
.•

TOWARDS AN EXPERT SYSTEM FOR COMPILER DEVELOPMENT

by

Harvey Abramson

Technical Report 87-33

October 1987

Harvey Abramson
Department of Computer Science

The University of British Columbia
'1JJ75 W esbrook Mall

Vancouver, B.C. Canada
V6T 1W5

Towards an Expert System for Compiler Development

1

Since the introduction of high-level programming languages in the late fifties and early
sixties, ~ great deal of expertise has been developed in the area of compilation and interpretation of
these languages. (A recent edition of an introductory textbook [Aho&Sethi&Ullman, 1986] totals
796 pages! For other treatments of compiling see [Aho&Ullman,1973], [Aho&Ullman.1978],
[Bornat,1979], and [Davie&Morrison 1981]) As this area of expertise developed, attempts were
made to codify and systematize this .knowledge in "Translator Writing Systems" and "Compiler
Compilers''. The trouble with such codifications, however, was, and continues to be, that very little
of the knowledge that is current is embodied in those systems. If one considers these as expert
systems·, then they must be judged to be expen in only a subset of compiling technology, and also
very rigid and limited experts at that One might consider as a case in point the well known Unix
utilities LEX (lexical scanner generator)) and YACC - "Yet Another Compiler Compiler". (The
name YACC itself perhaps betrays some despair.) One can use YACC as a tool to create a parser
using one specific technique (LALR(k) albeit augmented to deal with some ambiguities in
expressions), and one can subsequently generate code by associating portions of C code with the
grammar rules. There is very little suppon for helping out if the grammar is not in the appropriate
class, and there is very little of an environment for developing the code generation, understanding
how to modify the grammar's departure from the required class~ etc. Other systems make use of
further aspects of compiler technology, for example, use of attribute grammar to specify code
generation, or some way of including code optimizations. However, all of these systems tend to be
rather massive and hard to extend and modify. One serious problem with any of these systems,
funbermore, is that they are not written in languages which are sufficiently "high" and powerful
enough to manipulate programs and representations of programs: some of the rigidity mentioned
above stems from this lack of a meta-level facility.

The area of knowledge we are concerned with is a rather formal one. Grammars can be used
to specify all or portions of lexical and syntactic analysis. Attribute rules can be used to specify
how functions or relations on derivation tree nodes are to be evaluated. The attributes can specify a
formal representation of the source program in some standard intermediate code. Optimization
algorithms working over such an intermediate code representation can be used to produce another
version of the original program, in a more compact or effident intermediate code representation.
Somewhat more experimentally, hardware can be formally described, and the relation between the
semantics of a programming language and the code of a target ma.chin can be specified.

There are apparently several formalisms (lexical specification, syntactic specification,
attribute rule definition, code generator specification, etc.) that would have to be tied together in
order to unify compiling knowledge in an expert system. If this were so, then the design of the
interfaces between the various formalisms might itself prove a fairly difficult, problem. However,
the formalisms involved can be uniformly represented in first-order logic, and the techniques
developed for expert systems written in logic programming languages such as Prolog can be
utilized to join together the various aspects of compiler specification. Logic programming, and its
implementation in Prolog (see [Pereira, 1982] and fClocksin&Mellish, 1981] for details of the
Prolog pro_gramming language), provide a high level specification of what should be computed
without the clutter of how it should be computed; the procedural interpretation of logic

2
programming. moreover. yields a means of executing these specifications. Logic programming
also provides a grammatical notation which can be executed: if, in general, ''the logical
specification is the program", then in the case of the logic grammar notation, "the grammar is the
interpreter". Logic programming manipulates trees directly, and with a little bit of extra work,
graphs: these are the data structures which can be used to specify, quite generally, the
optimization algorithms developed over the last two decades. A suite of logic programs can
the~ in principle, be developed to specify - and therefore, implement - efficient programming
language processors.

Logic programming has been ase.d to define languages and to implement compilers. See the
work of [Colmerauer,1978) which introduc~ the first logic grammar notation. the basis for formal
language applications of logic programming. Moss pioneered the use of logic programming to
formally describe - and therefore to implement - programming languages: see [Moss,1979],
[Moss,1981], and [Moss,1982]. Warren has pioneered the application of logic programming to
compiler writing [Warren, 1977]. [Maluszynski&Nilsson.1981,82] extend the notion of unification
to grammatical processing.

