" every point visited.

Marking makes it possible to count salient features. It is also very convenient

to use while searching an image for instances of a feature, lest we keep noting

the same instances. When tracing contours, it would be useful to know if we

7

had returned to our starting point, which would indicate that the contour forms

a loop.

Marking is also invaluable in building high-level property maps, such as

maps of shape descriptions or high-level property locations. For example, it

allows us to construct a map of all the squares in an image or a map of where

objects are inside others. Thus, as we move our focus of attention over local

portions of an image and uncover non-basic properties, we can build up a map

of these higher-level properties by marking their location in the original map or

some other corresponding map.

Similarly, marking can be used to integrate images obtained by moving an

eye or camera over a scene too large to be captured in one image. Each local

image, or at least its essential components, can be copied - that is, marked -

into some internal description of the entire scene.

These are the five basic operations Ullman suggested. Visual routines would

be composed from these and other operations. They could also contain other

visual routines, but all would eventually ground out to basic operations. How

ever, there is more to the problem of using visual routines than just assembling

basic operations, as we shall see presently.

Ullman's Control Issues

One important control problem is that of deciding which sequence of routines

is appropriate for a particular input. For example, if we are trying to find a

red vertical bar in an image, we could first look for vertical bars and then test

for redness. Or else we could first look for red patches and then test for form

and orientation. Which method turns out faster will depend on the relative

frequency of vertical bars and red things. If there are fewer red things, then we

would be wiser to search the red colour map first. Otherwise, we should search

the vertical orientation map first.

8

There are also general management problems, such as how we store, execute,

and test visual routines. Sometimes we will want to use skeletal guidelines and

fill in specific routines as the processing unfolds. At other times we will want to

save time and apply a complete sequence of routines that worked once before.

And on truly novel problems we may have to ignore existing guidelines and

build and test new arrangements of routines.

Visual routines, as Ullman has described them, are a means of approaching

the study of intermediate-level vision - the realm of representations between

the local image measurements and those of objects. Consequently, there are

also issues that deal with how they interface to the low-level and high-level

domains: how do they operate on the base representations; how do general

visual processing goals call on them; and how do object representations link to

them?

2.1.2 Jolicoeur et al.

Recently, other researchers have begun working in the visual routines frame

work. Jolicoeur, Ullman, and Mackay(1986) have performed psychological test

ing of people's ability to trace along curves. They presented to subjects images

of two intertwined curves with two x's, sometimes on the same curve and some

times on different curves. The x's were placed at the same retinal eccentricity

but at varying distances apart as measured along the curve. The subjects were

asked to judge whether the x's were on the same curve or not. The results

were consistent with the hypothesis that our vision system possesses a basic

curve-tracing operation. For x's on the same curve, the time to correctly judge

increased roughly quadratically with separation distance. In these experiments,

half the stimuli were presented too quickly for eye movements to be initiated,

while the other half allowed ample time for eye movement. The results were

similar for both cases, and, surprisingly, the latter experiments did not result

in significantly longer response times. These results suggested the presence of

a very rapid internal tracing process which may be used even when it is possi-

9

hie to track the curves with the eyes. The internal tracing scan rate averaged

40° /sec. Additional experiments were done where subjects were asked to judge

whether a curve with two x's on it had a gap in it between the x's or not. The

results were similar to the first experiments.

2.1.3 Koch and Ullman

Koch and Ullman (1984) have already been mentioned for their odd-man-out

indexing algorithm. In that work they also propose a mechanism for inducing a

shift of the processing focus. This is simply to induce a decay in the activation of

the maximally active unit whereupon the indexing algorithm will automatically

select a new point, which it then shifts to, induces another decay, and so on.

Such a mechanism would always shift to the next highest global maximum.

Koch and Ullman report that for humans the shift of attention is not always

to the next global optimum, but instead is influenced by both the proximity

and the similarity to the previous point. In people the shift of attention is

biased to nearby points and to points that are similar to the last point. Koch

and Ullman suggest simple modifications to their scheme to enable it to behave

similarly. An activated unit could simply enhance the activation of its nearby

units to induce the proximity bias. For the similarity bias, a maximally active

unit would activate all the active units in the feature maps that shared features

with this active unit. Thus, for example, if a point which is selected by the

odd-man-out mechanism is red and part of a vertical edge, then all (or maybe

just the nearby) units in the red and vertical-orientation maps would have their

activation increased. This would increase the chances of the next point selected

being red or part of a vertical edge.

2.1.4 Pylyshyn et al.

Pylyshyn (1987, 1988) summarizes the arguments he and his colleagues have

been advancing to support the existence of a kind of basic indexing operation in

human vision which they call FINST indexing. A FINST is a reference or index

10

to a feature or feature-cluster on the retina. There may be several FINSTs

simultaneously active at any one time. FINSTs have the property of remaining

attached to a feature or cluster even when it moves over the retina. By this

means a group of FINSTs is able to indicate the 2-D spatial relations among

image features independent of the actual retinal location of the features. Also,

FINSTs afford the vision system the ability to compute spatial relations among

features before actually evaluating the properties of the specific features being

pointed to.

The main empirical support for the FINST hypothesis is the set of visual

tracking experiments Pylyshyn and his colleagues have performed. Their sub

jects could accurately track at least four, and at times five or six, moving points,

even in the presence of distracting points. The points were moving sufficiently

quickly and there were sufficiently many distracting points, so that, if the track

ing were managed by a single attention mechanism serially switching between

all the points, then errors in tracking would very likely have resulted.

The FINST hypothesis is most relevant to visual motion studies. For fixed

images, however, the principle application of FINS Ts is in simultaneously main

taining pointers to several features in an image, thereby making available all

these features at once to some predicate or relation evaluation function. For

example, if we are to judge the collinearity of several points, then we need to

have these points readily available. The same goes for the rapid counting of

objects (called 'subitizing'). Indeed, the ability of people to rapidly count up

to six objects lends support to the idea that FINSTs are being used for the

purpose of relation evaluation.

Pylyshyn argues that for evaluating relations FINSTs are a significant im

provement over the mechanism proposed by Ullman. But this is debatable. In

Ullman's scheme a single focus of attention would be serially moved to each

relevant point. Each point would be marked, and then the set of marked points

could be processed by the relation evaluation function. So, in the end, with Ull

man's scheme the function gets the same set of simultaneously marked points.

11

The biggest impact the FINST hypothesis makes is in implying that signif

icant features in an image can be marked in parallel prior to and apparently

without the need of the focusing of attention. Mahoney and Ullman, to whom

we now tum, propose mechanisms which in parallel build "image chunks" prior

to being processed sequentially by means of attention. This appears consistent

with the FINST hypothesis.

2.1.5 Mahoney and Ullman

Mahoney and Ullman (1988) have ma.de an elegant refinement to the original

visual routine proposal. They argue for the presence of an image-chunking stage

in between the stage of parallel base representation building and the stage of se

rial application of primitive operations. This new stage would quickly assemble

a variety of simple chunks or subsets of the image, which could then be treated

as units by the later serial processing stages. By treating a number of spatially

co-extensive image components as a unit or chunk, considerable savings can be

had over standard pixel-by-pixel processing. For example, by preprocessing a

curve into curve-segment chunks, the boundary tracing operation can thus trace

from chunk to chunk, which, if the chunks are large, is much faster than tracing

pixel-by-pixel.

Mahoney and Ullman describe three applications of chunking, one for each

of the basic operations of boundary tracing, region colouring, and indexing.

For boundary tracing, they define their chunks as regions which contain a

single segment of a curve. The chunks are built up iteratively into binary trees

by merging adjacent regions which are compatible; that is, every curve in one

meets every curve in the other at a boundary common to both regions. At the

end of the chunking phase, each remaining root node represents a single curve

segment. The leaf nodes are the initial elementary regions for the segment as

well as an assortment of adjacent empty regions.

For region colouring, a similar algorithm is proposed. This is a form of

bottom-up quad-tree method, but details are not given.

12

For indexing, Mahoney and Ullman propose the parallel computation of

crude and approximate measures of salience. Examples of local configurations

that could draw interest are curve-junctions, regions of free-space, local parallel

structures (flow patterns), local proximities, local isolations, bilaterally sym

metric regions, and basic shape configurations such as bars, arcs, circles, and

ellipses. They stress that the computations be crude and approximate, and

that they provide a quick summary description which can then be explored

more thoroughly by applying attention.

Mahoney and Ullman hypothesize that the human visual system describes

an image at two distinct levels. The crude level is composed of "figural chunks"

which are approximate shapes with approximate measures of salience. The

refined level is the more traditional spatially-focused and detailed level of de

scription. They suggest that the detailed information is spatially indexed by

the crude information. The crude level is responsible for our more nondescript,

subjective, and qualitative sense of the overall arrangement of an image.

The figural chunk hypothesis is fascinating and valuable. No algorithms

describing how it might be accomplished were given, although Mahoney and

Ullman did suggest that basic shape configurations, such as ellipses and arcs,

could be computed by the parallel and spatially uniform application of numerous

template matches.

2.2 Preattentive Feature Maps

The second line of research work that this thesis draws inspiration from is the

psychophysical work supporting the existence of two stages of visual processing:

the preattentive and the attentive.2 Ullman's visual routines framework is also

rooted in this work. 3

2cf. Juleaz (1983, 1984, 1987) and Treisman (1985, 1986b).
3 At this point we might addresa this question: of what value are human studies to a com

putational investigation? In theory one might be able to deduce a priori the type of algorithms
and representations needed to solve the vision problem. Such a theory would need to specify a
long list of auumptions about the type of world to be visualized. Whether or not the assump
tions accurately reflect our world would be difficult to assess without subjecting the theory to

13

One key psychological finding is that when certain features are isolated in a

sea of distractors, they can be detected in constant time regardless of the size

of the image or the number of distractors. These so-called "pop-out" features

include colour, direction of motion, velocity, orientation, size, length, width,

intensity, binocular disparity (perceived depth), and end-point termination.

Other features - such as number, inside-outside, curvature, and intersection

- are thought by some to pop-out. 4 Other features definitely do not. These

latter include all shape properties (circle, square, etc.), conjunctions of any

two features (e.g., red and vertica1) 6, parallelism, convergence, connectedness,

closure, and T-juncture.

The pop-out phenomena exhibit a number of interesting complications.

First, there is an asymmetry between testing for the presence of a pop-out

feature and testing for its absence. In all cases, only a feature that is present

pops out. Checking for the absence of a feature requires a serial scan.

Secondly, there are different pop-out effects for different values of the same

empirical teete. So, in effect, the person who wants to undertake a computational investigation
by means of a priori deduction is faced with an experimentalist research path: inventing rea
sonable assumptions, testing these in a working system, revising these assumptions, retesting,
and so on. The only way to avoid this is to somehow guarantee that one's assumptions are
right in the first place, but it is doubtful that this is possible.

So, given that one cannot avoid system-building and experimentation in this endeavor, the
question becomes whether one can get any hints as to how to proceed. Naturally, our own human
system suggests itself on the grounde of its having evolved over a long time in a competitive
environment. Of course, there is the risk of being side-tracked along an accidental approach to
vision, one characterised by the accidental constraints introduced by our protoplasmic basis or
the need to develop out of a single cell. But at these initial stages of vision science it would be
wise to stick to the tried and true - that is, to mold our theories to the human model. There
is still plenty of room to introduce computational considerations into a human inspired model.
One needn't just copy the human system verbatim (not that we know enough yet, anyhow);
one can try to justify it computationally, or else introduce computationally inspired alterations.

Ulhnan (1986) discusses ways in which computational studies could contribute to biological
vision science.

4Treisman (1985) thinks that inside, outside, and curvature all pop out. Julesz {1984) says
that the intersection of elongated blobs pops out, and he suggests that the counting of groups
with less than six elements may pop out. Treisman (1985) says that neither does.

6 Apparently there are exceptions to this rule. Nakayama and Silverman {1986) report that
both binocular disparity and colour, as well as binocular disparity and motion, pop-out. The
subjective perception of their subjects is that the pop-out occurs in one of the two depth-planes
presented.

14

feature. For example, a vertical bar amidst bars tilted slightly off vertical does

not pop out, but the reverse does. Similarly, for curvature, a straight line amidst

curved one's does not pop out whereas the reverse does.(Treisman, 1985)

Another peculiarity is that in the case of the vertical versus tilted bars, this

effect is largely affected by the perceived frame in which the image is found.

When the target bar's orientation matches the frame's orientation, there is no

pop-out. (Ibid.)

J ulesz and his co-workers have discovered evidence for a variable diameter

spotlight or aperture of preattentive vision (to be distinguished from the spot

light of attentive vision which we discuss in the next section). The diameter

of this spotlight is inversely related to the ability to discriminate differences in

preattentive features. For example, assume we have an image region in which

are found two texture regions one of which has bars oriented 45° apart. And

further assume that we can just barely manage to preattentively discriminate

these two regions. Then, in order to achieve a similar degree of pop-out discrim

ination for an image with two regions where the bars are now only 10° apart,

the image will have to be substantially smaller.

Julesz and his co-workers also report that it is possible for subjects to narrow

the aperture of preattentive vision by "looking more closely" at a smaller portion

of an image. They report, however, that it takes much longer to perform such

a discrimination. J ulesz suggests that this is because the preattentive system

is performing some form of search, but it must be emphasized that this is not

a serial search. Julesz(1984) also reports that when narrowing the aperture of

preattentive vision, all the spatial-feature dimensions are identically affected.

For example, when the threshold of discrimination increases for orientation, it

will also necessarily be increased for spatial distance.

What do all these pop-out phenomena tell us about the computations per

formed by our vision system?

The only reasonable explanation for constant-time properties of pop-out

phenomena is the use of a parallel-search algorithm. The purpose of rapid

15

search in parallel must be to enable salient points to be noticed more quickly.

Anything that pops out must hence be salient in some way to subsequent vision

processing.

Treisman explains that the asymmetry in presence/absence search is due

to a positive signalling of the presence and location of a feature, and to no

signalling of a feature's absence. This explanation is simple and satisfying.

The different effects for different values of the same feature are explained

by Treisman as due to recording a feature value by measuring the difference

between it and some standard. When the value happens to equal the standard,

the difference is zero, and so the feature is not signalled. The standard value

can be controlled by global factors such as the tilt of the image frame. This

is plausible. An alternate explanation is that the standard - for example, the

perceived orientation of the frame - has the effect of filtering out bars that are

aligned with it. A simple way to test these two hypotheses would be to measure

the degree of pop-out with target orientations progressively further from the

frame orientation. If the pop-out effects increase monotonically with increasing

difference from the standard, then the difference hypothesis would be supported;

otherwise the filter hypothesis would be supported. The filter hypothesis is

somewhat more reasonable. It would be advantageous for an organism to be

able to filter out irrelevant orientations or velocities. It is difficult to see the

wisdom in introducing a uniform bias on a feature; why should 60° off apparent

vertical be more significant than 30° off apparent vertical?

Finally, let us consider the variable spotlight of preattentive vision reported

by Julesz and his co-workers. How could decreasing the diameter of the input

region increase its resolution and its computing time? Numerous mechanisms

might yield this result. One possibility that explains the increased resolution

and increased time delay is that the smaller preattentive spotlight must be

extended more slowly and sensitively in order to discriminate the finer feature

differences. This would be necessary in the presence of noise - perhaps that

produced by the microsaccades - in order to integrate sufficient input over time

to make the signal detectable.

16

2.3 The Focus of Attention

The psychological literature on the subject of visual search and attention is vast.

Hurlbert and Poggio (1985, 1986) review some of the recent psychophysical

and physiological work in this area from the computational perspective. Their

review suggests that the role of attention in human vision is not well understood

although there are some interesting theories. Some of these are recounted here.

Based on their pop-out and illusory conjunction experiments, Treisman and

her co-workers propose a theory which maintains that a single focus of attention

can be directed at will (by means of high-level goals) or by the presence of

discontinuities in preattentive feature maps.6 The discontinuities, however, do

not directly inform the attention mechanism of their location. At best, they can

only signal the fact that they exist; for example, that red is present. What the

discontinuities do instead is to register their location in a special master location

map. When the attention mechanism interrogates a point in this master location

map, it may then retrieve the details about what features are present at this

location in the image. The purpose of the spotlight of attention is to integrate

information from all around the image into a single consistent percept. Our

awareness of what is in the scene is a product of both this bottom-up information

being integrated from around the image, and of our top-down expectations.

Julesz (1984) believes in a similar role for attention, namely, the role of

enabling the combination of texture primitives ("textons"). Only within the

attention spotlight is form recognition possible. Julesz goes on to describe

some other interesting properties about the focus of attention. First, a shift of

attention (at about 50 msec per shift) is about four times faster than a saccadic

eye movement, indicating that the shift of attention operates independently

of eye movements. Secondly, the shift occurs for all image sizes - for those

falling entirely within the fovea as well as for those covering a large portion of

the visual field. Thirdly, for size of image, the resultant spotlight of attention

expands or contracts appropriately to attend to the relevant texture difference.

6 Treisman, 1985, 1986a, 1986b; Treisman & Gelade, 1980; and Treisman & Schmidt, 1982.

17

The diameter of the spotlight can be as narrow as a few minutes of an arc.

Finally, Julesz observes that in the absence of a pop-out region to attend to

immediately, the spotlight appears to move about randomly until it finds a

target of interest.

Hurlbert and Poggio report on several findings involving monkey attention.

Apparently, monkey cells in the inferior parietal lobe (area 7), in V 4, and in IT

respond differently depending on whether or not the animal attends to a visual

feature or cue. The researchers of these findings, however, seem very far from

establishing the exact mechanisms responsible. There is as yet no confirmed

area of the brain held to be responsible for managing visual attention. This

contrasts with the preattentive feature maps, where brain regions have been

found that respond preferentially to specific orientations, colours, and motions.

18

Chapter 3

Computing Visual Properties
and Relations

In this chapter we examine in the abstract the problem of computing visual

geometric properties and relations. We deduce constraints on the solution.

These constraints are heeded in the implemented system which is described in

the next chapter.

3.1 The 2-D Geometry World

The goal of this thesis is to find efficient methods of computing the geometric

properties and relations which can be found in images. To this end it is wise

to choose a visual domain rich in such properties and relations, but not so rich

as to overwhelm us with the sideline issues of noise, occlusion, complex shape

representation, lighting, non-step edge types, variable line widths, perspective

distortion, motion, and texture. Such a world is the 2-D simple geometric

shape world of circles, squares, triangles, etc., made of lines of uniform width

and intensity, and appearing on a uniformly black background. The following

common properties and relations are among those possible in this world:

Properties:

a) shape properties: convex, concave, open, closed, continuous, broken, and

symmetric (axi~lly, rotationally).