What sort of expert system shell is required for compiler applications? We take the point of
view that since much of compiling knowledge can be specified formally and with relatively little
11fuzziness". a simply structured shell with explanation and "query-the-user" facilities will prove
adequare - at least in the initial stages - for our purposes. We will model our shell on recent work
at Imperial College in the field of expert system design which has concentrated on areas in which
domain specific knowledge is dearly and almost completely spelled out. An example is the
design of expen systems for band.ling social security benefit claims and queries regarding
immigration laws. In such contexts, the construction of an expert system is relatively easy in
that there is little in the way of uncenain knowledge which has to be dealt with. An expert system
for compiler development provides an environment for developing compilers.1t can be considered
a sophisticated compiler writing system which encapsulates textbook knowledge about compiler
construction in an expert system shell. Such a shell, based on APES (A Prolog Expert System
Shell, developed at Imperial College by Hammond and Sergot: aee [Hammond,1982a b] and
[Sergot,1983]) provides input of specifications, evaluation of queries, and explanation of answers
in a domain independent fashion. The shell is then tailored to a domain of knowledge relevant to the
specification of programming language processsors. Hence, the system must know about
grammatical specifications of lexical and syntactic structure. Explanations and dialogue must be in
grammatical terms, not in terms of the generated Prolog clauses (ee [Salim, 1985]).

1n the rest of this paper we shall examine what a simple logical expert system shell would
have to provide in order to advance towards an expen system for compiler development. (We will
assume some familiarity with logic programming, Prolog, and with Definite Clause Grammars. See
the above mentioned references in connection with Prolog, and [Pereira&Warren,1981) about
Definite Clause Grammars.) We will describe how grammatical knowledge can be represented in
logic and how various grammatical formalisms can be incorporated into a system as a set of ways
of building parsers. The grammars will also include a way of specifying a logical version of
attribute grammars: as a result of a parse, a derivation tree is created. This derivation tree is a
first-order term which can then be traversed to produce either code directly, or yet another
intermediate representation of the program; j_n either case, the code or intennediate fonn is again a
term or terms in logic. Optimization algorithms too can be specified in Prolog, and eventually,
ma.chines.

The main idea is that the uniform representation in the very high level programming language
of Prolog, together with Prolog's meta-level features, permits the creation of an environment for
compiler development which makes it possible to incorporate far more of current technology than
bas been heretofore possible. It is important to emphasize the level of the programming language
not only for its program manipulation (meta-level) possibilities, but also for the fact that
complicated algorithms can be represented quite clearly in a small number of lines of code: a
programmer can thus design a system which does more. We are also assuming the availability of
efficient implementations of Prolog, i.e., Pro'log compilers whose speed and efficiency are
comparable to the best implementations of LISP. The expert system for compiler development will
provide at least rapid prototyping of language implementations; where Prolog compilers are

3
available the expert system can provide efficient implementations of language processing systems.

Lexical expertise.

If one is designing a language processor, it is convenient to provide a stage of leXIcal
analysis in which characters are grouped into meaningful tokens for syntactic analysis. A technique
used in the formalization of lexical analysis has been to use regular expressions or grammars to
specify the allowed tokens. The regular expressions can be used to generate a finite state
non-deterministic automaton, which in tum can be minimised to yield an efficient scanner
recognizer. This strategy, however, involves a formalization which is interesting, but which may
be unnecessarily powerful for practical situations.

In practical situations, lexical analysis can be specified by the following logic grammar rules:

lexemes(X) : :=
lexcmes([XIY]) ::=
lexemes(□) ::=

space , lexemes(X).
lexeme(X) , lexemes(Y).
o.

The first rule may be read: lexemes consist of space, followed by more lexemes; X represents the
lexemes. The second rule may be read: lexemes consists of a lexeme followed by more lexemes; the
lexemes are :represented by the list [X/Y] built up from the Lexeme X and the lexemes Y. The third
rule may be read: lexemes may be empty, represented by the empty list {]. (See the first appendix
for a complete logical specification of the lexical analyzer.) These logic grammar rules are compiled
to Prolog clauses by a simple processor (see papers on DCGs, DCTGs):

lexemes(X,Stan,End) : :=Space(Stan,Mid), lexemes(X,Mid,End).
lexemes([XIYj,Stan,End) ::= lexeme(X.,Sta.n.,Mid), lexemes(Y,Mid,End).
lexemes(□,Start,End) ::= connect(□,Start,End)

The extra arguments, Start, Mid, End represent the input string whlch is being analysed. The
predicate connect specifies that its first argument is the difference between the second and third
arguments, i.e., that the first argument is the bead of the input string:

connect(first,[firstlRest],Rest).

If one then specifies roles for what a space may be, and what a lexeme may be, then these
logic grammar rules are also translated into Prolog clauses, and the entire set of such Prolog clauses
generated from grammar rules constitutes a lexical scanner. Here are the rules saying what a lexeme
is:

lexeme(Token) ::=word(W), { is_tokcn(W,Token)).
lexeme(Con) ::= constant(Con) .
lexeme(Punct) ::= punctuation(Punct).
lexeme(op(Binding,Op)) ::= op(Binding,Op).
lexeme(relop(Rel)) ::= relop(Rel).

Without going into detailed explanation, these mles define a lexeme as either a word
satisfying a constraint that the word Wis represented by Token (Token may be either an identifier
or the representation of a reserved word), or a constant, or punctuation or an operator, or a relop
(relatioaaJ operator) . The following program of the sample language

read X; write X + 127

is analysed into the following list oflexemes:

lexemes: [read,id(X),;,write,id(X),op(+),num(l 27)]

4
Now if one were writing a compiler by hand each of these would in turn have to be specified

by further rules. However, an expert system would simply prompt the user to list what the various
kinds of lexemes are. For example, the following dialogue might ensue:

System:
What are punctuation symbols and token names?

User.
(lparen
) rparen

etc.

From this dialogue the system would construct grammar rules which would then be compiled into
Prolog as above. The system would permit definitions in each of the categories of lexeme. but
might also have standard definitions of identifiers and numbers. Thus, the lexical analyzer of
Appendix 1 should be constructed by the system from a dialogue with the user who only has to
know for the language being defined what the symbols are and what tokens he wants to represent
the symbols. The explanation facility of the shell would be able to explain via the generated
grammar rules why the input string

" abc := 123 It

is analysed as:

[id(abc), :=, 123]

If the input string had been

" abc := { 123, 456) "

and, if no token had been defined for " { ", the shell's query-the-user facility would allow the user to
be consulted as to adding a token definition for " {" and ultimately yielding something like:

[id(abc),:=,lbrace,123,comma,456,rbrace]

rather than failing on lexical analysis.

Note that what we are generating is a set of logic grammar rules which are compiled into
Prolog program clauses. The expert system is meant to be one entirely implemented in logic and
running efficiently via a Prolog compiler. (The system can also be tailored to generate lexical
scanners of a more traditional sort.) The lexical scanner generator outlined above is similar in spirit
to [Horspool&Levey,1986]'s Mkscan, but is embedded in a more powerful and more flexible
environment.

Parsing expertise.

The syntax of a programming language may be specified by context free rules of the
following form:

program::= statements
statements ::= statement, stl
stl ::= tSEMICOLON, statements
statement::= tIDENT, tASSIGN, expression
etc.

The symbols beginning with a lower case t are lexical token names.

5
What parsing method should be used when an expert system constructs a compiler? The

simplest solution in a logic based system is to use the Prolog clauses which correspond to the
grammar rules. The resulting parser is a top-down. left-to-right recursive descent parser (see
[Davie&Morrison,1981) about this parsing method, though not in logic programming terms) which
however does not permit left-recursive rules such as:

f ::= f,tPLUS,primary

The expert system would therefore have to check for the presence of such rules and provide
transformations of the grammar rules to get rid of left recursion. Some context free grammars can
provoke recursive descent parsers to take exponential time in parsing input; in practical
programming language definition, however, recursive descent parsing time is almost always a
tin.ear function of the length of the input string. Constraints a'S in Definite Clause Grammars
[Pereira&Warren,1980] or Definite Clause Translation Grammars ([Abramson,1984a] can be
expressed by calls to Prolog predicates written within braces " {" and 11

}
11 to express non context

free aspects of programming languages.