19

b) quantity and possession of specific features: terminators, straight edges,

curves, inner regions, concavities, and extrema/zeros of curvature.

c) possession of specific feature values for features of quantity or degree: ori

entation, curvature, density, intensity, numbers of vertices, angle, length,

width, area, perimeter, diameter, position of centroid, and a variety of

functions composed from the above values (e.g., ratios, differences).

d) arrangement and density pattern of features: relative position of centroid,

endpoints, and zeros of curvature.

Relations:

a) collinear, curvilinear, parallel, intersecting, quantity, inside, outside, be

side, touching, aligned, centred, between, over, under, right-of, left-of,

NNW-of, and so on.

b) >, <, and = for the assorted numeric feature values. (see c) above.)

c) equality under transformation: rotation, scaling, translation, smoothing,

filtering, and so on.

Of course, it is possible to define more complex properties and relations

using standard mathematical operators and logical connectives. Thus we could

define ratios and differences of two values, and also conjunctions of properties,

negations of properties, and so on. For example, we could define a rhombus as

an object with the composite property of being a simple closed curve and being

composed of four equal length line segments.

3.2 The Adequacy of a Visual Routine Lan
guage

3.2.1 Descriptive Adequacy : Completeness

The basic operations from which visual routines are composed, as well as the

procedural instructions which allow one to string together the basic operations

20

and to otherwise manage their execution, can be thought to comprise a high

level computing language. We call such a language a visual routine language

(VRL).

If a VRL for the 2-D geometry world is descriptively adequate1 - that is,

descriptively complete2 - it must enable us to compute all possible properties

and relations (such as those from section 3.1 above) for all possible configura

tions of objects in that world. This is a tall order. If one were to try to prove

descriptive completeness, it would be necessary to ensure that the 2-D geom

etry world could be defined formally and in a recursive fashion. It is doubtful

that our concepts of grouping, of subpart arrangement, of relative position, etc.

could stand that sort of precision. Even if they could, the proof of completeness

would be an enormous undertaking.

An alternative to a formal proof of descriptive completeness is an argument

by means of a sufficiently representative set of instances. This route gives up

on any formal guarantee of completeness, but it does have the advantage of

tractability. Of course, with this approach we still face the problem of deciding

what constitutes a sufficiently representative set. Presumably such a set would

contain a variety of properties and relations from each of the catgories outlined

in section 3.1 above.

Lastly, a third approach to the problem of proving a VRL to be descriptively

complete is the argument from Turing Machine equivalence; that is, we show

that a VRL can compute anything a general purpose computer can, which,

by appeal to Church's thesis, means it can compute anything computable at

all. Although there is some comfort in such a proof - it means one hasn't left

anything computationally crucial out - it is of no help in showing that the VRL

1 Mackworth (1987) gives criteria defining descriptive and procedural adequacy for visual
representations.

2There are at least two meanings of 'completeneH' when applied to a formal language. The
first refers to the language's ability to descri'be all that it was intended to describe. This is
the sense in which it is used here. This type of completeness is a form of descriptive adequacy.
The second meaning refen to the ability of a computation strategy to apply the language in all
the fashions it was intended to be applied. This type of completeness is a a fonn of procedural
adequacy.

21

allows one to naturally and efficiently compute all the properties and relations

in the 2-D geometry world, which is what we really want to know.

In chapter 4 below the VRL which was invented as part of this thesis is

described. No attempt is made to prove this VRL descriptively complete. In any

language, descriptive adequacy is typically a tradeoff with procedural adequacy.

Later we shall see, by means of numerous examples, that our invented language

is capable of representing a variety of properties and relations, and so it does

have a modicum of descriptive adequacy. The properties and relations that

can be expressed in our VRL are inside, outside, vertical, horizontal, centred

in, closed, connected, convez, parallel, part-of, and touching. These properties

and relations were chosen on the grounds that they were common and basic

properties which people find important and which they compute easily.3 Visual

routines may in fact only be useful for computing such basic properties and

relations. The more complex properties and relations (eg., those involving many

numeric and logical operators) may best be handled by higher level processes.

If this is true, then it may well be that descriptive completeness is a relatively

unimportant characteristic of VRLs.

3.2.2 Procedural Adequacy : Pragmatics

Where computers and computation are concerned, there tend to be two sorts of

pragmatic issues: resource issues - time, space, processor size, available tools,

and such - and convenience issues - ease of use, conceptual elegance, flexibility,

and such. Ea.ch of these issues defines competing criteria, and tradeoffs must

3 Lowe (1985) diacu11e11 in depth the problem of assigning significance to perceptual grouping
properties and relation11. He concludes that, for the real world, viewpoint invariant properties
and relations are highly significant. Theee include collinearity, curvilinearity, cotermination of
curves, curve croesing, parallelism, convergence to a common point, equal spacing of collinear
points or parallel lines, and the creation of virtual line11 from the alignment of terminators. In the
case of humans, because of the perceptual significance of these feature grouping properties and
relations, we can 11uspect that many of them are computed by parallel preattentive operations
rather than by the slower attention guided visual routines.

Viewpoint invariance ia a good criterion to u11e in ranking the significance of visual properties
and relations. It would be valuable to have other criteria as well.

22

be made amongst them. The goals and constraints placed on the system deter

mine what tradeoffs are made. In developing the system, priority was given to

resource issues because they more closely constrain any solution to the vision

problem.

Resources

The resource issues are simpler to assess than the convenience issues. Complex

ity studies can give us a handle on resource costs, whereas convenience studies

rely on the weaker subjective methods of psychology. What we want in order

to assess the procedural adequacy of a VRL, however, is not just a list of algo

rithms to analyze and compare with regard to their resource complexity. We

would like some assurance that we are on the track of the best algorithm. For

this we need an analysis of the task itself - the task of computing with a VRL

the properties and relations in the 2-D geometric world.4 We now begin such

an analysis. 6

Image Representation

The task of computing properties and relations in images of simple 2-D

geometric shapes starts with the representation of the image. Some finite rep

resentation is needed to permit computation. We have two options: a list of

the symbolic descriptions of the objects in the scene, or a finitely sampled to

pographic representation of the scene. Since someday we want our algorithms

to be applied in real environments and to make use of real sensors, and also,

since we want a correlation to the human condition, then we choose topographic

image representation. However, we also wish to have some of the advantages of

the symbolic description. We will see a way to mix the two shortly.

4Mackworth (1987) discusses the difference between task or problem complexity and algo
rithm complexity. Task complexity is defined as the lowest possible complexity of any algorithm
for the task. There can be many possible algorithms of varying complexity for any one task.

6 As we analyze each stage in vision, we will identify those methods we deem moat pro
cedurally adequate for performing that stage. Then in our analysis of subsequent stages we
will assume we are employing the solution to the earlier stage. Without this methodology the
analysis would quickly explode into numerous competing paths.

23

It was mentioned above that we desire to avoid imaging complexities in

choosing the 2-D geometric world so that we can concentrate only on the key

issues in efficiently computing properties and relations. One such complexity is

the sampling scheme used to go from a continuous to a digital image.

Sampling involves at least two issues: where to sample and how to sample.

Regarding where to sample, a uniform tessellation makes sense since all por

tions of our 2-D geometry world are equally significant. Simplicity will then

dictate using a regular polygon for each cell, leaving us with three tile options:

squares, equilateral triangles, or hexagons.6 The second issue we discuss is how

to sample. This is the problem of how to compute the value of each cell from

the continuous image. Regardless of the tessellation used, the problem with

sampling is aliasing. At some orientations a continuous straight line will cross

the cells in such a way as to generate a jagged effect. Also, there is a broadening

effect on the width of the lines, which can be very substantial in cases where the

lines are narrower than the cell diameter. These aliasing effects can be reduced

by using finer tessellations, but then computational effort increases substan

tially as well. The solution opted for is to bypass the sampling stage altogether

and to create pixelated lines of constant intensity directly, using techniques well

known in Computer Graphics. 7 Using these symbolic lines has the advantage of

both preserving connectivity and keeping lines at a uniform width of one pixel

on average. Regarding the issue of tessellation type, although each has its own

advantage, the square grid was chosen because of its conceptual clarity, its long

tradition in computer vision, and its direct correspondence to the array data

structure.

Base Representations

Now that we have an image representation, we can turn to resource issues

concerning how best to make use of it. The problem of efficiently computing

properties and relations dictates that parallelism be used as much as possible.
6Ballard &: Brown (1982) and Horn (1986) discuH the relative advantages of different

tessellations.
7For example, see Hearn &; Baker (1986).

24

Parallelism can be used whenever simple local properties exist. The types of

local information in an image are simply the infinitude of patterns of variation

which can exist in a region surrounding any point. Any pattern of variation

is informative to some extent. The questions we must ask are the following:

Which patterns are easiest to compute? Which are most likely to occur in

the image? And which correlate most heavily with "significant" states of the

organism (e.g., survivally important ones)?

One of the simplest types of local computation is the single orientation

gradient measurement, which is the directional derivative. This is the measure

at a point, for a given orientation, of the change in measured values across the

region in that orientation. To avoid instabilities in computing this measure for a

point, we must weigh most heavily the contribution of points nearest this point.

And for peak stability this weighting must follow a Gaussian distribution with

the mean at the measuring point. (The choice of sigma influences the diameter

of the region of relevance.) We can compute this weighted directional derivative

by cross-correlating the image function with the directional derivative of the

Gaussian.8

Other. patterns of variation which are relatively simple to compute and yet

are quite informative include the following:

a) the rate of change of the measured variation in all directions- This can be

accurately computed by cross-correlating the image with the difference of

two Gaussians. Varying the two sigmas allows one to vary the sensitivity

of the measurement to lower and higher frequency gradients.

b) an off-on-off bar pattern in a particular direction, where the bar is of a

particular width- This allows one to locally indicate the presence of a bar

element of a particular width. It can be computed by cross-correlating the

image with the product of a 2-D Gaussian and a 1-D Gaussian along the

desired orientation. The sigma of the first Gaussian controls the length of

8Ballard & Brown (1982) and Horn (1986) are two prominent Computer Vision textbooks
where definitions of these terms can be found.

25

the local bar segment and that of the second controls its width. Of course,

in practice we would restrict ourselves to a finite set of orientations and

widths.

c) an endpoint or terminator pattern - This pattern can be computed by

combining the computation for b) above with a perpendicular directional

derivative along the axis of the terminating bar. In this way we can detect

a bar terminating at a small edge. An alternative computation, which

measures relative isolation and thus can also be used to detect isolated

points, is to cross-correlate the image with a 2-D Gaussian from which a

constant value has been subtracted.

d) the various edge crossing patterns - Those with low-order vertices, which

can be seen in Figure 3.1, are apt to occur often in the 2-D Geometric

world.9 One way to compute each of these properties locally is to apply

the bar-pattern strategy mentioned in b) above for the appropriate ori

entations. This is in effect template matching. However, given all the

orientations to be permuted, the number of templates to be computed

goes up exponentially with the order of the vertex. We shall discuss a

more efficient approach shortly.

e) the various arcs of curvature - Again, template matching is an obvious

and quick way to compute each of these, although this could be expensive

in the number of computations to be performed simultaneously in each

locale, especially if we are given a large number of orientations and arc

radii of curvature.

We can be fairly confident in saying that the above are the kinds of informa

tion that ought to be calculated from the initial image, given their usefulness,

basis on locality, and relative ease of computation . The only problem we will

encounter is the large number of separate computations needed for complex

patterns, due to the large number of possible permutations of the positions of
9 Walters (1986) summarizes psychophysical evidence that people preferentially process such

curve croaaing patterns over non-croHing patterns.

26

a. 2 edges: ~ L L
b. 3edges: r ~ y
c.4edg .. , + -r X V

Figure 3.1: Edge-crossing patterns with vertices of low-order

their parts. If we cannot afford extensive processing at each locale, but we still

want to recognize each such infor~ative pattern, then we are forced to do some

of our computing in serial. The basic idea behind intelligently serializing the

process is to find abstract classes for subdividing the input patterns and then to

use membership in these classes to define the pattern. In practice we must find

at least two parameters that can categorize all the input patterns, find simple

means to compute the values for these parameters in a first stage of processing,

and then pass these parameters to a second stage where they can be reassembled

to "look-up" the pattern found. For example, in order to compute the angle

patterns of Figure 3.1.a, we can categorize these patterns by the minimal angle

(< 180°) and the orientation of the bisector. If we can efficiently compute these

abstract features, then we have reduced the number of computations at each

locale from O(n2
) to O(n), where n is the number of orientation categories.

We have just seen how to quickly compute many simple but useful local

properties. The next question we must ask is this: are there any non-local

properties that would be useful to compute in parallel? These properties could

not be guaranteed to occupy a locale of any fixed size. For example, we might

want to determine the presence of shapes, locate all connected objects, locate

all closed objects, or locate all collinear points directly. To do this we must

introduce an extra stage of processing. We may also have to introduce a large

27

number of processors to handle all possible configurations.

Because a non-local property can occupy any expanse, it requires a compu

tation insensitive to size. This requires either an enormous number of special

purpose recognizers - one for each legal instance - or else a more intelligent ap

proach based on an analysis of the non-local property into sub-properties. Since

the non-local property is insensitive to size, its sub-properties must be either a}

not locally computable themselves orb} locally computable but can appear any

distance apart. The a} case is no solution since it only pushes the problem on

to the sub-properties. In the b} case the locally computable sub-properties can

signal their existence and location, and thereby, in a Hough Transform fashion,

they can vote for the existence and location of their parent property. The sec

ond stage of processing must then take these signals and votes and confirm the

location of the parent property. For example, to find all the collinear points

in an image we can have each point vote for all orientations of lines that go

through that point. H any line has had three or more votes, then we take that

line, intersect it with the image, and thereby recover all the collinear points that

voted for it. It is uncertain whether all non-local properties can be computed

quickly by such means. Undoubtedly the complex shape properties would be

more difficult to handle. However, we have made our point: with a few layers of

processing even some non-local properties can be computed reasonably quickly.

Intermediate Representations

We now continue the analysis and ask ourselves what we ought to compute

from these new topographic maps of basic information. Of course, we wish to

apply the same criteria of usefulness and efficient resource usage.

First, we can consider applying the same local variation detecting operations

to these new maps themselves. And we could of course try this repetitively.

However, this would be pointless for most images from the geometry world. It

would be very useful in the few cases where the alignment of features of the

objects is itself significant, as in Figure 3.2. Thus we may wish to allow a second

28

a. terminators forming a line:

/
b. crossings forming a curve:

Figure 3.2: Examples of basic features that form significant shapes

application of the initial pattern computations to their initial output.

The first thing we would want from these initial topographic maps of ba

sic features is hints about which features are related to one another to form

objects, and what objects are formed thereby.10 There are two types of such

hints. First, there are hints intrinsic to the maps themselves. If two features

are coincident, then they are likely to belong to the same object. If they are

relatively· nearby or connected by a line segment, curve, or region, then they

are also somewhat likely to belong to the same object. The same holds if they

have similar orientations, intensities, etc.11 The second type of hint suggests

the type of object the feature belongs to. For example, right angles suggest

rectangles. With sufficient "extrinsic" hints such as these, a representation for

the simple object in question could be called forth to verify the hints. The

extrinsic hints index into high level knowledge, whereas the intrinsic hints can

be applied without such knowledge.

Thus many weak constraints are being simultaneously applied both within

maps and from maps to simple-object memory and back. We can visualize the

10The purpose of Mahoney and Ullman's "image chunks" (see section 2.5) may be to provide
hints such as these.

11These intra-map hints could be quite elaborate. For example, within a single map, say of
2-edge vertices, we could learn that angles whose bisectors intersect are likely to be part of the
same object.

29

whole process as a network settling down to a segmentation of the image into

its separate connected parts or feature groups. This is a first-pass settling, one

that is not likely to be revised. However, we should allow for further higher

level processing to reinterpret the initial feature groupings and thereby to force

a resegmentation.

In the simple 2-D geometry world, this feature-grouping stage of segmenta

tion is somewhat simplified. Because we disallow noise and use uniform shading

of shapes, we can group all features that are connected. This leaves only the

cases of overlapping shapes. If we keep overlaps to a minimum, this phase of

the problem can be effectively solved by a connected region-labelling algorithm.

Once elementary segmentation has occurred, we can proceed to determine

properties of, and relations among, the elementary groupings. How can this be

done in a resource-efficient way?

If we review the large list of properties and relations we hope to compute,

we see that many of them cannot be computed efficiently by means of parallel

algorithms. There are many types of convex or closed shapes, many quantities

of things, many instances of right-of, on-top-of, etc. There are too many such

instances to allow one algorithm to search for each instance. Therefore, at least

for these properties and relations, we need serial methods. The seriality need

not be very extensive. As we saw earlier in the case of collinearity, a few stages

of parallel algorithms were all that was needed. The example of collinearity

should encourage us to look for similar approaches to computing other non

local functions. The hope is that at most a few stages or steps of parallel

operations would suffice for computing each of them. This idea fits well with

the concept of visual routines - the idea that a few basic operations applied

serially can compute these same visual functions.

At this point in our progress at developing the best resource using algorithms

by analysis of the task to be performed, analysis must give way to intuition and

inspired experimentation. Beyond what Ullman (1984) has already said on the

subject, there is no easy way to deduce which basic operations are best or how

30

they are to be strung together. Such an approach would be like trying to deduce

what the optimal instruction set and architecture are for a digital computer.

What is needed are inspired design and test experiments - the acquisition of a

body of experience from which sound judgments can be made on how to proceed

in doing computational vision. The system which has been built and which is

described in the remaining chapters of this thesis is a small contribution to the

body of experience needed.

Convenience Issues

The procedural adequacy of our VRL rests partly on its efficient use of resources

and partly on its elegance, simplicity, and utility in the eyes of the experimenter.

To the extent that the visual system must itself design and test new visual rou

tines to suit new image situations and to learn new properties and relations,

it too is apt to benefit from a convenient VRL.12 We can determine what con

venience features should go into a VRL by analyzing the task at hand, viz.,

the task of designing and testing of visual routines, and their placement into

production.

The visual routine programmer and system developer needs to be able to

perform the following tasks quickly and conveniently:

1. Create, edit, copy, save, and run routines.

2. Define subroutines; that is, treat a group of routines as though it were

a single routine. He will also need to pass parameters to such routines

and have values returned. These subroutines will need the option of sus

pending themselves prematurely if certain conditions are not being met.

Subroutines should be nestable and recursively callable.

3. Conditionally apply a routine. Apply a routine repeatedly until some

condition is met.
12For these reasons, convenience issues will become more central to visual routine studies

when the problem of learning ie addreseed.

31

4. Monitor a routine during execution, stop it and examine it.

5. Create, edit, copy, save, and process images. We should include the fol

lowing abilities:

• to retouch individual pixels

• to globally change all pixels with such arbitrary properties as colour,

position, context, and all the logical combinations of these

• to apply standard image transforms

• to merge two or more images

No doubt, other features would add to the convenience of the language, but

if the VRL designer can supply these basic capabilities, he will have done well.

3.3 The Rationale for a Question-and-Answer
System

So far in this chapter we have been looking at the problem of efficiently com

puting visual properties and relations. We have discussed: the image world; the

base and intermediate representations useful to derive for this world; the basic

operations out of which a VRL can be composed; and the convenience features

we would like in a VRL.

Here we briefly address the metaproblem of how best to go about building

a system to test visual routines. The position argued is that a question-and

answer approach offers several advantages over the more conventional recogni

tion approach. Others wishing to design and test visual routines may profit

from considering this argument.

Visual recognition is fundamentally a process of inferring which of many

possible interpretations of an image is the correct interpretation. A recognition

environment can be defined in terms of an image domain and a language for

describing the domain. A specific task will require choosing which descriptions

32

in the language are correct for a given image. Assuming that we have a language

with objects, properties, and relations, then the interpretation will be based on

several activities:

1. indexing from features in the image into the set of legal object descriptions,

2. confirming that the indexed objects for a given feature are consistent with

the interpretation of neighbouring features,

3. testing the objects found and noting the properties they possess,

4. indexing from the object locations into a set of legal relations, and

5. confirming that the indexed relations indeed hold.

After all these have been performed the system can return a list of sentences

in the language describing the objects, properties, and relations which were

recognized in the image. This list will count as the interpretation of the image.

Activities 1, 3, and 4 can be very time-consuming, and they are independent

of the ta~k of testing visual routines that compute properties and relations.

Activity 2 is also independent of this task, but it is necessary for confirming

the presence of objects. Since we would like to avoid performing activities that

are unnecessary, we would like a means to test visual routines which does not

require activities 1, 3, and 4. A question-and-answer approach offers this means.

If the questions are not so unspecific as to ask "what is in the image?",

but instead specify what objects, properties, and relations are being sought,

then activities 1, 3, and 4 are eliminated. All that remains is searching for the

specified objects, properties, and relations. The problem of indexing from all

features to all possible objects is eliminated, and there is no need to try out all

possible properties and relations. These are the principle reasons why we have

decided to test our visual routines in a question-and-answer system as opposed

to a recognition system.

33

Chapter 4

Design of the System

In this chapter we describe the system which has been developed and imple

mented. We start with an overview and then give details.

4.1 System Overview

The system is interactive. The user works at a video display station, entering

commands at the keyboard and watching the results on the screen. He can easily

create, edit, and manipulate the images. He can manually apply single basic

operations or whole visual routines to the image. He can ask questions about

the image using a simple query language. He can save intermediate results, edit

a visual routine, and then restore the results to test the revised routine. In

short, the development environment works well. Sample inputs, queries, and

responses can be seen in Chapter 5.

The typical fl.ow of processing is as follows:

1. A test image is input.

2. Base representations are built.

3. Questions are posed about the image.

4. The system runs from a few seconds to a few minutes, and replies with

a sequence of responses, one for each instance of the object or relation

34

Image

Default VRs

Base Maps

Goal Directed VRs

Intermediate Maps

Query

Parse Query

Select Search Strategy

Move Spotlight as per Strategy

Applying VRs within Spotlight

Instances Found

Figure 4.1: General Data Flows

found. Relation instances are displayed by simply showing the two objects

so related.

The key components of the system and their interrelations are depicted in

Figure 4.1.

4.2 Key Data Structures

Each map, be it an image, a base representation, or an intermediate represen

tation, is composed of 32x32 pixels using 64 shades of grey. This is not so small

as to preclude sufficient detail, and not so large as to impede response time.

Maps are treated as units, and can be thought of as registers in a conventional

computer, indexed by location in high speed memory. Thus, we can copy maps

from register to register, apply an operator to the map inside some register,

35

and so on. Currently we get by with about sixty registers1, although there is

no fixed limit. Currently, the registers are used as follows:

• 12 for base representations, 8 of which are for orientations 22.5° apart

• 10 for intermediate representations

• 40 for utility

The stack can hold any number of registers, limited only by the computer's

memory. The stack is used as a kind of short term memory for storing temporary

search results. It enables us to backtrack to a previous decision point in a search.

Local and final search solutions are stored as lists of maps.

4.3 The Visual Routine Language

4.3.1 The Basic Operations

Basic operations are compiled PASCAL procedures.2 Each basic operation is

called by issuing a single assembler-like command to an interpreter. A visual

routine is simply a string of basic operations.

The following is an annotated list of the basic operations currently available.

Within each category the operations are sorted by frequency of use. The fre

quencies are measured by counting the occurrences of each operation in the set

of 36 active visual routines. Appendix A contains the detailed logic for several

of these commands.
1 If forced, we could probably get by with about SO registers. But 60 is not an excessive

number, even if we are modelling the human system. Although only 18 or so orientation maps
and 10 or so other feature maps have been identified in humans, one can argue that the utility
maps have not yet been discovered because, by nature, their contents are more transient and
varying. Hence they would be harder to test for and to recognize using current single cell
recording technology.

2 The operatione wnich work on image arrays are parallelizable and woula benefit from
implementation on a parallel machine, such as the connection machine (Hillis, 1985; Little,
1986). The parallelism is simulated in PASCAL.

36

Image Manipulation Operations

Let A, B, C, and R stand for 32x32 image arrays. Let connectivity-type be 1 or

2, standing for 4-connectivity or 8-connectivity on a square grid, respectively.

Let mask-name be one of the following: line, grow.a, grow.b, or end.pt. Let

orientation be an integer from 1 to 8, standing for each of the orientations 0°,

22.5°, 45°, ... ' 157 .5°.

Freq Mnemonic Parameters

92 mov A,B Lnl

Move registers A, A+ 1, ... , A+ n - 1 to B, B + 1, ... , B + n - l. The default

for n is 1.

47 bop A, operator(+ - * / < >), B, R

Binary Operation: Vi,j, R.; +- (A.; operator B1;). +,-,*,/ are the standard

numeric operators; < is min and > is max. The frequency breakdown by operator is:

+{14), -{33)

33 cbop A, operator(+ - * / < >] [), B, R

Conditional Binary Operation: Vi,j, if A,;= 0 or B,; = 0 then Ri; +- 0 else~;+

(~; operator B;;). +,-,*,/are the standard numeric operators; < is min and> is

max; (A;;] B;;) is ~;; {A;; [B;;) is B;;. The frequency breakdown by operator is:

)&[{32).

30 set_all A, constant

Set all values of A to the constant.

37

19 sp_act_l_a connectivity-type, A, B, R

Same as sp...actJin only the process is repeated until R no longer changes. This

instruction is unnecessary but convenient, as it runs much faster than the interpreted

equivalent: untiLnc A: sp..actJin 1/2 AB R

16 sp_act_lin connectivity-type, A, B, R

R +- A. 'vi,j, if A.; = 0 and (any ,l/8 connected neighbour of Bi; > OJ then

R;; +- Bi;•

8 compete_3 A,B,C,R

Vi,j, R;; +- 0. Vi,j, if B,; ~ A,; and Bi; ~ C.; then R;; +- Bi;• This is a specialty

routine used for selecting one among neighbouring competitive orientations.

6 mk_convex A,R

R +-A. 'r/i,j, i/ A.;= 0 and (A.;'• eight neighbours are active in such a way as to

suggest A.; is a concavity), then A.; +- 1.

6 conv3 mask-name, A, R, orientation

Cross Correlate with a 3x3 mask indexed by the given orientation. The masks are

prepared off-line and stored in memory prior to use. Appendix A describes the mask

computations.

6 oddman_out A,R

Vi,j, R;; +- 0. For one io,jo, and Vi,j, if Aioio ~ Ai; then R.;0 ; 0 +- Aioio· I.e., R

is empty except for a single maximum point from A.

38

6 spread connectivity-type, A, R

W, j, ~; +- A,; + E (the ,I or 8 connected neighbours of Ai;) divided by 5 or 9,

respectively.

4 kop k, operator(+ - */<>),A, R

Vi,j, i/ Ai; = 0 then ~; +- 0 else ~; +- (k operator Ai;). +,-,*,/ are the

standard numeric operators; < is min and > is max. The frequency breakdown by

opera.tor is: +(2), <(1), >(1).

3 most_actv A, B, R

If EA > E B then R +- A else R +- B, i.e., make R the more active of A or B.

3 detotal connectivity-type, A, R

R +-A. W,j, i/ all of Ai; 's ,1/8 connected neighbours are> O, then~;+- 0.

2 deunit connectivity-type, A, R

R +-A. W,j, i/ ~; has no active ,1/8 connected neighbour then R;; +- 0, i.e., zero

all isolated cells.

2 unitize connectivity-type, A, R

R +-A. Using 4 or 8 connectivity, reduce each connected region of R to a single

point.

2 centroid A,R

Vi, j, ~; +- 0. Compute zot10 as the centroid of the non-zero points in A. Rxwo +

(the average intensity of the non-zero points in A}.

39

Control Operations

17 exit_on_z A

If Vi, j, Ai; = 0 then, if we are within a loop, exit the loop and record the control

variable's value in parameter SYS; otherwise, exit the visual routine immediately.

14 call visual-routine-name [,parameters]

Call the said routine while passing along the parameters.

13 exit_on_nz A

If 3i,j, Ai;> 0 then do the same as for ezit_on..z above.

10 do control-variable, start, stop, step

The typical do loop statement: while start :5 stop perform the following expression

(single line or begin/end block) and increment control-variable by step after each pass.

8 until_nc A, [,n]

Repeat the following expression (single line or begin/end block) until A stops chang

ing, or until n passes have occurred. The default n is 50.

5 push A,B

Push registers A, ... , B onto the stack.

6 pop A,B

Pop registers off' the stack into A, ... , B.

2 if_z A, any-instruction

If Vi, j, Ai; = 0 then perform the instruction.

2 if_nz A, any-instruction

If 3i,j, Ai;> 0 then perform the instruction.

40

Utility Operations

draw A, draw-mode(p, v)

Display register A at the terminal. If draw-mode = p then draw an intensity image;

otherwise, display A's values.

pause

Stop execution and ask the user to hit any key to continue.

As we can see, the most frequently used operations include: moving regis

ters, spreading activation, intersecting registers(cbop]&[), amalgamating reg

isters(bop +), clearing registers, subtracting out parts from a register(bop -),

and exiting a routine on some condition. We interpret the popularity of these

operations to be a sign that they are intrinsically important. We must of course

be cautious in drawing such a conclusion because it is not easy to separate out

which operations are essential to a task and which are accidental features of a

programmer's style or of early system design decisions. However, even though

an author's programming style will set the frequencies of the operations he uses,

that the operations he uses frequently are very useful to him must be given some

weight. It would help to answer the question of which operations are truly im

portant if other researchers were to build systems with their own brands of basic

operations. We might then learn, by comparing our sets of operations, which

operations are essential and which are not.3

A little thought can suggest why these particular operations may be im

portant. Data has to flow from stage to stage; so moving maps is likely to be

3Preston (1981) surveys image proceHing languages that have been written for parallel
machines. Some of these languages have operations similar to our basic operations, even though
they were not written with the visual routine paradigm in mind: This reflects the common need
to compute properties and relatione in images. We might begin a program of comparing basic
operations in search of the universal onee by looking at what these image processing languages
have to offer.

41

important. Spreading activation reflects the basic need to follow paths and re

spect boundaries. Intersection is essential for finding common influence. Amal

gamation is needed for comparison and relating to take place. Clearing maps is

important for separating tasks so that a former result does not confuse a new

and unrelated assignment. Removing parts is important for focusing attention

on something else. And, conditional quitting is necessary to save ourselves

wasted effort whenever it becomes clear that there is no point in continuing a

routine.

At this point it is instructive to stop and compare our list of basic oper

ations with Ullman's. The two operations we more or less have in common

are: spreading activation and indexing to the odd-man-out.• Ullman makes no

mention of such mundane operations as moving maps or clearing them. He also

makes no mention of less mundane operations like intersecting or amalgamating

maps. This may be a mistake on his part. The point of taking a computational

view is to make clear the exact nature of the computations involved. It is

valuable to specify every detail of the computation. If two features are to be

compared, then we will need operations for bringing them together. If we are

someday in position to test whether visual routines operate in the human visual

system, then we will want to know exactly what basic operations we are trying

to correlate with brain processes. Since the more complex operations may rely

on simpler ones, it will be very valuable to know what these simpler operations

might be.

Let us now see how these basic operations are actually assembled to perform

interesting tasks.

4.3.2 The Visual Routines

There are certain deep logical problems which confront the designer of visual

routines. Before we can get on with writing routines to compute properties and

4Our single form of spreading activation can be applied to curves as well as regions. In
conjunction with a few other basic operations we are thus able to simulate Ullman's basic
operation #3, bounded activation, and hia basic operation #4, boundary tracing.

42

relations, we have to settle on the logical status and logical interrelationships

of objects, properties, and relations. Some tough questions that arise are:

• What is an object independent of its form and properties? Is the form of

an object a property?

• Are objects single connected things, or can they also be groups of things?

• Properties and relations apply to objects. But, can properties and rela

tions also apply to properties and relations? For instance, a property of

the relation greater than is asymmetry, and properties of colours are their

brightness and hue.

• Do we admit relations of arity greater than two, or can we get away with

defining these in terms of :properties and binary relations? For instance,

we could define COLLINEAR(dotl,dot2,dot3) as COLLINEAR(GROUP

OF(dotl,dot2,dot3)); and BETWEEN(A,B,C) as WITHIN(A,GROUP

OF(B,C)).

The solution to these problems is motivated by the desire to avoid effort

and complexity. Accordingly, the response to each of the above problems is as

follows:

• Objects are forms with properties; hence, the form of an object is not a

property. To confirm the presence of a form, you start with a location

or region, and try to construct a shape of that form within or near that

starting point. For a property, there is no question of going beyond the

input since the location of what we must look at is given.

• Currently, there is no allowance for the definition of group objects. For

instance, there is no means to handle a row of dots or a square made of

little triangles.

• Properties and relations only apply to objects.

43

• Only binary relations are admitted.

Within these limits, however, there is much room left for expressing our

selves.

We will now examine all the visual routines that were written for computing

properties and relations and for recognizing objects. There are other visual

routines that were written but do not appear here. Some of these are used

internally by the search logic. For instance, a routine was written for computing

the parts of an object which do not touch any other object. This is useful for

deciding what to trim from index maps after an object has been found. Others

are used for generating the base maps. All of these additional routines can be

found in Appendix A.

Each routine is called with a certain parameter passing convention. For

relations, the convention is to pass the register numbers of the registers which

contain the original image, of two registers containing the forms or structures5

to be tested, and of a register containing the union of both these structures.

The convention is that, if the structures fail the relation test, then the register

whose number is passed as parameter #6 is to be set to zero; otherwise, it is

set to the union register.

The reader may disagree with an interpretation that is given here to a par

ticular property, relation, or structure. There are many definitions of 'inside',

'outside', 'touching', and so on. In order to keep things manageable, one popular

definition was chosen to represent each term and a clue to the specific meaning

is given in parentheses wherever necessary. One difficult problem for Visual

Routine Science will be accounting for the many subtle and context dependent

shades of meaning that visual properties and relations can have.

61 use the term 'structure' henceforth as it has fewer alternate meanings.

44

Relations

Each partial relation routine below is to be completed by placing the following

command skeleton around it:

{%1 • img reg
{%2 • struct1 reg
{%3 c struct2 reg
{%4 .. union reg
{%6 • match reg
set_all %6 0

{Input
{ , ,
{ , ,
{ , ,
{Output
{clear answer in case of exit-fail

[operations unique to routine]

exit_ifiiz/nz
mov %4 ,-6

{exit if relation(struct1,struct2) is not true .
{o.w. return the union as the answer

1. Inside (within the convex hull of)

mov Y.S 29
until_nc 29

mk_convex 29 29
cbop 29 [o/.2 28
exit_on_z 28
bop %2 - 28 27
exit_on_nz 27

{store struct2 in 29

{make struct2 into a convex blob
{intersect with struct1
{if nothing in common, then not inside
{o.w., compare the intersctn with the original
{if any d.if, then st1 is not inside convex st2

2. Outside (not entirely Inside)

mov o/.3 29
until_nc 29

mk_convex 29 20
cbop 29 [%2 28
exit_on_nz 28

{store struct2 in 29

{make struct2 into a convex blob
{take intersection
{if something in common, then st1 is not outside
{the scope of st2

3. Touching (crossing or immediately adjacent)

mov %2 20
spread 2 20 20
cbop 20] %3 21
exit_on_z 21

{create immediate neighbourhood of struct1
{and see if it intersects struct2
{if not, then not touching

45

4. Centred In (centroids intersect precisely)

centroid %2 20
centroid %3 21
cbop 20 [21 20 {inter■ect centroids
exit_on_z 20 {if they don't overlap, then not centred
(Note, we could loosen our standards on what stands as being
centred by smoothing either centroid·before the intersection)

5. Connected

mov %2 20
sp_act_l_a FG_PARM 20 %1 {generate the entire structure connected

{to pt-reg
mov %3 21

{intersect it with struct2 cbop 20 [21 22
exit_on_z 22 {if nothing in intersection, then not connected

6. Parallel

(Note, we might first want to ensure that both str1 and str2 are
{ bars: but here, for efficiency, we remove these tests.
{ Hence we must be sure to only query " ... bar parallel to bar"
{-----------------------{mov %2 20 {teat atr1 • bar
{call bar ~o 20 21 22 23
{exit

11
on_z 23

{mov ~3 20 {teat atr2 • bar
{call bar 20 20 21 22 23
{exit_on_z 23
{-----------------------mov %2 20
do y 1 8

begin
cbop 20] y 21

bop 20 - 21 21
exit_on_z 21

end

{find atr2'a orientation

{intersect with orientation map y
{and aet all values to those in strc1
{remove ally oriented edges from strc1
{exit loop when orientation found (sets SYS• y)

{-----------------------cbop %3] SYS 22 {now verify that SYS is str3's orientation too
bop %3 - 22 22
exit_on_nz 22

'T. Part of (a proper subset of)

cbop %2] %3 20
bop %2 - 20 20
exit_on_nz 20
cbop %2 [%3 20
bop %3 - 20 20
exit_on_z 20

{find portion of part shared by whole

{exit if part contains extras not in whole
{find portion of whole shared by part

{exit if the whole is not greater than the part

46

Properties

The parametera passed to properties are somewhat fewer. We only pass the

image, the image boundary, and the structure. The convention is that, if the

structure does not have this property, then the register whose number is passed

as parameter #4 is to be set to zero; otherwise, it is set to the structure register.