In addition, the expert system should have available other ways of parsing. It is possible, if
the grammar: does not contain empty rules, to use a bottom-up method of parsing know as
left-corner parsing. In such a case, it is possible to generate Prolog clauses which implement this
method of parsing [Matsumoto et al, 1983]. What if. however, the grammar contain empty rules?
Empty productions can be eliminated by known techniques and the expert system would have to
incorporate these. This parsing method is, in the worst case of context free parsing, exponential,
but is quite satisfactory in practical situations.

The expert system must be able if the user asks to i:ry and use a more efficient parsing
algorithm. The system should be able to test if the grammar falls into the class of LL(k) or
LALR(k) grammars, and generate the appropriate tables for parsing - all represented as clauses of
Hom clause logic. If the grammar does fall into such a class, then parsing time can be guaranteed to
be a linear function of the length of the input string. If the grammar does not fall into one of these
classes, there are some heuristics which can be tried to modify the grammar. These heuristics
cannot be guaranteed to work, however. Also, some of the syntactic grammar rules suitable for
LL(k) or LALR(k) parsing are sometimes regarded as not providing "natural" semantics. As a last
resort, the system should use the Earley parsing algorithm, a method suitable for any context free
grammar, parsing input in cubic time. See [Abramson,1986bJ for an embedding of LL(k) parsing
in Prolog, and [Nilsson,1986] for a logical treatment of SLR(l) grammars.

The expert system should also allow the addition of other parsing methods known to a user.

Explanation of parses, or failure to parse, must be provided by the system in terms
comprehensibJe to the user, i.e., in terms of the original grammar, rather than in terms of failure of
genera.ted Prolog clauses. The shell we are using has been extended to give grammatical
explanations where appropriate. The query-the-user facility, furthermore, permits the building UP,
of a grammar incrementally provided that the grammatical categories are defined as being 1'askable '.

Thus, the expert system generalizes what can be done by existing tools such as LEX and
YACC but in a more powerful setting and with greater flexibility. Given a suitable way of
interfacing logic and common programming languages, these tools could be incorporated into the
expert system; however, the problem of interfacing a satisfactory explanation facility to existing
tools is formidable. What seems more sensible is to incorporate logical versions of LEX and YACC
for rapid prototyping and testing, and then using LEX and YACC themselves once the definitions
for lexical and grammatical analysis have been debugged

Parse tree representation and semantic attributes.

A parse tree is a representation of the proof that an input string is a valid "sentence" of the
language specified by a context free grammar. It is also used to generate code - either an
intermediate code. or machine code - by means of attribute evaluation. We represent a derivation
tree in a fashion which allows subsequent evaluation of attributes specified as Hom clause rules.

6
(This derives from our work on Definite Clause Translation Grammars and is reported at greater
length in [Abramson,1984a,b].)

The grammar rules which we use are of the form.:

Syntax <:> Semantics

The syntactic portion of the rule is basically context free, but there are some additional notation
conventions which permit interaction with the semantic portion of the rule which is written as a lisr
of Horn clause like rules. For example, rather than the simple context free rule

program::= statements

the user would write:

program::= statcmcntsMS
<:>
gen_code(Dic,Code) ::- SM gen_ code(Dic,Code).

The notation MS means that the name of the subtree for statements is S. In the semantic portion of
the rule, use of the name S refers to this subtree. The semantic rule is the clause:

gen_ code(Dic,Code) ::- SM gen_ code(Dic,Code)

whlch is read: using a dictionary of symbols Die, Code is generated at the root of the derivation tree
for program using gen_eode if using that same Die, Code is generated for the subtree S for
siaiements. (This notation is explained-in detail in [Abramson,1984], and is al o to be described i□
a chapter of [Dahl&Abramson,198?]. Appendix II contains a listing of the DCTG rules for a
sample programming language.)