Each partial property routine below is to be completed by placing the fol-

lowing command skeleton around it:

{l1 • 1mg reg {Input
{t2 • boundary reg { ''
{%3 • etruct reg { ''
{%4 • match reg {Output
set_all %4 0 {clear &nawer in case of ex.it-fail

[operations unique to routine]

exit_if_z/nz
mov %3 %4

{exit i.f property(struct) is not true.
{return the object in %4 to indicate success

1. Horizontal (the dominant orientation)

mov %3 20
cbop 20 [6 21
mov 21 22 do y 8

begin
cbop 20 [y 23
most_actv 23 22 22

end
bop 22 - 21 22
exit_on_nz 22

2. Vertical

{intersect with horiz orientation map (•6)

{intersect with orientation map y
{keep moat active orientation map in 22

{if horiz component(21) -. most
{ active orientation(22), then exit

(Same as Horizontal only use 11 cbop 20 [1 21 11 for line 2 in order
to intersect the structure with the vertical orientation map (•1).)

3. Closed (is a simple closed curve)

mov ~ 20
aet_all 21 1
bop 21 - XS 21 {create inverse image
sp_act_l_a BG_PARM 20 21 {ap_act out from bndry within the inv.img
bop 21 - 20 22 . {remove activated part, leaves inner parts

47

exit_on_z 22 {if no inner regions, then not closed
unitize BG_PARM 22 23 {reduce each inner region to a single
oddman_out 23 24 {find one such point
bop 23 - 24 23 {remove it
exit_on_nz 23 {if more than one inner region exist, then

{the struct ia not a simple closed curve
{---- now teat that no protrusions exist
mov 22 26 {need inner regions map computed above
sp_act_lin FG_PARM 26 %2 {spread activate out twice to include
sp_act_lin FG_PARM 26 %2 { the object portions adjacent to the

bop %3 - 26 28
exit_on_nz 28

{ inner regions and any small protrusions
{remove all this from the object
{exit if (large) protrusions exist

4. Convex (no concavities & needn't be closed)

mov %3 20
until_nc 20

{create convex hull of object
{remove interior of hull

pt.

mk_convex 20 20
detotal 1 20 21
bop 21 - %3 22
exit_on_nz 22

{remove object, leaves edge of hull in concavity
{exit if such an edge exists

Structural Forms

The parameters passed to structure routines are rather different from those

passed to properties. They include: the image; the image boundary; the spot

light of attention, which is usually a single point from an index map that the

type of structure is expecting (e.g., squares expect corners in the spotlight); and

the index register itself in the event that the routine sees fit to remove some

points that needn't be examined any further. For output, each routine always

fills the structure register with whatever relevant structure it has found under

the spotlight. The match register is filled with either nothing, if the sought

structure was not found, or with the structure, if it was found.

Each partial structure routine below is to be completed by placing the fol

lowing command skeleton in front of it:

{FIND any Structure attached to the pt in pt-reg
{%1 = i~g reg {Input
U,2 • boundary reg { ' 1

{13 • pt reg { • •
{%4 ~ index reg {Input/Output
{%6 = struct reg {Output

48

{ " {%6 • match reg
set_all %6 0 {clear in case of exit-fail

[operations unique to routine]

Base Map Features

1. Terminator

2. Crossing

3. Comer

4. Concavity Vertex

{For all four of the above:
{the indexed base map is the one corresponding to the feature
{So, for terminators, replace MAPID below with 9; for crossings,
{replace it with 10, and so on.
sp_act_l_a 2 %3 MAPID {recover entire feature attached to spotlight
mov ~ %6 {return it as the solution
mov ~ %6

Background Regions

5. Inner Region

{the indexed base map is concavity vertex
mov ~ 20
sp_act_l_a FG_PARM 20 %1 {sp_act in img (backgrnd: hence conn-4)
mov 20 %6 {return the region found
cbop %2] 20 21 {intersect with boundary
exit_on_nz 21 {if intersects bndry, then not an inner rgn
mov 20 %6

6. Concavity

{the indexed base map is concavity vertex
mov Y.3 20
spread BG_PARM 20 21 {widen index point
cbop 21 [0 21 {recover portion in image near concavity vertex
sp_act_l_a 2 21 0 {recover entire parent object nearby
{- - - - -- First teat that region is not an inrgn of parent
push 20 21
push 60 66 {save regs
set_all 60 1
bop 60 - 21 60 {create inverted image of parent object
mov U 60
mov %2 61
mov ~ 62

49

mov %3 63
call inrgn 60 61
mov 66 26
pop 66 60
pop 21 20
mov 26 %6
exit_on_nz 26

{set up parms
62 63 64 66

{aave reply

{restore regs
{prepare to return whatever was found
{if the region is a closed inner region, then
{it is not a concavity, so exit

{--------------------------{-- now recover concave region
mov 21 22
until_nc 22

mk_convex 22 22
bop 22 - 21 23
mov o/.3 l6

{find entire convex region about the object
{remove object (leaves concave regions)

sp_act_l_a FG_PARM %6 23 {recover the concav region attached to
mov ts 16 { the index point; return it as the answer

Foreground Structures

7. Square (vertical & isolated)

{the indexed base maps are corners, horizontal, and vertical
mov %3 20 {iaolate the
sp_act_l_a 1 20 %1 {struct attached to pt_reg; 4-c bee of vert sqr
mov 20 %6 {prepare to return the isolated

{struct as the struct found
{--------------------------{ The basic strategy here is to start from the corner and
{ trace both vertically and horizontally until we reach the
{ end. Then we tr ce horizontally and vertically from those
{endpoints until we reach a new set of endpoints.
{ lf those endpoints are the same, then we have found a square!
{--------------------------set_all 21 0 {interim path trace stored here: init to 0
mov %3 29 {set up sp_act_lin start point for vert pass
mov %3 26 {save start point
mov %3 26 {set up sp_act_lin start point for horiz pass
mov %3 22 {save start point
{--- First vertically/horizontally
unti1

1
nc 29

beg n
mov 28 27 {record laat frame
mov 20 28
sp_act_lin 1201 {sprd act out vert: trick: use 4-c
mov 24 23 {record last frame
mov 26 24
sp_act_lin 1 26 6 {sprd act out horiz; trick: use 4-c

end
bop 29 + 21 21
bop 29 - 27 29 {compute last point(s) activated
bop 26 - 20 26
exit_on_z 26 {if last•start, then exit-fail
bop 26 + 21 21
bop 26 - 23 26 {Ibid for vert path
bop 22 - 26 22
exit_on_z 22 {if laat•start, then exit-fail
{--- Next, horizontally/vertically

50

mov 29 26
mov 26 22
untn

1
nc 29

{save start points

beg n
mov 28 27
mov 29 28
sp_act_lin 1 29 6
mov 24 23
mov 26 24
sp_act_lin 1 26 1

end

{record last frame

{sprd act out horiz;
{record last frame

{sprd act out vert;

trick: use 4-c

trick: use 4-c

bop 29 + 21 21
{compute last point(s) activated

{if last=start, then exit-fail

{Ibid for vert path

bop 29 - 27 29
bop 26 - 29 26
exit_on_z 26
bop 26 + 21 21
bop 26 - 23 26
bop 22 - 26 22
exit_on_z 22 {if last•start, then exit-fail
{--- finally test that two final termination points are the same
cbop 29] 26 28
exit_on9.z 28
mov 21 6
mov 21 .e

8. Triangle (isolated)

{return the square!

{the indexed base map is corners
mov %3 20
sp_act_l_a 2 20 %1
mov 20 %6

{recover the full isolated object in 20
{prepare to return the isolated
{struct as the struct found

~-Fi;;t - ~h;~k-th;~-~;i;-~h;;e terminator regions exist
cbop 20] 11 21 {intersect with corner map
unitize 2 21 21 {8-conn, make each term rgn a single point
oddman_out 21 22 {pick one terminator
bop 21 - 22 21 {remove it
oddman_out 21 22 {pick another
bop 21 - 22 21 {remove it
exit_on_z 21 {if there were only 2 terminators, then exit
oddman_out 21 22 {pick another
bop 21 - 22 21 {remove it
exit_on_nz 21 {if there were> 3 terminators, then exit
{---------------------------
mov 20 27
call closed %1 %2 27 28 {verify that the object is simple closed.

{Closed uses temp regs 20-26; so using
{27 28 is a dangerous but efficient hack;
{we should really use a push/pop sequence.

exit_on_z 28 {if nothing returned, then obj is not closed
{---------------------------
mov 28 %6 {return the triangle

51

9. Line Segment (Bar)

{the indexed base map is the input image
mov %3 16 {prepare to return index pt as object found
mov %3 20
do y 1 8

begin
cbop 20] y 21
sp_act_lin 2 21 y
oddman_out 21 22
bop 21 - 22 21
exit_on_nz 21

end
exit_on_z 21
sp_act_l_a 2 21
cbop U] 21 16
mov Y.S %6

10. Dot

SYS

{for each orientation

{intersect with orientation map y
{sprd act :8-conn, in this orientation
{find one point
{remove it
{exit loop if some remain
{ ■eta SYS parm toy

{if none found active, then only a dot
{recover object in this orientation
{renormalize to image intensity
{return the bar

{the indexed base
mov %3 20
sp_act_l_a 2 20 11
IIIOV 20 %6

map is the input image

{recover attached object
{return the struct found
{set index point to image intensity
{remove it from the struct found

here

cbop 13 [%1 21
bop 20 - 21 22
exit_on_ru: 22
mov 20 16

{11 any remain, then the struct was not
{return the dot

a dot

11. Isolated Arbitrary Object (IAO)

{the indexed base map is the input image
mov o/.3 29
sp_act_l_a 2 20 11
mov 29 16
mov 29 16

{recover the object attached to the index pt
{return it as the found struct
{return it as the IOA

The reader may wonder why we bother with so many structure types when

the goal of this thesis is to compute properties and relations and is not to do

object recognition. The point of being able to recognize several objects is to

enable us to test our control logic in the presence of objects having common

features, such as edges and corners. Hence, we have two types of closed object

- square and triangle; two types of background region - concavity and inner

region; and two types of simple 1-D shape - bar and dot. The feature objects

are available for free, and we should he able to recognize them, given that we

can index to them.

52

It is not a failing that we artificially define our squares and triangles to be

isolated and the squares to be not tilted. It saves us from having to spend

undue effort rotating the image or removing lines in the hope of finding the

object. In the opinion of the author, objects should be remembered as a series

of prototypical views, with recognition managed by template matching, and

visual routines play no central role in this. The reasons it was decided to do

recognition by means of visual routines are the following: the routines were

readily available and using them would save the additional programming effort

of a recognition system; it was desirable to see if visual routines were powerful

enough to do it; and this approach might clarify the relationship between certain

types of defined object and the routines used to confirm the presence of the

defining ingredients. This last reason is particularly applicable in the case of

geometric objects. For example, a parallelogram is hard to define prototypically,

but is relatively easy to define in terms of its number of corners, its being a

simple closed curve, and its having two instances of parallelism. Likewise, there

are many triangles, but a.11 have three corners and are simple closed curves.

So, in these cases the object representation is likely to have "hooks" into the

visual routine calling mechanism. Thus, by doing visual routine based object

recognition, one can explore the interface between object representations and

visual routines.

4.4 The Question-and-Answer System

In Chapter 3 we saw arguments for why we would do well to apply our visual

routines to interrogating images - for specific objects' properties and relations -

rather than to recognizing whatever the image contains. Here we briefly sketch

the design for a query language which is to facilitate such interrogation. We

provide motivation for the design by first looking at the interrogation task the

language is to solve.

First, let us look at the sort of question we ask when we search for an object

on which to focus. Here a.re some examples.

53

A.1 What objects are in the scene?

A.2 What is the distribution pattern of objects in the scene?

A.3 How many objects are in the scene?

A.4 Are there any objects in the scene with some property or some combi

nation of properties? How many of these are there, and what is their

distribution?

A.5 What are the most salient, striking, peculiar, or interesting objects in the

scene?

A.6 Does a specific relation hold between any two objects?

A. 7 Do some objects in the scene share properties?

A.8 What objects, properties, and relations are present in some subportion of

the scene?

Then, let us look at the sort of question we ask when we want to learn more

about an object or objects which is or are already brought to our attention.

B.1 What are all the object's properties?

B.2 How many objects are there in this group?

B.3 Which properties of this object are striking, peculiar, or interesting?

B.4 Does the object have some specific property or some combination of prop

erties?

B.5 Does some specific relation hold between any two objects in this group?

B.6 Are there some properties which the objects have in common?

B.7 Does some logical combination of properties and relations hold for the

members of this group of objects?

54

This list is no doubt incomplete, but it will allow us to infer the general

features we want in our language.

We notice the following about our questions:

• Question A.1 is the general recognition request all over again. Hence, we

will prefer to disqualify such questions from being in our language, and

request that at least some restrictive search information be provided in

the question, be it a specification of a structure, of a property, or of a

relation. We disqualify questions with the character of "what is this?"

and only admit questions with the character of "what meets such and

such conditions?" Hence, we disqualify question A.2 as well. The most

general question we will allow ourselves to ask for our 2-D domain is:

"what arbitrary isolated objects are there in the scene?" There is no

object recognition required to answer this; all we need is knowledge of

what it means to be isolated.

• Questions A.3, A.5, and B.3 are bipartite questions. For question A.3,

we must first find all the objects and then count them. For question

A.5, we must at least cursorily consider all the objects, sort them by some

standard, and then return those highest on the list. Likewise, for question

B.3, we must find all the applicable properties, and then sort and evaluate

them. We should be on the look out for such questions and, for clarity's

sake, decompose them into their constituent queries.

• All the A Questions can be phrased in the form: "find me some X with the

following properties and/or relations." In contrast, in all the B questions,

the objects to be considered are provided for them. These questions can

be phrased in the form: "give me information about Xo", where Xo is

known. Our language will therefore have two basic question forms - the

FIND form and the GIVE information form. The FIND form is concerned

with objects, and the GIVE form, with properties and relations (Ps&Rs).

To manage the distinction between known and unknown objects, our lan

guage will need constants and variables. In order to disambiguate the

55

variable scopes, we will also need parentheses and/ or scope conventions.

In addition, we will need to type the constants and variables. The vari

ables for the FIND requests range over image objects. Those for GIVE

requests range over Ps&Rs. A FIND request will return a list of the

objects, the ordered pairs of objects, the ordered triples of objects, etc.,

depending on the number of quantifiers used. Similarly, a GIVE request

returns a list of Ps&Rs. An Object-constant can be a single object or a

list of objects. A P&R-constant can be a single property or relation, or

it can be a list of these, so long as the members are all of the same arity.

The idea of admitting lists is to enable us to ask complicated questions

by assembling a sequence of simpler ones. The results of one query can

thereby be made into the constant terms of another.

• Questions A.3, A.4, and B.2 seek quantitative information. So we will need

a counting function which we can apply to a list of objects, properties, or

relations.

• Questions A.5 and B.3 ask us to rank the values of properties. So we will

need a sorting function which we can apply to a list of property values for

objects, properties, or relations. Indeed, after introducing counting and

sorting, we might as well admit any list-processing function.

• Question B. 7 requires the expression of a logical combination of properties.

Hence, we must have a convenient and complete set of logical operators.

There are no doubt other useful features we should include in a good Ques

tion-and-Answer language, but those above represent a good start.6 Regretfully,

little of the language which is sketched here was implemented. The only com

mand that was partially implemented was the FIND command. Only as much

of it was implemented as was necessary to achieve the goals of testing VRs

6We might acquire good features from the l.a.nguages developed by researchers on Picture
Grammars (see Nake and Roaenfeld (1972) a.nd Kaneff (1969) for a representative sample). For
instance, Stanton (1972) describes a language, RAMOS, which was built to recover structures
from images. Among other commands it posaesees a FIND command similar to the one de
scribed here. It also includes descriptions for points, Iinea, terminators, triangles, and squares.

56

and their control logic. Completing the language and providing visual routines

which can answer every query within the language would bring us a long way

toward a complete set of visual routines and control strategies. How do we vi

sually count objects, sort objects, process lists or groups of objects, and manage

logical combinations of properties? If we are to apply visual routines to these

tasks, and if testing is to be thorough, then we will need a language in which

we can express all the myriad variations of the task.

The precise grammar of the query language currently developed is as follows:

query
find-object-query

find-object-pair-query
quantifier

n
object

structure

property
relation

find-object-query I find-object-pair-query
FIND quantifier object
FIND quantifier object object: relation
ALL I ANY-n
1,::l,3, ... ,100
structure[/property[/property[/property]]]
TERM I CROSS I CORNER I INVTX I INRGN I
SQR I TRI I BAR I DOT IX
HDRIZ I VERT I CLOSED I CONVEX
INSIDE I OUTSIDE I TOUCH I CENTRED
CONNECT I PARLL I PARTOF

So, for example, to ask the question, 'find all vertical line segments', we

would actually type at the keyboard, 'FIND ALL BAR/VERT'. Likewise, 'find

any three closed and convex inner regions inside any square' would be entered

as 'FIND ANY-3 INRGN/CLOSED/CONVEX SQR: INSIDE'7•

The logic of the Question-and-Answer system is simple but adequate:

1. Parse the query.

2. Pass the parsed query to the FIND routine.

3. Display all the successful finds returned from the FIND routine, and save

these finds in memory for possible user examination.

7 Any combination of lower and upper cue is accepted.

57

4.5 Control Logic

In this section we describe the control executive which manages the user's

queries and manages where and when visual routines are applied.

In Ullman's visual routines framework there are two basic operators which

together control the spotlight of attention. These are the "index to a point of

interest" and the "shift processing focus" operators. The former does the impor

tant work of deciding where to focus attention. Koch and Ullman (1984) discuss

three criteria for deciding where to focus attention: the criterion of maximum

peculiarity, or "oddest man out", in some feature map; the criterion of prox

imity to the previously indexed point; and the criterion of similarity in feature

values to the previously indexed point. These are valuable but are incomplete

as an account of how to manage the search which is required to intelligently

answer the queries in our query language. From experimental experience the

author has found that the following problems arise. These problems are suf

ficiently universal that any method for controlling attention would likely face

them.

1. The problem of deciding which search strategy to use when searching for

an obiect - We could search randomly; or search with guidance from heuristics,

such as the proximity and similarity heuristics mentioned by Ullman; or we

could search by following a specific search pattern, e.g., a raster scan, or a

pattern that spirals out from the centre. Figure 4.2 illustrates situations where

different search strategies would be advantageous. Raster scan search suits

Figure 4.2.a because we want to find all instances of an object in an image of

evenly spaced shapes. Proximity search suits Figure 4.2. b because right angles

occur back-to-back in images of crossing lines. And, random search suits Figure

4.2.c because we only have to find one instance of an object in an image where

they are plentiful.

The problem of deciding on a search strategy may be faced repeatedly during

a search, not just upon initiating the search. Portions of an image may benefit

from different strategies. Also, we may want to change strategy mid search if

58

a. Raster scan search is suited to the following
image for query 'Find all squares':

CJ □

□ □
□ DD
DD □

b. Proximity ~earch is suited to the following
image for query 'Find any two right angles':

c. Random search is suited to the following
image for query 'Find any one square':

D C

□ □
D
□

□
□
□
□

Figure 4.2: Situations warranting different search strategies

we find we are making no progress.

2. The problem of spotlight diameter - The reason why we need to focus

attention at all is that we cannot afford to apply visual routines uniformly across

an image. Yet it is clear that we want to apply some basic operations over an

area, and not just at a point. So the problem becomes, what is the optimum

size area or spotlight within which we can apply a routine? Also, does this size

depend on the problem to be solved 7

9. The problem of which feature map we should be indexing within - For

example, in the query of Figure 4.3 we would be best off searching the vertical

bar map rather than the terminator map. Ullman (1984) also mentions this

problem.

4. The problem of different search formats when trying to find a single

object as compared to finding a pair of related objects - This problem arises

because relations and objects are intrinsically different sorts of thing. Finding

an instance of a relation requires finding objects first; whereas, in the 2-D

59

For the query 'Find all vertical bars' we are better off
searching the vertical map over the terminator map.

Figure 4.3: Example illustrating the value in choosing the right map to search

a For the query 'Find all triangles outside squares'
we may want to find triangles and squares first
before computing the outside relation.

b. For the query 'Find all right angle triangles inside
vertically oriented squares' we may want to compute
the inside relation first.

□ 1 □ 1 □ 1~ 1 □ 1 0 1 □
Figure 4.4: The advantages of different task schedules

geometry world at least, objects have existence independent of any relations

they enter into.

5. The problem of task scheduling - For example, when trying to find a

relation, should we first look for the objects, verify their properties, and then

see if they are related? Or, should we instead look for general objects, confirm

the relation between or among them, and then confirm that these general objects

indeed have all the desired properties? In Figure 4.4 we see examples of when it

is advantageous to use each strategy. The scheduling problem also arises when

trying to find an object with several properties. In what order should we test

for the properties? The task scheduling problem is addressed by Ullman with

his suggestion of "skeletal guidelines" (Ullman, 1984).

6. The problem of what to remove from a map in which we are indexing,

after we have found or failed to find something at the indexed point - Provided

that we are not working with a reflexive relation, we can certainly remove the

60

If we are searching for isolated triangles and
we find pl is not attached to one, then we may
legitimately remove p2, p3, and p4 from the
index map we are searching.

p2□ p3

pl p4

Figure 4.5: The removal of unneeded points from an index map

indexed point; but if we are clever, we can also remove some nearby points that

are no longer worth indexing to. For example, in Figure 4.5, when we find there

is no isolated8 triangle attached to point pl, we can remove points p2, p3, and

p4 as well.

7. The problem of duplicate examinations - No matter how carefully one

trims the search maps after each search step, situations can still arise where

the search sequence brings you back to a previously examined object. This is

because one cannot legitimately trim all points from each object examined, and

also because objects are often larger than the spotlight radius, and so one can

return to them from a different route. In the case of relations, it is likely that,

having considered R(objl,obj2), one will then encounter R(obj2,objl). If R is

symmetric, this is a waste of time.

8. The problems of what to do when a search pass fails - Should we just

quit; try a new search strategy; use a new resolution scale; rotate the image;

lengthen lines; or otherwise modify the image?

Our response to the above eight control problems is as follows.

81 define an object to be isolated when it ia in no way embedded within any other shape and
has no other appendages than those defining it.

61

Problem 1: Selecting a Search Strategy

It is clear that selecting a search strategy must be done early, and then be open

to reconsideration after some searching has been done. Accordingly, the control

logic does exactly this. There are two loops. Within the first loop we select a

strategy, and within the second one we carry out the last strategy selected.

1. While we have not yet succeeded k the situation is hopeful
~- While the search is proceeding well k we have not yet succeeded
3. Select search strategy
4. Move spotlight as per strategy
6. Search for instance of item, starting at spotlight location

(Thia may entail moving the spotlight as well.)
6. Done.

In the current implementation we have not addressed the problem of which

strategy to select. We have allowed for the addition of new strategies, but the

only one we use is the simple odd-man-out strategy without heuristics. It is

adequate for the size of image we handle. For large images in which "needle

in a haystack" problems can be presented, the patterned searches would be

useful. As for the heuristic approaches, it is not clear exactly when they would

be useful, although, as we saw in Figure 4.2, there are particular images and

questions for which they do help. For the entire class of 2-D geometry world

images we cannot think of any obviously useful heuristic.

Problem 2: Choice of Spotlight Diameter

The solution to the problem of choosing a spotlight diameter will likely emerge

only after we have acquired much experience working with visual routines. Ac

cordingly, our interim solution to the problem is to allow for the freedom to

experiment by leaving the control of the spotlight diameter up to the individ

ual routines. Sometimes a routine will apply a basic operation over the entire

image. For example, this is done as a preprocessing stage prior to computing

the INSIDE relation. Most other times the routines will expand the spotlight

out to cover the relevant region. For an object this relevant region is its convex

hull.

62

To facilitate this freedom of control, what the system passes to visual rou

tines is an initial spotlight which is the point or region it is currently attending

to and which the routine can modify as it sees fit. For visual routines of struc

tures, such as square and bar, this initial spotlight is a single point, usually the

last point the system indexed to. The routine then expands the spotlight to

cover the object it hopes to find. For visual routines that compute properties,

such as closed and convex, this initial spotlight is larger; it covers the object to

be evaluated for the presence of this property. For visual routines that com

pute relations, such as inside and connected, this spotlight covers the subimage

(of the input image) which contains only the two objects to be tested for the

relation.

Problem 3: Which Base Map Should We Index Within

For this problem our guiding principles ought to be to use those maps most

likely to contain evidence of the objects we are seeking, and to use those maps

least cluttered by the presence of objects which we do not seek. Accordingly,

we solve problem 3 in the following manner. Upon receiving a query the system

takes note of all the objects and properties mentioned. For each of these it

looks up in a table the base maps which indicate the presence of these objects

and properties. It thus constructs a list of base maps which are pertinent to

answering the query. Its only concern then is to choose a map which minimizes

search. Given that it does not know how many distractor objects may be in

the image, one good piece of advice is to guarant~e some lowest upper bound

on the required search by choosing a map with lowest overall activity, and this

is just what the system does.

This heuristic rule - use the base map which has least activity - works well,

although it does mislead us whenever the relative activities between maps are

not directly comparable. For example, a long vertical bar will activate only two

terminator map points but many vertical map points. If we are looking for a

vertical bar amidst a number of horizontal ones, our heuristic might have us

63

If we are searching for a horizontal bar, then,
because there are fewer points active in the
terminator map than the horizontal map, we will
search inefficiently.

Figure 4.6: An example showing how the minimum-activity heuristic can mis
lead

look at the relatively inactive terminator map instead of the vertical map, as

it should (see Figure 4.6). Therefore, a better heuristic rule would weigh the

activities in each map, based on its experience with the domain, before doing

the comparison. Such a superior rule was not implemented since the simple rule

works reasonably well.

From the control perspective, where should we apply this heuristic rule? It

is best to apply it regularly and not just once at the beginning when selecting

the strategy. This is because it is possible for situations to change dynamically

as one is searching. For example, in Figure 4. 7 we see a situation where initially

the least active map is the comers map. But as we eliminate some of the long

vertical rectangles, the vertical map becomes the least active map and we would

save effort if, at that point, we switched to searching the vertical base map.

Accordingly, we choose the map in which to search at this point:

1. While we have not yet succeeded~ the situation is hopeful
2. While the search is proceeding well~ we have not yet succeeded
3. Select search strategy
4 . Move spotlight as per strategy

a. Choose minimally active map
b

6. Search for instance of item, starting at spotlight location
(This may entail moving the spotlight as well.)

6. Done.

64

For the query 'Find all vertical bars inside triangles'
the minimal map is initially the corners map. If we
employ the minima.I-activity heuristic, we will begin
searching this map for triangle vertices. If we
eliminate a few rectangles, then the vertical map
will become minimal and we will benefit by
switching to searching it instead.

n 6 6 6 n
6U~ 6 & 6Li&

Figure 4.7: An example showing how the minimum-activity map can change as
search progresses

Problem 4: Finding Relations is Different from Finding
Objects

Now that we have selected the map in which to index, we can get on with the

search. At this point control problem 4 presents itself. If we are looking for a

relation, we have more things to look for than if we are simply looking for an

object. This forces us to devise two logic streams. For objects we must confirm

the existence of a shape with properties. For relations we have to do this twice,

as well as to confirm the relation between the two objects. 9 This latter task

presents additional control and memory management problems because, when

we find one of the sought objects, we must remember this and then shift our

attention to the new search problem of finding the second object. This second

search may employ a search strategy different from the one the first search

employs. For example, the second search may take advantage of the knowledge

of where the first object is and of the relation which the first object is supposed

to bear to the second object. For example, it might now employ a proximity

guided search. Moreover, for certain relations - e.g., inside, touching, and

connected - the search can be constrained to fall within a certain subimage.

0 We don't do things neceuarily in that order, as we shall see shortly.

65

We take advantage of this whenever poasible by having these relations trigger

a visual routine which limits the second search to the relevant subimage. By

this means an order n 2 search problem can be reduced to an order n problem,

provided there is a good proportion of subimages.

So now our control logic appears as follows.

1. While we have not yet succeeded Ir the situation is hopeful
2. While the search is proceeding well Ir we have not yet succeeded
3. Select search strategy
4. Move spotlight as per strategy

6.

a. Choose minimally active map
b. . . J,

Search zor instance of item, starting at spotlight location
(Thia may entail moving the spotlight aa well.)

Cllae 1: Object
Case 2: Object - Relation - Object

a. Find one object
b. Perform secondary search on the relevant

6. Done.
subimage for the second object

Problem 5: Task Scheduling

We will treat separately the task scheduling considerations for each of Cases 1

and 2.

Case 1, the simpler of the two, is the problem of deciding in what order

to confirm the properties and structure of an object. For example, if we are

looking for a vertical bar, do we first check that whatever is under the spotlight

is vertical, or do we first check that it is a bar? Ideally, we would like to

perform all such checks simultaneously, with any failure cancelling all remaining

work. However, assuming that resources constrain us to perform one test at

a time, then clearly we want to perform those tests earliest which are least

expensive and which have the greatest chance of disqualifying the region under

the spotlight, thereby saving us from having to do the remaining tests. In the

hwnan system, for instance, it appears colour is computed first, preferentially

over form. This picture is also complicated by the fact that some properties are

dependent on others having been completed. If we want to find a red triangle,

and the spotlight of attention is only over one vertex, then we have to recover

the entire triangle shape before we test for redness. Otherwise, if the triangle

66

had two red sides and one green, and the red vertex was under the spotlight,

we might accept the whole triangle as red on the evidence of the one vertex.

In general, in the 2-D geometry world at least, structures take precedence over

properties. That is, before we determine whether an object is closed, convex,

vertical, symmetric, etc., we must have computed its isolated form. Later we

can verify that this form meets the definition of a tria:Q.gle, square, or such.

The task scheduling problem for Case 1 is a difficult one. The relative cost of

performing a property or structure test, and the chance of the test failing, will

doubtlessly vary according to the input. Attempting to solve these problems

could amount to a thesis in itself. Therefore, in the present implementation it

was decided to make do with a crude solution to this problem. What we do

is to avoid all comparisons of relative cost or chance of disqualification, and

just to impose an order on the tasks. It was decided to compute the structure

first because, as mentioned above, for many properties a minimal structure is a

prerequisite. We then compute the properties in the order in which they occur in

the query. We make no attempt to order the computations by cost or by chance

of failing. However, we did design the program to allow the addition of such

logic, should it ever become available. These choices have no big consequences

for the current implementation since there are so few properties available that

one is hard pressed to find two that one would naturally apply to any one object.

The addition of colour, intensity, motion, or depth properties would change this

situation.10

The task scheduling problem for Case 2 is an expansion on the Case 1

problem. The variety of task permutations is larger in Case 2 because, in

computing the properties of two objects, we could conceivably alternate between

them, and also because at various points we could try to compute the relation.

Whichever way ·we manage this, we must be careful to keep apart the results

of each ongoing computation. Case 2 is also complexified by the addition of a

10Our solution to Problem 7, the problem of avoiding duplicate examinations, also makea it
advantageous to compute the form before any other properties. Without the form one cannot
really compare the object in question with the objects one has previously encountered. As
aearch progreHes, these appeals to memory can save one much needless computation.

67

second search task. That is, whenever one of the objects is found, the search

problem changes its nature. The found object becomes a pivotal point around

which the search for the second object takes place.

Our solution to the Case 2 problem is to make four types of schedule. As

with the Case 1 problem, we decided to ignore the scheduling of property checks.

However, experience with early versions of the system revealed that great sav

ings could be had by properly scheduling the relation computation. Let us

assume that object #1 is the first object found and that it becomes the pivotal

object. Let 0 1 stand for the complete computation of object #l's presence;

let 0 2 stand for the complete computation of object #2's presence; and let R

stand for the completion of the computation of the relation between object #1

and #2. Then, the four possible schedules are 0 1-02-R, 0 1-R-02 , 0 2-R-01,

and R-01-02 • In the last three schedules the relation is given an abstract form

to relate before that form has been entirely confirmed to be the desired object.

(For example, we could thereby determine that some object is inside some other

before actually inspecting closely to see which objects they are.) The choice of

schedule is determined by the relative cost of computing the relation as com

pared to computing the objects. Experience with a variety of test images was

the basis for judging the relative cost.

The way we handle the problem of the secondary search about the pivotal

object, namely, the first object found, is rather elegant. After finding one of the

objects we define a second search task, and then we recursively call the entire

FIND algorithm on that task. This task is no longer a task of finding a relation

between two objects. Instead it is the task of finding the object not yet found,

where this object also has the property of being related to the pivotal object.

We manage this by creating a property out of the relation by instantiating one

of its variables with the found object. We then simply add this new property

to the list of properties to be confirmed. This approach has the advantage of

simplicity. There is no need to define new methods of managing a second search

within a search, no need to keep separate working memories, etc. Pascal, with

its ability to handle recursive calls, does this automatically for us. All that

68

is needed is manually to Push a few images onto the image stack and then

to Pop them back upon returning. Incidentally, we also copy the termination

conditions from the main task to this subtask. Thereby, if the required number

of objects is found, the subtask will terminate as it should.

Now our control logic appears as follows.

1. While we have not yet succeeded t the situation is hopeful
2. While the search ia proceeding well t we have not yet succeeded
3. Select eearch strategy
4. Move spotlight as per strategy

a. Choose minimally active map

6.

1.
2.

1.

2 .

3.

4.
6 .

6.
7 . .
8.
9 .

10.
11.

12.
13.

14.
16.

16 .
17.

18.
10.
20.

21.
22.

b
Search for instance of item, starting at spotlight location
(This may entail moving the spotlight as well.)

Case 1: Object
- Confirm structure present at spotlight
- Confirm propertiea for this structure

Case 2: Relation(Object1,0bject2)
- If Object1 is costly to compute and an

isolated object (i.e., triangle and square)
then

Find the isolated region under the
spotlight; call it X1.

If Object2 is costly to compute and an
isolated object

then (R-01-02 ca■e)
Compute relevant aubimage to search
Perfo~m a new search task to find ALL

iaolated objects, X~a. having the property
of being R(X1,obj).

If Xl ia indeed Objectl then
While termination conditions are not satisfied

If X2 ia indeed an ObJect2.
Accept each R(X1,X2) as a solution

else (02-R-Ol case)
Compute relevant subimage to search
Perform a new search task to find as many

Object2's as are necessary, each also
having the property of being .R(X1,object2).

If X1 ia indeed Object1 then
Accept each R(X1,0bject2) as a solution

else
If Object1 is under the spotlight then

lt Oblect2 is costly to compute and an
iao ated object

then (01-R-02 case)
Compute relevant subimage to search
Perform a new search task to find ALL

isolated objects, X2s, having the property
of being R(X1,obj).

While termination conditions are not satisfied
If X2 ia indeed an Object2.

Accept each R(Object1,X2) as a solution
else (01-02-R case)

Compute relevant subimage to search
Perform a new search task to find as many

Object2's as are necessary, each also
having the property of being

69

23.
24 .

6. Done.

Problem 6:

R(Object1,0bject2). Accept each of these
as a solution

- If Objectl was not found under spotlight, then
Repeat the above, except now look for Object2

first and Object1 second. (This step is not
necessary, but it is added to preserve some sym
metry between Objects 1 and 2. Without this step,
if we don't find Object1 under the spotlight,
then we move the spotlight elsewhere. With this
step, we would instead switch to looking for
Object2 under the spotlight. Ideally, both
objects would have equal chance from the start,
but this is not possible in this serial model.)

What to Remove from the Index Maps as
Search Progresses

Inattention to this problem leads to wasted effort because points that were

previously evaluated as parts of an object are repeatedly inspected. But an

overzealous solution to the problem can have the unwanted effect of trimming

potential solutions. The key to solving this problem is knowing what one is

searching for and what its properties allow one to get away with while trimming.

First, let us consider Case 1 searches only. If one is looking for an isolated object,

then, whether or not one finds it, one can remove from consideration all those

points connected to the object found within the spotlight. If the object one

seeks is not an isolated object, then, when the object is found, all those points

that are part of the object and are isolated (ie., that do not abut onto some

other form) can be removed. And, if the object is not found attached to any

point within the spotlight, then all these points within the spotlight can be

removed.11

The only additional consideration needed for Case 2 searches is whether or

not the relation can be reflexive. If it is not, then as one performs the second

search, one had better not find the pivot object. We solve this problem simply

enough: whenever we are dealing with a non-reflexive relation, we remove the

11 Incidentally, all points that are removed are removed from copies of the base maps and
not from the original base maps. This is neceSBary because, if we are searching for a relation,
finding one object must not interfere with the search for the other object. We must be able to
call up a fresh base map when searching for the other object.

70

isolated portions of the pivot object from the subimage which is given to the

second search task.