Here is another example of a DCTG rule which shows how code is generated for a simple
assignment statement.

statement::= tIDENTMid, tASSIGN, expressionME
<:>
gen_code(Dic,[Exprcode,instr(store,Addr)]) ::-

IdMprefixOden ti.fier),
lookup(ldentifier,Dic,Addr),
EMgen_code(Dic,Exprcode).

The underlying context free syntax of this rule is:

statement::= tIDENT, tASSIGN, expression

which defines a statement as an identifier, followed by an assignment symbol (whatever may have
been chosen), followed by an expression. In the DCTG rule, the name Id is associated with the
subtree for the identifier, and the name E with the subtree for the expression. The rule for
computing the code may be read: using the dictionary (symbol table) Die, the code generated for the
statement is the code generated for the expression Exprcode, followed by a store instruction into the
address Addr of the identifier, if the prefix code for the Id is evaluated in Identifier, and if the
address of this Identifier is looked up in the dictionary Die and found to be Addr and if the code
generated for the E subtree using Die is Exprcode. Note the logical variables Exprcode and Addr.
These may be instantiated during a later stage of processing.

The parse tree representation which is used in the evaluation of semantic rules has the
following form:

node(program,[S], (gen_ code(Dic,Code) ::- SM gen_ code(Dic,Code))).

7
The first argument is the name of the root of the derivation subtree the second is the list of
subtrees, and the third is a representation of the semantic rules associated with that root.

The parsing method used depends only on the syntactic portion of the rule considered as a
context free rule; if a name for a subtree is supplied, it is used when the parse tree is constructed.

One problem which arises when a user's original grammar is modified by transformations is
that the parse tree obtained will reflect the transformations imposed on the original grammar. This
may be disru.rbing to the user, and might modify the semantic rules intended by the user. The expen
system ought to be able to communicate to the user in terms of the original grammar. An aid to the
solution of this problem lies possibly in the Modular Logic Grammars of [McCord, 1985] which
addressed a similar situation in natural language processing.

The parse tree for the sample program in the previous section can be neatly printed to yield:

program
statements

Slalement
tREAD--

[read]
tIDENT

[id{X)]
stl

tSEMICOLON
[;]

statements
statement

tWRITE
[write]

expression
sum

product
primary

tIDENT
[id{X)]

rest_of__product
D

rest_of_sum
op_add

[op(+)]
product

primary
tCONSTANT

[num(127)]
rest_of_product

D
rest_of_sum

D
stl

D

The prefix code (where expressions are represented in Polish prefix notation) generated by the
attribute mles for the sample program is:

[read(id(X)),write(expr(add,id(X),num(l27)))]

Optimization expertise.

8

The code generated from the grammar provided in Appendix TI is code for a simple abstract
machine, and no cleverness has been incorporated into the attribute rules to make sure that the best
code has been generated for a program. This is really a sort of intermediate code which requires at
least one more step: code generation from this abstract code to some particular target machine. The
prefix code generated from the sample program might thus be further translated to code for a
textbook target machine:

0: instr(read,5)
1: instr(load,5)
2 : instr(addc,127)
3: instr(write,O)
4: instr(halt,0)
5: block(l)

This assembly code includes allocation of storage for both program and data (location 5 is a one
word block of storage). Ideally, however, more than one step is needed between the code produced
by syntax directed translation and real machine code: there should be intermediate code analysis and
optimization. (both local and global) to make sure that the best (or at least good) real machine code is
produced. In this example the value of what is read is stored into location 5 and immediately
loaded into an accumulator. Location 5 is never referred to again in the program, suggesting an
improvement to this code if it is possible to read directly into an accumulator.

Here the expert system will have to analyse the code generated by attribute evaluation,
dividing the list of instructions into basic blocks and flow graphs (terminology taken from
[Aho&Sethi&Ullman,1986]), deriving next•use information, making register allocations and
assignments, and applying peephole optimizations. The basic blocks can here be represented by
directed acyclic graphs (dags), and global optimization algorithms working on these dags can
perform loop optimizations, constant folding, code improvements, etc. The data flow equations
involved in this stage can all be phrased and implemented in Prolog, and the data structures
involved will be Prolog functors.

Beyond the textbook.