Problem 7: Duplicate Examinations

The way to avoid making duplicate examinations of the same object is simply

to remember the essential aspects of one's previous activity. Our solution is

to remember every successful object found and every failed object found. In

the case of relations, if the relation is symmetric, then we also remember every

pair of related objects and every pair of objects not so related.12 If ever we

find the same object or pair of objects, we make sure to stop reconsidering it

or them immediately. Successes, incidentally, are treated exactly like failures,

except that a single flag is set to distinguish them. For Case 1 searches, we

find that remembering failures is as important as remembering successes. For

Case 2 searches, this holds only if R is symmetric. If R is symmetric (such as

touching, outside, connected, or paralle~, then knowing whether R(A,B) is true

will tell us whether R(B,A) is true, and hence saves us from having to compute

this directly. If R is not symmetric, then we have to go ahead and test R(B,A)

independently.

This strategy for handling symmetric relations can at times strain the re

sources of memory since, for n objects in the image, up to n(n -1) /2 pairs have

to be remembered. This has not been a problem for the small images we have

worked with. On larger problems we could give up on this strategy and only

remember the pivot objects.

Now our control logic can be updated to appear as follows:

1. While we have not yet succeeded t the situation is hopeful
2. While the search is proceeding well k we have not yet succeeded
3. Select search strategy
4. Move spotlight as per strategy

12Whether the relation ia symmetric or not, we m118t of course remember the successful
relations since we have to report these back to the user. However, we do not need to remember
them in order to avoid duplicate examinations. This is done automatically by remembering the
pivot objects and, for each pivot object, by locally remembering the second objects which we
attempted to relate to i~.

71

a. Choose minimally active map

6. Se~rch'tor instance of item, starting at spotiight location
(Thia may entail moving the spotlight as well .)

1.
2 .

3.

1.
2.

3 .
6. Done .

Case 1: Object
Con1irm structure present at spotlight
If we haven't examined it before then

Contirm the 1;>ropertiea for this structure
Remember the object examined

Case 2: Object - Relation - Object
Find a pivot object
If we haven't examined the pivot before then

Perform a secondary search on the relevant
aubimage tor the second object.
During this second search, if R is symmetric,
then remember all pairs we attempt to
relate and do not bother attempting to relate
pairs that are already on this list .

Remember the pivot object

Problem 8: What to Do When a Search Pass Fails

The final control problem which faces us is what to do in the event we fail to

find what we seek. The failure could be indicated to the system by the user's

dissatisfaction with a response or by some internal trigger of non-confidence.

If the system has confidence in its detection ability, it could simply quit while

insisting it has found everything findable. Even people, however, fail to detect

things in images, and we would expect our system to perform less well than a

person. Therefore, some provision should be made for returning to the assigned

task and seeing if a new approach might not yield better results.

The failure to find something can be the result of several things. The image

could be noisy; it could be a trick image; or the item sought could occur at a

lower scale of resolution. A sought object could appear in an unnatural position

or orientation. The system's definition of an object, property, or relation might

disagree with the user's. The system might have used a heuristic search strategy

that did not guarantee a thorough search. Then again, maybe the system is

just defective: it is blind to certain objects or is incapable of reliably detecting

certain properties and relations.

For whatever reason a search can fail, the ideal system response would be

to diagnose the cause of failure, remove the cause, and then to try again. If the

72

image is noisy, we could try smoothing the image or lengthening lines to fill any

gaps. As a matter of course, we should probably examine the image at a variety

of scales and orientations. To handle trick problems we should try not to be

misled by context. This could mean artificially removing or distorting parts of

the image in the hope of chancing upon the correct "view". If we previously

used a heuristic search scheme, then we could return and try a patterned search,

one that is guaranteed to cover the entire image, such as a raster scan search.

If we keep failing at a particular type of query, then we could simply admit our

failing and ask for guidance, clues, or a simpler request.

Unfortunately, none of these methods were implemented. These problems

are rather beyond our immediate aims of devising efficient means of computing

properties and relations. This control problem is nonetheless a very important

one and we should plan for it. The programs were designed to accommodate

the future addition of such logic. For now, whenever the initial search stops,

the program simply returns whatever has been found.

73

Chapter 5

System Performance and
Evaluation

The system1 has undergone numerous tests in order to evaluate the ability of the

visual routine language to compute a wide variety of properties and relations,

and in order to evaluate the control logic described in Section 4.D. In this

chapter the results of these tests are presented and these results are evaluated.

5.1 Experiments and Results

Privately, the system has been tested on numerous small images. To save space

all the test figures have been merged into four images:

Tn,Ima .. 1 Tut Image 2

1The program is written in Borland lntemational's Turbo Pascal, version 3.0. The computer
on which the system currently runs is a standard IBM pc.

74

Tutlmap S Te■' lmap 4

The first image is specialized to test the performance of the base map cal

culations. The remaining three images contain a variety of figures. Each of

these three is subjected to 28 questions. Twenty-two of those questions are

each designed to evaluate a particular visual routine. The remaining six are

designed to exercise the control logic and confirm that it can handle a mixture

of structures, properties, and relations.

All the queries are of the "FIND ALL" variety since these are more in

structive than the "FIND ANY" variety. The system responds to each query

by individually displaying each instance found. To save space here all the re

sponses are overlayed into one image. Unfortunately this makes it difficult to

separate the responses. A count of the number of instances that were found

by the system is provided, and with a little work the reader can compute these

himself. If the system makes any errors, these are explained.

75

5.1.1 TEST 1 : The Performance of the Base Map Cal
culations

The following base maps were computed:

Tl : vertical base map Tl ; 22.11 ' baee map Tl : 46' base map

Tt : 67.61 bu• map Tl : horiaontal baae map Tl ; 112.&' baae map

Tl : 167.6' baae map Tl : tenninatora baae map

76

Tl: concavity vertices ba.ae map

Discussion:

The purpose of the base map algorithms2 is to give us sufficiently accurate

base maps with which we can carry on the business of testing visual routines.

To this end we could have appealed to some magic mechanism and created the

base maps manually. However, it was felt that generating base maps ought to

be a task within the scope of visual routines, and that it would be a good test

of their ability. Furthermore, there may actually be times when one wants to

create second order maps from the original base maps; for example, as when

looking for edges in the terminator maps (see Figure 3.2 above). In those cases

it would be nice to have the operations managed by the general purpose visual

routines rather than by some special purpose mechanism.

As we can see from our test, the base map algorithms work well enough for

our purpose. The oriented edge computations do get confused somewhat in the

presence of a block of active pixels, as we can see in the centre of the star. This

can be excused, given that there is no real edge present there.

Failures also occur for edges whose orientation does not fall into exactly

one of the eight categories, as we can see in the lines along the bottom of the

image. In such cases part of the line is given one orientation and the other part,

a nearby orientation. Part of this problem is due to the low resolution image

and the use of 3x3 masks; another part is due to the lack of a good iterative

competitive scheme which would have neighbouring active pixels "settle down"

within a common orientation map.

2 You can find the actual baee map algorithllUI in Appendix A.

77

Of course, the problem with the oriented edges propagates to those base

maps which depend on these edges for their own computation. All the non

orientation base maps - corners, cr088ings, terminators, a.nd concavity vertices

- a.re affected in this wa.y.

But, if we just remember these mild troubles, we should feel confident in

relying on our base maps.

Note: the solid block on the right edge of the image is not a. legitimate object

in our 2-D geometric world. We were curious to see how the algorithms would

behave for such an object. Presumably, passing the image through an edge

detector and thereby reducing solid blocks to edge figures would allow us to

handle such objects. In section 5.1.3 below, another solid object was included

to test the CONVEX and CLOSED visual routines. The routines handle it

properly; it is convex but not simple-closed.

78

5.1.2 TEST SET 2: The Performance of the Structure
Routines

a. Find all terminators

Instances found: T2-37, T3-42, T4-56. All are correct.

T2: Find all terminatol'tl T!: Find all terminators T♦: Find all tenni.nators

b. Find all corners

Instances found: T2-25, T3-28, T4-27. All are correct.

'l'S1 Find all comers T-4: Find 11-ll comers

79

c. Find all crossings

Instances found: T2-3, T3-5, T4-5.

The instances for T2 and T3 are correct. The base map calculations had
trouble with the "N" figure of T4.

d. Find all concavity vertices

Instances found: T2-36, T3-48, T4-37. All are correct.

T2: Find all conc.avlty-vertice11 T~: F ind nil conco.vity-verticea

80

e. Find all inner-regions

Instances found: T2-7, T3-9, T4-5. All are correct.

T2: Find all lnner-region■ T3: Find all innel"-regione

f. Find all concavities

Instances found: T2-12, T3-10, T4-14. All are correct.

T2: Find all concavities T3: Find all concavities

81

g. Find all dots

Instances found: T2-3, T3-0, T4-4. All are correct.

T2: Find all dota

h. Find all bars

Instances found: T2-31, T3-40, T4-44.

The errors made in the base map calculations influence the results here. In
T3 the solid region generates five bars: the four outer edges and one large solid
diagonal. Also in T3 the little box in the centre generates one vertical box on
the left side. The remainder is recognized as a single horizontal bar. In T4 we
lose the diagonal part of the bottom-centre figure; the 'N' figure in the square
generates one horizontal bar; and the triangle gnerates five bars, two of which
are the small vertical bars near the two lower vertices.

Tl: Find oU b11.n

82

i. Find all isolated-triangles

Instances found: T2-3, T3-0, T4-1. All are correct.

T2: Find all tri11n1IH T3: Find all triangl 1

j. Find all isolated-vertical-squares

Instances found: T2-3, T3-1, T4-3.

The square in T3 is not isolated, but was recognized nonetheless. It would
be trivial to alter the visual routine which computes squares so that it does not
recognize such cases, but there would be little point in that.

T2: Find all ■quara TS: Find all 1quara T4; Find all square■

83

k. Find all isolated-arbitrary-objects (IAOs)

Instances found: T2-13, T3-8, T4-18. All are correct.

T2: Find all 1A01 ·T.c: Find o.ll IAO•

Discussion on the structure routines:

The preceding batch of tests thoroughly exercises each of the visual routines

used to confirm the presence of an object or a feature. It is important that

we be able to trust our basic object finding logic before moving on to test the

property and relation finding logic. Allowing for errors in the base maps, all

the queries were correctly answered.

84

5.1.3 TEST SET 3: The Performance of the Property
Routines

a. Find all vertical bars

Instances Found: T2-8, T3-16, T 4-18.

In T4 the two vertical tips at the base of the triangle generate small vertical

bars.

b. Find all horizontal bars

Instances Found: T2-10, T3-17, T4-21.

The little box in T3 generates a single horizontal bar. The same happens
for the 'N' figure in T4.

'1'2 : Find All horisonti!il ban TSt Find all horu:o ~J ban T•: Find aU horisontal bnra

85

c. Find all simple-closed IAOs

Instances Found: T2-7, T3-4, T4-5. All are correct.

T•: Find ~11 simpl&-doaed JAOe

d. Find all convex IA Os

Instances Found: T2-9, T3-5, T4-10.

In both T2 and T 4, the triangles which are inside squares are both inter
preted to possess concavities on their outer edge. In T2 this is on the bottom
vertex. In T4 it is on the two bottom vertices. The problem lies with the narrow
locality of the make-convex basic operation.

T4 : tlnd all convex lAOe

86

Discussion on the property routines:

Allowing for the errors in the base maps, the property routines all work.

The time required to find the vertical bars was found to be about half

that to find the horizontal bars. This anomaly is due to the task scheduling

convention employed where structures are always found before properties. In

order to confirm the presence of a horizontal bar attached to the spotlight, we

first find any bar there, and then apply the horizontal test. To find the bar

means iterating through all the orientation maps, the vertical map being first,

the horizontal one being fifth. A superior method would only look at bars in

the horizontal map from the start.3

3This situation is alleviated somewhat by our indexing only within the horizontal map. The
problem is that some of these points are also attached to non-horizontal bars. For instance,
take the corners of squ8:l'e11.

87

6.1.4 TEST SET 4: The Performance of the Relation
Routines

a. Find all IAOs inside IAOs

Instances Found: T2-5, T3-0, T4-13. All are correct.

Note that 'inside' is defined as "being within the scope of". According to

this definition, the containing object need not be closed and the contained object

must be entirely within the convex hull of the containing object.

T3: find II xx : inaid• T4: find all xx : imide

b. Find all triangles outside squares

Instances Found: T2-8, T3-0, T4-2. All are correct.

Tl:flnd oil trl 1qr : outeide Tll:ftt1d P-11 tri eqr:c;mtlide Tt:Find all tri sqr:outside

88

c. Find all IAOs centred-in IAOs

Instances Found: T2-0, T3-0, T4-4. All are correct.

T!:Find aD x x :centre T,:Find 11-II x x :centre

d. Find all bars touching bars

Instances Found: T2-28, T3-48, T4-34.

Allowing for the base maps, all the instances are correct.

T2:Find all bar bar :touch TS:Find all bar bar :touch T4:Find all bar bar :touch

89

e. Find all cross-points connected-to cross-points

Instances Found: T2-0, T3-6, T4-3. All are correct.

T2:Flnd aU croa1 croa1:conned TS:l'ind au croa1 croe1:connect T,:Find nll croe, croee:connect

f. Find all bars part-of triangles

Instances Found: T2-9, T3-0, T4-5.

In T4, the two tips at the base of the triangle are recognized as vertical bars.

T!:Flnd all bar tri :panof T4:Find all bar trl ~partof

90

g. Find all bars parallel-to bars

When applied to the entire images of T2, T3, and T4, this query caused a
stack-overflow system crash. There are simply too many sets of parallel bars in
each image. The following tests were done with only a portion of each image.

Instances Found: T2-10, T3-11, T4-9. All are correct.

T2B: Find all bar bar : parll T8B:Find all bar bar ; parU T4B;Flnd all bar bll.r ; parll

Discussion on the relation routines:

Allowing for what the structure and property routines recognize, the relation

routines all work.

91

5.1.5 TEST SET 5: Performance Aspects of the Control
Logic

a. Find all vertical bars connected-to vertical bars

Instances Found: T2-3, T3-13, T4-9.

In T4, the two vertical tips of at the base of the triangle were recognized as

vertical bars.

'1"2:f.a. bBr/vert. bar/vert:eonneet TS:f.a. bar/vert bar/vert:eonneet T-t:h •. bar vert bar/vert:conned

b. Find all convex IAOs inside closed IAOs

Instances Found: T2-4, T3-0, T 4-4.

The triangles in T2 and T 4 were not considered convex because of the per
ceived concavities near some of their vertices.

T2:f.a. x/cnvx x/et.d:iruiide TS:f.a. x cnvx x/ cltd:lnaide T4:f.a. x/cnvx x/eloaed:inside

92

c. Find all horizontal bars inside triangles

Instances Found: T2-2, T3-0, T4-2. All are correct.

T2:f.a. ba.r/horu hi:inilide TS:f.a. bu/bona tri: ineido

d. Find all corners part-of convex IAOs

Instances Found: T2-22, T3-20, T4-16.

Apart from the previously mentioned problem with the non-convex triangles,
and the peculiarities of the the base map computations of the corners, the
instances found are correct.

T2:f.a. comer x/c:onvax:pa.rtof TS:t comer x/conve1e p..rtof T4:f.a. comer x/convex:partof

93

e. Find all vertical crosses outside squares

Instances Found: T2-3, T3-4, T4-12. All are correct.

T2:f.a. croia/vert ,qr:oubide T3:f. a. croa■/vert. aqr :outaide T4:f.a. croBB/ver1; 4qr:outeide

f. Find all convex inner-regions inside closed IAOs

Instances Found: T2-7, T3-3, T4-7.

In T 4 the interior of the triangle is not considered convex. Again, this is
due to the narrow locality of the mk-convex operation.

: .• nrsn convex X C OH :uunde

Discussion on the performance of the control logic:

The control logic successfully manages a mixture of structures, properties,

and relations.

94

5.2 General Evaluation

We found that the visual routines were strained somewhat at the task of com

puting base maps. Although visual routines were never intended to compute

base maps, the maps they produced were adequate for our purposes.

The routines for confirming the presence of geometric objects work well

enough. The bar routine's failings were caused by the failings in the base map

computations.

The property and relation routines appear to work correctly. They were

only limited by the structures they were given. The base map computation for

convexity vertices could be improved by expanding the region of locality of the

make-convez operation. This would solve the problem of the two triangles (one

in T2 and the other in T4) not _being recognized as convex.

The control logic successfully manages the search. However, it is inefficient

in certain respects. For example, when searching for vertical bars, we should

not use the vertical map solely to guide the search for bars in the image; we

should search for the vertical bars in the vertical map as though it were an

image. Also, when watching the system search, it is apparent that much time

is spent reevaluating the properties and structures of regions we have already

examined. A major revision to the control logic would have it create a high-level

semantic map of what objects are in the image. For example, it could label all

the points in a square as "square points". Another possibility would have it

create a map of object locations. The search could then proceed in this much

simpler map rather than in the image.

95

Chapter 6

Conclusion

We set out to see what methods within the visual routine paradigm are suited

to the task of efficiently finding the geometric properties and relationships of

figures in an image. To this end we reviewed the work that had been done on

visual routines, preattentive vision, and the spotlight of attention, the latter

two being key components of visual routine thinking. We then embarked upon

our own study of the problem in hopes of constraining the form these meth

ods should take. We chose a visual domain rich in geometric properties and

relations and free of other distracting problems. This was the world of simple

2-D geometric shapes, constructed from lines of uniform width and intensity.

We then approached the problem of designing efficient visual routines from the

perspective of language design. We asked ourselves what would make such a

visual routine language descriptively and procedurally adequate.

We saw that a visual routine language was descriptively complete for a

visual domain if it could compute every property and relation imaginable in that

domain. However, we discovered that establishing such completeness would be

difficult. We then saw reasons why descriptive adequacy might not be all that

important a property of a visual routine language, especially in comparison to

procedural adequacy.

Turning then to procedural adequacy, we divided this issue into concerns

over resources and concerns over convenience. We decided that our visual rou-

96

tine language would be resource-efficient if it had some guarantee of containing

the best algorithms possible for computing visual properties and relations in

the 2-D geometric shape world. We decided that establishing such a guarantee

would require a thorough study of the task of computing visual properties and

relations. So we embarked on this difficult course and ended up going part way.

We first looked at image representation and decided that a square grid tessella

tion on which only one-pixel-width lines appear was suitable. We then looked

at what basic features could be efficiently computed directly from the image.

We found that simple local properties could make ready use of parallelism and

thus could be efficiently computed. Such properties include: the orientation of

any single line at a point; whether or not a line is present at the point; whether

the point is an end point of some line; whether two, three, or more lines cross at

a point; the type of pattern that can occur when lines cross; and the curvature

at a point. We found that to compute some of the orientation-independent local

properties, like curvature or crossing pattern, it was space-efficient to introduce

further stages of processing rather than to match for one of possibly thousands

of individually oriented patterns. We then moved on to consider non-local prop

erties that could be computed directly from the image. We saw how, by using

a Hough· transform type of technique, we could again introduce several stages

of processing and thereby efficiently compute the presence of some size and

position invariant properties.

We continued on to look at second-order properties and relations which could

be computed once the initial properties had been computed and positioned in

a topographic map. Beyond the obvious reapplication of the previous local

computations to these new maps, we determined that the efficient computation

of complex geometric properties and relations would have to emerge out of a

combination of parallel and serial methods. But just which parallel and serial

methods was not obvious. Therefore, it was argued, we should put a temporary

end to a priori analysis and go gather some experience - go try assorted methods

and see which ones work.

We then turned from discussing resource issues to convenience issues. A

97

number of capabilities were outlined which we would hope to find in a visual

routine language. The language which was subsequently developed had all these

features.

An argument was made for why we would be wise to embed the visual routine

system in a system which interrogated images about what they contained rather

than tried to recognize what they contained. In an interrogation system, since

we were given the objects, properties, and relations which we sought, we had

only to locate their defining characteristics in the image. This problem was

much more constrained than the problem of examining all the image features

and indexing them to all the candidate properties, objects, and relations in

order to see which ones were present in the image.

We then began a study of the visual routine system which was developed as

part of this thesis. After reviewing the overall design and the key data struc

tures, we looked at the basic operations. We saw that several of these operations

were used frequently in the writing of the visual routines. In particular these

were: moving maps, spreading activation, intersecting maps, combining maps,

clearing maps, removing portions of a map, and exiting a routine when a map

is empty or non-empty. An argument was made that this finding signified the

genuine importance of these particular basic operations. We then compared

our set of basic operations with that given in Ullman (1984) and concluded

that Ullman's was incomplete in that it failed to include the most elementary

operations.

Next we turned to the visual routines which were written with these opera

tions. We gave all twenty-two property, relation, and structure visual routines

in detail.

Next we saw what would make an ideal query language, and we were shown

the actual, much simpler, query language which had been implemented.

We were then introduced to eight key control issues which were encountered

during development. These issues were:

1. deciding on a search strategy, both initially and as search progresses

98

2. setting the diameter of the attention spotlight

3. choosing the feature map to index within

4. treating object searches differently from relation searches

5. scheduling tasks when several tasks are required to confirm an instance

of an object or of a relation over objects.

6. deciding what parts of an index map can be removed after we have

searched for an instance at the index point

7. managing memory to avoid duplicate examinations of the same area of

the image

8. deciding what to do when a particular search pass fails

Each of these issues was explained in detail. It was conjectured that they

represent universal issues which would arise for anyone trying to apply visual

routines to the problem of searching and matching objects and relations in an

image.

Finally, we were shown the system in action. We saw that the visual routines

worked well, and that the search control logic worked well too. We finished by

evaluating the system's overall performance. We found that the visual routines

were strained somewhat at the task of computing base maps. At computing

object descriptions, properties, and relations they worked well. At computing

object descriptions, they probably managed as well as they did only because

geometric objects were definable in terms of geometric properties and relations.

We also saw aspects of the control logic which could be improved. In particu

lar, it would be advantageous to be able to search base maps or intermediate

maps as though they were images. Also, it would be effort saving to create

representations locating the objects in the image and to conduct our search in

these representations and not in the image.

In summary: We set out to find efficient methods to compute visual proper

ties and relations w~ile working in the visual routine paradigm. After choosing

99

a suitable experimental domain we deduced some constraints on the input to

our visual routine language. When deduction seemed no longer appropriate,

we turned to experimentation and developed a number of actual routines and

a strategy for controlling their application; these together made an effective

working system. We gave a complete account of the heart of this system: the

basic operations, the visual routines, and their controlling logic. By developing

the system we discovered a number of control issues which we believed were

intrinsic to the visual search problem. The discovery of the basic operations,

the visual routines, and the control issues constituted the principle contribution

of this thesis to vision science.

Directions for future development

The work in this thesis presents opportunities for a number of natural ex

tensions. One of top priority is the working-out of a consistent and powerful

visual query language. With such a language we could develop more complete

control strategies for managing groups of objects, groups of properties, patterns

within groups, properties of properties, and so on. The addition of negation

to our language would create interesting control problems. But even with the

simple language we employed, there is much progress that can be made. We

could implement methods for handling different scales of objects and also ro

tated objects (e.g., square versus diamond). The visual routines could be made

more robust. They could be made to operate on noisier images, images with

objects of variable intensity, partial objects, and occluding objects. They could

be made to return degrees of match rather than the binary yes/no that they

currently return. We could add new search strategies, such as raster search. We

could add search heuristics like the proximity and similarity heuristics Koch and

Ullman (1984) mention. In the domain of search control, we could add means

to remember interpretations of features and thus avoid their reinterpretation.

There are also numerous visual routines to be written for handling curvature,

density, number, size, symmetry, relative position, and so on. The beauty of

the visual routine paradigm is that it gives structure to all these pursuits.

100

Bibliography

[1] Ballard, Dana H., and Brown, Christopher M., Computer Vision, Engle
wood Cliffs, NJ: Prentice-Hall, Inc., 1982.

[2] Hearn, Donald, and Baker, Pauline, Computer Graphics, Englewood Cliffs,
NJ: Prentice Hall, Inc., 1986.

[3] Hillis, W. Daniel, The Connection Machine, Cambridge, MA: The MIT
Press, 1985.

[4] Horn, Berthold Klaus Paul, Robot Vision, Cambridge, MA: The MIT Press,
1986.

[5] Hurlbert, Anya, and Poggio, Tomaso, "Spotlight on Attention", MIT AI
memo #817, April, 1985.

[6] - , "Visual Attention in Brains and Computers", Nature, Vol. 321, #12,
June-1986, pp.651-652.

[7] Jolicoeur, Pierre; Ullman, Shimon; and Mackay, Marilynn; "Curve tracing:
A possible basic operation in the perception of spatial relations", in Memory
and Cognition, Vol. 14, No. 2, 1986, pp. 129-40.

[8] Julesz, Bela, and Bergen, J.R., "Textons, The Fundamental Elements in
Preattentive Vision and Perception of Textures", in The Bell System Tech
nical Journal, Vol. 62, No. 6, July-August 1983, pp. 1619-45.

[9] Julesz, Bela, "Toward an Axiom.a.tic Theory of Preattentive Vision", in Dy
namic Aspects of Nwcortical Function, ed. by G.E. Edelman, W.E. Gall, and
W .M. Cowan, 1984, pp.585-612.

[10] -, "Preattentive Human Vision, A Link between Neurophysiology and
Psychophysics", in Handbook of Physiology: Volume V, Higher Functions of
the Brain, ed. by Fred Plum et al., American Physiological Society, forth
coming in 1987.

[11] Kaneff, S. (ed.), Picture Language Machines, London: Academic Press,
1970.- Narasimhan, R., "Picture Languages", pp. 1-30.

101

(12] Koch, Christof, and Ullman, Shimon, "Selecting One Among the Many: A
Simple Network Implementing Shifts in Selective Visual Attention", M.I.T.
A.I. Memo 770, 1984.

(13] Little, James J., "Parallel Algorithms for Computer Vision", M.I.T. A.I.
Memo 928, November, 1986.

(14] Lowe, David G., Perceptual Organization and Visual Recognition, Boston:
Kluwer Academic Publishers, 1985.

[15] Mackworth, Alan K., "Adequacy Criteria for Visual Knowledge Represen
tation", University of British Columbia technical report 87-4, also to appear
in Computational Processes in Human Vision, edited by Zenon Pylyshyn,
Norwood N.J.: Ablex Publishers, 1988 (in press), 23 pp.

[16] Mahoney, James, and Ullman, Shimon, "Image Chunking: Defining Spatial
Building Blocks for Scene Analysis", to appear in Computational Processes in
Human Vision, edited by Zenon Pylyshyn, Norwood N.J.: Ablex Publishers,
1988 (in press), 41 pp.

[17] Marr, David, Vision, San Francisco, CA: W.H. Freeman & Co., 1982.

[18] Nakayama, K, and Silverman, G.H., "Serial and Parallel Processing of
Visual Feature Conjunctions"', in Nature, Vol. 320, 1986, pp.264-265.

[19] Nake, F., and Rosenfled, A. (eds.), Graphic Languages, Amsterdam: North
Holland Pub. Co., 1972.

[20] Preston Jr., Kendall, "Languages for Parallel Processing of Images", in
Real-Time/Parallel Computing: Image Analysis, New York: Plenum P ress,
1981, pp. 145-58.

[21] Pylyshyn, Zenon, "The Role of Location Indexes in Spatial Perception: A
Sketch of the FINST Spatial-index Model", University of Western Ontario
Cognitive Science memorandum COG:MEM 23, July, 1987, 31 pp.

[22) - , "Here and There in the Visual Field", to appear in Computational
Processes in Human Vision, edited by Zenon Pylyshyn, Norwood N .J.: A blex
Publishers, 1988 (in press), 25 pp.

[23] Stanton, R.B., "The Interpretation of Graphics and Graphic Languages",
in F. N ake and A. Rosenfl.ed (eds.), Graphic Languages, Amsterdam: North
Holland Pub. Co., 1972, pp. 144-162.

[24] Tanimoto, Stephen, and Klinger, A. eds., Structured Computer Vision,
New York: Academic Press, 1980.

102

[25} Treisma.n, Anne, and Gelade, Garry, "A Feature-Integration Theory of
Attention", in Cognitive Psychology, Vol. 12, 1980, pp.97-136.

[26} Treisman, Anne, and Schmidt, Hilary, "Illusory Conjwictions in the Per
ception of Objects", in Cognitive Psychology, Vol. 14, 1982, pp. 107-141.

[27] Treisman, Anne, "Prea.ttentive Processing in Vision", in Computer Vision,
Graphics, and Image Processing, Vol. 31, 1985, pp.156-177.

[28] -, "Properties, Parts, and Objects", in Handbook of Perception and Per
formance, Vol. 2, ed. by K. Boff, L. Kaufman, and J. Thomas1 John Wiley &
Sons, Inc., 1986.

[29] - , "Features and Objects in Visual Processing", in Scientific American,
November 1986, pp.114B-125.

[30] Ullman, Shimon, "Visual Routines", in Cognition, Vol. 18, 1984, pp. 97-
159.

[31] -, "Artificial Intelligence and the Brain: Computational Studies of the
Visual System", in Annual Review of Neurosciences, Vol. 9, 1986, pp. 1-26.

[32] Walters, Deborah, "Selection and Use of Image Features for Segmentation
of Boundary Images", in Proceedings of Graphics Interface '86, Vision Inter
face '86: 116-110 May, 1986: Vancouver British Columbia, Toronto: Canadian
Information Processing Society, 1986, pp. 318-324.

103

Appendix A

Source Programs

The structure, property, and relation visual routines were given in Chapter

4. Here we present miscellaneous other visual routines, Pascal subroutines

for selected basic operations, and the Pascal program that computes the 3x3

convolution masks.

A.1 The Routines that Build the Base Maps

BASEMAPS.VR
----------{------------------ -------
{Directory of Register Maps
{--------------------------{ 0 • input image
{ 1-8 • orientation maps 1• vertical, 2=22.6 deg NE, ...
{ 9 = composite of all terminators in each orientation map
{ 10 ~ crosaiJ18s intersections of two or more oriented edges
{ which aren't corners
{ 11 =corners: intersections of two or more oriented edges
{ which are also terminators
{ 12 = concavity vertices
{ 13-17 = Reserved for future base maps
{ 18,19 • Internal System Utility
{ 20-29 • Work registers free for use by the visual routine programmer
{ 30-40 • FIND/MATCH local work registers
{ 41-49 = Unused
{ 60-62 = Index maps: markable copies of base registers to be searched
{--------------------------
call orient {place orientation maps in regs 1-8
call endpts {place composite (all orients) terminator map in reg 9
call intersec {place composite (all orients) crossing rgns in reg 10;

{place composite (all orients) corners map in reg 11
call invertex {place all inner pts of concave vertices in reg 12

{invertex makes use of crossing regions

104

ORIENT.VR

{*** BUILD ORIENTATION MAPS in regs 1-8
doz 1 8

begin

conv3 line Oz (z-1)
cbop O (z z
kop -20 + z z
deunit 2 z z
kop 20 + z z

end

{- find oriented narrow bars
{convolve with oriented narrow-bar
{remove any points not in image}
{clip weak points (< 20) part 1
{singletons are not bars
{clip weak points(< 20) : part 2

detector

mov 1 11 8
call compete
doz 1 8

{save 1-8 in 11-18 for future use
{have each compete with his two neighbors for dominance

begin
deunit 2 z z
{-- 11conv3 line" above
{-- endpoints ot lines.
conv3 grow.a z 20 (z-1)
cbop O (20 20
conv3 grow.b z 21 (z-1)
cbop O [21 21
bop z + 20 z
bop z + 21 z

end

{remove units introduced by competition
followed by clipping typically removes the

Here we grow them back again.
{ grow the "right" side of the map

{ grow the "left" side of the map

{ add these points back in

call compete { repeat competion
{-- now, if any are left out we had better replace them: a hack
set_all 20 0
doz 1 8

bop 20 + :z 20
kop 1 < 0 21
bop 21 - 20 20
doz l 8

begin
mov .z 22
sp_act_lin 2 22 (z+10)
cbop 22] 20 22
bop z + 22 z
cbop OJ z z

end

ENDPTS.VR
set_all g O
doz 1 8

begin

{take union of all orientations
{aet all image points to 1
{20 now has the points to be re-included

{grow out in original precompetition edge
{recover points to be re-included
{add them back in
{reset to image intensity

{clear terminator map}

conv3 end.pt z (z+20) (z-1)
cbop z] (z+20) (z+20)

{convolve with end.pt finder
{constrain to oriented bar
{add to terminator map bop 9 + (z+20) 0

end

INTERSEC.VR

set_all 10 0
set_all 11 0
do x 1 8

if_nz x call interae2 x

mov 11 20
mov 11 21
{------------- corners

{init crossings map
{init corners map

{put in 10 all interaectn orient regions
{and in 11 all intersectng orient points

105

cbop 9 [11 11
cbop 11 [0 11
mov 11 26
sp_act_l_a 2 26

{corners are crossing terminators
{reset values to initial image values

{-------------
20
croBBinga
10

{find intersec regns attached to corners

ap_act_l_a 2 20
bop 10 - 20 10
bop 10 + 21 10
cbop 10 [0 22
bop 22 - 26 10

{recover normal cornrs t crossng regions
{erase these, leavng captured trouble regns
{add back normal crossing points
{reset intersects to initial image values
{crossings are intersecting non-corners

INTERSEC2.VR
{%1 is outside calling loop parm (1-8)
mov %1 20
spread 2 20 21
do y (%1+1) 8

begin
{-- find intersect regions
spread 2 y 22
bop y + 20 26 {take union of both orientations
cbop 21] 22 23 {intersect the two smoothed orientations
cbop 23] 26 26 {intersect with the original two orientations
bop 10 + 26 10 {add anything in common to crossings map
{-- now find intersect point•
cbop 20] y 26
bop 11 + 26 11 {add anything in common to temp map

end

COMPETE.VR
{*** Have each orientation map compete with his two immediate neighbors
compete_3 8 1 2 21
compete _3 1 2 3 22
compete_3 2 3 4 23
compete_3 3 4 6 24
compete_3 4 6 6 26
compete_3 6 6 7 26
compete_3 6 7 8 27
compete_3 7 8 1 28
mov 21 1 8

INVERTEX.VR
bop 10 + 11 20
sp_act_lin 2 20 0
sp_act_lin 2 20 0
mk_convex 20 21
bop 21 - 20 12

{take all crossings and corners
{sp act for two steps in image

{make this convex
{remove the foreground material done

A.2 The Relation Preprocessing Routines

Each such routine uses the following parameter passing conventions:

106

{%1 • img reg
{%2 • pt reg
{%3 • local img reg
{%4 • d unuaed (aaaume 6 for now)

INSIDE1. VR
{return in local img reg the convex hull portion
{of the image containing pt reg
mov %1 20
mov ~ 21
until_nc 20

mk convex 20 20
untiI_nc 21 60

ap_act_lin 2 21 20 {using a-conn, sp act to recover this rgn
cbop 21 [%1 %3

CONNECT1.VR, PARTOF1.VR, and TOUCH1.VR
{return in local img reg all that is connected to pt-reg
mov %2 %3
sp_act_l_a 2 %3 %1

A.3 Miscellaneous Visual Routines

The following routine removes the isolated portion of the structure in register

STR from the map in register MAP which is a subset of the image register

IMG.

mov STR 20
:g~ ~~! ~;
mov MAP 23
sp_act_lin 2 20 22
bop 20 - STR 20
sp_act_lin 2 20 21

set_all 24 1
bop 24 - 20 26
cbop 26 [21 26

kop 63 > 26 26
bop MAP - 26 MAP

{20 is widened at points touching anything else.
{remove the struct
{reactivate points instruct that touch something
{20 now has what we want to keep

{create inverse of what we want to keep
{find portion of inverse which is touching STR
{this is what we can discard
{set these to max intensity
{and remove them from MAP

A.4 Pa~cal Subroutines for Selected Basic Op
erations

The following represents but a small portion of the complete system which

is currently about 4000 lines in size. Included are declarations of the more

important data stru~tures used by the basic operation subroutines.

107

The map registers have been partitioned into pyramids. This was an early

design decision intended to treat each register as an "image pyramid" (Tanimoto

& Klinger ,1980). The d parameter which appears in the parameter list of most

subroutines selects the level of the pyramid at which the basic operation is

applied. Level 0 is lxl, level 1 is 2x2, level 2 is 4x4, and so on up to level 5

which is 32x32. As development progressed other issues grew in prominence and

the pyramid idea fell by the wayside. In the current system all the operations

operate at level 5. The idea of applying visual routines to image pyramids

remains a worthwhile one.

{--} Const
max_id
max_id_log2
max_regs

Type
ireg_array
reg_array
reg_pointer
reg_stack_ptr
reg_stack_rec

• 31;
• 6;

{max image dimension}
{1og2(max_id +1)}

• 63; {# of map regs, minus one (O))}

• array[0 .. 47,0 .. 31] of integer;
• array[0 .. 47,0 .. 31] of byte;
• '"reg_array;
• ·reg_stack_rec;
• record

reg
reg_stk_ptr

end;

reg_array;
reg_stack_ptr;

reg_dim_poa • array[O .. max_id_log2] of integer;
mask_3x3_array • array[0 .. 3,0 .. 7,-1 .. 1,-1 .. 1] of integer;
connectvty_arr • array[1 .. 2,-1 .. 1,-1 .. 1] of boolean;

Const
{-- partitioning of registers into subregisters --}
rdx_st reg_dim_poa • (32,32,32,32,32,0):
rdx_fn: reg_dim_poa • (32,33,36,39,47,31);
rdy_st: reg_dim_pos • (30,28,24,16, 0,0);
rdy_fn: reg_dim_pos • (30,29,27,23,16,31);
rd_lng: reg_dim_poa • (1, 2, 4, 8,16,32);
connected : connectvty_arr • (((false, true,false), {4-connectivity}

(true.false, true),
(false, true,false)),

((true, true, true), {8-connectivity}
(true,false, true),
(true, true, true)));

{--}
{---- --- Centroid -- - ----------------------------}
{--}
Procedure Centroid(r1,rea,d:integer);
{return in res a point whose location is the centroid of the
figure in r1, and whose value is the average value of the figure.}

Var
1, j, val ,n : integer;
sum,sumx,sumy: real;

Begin
with EXP do

108

begin
n · • O·
sum :. 0

1

O·
BUIDX ;. o:0;
sumy :• 0 . 0;
for 1 :• rd.x_at[d] to rdx_fn[d] do
for j :• rdy_at[d] to rdy_fn[d] do

if reg[rl] - [1, j] > C) then
begin

n :• n + 1;
val:• reg[rt]·[i.j];
sum :• sum + val:
SWDX :• sumx + i * val:
sumy :• sumy + j • val:

end;
FillChar(reg[res]•,1&36,black);
reg[res]·[Round(aumx/aum), Round(sumy/sum)] : • Round(sum/n);

end;
End;

{--}
{---- -- - Compete_3 --------------- - - - - ------ - - --}
{--} Procedure Compete_3(r1,r2,r3,rea,d:1nteger);
{for each pt, if r2 >• r1 and r3 then retain r2 in res, ow zero res.}

Var
i,j : integer:

Begin
with EXP do
begin

FillChar(temp_reg,1636,black);
for 1 :• rd.x st[d] to rd.x_fnfdl do
for j :• rdy:st[d] to rdy_fn d] do

if (reg[r1]·[1.j] <• reg[r2]·[1.j]) and
(reg[rs] · [i,j] <• reg[r2]·[1,j]) then
temp_reg[i,j] :• reg[r2]·[i,j];

re3[res]· :• temp_reg:
end·

End; I

{-------- ------------------------------- ----------}
{------- Cond...Bin_Op_&egs ------ ------ ---- --- - --~}
{--} Procedure Cond_Bin_0p_Regs(op: char; r1,r2,res,d:1nteger);

Va:r
1, j ,ii : integer;

Begin
with EXP do
begin

FillChar(temp_reg,1636 ,black);
for i :• rd.x st[d] to rdx_fn(d] do
for j :• rdy:st[d] to rdy_fn(d] do
if reg[r1] · [1.j] > 0 then
if reg[r2]·[t,j] > 0 the~

case op of
'+': begin

' - ' .

11 :• reg[rt] · [t,j] + reg[r2]·[1,j];
if ii> white then temp_reg[i,j] :• white

else temp_reg[i .j] := ii;
end;
begin

ii :• reg(rt]·[i,j]
if 11 < black then

else

- reg[r2] • [1, j];
temp_reg(i,j] :• black
temp_reg[i,j] := ii;

109

end;
'*': begin

ii :• reg[r1]-[1,j] * reg[r2]-[i,j];
if ii> white then temp_reg[i,j] := white

else temp_reg[i,j] :• ii;
end;

'/' : ii:• Round(reg[rt]A(i,j] / reg[r2]A[i,j]);
'<': if reg[r1]·[i,j] < reg[r2J-[i,j] then
{min} temp_reg[i,j] :• reg[r1J-(i,j]

else temp_reg[i,j] :• reg[r2]·[1,j]:
1 > 1 : if reg[rt]•[i,j] > reg[r2]-(i,j] then
{max} temp_reg(i,j] :• reg(r1]·[1,j]

else temp_reg[i,j] :• reg[r2J-[i,j];
']': temp_reg[i,j] :• reg[r1J-[i,j];
'[': te■p_reg[i,j] :• reg[r2]-[i,j]:

end;
reg[res]- :• temp_reg;

end;
End;

{---}
{------- Convolve_Sx3_S2 -----------------------}
{---} Procedure Convolve_3x3_32(mask_name: string_10; rl,res,a

Var
i,j,m,n,ix,iy,ii,14,j4,iii,mask_id: integer:
ireg : ireg_array:

Begin
if mask_name •
if mask_name •
if mask_name •
if mask_name •

'line•
'grow.a'
'grow. p'
'end.pt'

if mask_id >• 0 then
begin

then maak_id
then maak_id
then maak_id
then maak_id

maak_id

if a< 0 then a:• a+ 8;
FillChar(ireg,3072,black);
with EXP do
be§in

i~~ ii: 81~ Bl a~
if reg[r1]-[i,j] > O then

form:• -1 to 1 do
begin

ix:• i - m;

:• 0 else
:• 1 else
:• 2 else
:• 3 else
:• -1:

if (ix >•O) and (ix< 32) then
fo~ n :• -1 to 1 do

begin
iy :• j - n;

integer):

if (iy >•O) and (iy < 32) then
ireg[ix,iy] :• ireg(ix,iy] + reg(rt]·[i,j] *

mask_3x3[mask_id,a,m,n];
end:

end;
FillChar(reg[res]-,1636,0);
for i :• 0 to 31 do
for j :• 0 to 31 do

begin
{iii : 2 abs(ireg[i,j]);}
if ireg[i,j] > 0 then

begin
iii :• ireg[i,j] shr 8;
if iii> white then reg[res]·[i,j] :• white

110

End;

end;
end;

end;

else reg[res]·[i,j] := iii;
end;

{---}
{------- K_Op_Reg ------------------------------}
{---}
Procedure K_Op_Reg(op: char; k,r1,rea,d:integer);

Var
i,j,ii: integer;

Begin
with EXP do
begin

FillChar(temp_reg,1636,black);
for i :• rdx_st[d] to rdx_fn[d] do
for j :• rdy_st(d] to rdy_fn(d] do

if (reg[r1]·[i,j] > 0) then
case op of

1 + 1
: begin

, - t •

'*':

ii :• k + reg[r1]·[i,j];
if ii> white then temp_reg[i,j] :• white else
if ii< black then temp_reg[i,j] := black else

end;
begin

temp_reg[i,j] :• ii;

ii:• k - reg[r1]·[i,j];
if ii> white then temp_reg[i,j] :• white else
if ii< black then temp_reg[i,j] :• black else

end;
begin

temp_reg[i,j] :• ii;

ii:• k * reg[r1]·[1,j];
if ii> white then temp_reg[i,j] := white else
if ii< black then temp_reg[i,j] :• black else

temp_reg[i,j] :• ii;
end;

1
/

1
: begin{--- NB. Reverse Division---}

ii:• Round(reg[r1]·[1,j] / k);
if 11 > white then temp_reg[i,j] :• white else
if 11 < black then temp_reg[i,j] :• black else

temp_reg[i,j] := ii;
end·

1 <1
: if k < reg[r1] • [1,j] then

{min} temp_reg[i,j] :• k
else temp_reg[i,j] :• reg[r1]·[1,j];

1 >1
: if k > reg[rt]·[1,j] then

{max} temp_reg[i,j] :• k
else temp_reg[i,j] :• reg[r1]•[i,j];

end;
reg[rea]· :• temp_reg;

end;
End;

{--}
{------- Make Convex Step-------------- -- --------}
{--}
Procedure Make_Convex_Step(r1,r_rea,d:integer);
{Note, the las.t points found should signal the biggest gaps}

111

{NB, One could gain speed by performing this in place, with no
diffence in the result, if one performs until no change in rt.
However, since I plan to use the single step function,
I leave it as is.
-----------------------} Var i,j : integer;
t: reg_array;
Label Found, NotFound;
Begin

t :• EXP.reg[r1]·:
EXP.reg[r_rea]· :• EIP.reg[r1]·;
for i :• rdx_st[d]+1 to rdx_fn[d]-1 do
for j :• rdy_at[d]+1 to rdy_fn[d]-1 do

if t[i,j] • 0 then
begin

End;

if t[i+1,j] > o then
if t(i,j-1] > 0 then

'begin if (t[i-1,j-1] > 0) or (t[i -1 ,j] > 0) then
goto l"ound; end

else
if t[i,j+1] > 0 then

begin if (t[i-1,j+1] > 0) or (t[i-1,j] > 0) then
goto Found; end;

if t[i-1,j] > 0 then
if t[i,j-1] > 0 then

begin if (t[i+1,j-1] > 0) or (t[i+1,j] > 0) then
goto Found; end

else
if t[i,j+1] > O then

begin if (t[i+1,j+1] > 0) or (t[i+1,j] > 0) then
goto Found; end;

if t[i,j+1] > 0 then
if t[i-1,j] > 0 then

begin if (t[i-1,j-1] > 0) or (t[i,j-1] > 0) then
goto Found; end

else
if t[i+1,j] > 0 then

begin if (t[i+1,j-1] > 0) or (t[i,j-1] > 0) then
goto Found; end;

if t[i,j-1] > 0 then
if t[i-1,j] > 0 then

begin if (t[i-1,j+1] > 0) or (t[i,j+1] > 0) then
goto Found; end

else
if t[i+1,j] > 0 then

begin if (t[i+1,j+1] > 0) or (t[i,j+1] > 0) then
goto Found; end;

goto NotFound;
Found: EIP.reg[r_rea]·[i,j] :• 1;
NotFound:
end;

{--}
{------- Odd Man Out - ---------------------------}
{--}
Procedure Odd_Man_Out(r1,r_rea,d:integer);
{Return, in an entier reg to itself, a point with highest value}

Var i,j,max,imax,jmax: integer;
Begin

max :• O;

112

imax :• rdx_st[d];
j max : • rdy_st [d];
for i :• rdx_st[d] to rdx_fn[d] do
for j : • rdy_at[d] to rdy_fn[d] do

if EXP.reg[rl]A[i,j] > max then
begin

max:• EXP.reg[r1]·[i,j];
imax:• i;
jmax: • j;

end;
FillChar(temp_reg,1636,black);
temp_reg[imax,jmax] :• EXP.reg[rl]A[imax,jmax]:
EXP.reg[r_rea]· :• temp_reg:

End;
{--}
{------- Sp_Activate_Line -----------------------}
{--} Procedure Sp_Act_Lin(con_typ,r_sp,r_rel,d:integer):
{For one time step all 4/8 neighpors of any activated point are tested.
If any is active in r_rel, then it is also activated in r_ep}
Var

i,j ,m,n,ii,jj : integer;
Begin

with EXP do
begin

temp_reg :• reg[r_sp]A ;
:for i : • rdx_st [d] to rdx_:fn [d] do
:for j :• rdy_st[d] to rdy_:fn(d] do

if reg[r_sp]·[i,j] > 0 then
form:• -1 to 1 do

befin
i :• m + i;

if (ii>• rdx_at[d]) and (ii<• rdx_fn[d]) then
for n:• -1 to 1 do

end;

if connected[con_typ,m,n] then
begin

j:J :• n + j:
if (jj >• rdy_st[d]) and (jj <• rdy_fn[d]) then

if reg[r_re1]·[ii,jj] > 0 then
temp_reg[ii,jj] :• reg[r_rel]·[ii,jj]:

end;

reg[r_ap]· :• temp_reg;
end;

End;

~---------Sp_Activate_Line_All---------------------~
{--} Procedure Sp_Act_Lin_All(con_typ,r_sp,r_rel,d:integer);
{Same as above, but rune until no change in r_ep}
{This is substantially faster than interpreting UNTIL_NC}

Var
i,j,m,n,ii,jj : integer:

Begin
with EXP do

repeat
temp_reg :• EXP.reg[r_sp]•;
for i :• rdx_st[d] to rdx_fn[d] do
for j :• rdy_st[d] to rdy_fn[d] do

if reg[r_sp]·[i,j] > 0 then
form:• -1 to 1 do

113

End;

begin
ii :• m + i;
if (ii>• rdx_st[d]) and (ii<• rdx_fn[d]) then
for n:• -1 to 1 do

if connected[con_typ,m,n] then
begin

end;

jj :• n + j;
if (jj >• rdy_st[d]) and (jj <• rdy_fn[d]) then

if reg[r_rel]·[ii,jj] > O then

end;

reg[r_ap] •[ii, j j] : • reg(r_rel] ·[ii, j j] ;
{note how r_sp is updated on the fly
within the nested array passes: trick!}

until Identical_Regs(temp_reg,EXP.reg[r_sp]·,d):

{--}
{------- Unitize --------------------------------} {--}
Procedure Unitize(con_typ,rl,r_rea,d:integer);
{very inefficiently implemented, but adequate.}

Var i, j ,m,n, tal, m.in_next_ta.1, mnt_i ,mnt_j. ib,ie, jb, je integer:
none_elim: boolean;

Label A1;
Begin

temp_reg :• EXP.reg[rt]·;
{elim any boundary points}
for i :• rdx..st[d] to rdx..fn[d] do

begin
temp_reg(i,rdy_st(d]] :• O;
temp_reg(i,rdy_fn[d]] :• O;

end;
for j :• rdy_st[d] to rdy_fn[d] do

begin
temp_reg(rdx_st(d],j] :• O;
temp_reg(rdx_fn[d],j] :• O;

end;
ib := rdx_at[d]+1;
ie :• rdx_fn[d]-1;
jb :• rdy_st[d]+1;
j e : • rdy_'fn[d]-1;
Al: {eliminate all point■ with only 1 neighbor}
Repeat

none_elim :• true;
for f :• fb to ie do for :• b to je do

if temp_reg[i,J] > 0 then
begin

tal :• O;
tor m:• -1 to l do for n:• -1 to do

if connected con_typ,m,n] then
if temp_reg[i+m,j+n] > 0 then tal :• tal + 1;

if tal • 1 then {delete}
begin

temp_reg[i,j] :• O;
none_elim :• false;

end;
end;

Until none_elim;
{- eliminate one point with min next higher# of neighbors-}
i :"" ib;

114

none_elim :• true;
min_next_tal :• 10;
while (i<•ie) and none_elim do

begin
j :• jb;
while (j<•je) and none_elim do

begin
if temp_reg[i,j] > 0 then

begin
tal :• O;
form:• - 1 to 1 do
for n:• - 1 to 1 do

if connected[con_typ,m,n] then
if temp_reg[i+m,j+n] > 0 then tal :• tal + 1;

if tal • 2 then
begin

temp_reg[i,j] :• O;
none_elim :• false;

end
else

begin
if tal > 2 then

if tal < min_next_tal then

end;
end;
j :• j + 1;

end;
i :• i + 1;

end;

begin
min_next_tal :• tal;
mnt_i :• 1;
mnt_j :• j:

end;•

if not none_elim then
goto A1

else
if min_next_tal < 10 then

begin {go and elim a higher n_touch}
temp_reg[mnt_i,mnt_j] :• O;
goto Al;

end;
EXP.reg[r_rea]· :• te■p_reg;

End;

A.5 The Pascal Program that Builds the 3x3
Masks

Program MASK_Builder;
Const

pi_by_8 • 0.30269G;
Type

maak_3x3_array • array[0 .. 3,0 .. 7,-1 .. 1,-1 .. 1]
Var

a,i,j integer;
maak_3x3_array:

of integer;

mask_3x3
aigma,sigaq
x,y,t,
temp,temp2,

array[1 .. 26] of real; {.2 increments of sigma 1=>.2}

temp3,temp4,
theta,result r:eal;

115

orient,diat : array[-1 .. 1,-1 .. 1] of real;
{---} { P R O C E D U R E S }

~:::::::--;;~;;;=Nii--::::::::::::::::::::::::::::>---->
Function arctan_MR(y.x:real): real;

Const
pi_by_2 • 1.6707063;
pi • 3.1416927;

Var a: real;
Begin

if x • 0.0 then
begin

if y > 0 then a:• pi_by_2
else a:• -pi_by_2;

end
else a:• arctan(y/x);
if x < 0.0 then arctan_MR. :=a+ pi

elae arctan_MR :• a;
End;

{------- Gausa_1D -----------------------------}
Function Gausa_1D(x.aigma_aqrd:real): real;

Const
two_pi • 6.2831864;

Begin
Gauas_1D :• exp(sqr(x)/(-2 * sigma_aqrd)) /

sqrt(two_pi * sigma_sqrd);
End;

{------- Gausa_2D -----------------------------}
Function Gausa_2D(x,y.aigma_aqrd:real): real;
{NB. unlike the 1D case. the constant factor has been removed}

Begin
Gauss_2D :• exp((aqr(x) + aqr(y))/(-2 * sigma_sqrd)):

End;
{---}
{-----------------~----~----! ____ ! ____________________ }
BEGIN

Clrscr;
for i :• -1 to 1 do
for j :• -1 to 1 do
begin

orient[i,j] :• arctan_MR(j,i);
dist[i.j] :• sqrt(i*i + j*j):

end;
fo~ i :• 1 to 26 do

begin
aigma[i] :• i/6;
aigsq[i] :• aqr(sigma[i]):

end;
t::----c~;;i~~i-;;;-M;;;;·-----::~
{---------------------------------} for a:• 0 to 7 do {for each orientation 1 .. 8}

begin
t :• pi_by_8 • a;
for i :• -1 to 1 do
for j :• -1 to 1 do

begin
theta:• orient[i,j] - t;
x :• cos(theta) * diat[i.j];
y :• ain(theta) * diat[i.j];
{--- 0: LINE: oriented DOG* 2-D gaussian}

116

end;
End.

temp :• Gausa_1D(x,sigsq[3]) - Gauss_1D(x,sigsq[6]):
temp2 :• 400 * Gauss_2D(x,y,sigsq[7]):
result:• temp* temp2;
mask_3x3[0,a,i,j] :• Round(result);
{- -- 1: GROWa: 1_D Gaussian* directional step fn -->}
temp3 :• 150 * Gauss_1D(x,sigsq[1]):
result:• temp3 * (1.4 * y - 1);
if result< -300 then result:• -300;
mask...3x3[1,a,i,j] : • Round(result);
{--- 2: GROWb: 1_D Gaussian* directional step fn <--}
result:• temp3 * (-1.4 * y - 1);
if result< -300 then result:• -300;
maak_Sx3[2,a,i,j] :• Round(result);
{--- 3: ENDPT: simple Gaussian with constant removed;

has+ spike and - surround}
result:• 100 * (Gauss_2D(x,y,sigsq[1]) - 0.4);
maak_3x3[3,a,i,j] :• Round(result);

end;

117