Such a system encapsulates textbook knowledge about compiler writing. But it may be
possible to go funher towards eliminating user intervention. The major point of intervention by the
user is in providing the m&pping from the syntactic structure of a program to a machine. There are
_possibilities, however, of utilizing abstract specifcati.ons of languages and machines to specify
compilers. Experiments have been conducted by [Ganzinger&Giegerich, 1985] along these lines
with a purely functional language, Henderson's LispKit LISP [Henderson,1980], and could be
extended initially either to another pure functional programming language (SASL [Turner, 1979],
or HASL [Abramson,1986a]) or to a logic programming language, and subsequently to standard
programming languages.

The task here is not simple of course. Specifying how a machine is to be used is more than a
matter of specifying the machine's instructions. There may be restrictions on the way memory is
divided and used; calling conventions for subroutines may be established; certain data structures
such as save areas may also be given a conventional form; etc. In any case, the way a machine is
used must be specified by some rules even if these are usually specified in English (unfortunately,
sometimes ambiguously!). The expert system would require that such rules be specified in logic.
Indeed, this requirement may be a help in making sure that the rules of machine use are clearly
specified.

Similarly. the task of formally specifying the semantics of programming languages is a
complex one, especially for those languages which are neither logical nor functional. However. the
trend in languages is towards those which have clear and simple semantics. If this trend continues,
then some of the problems of specifying difficult programming constructs can be ignored.

9
It should also be noted that this expert system has knowledge not just of programming

language translation. Consider the grammatical expertise involved, the representation of
grammatical acceptability, and the evaluation of attribute rules. Various logic grammar formalisms
have been widely used as tools for natural language analysis (See [Dahl&Abramson, 1984).
[McCord,1985], [Pereira,1981) and references cited in these papers). An analogue of evaluation of
attribute rules in natural language analysis is the derivation of the "logical form" of a sentence, e.g.,
a first-order term representing the meaning of the sentence. Indeed DCTGs have been used to
specify such a logical form for sentences of a very simple subset of English. Omitting the
knowledge of machine code generation and optimization from the compiler development system
yields an expert system which can be a tool in computational linguistics.

Status of the project.

The project is in its second year now. The first year's work involved building an expert
system shell modeled on APES, modified to deal with DCTG knowledge and explanations, and
also the design of a Prolog compiler. A Prolog compiler is desirable since the entire system is to be
a logical one and the greatest efficiency in execution speed is needed to eventually make this more
than a toy. This year several parsjng algorithms are to be implemented and incorporated in the
system, as well as some optimizations. On the theoretical end we shall begin studying the
possibilities suggested in the section Beyond the textbook. We hope to report in later papers on
the results of this year's work.

Acknowledgments

I would like to thank IBM Canada for its generous support of this project through an SUR Grant.
Thanks go to Peter Ludemann for comments on drafts of this paper.

References

[Abramson,1984a]
Abramson, H., Definite Clause Translation Grammars, Proceedings IEEE Logic Programming
Symposium, 6-9 February 1984, Atlantic City, New Joisey.

[Abramson,1984b]
Abramson, H., Definite Clause Translation Grammars and the Logical Specification of Data Types
as Unambiguous Context Free Grammars, Proceedings of the International Conference on Fifth
Generation Computer Systems, Tokyo, Nov. 6-9, 1984.

[Abramson,1986a]
Abramson, H., A Prological Definition of HASL, a Purely Functional Language with
Unification-Based Conditional Binding Expressions, in Logic Programming: ·Functi.ons, Relations,
and Equations, DeGroot, D. & Lindstrom, G. (editors), Prentice-Hall, 1986.

[Abramson,1986b]
Abramson, H., Sequential and Concu"ent Logic Grammars, Third International Conference on
Logic Programming, Springer Lecture Notes in Computer Science #226, 1986, pp. 389-395.

[Aho&Sethi& Ullman,1986]
Aho, A.V. & Sethi, R.&Ullman, J.D., Compilers:Principles, Techniques, and Tools,
Addison-Wesley, 1986.

[Aho&Ullman,1973]
Aho, A.V. & Ullman, J.D., Principles of Compiler Design, Addison-Wesley, 1978.

[Abo&Ullman,1973]
Aho, A.V. & Ullman, J.D., The Theory of Parsing, Translation, and Compiling, 2 volumes,
Prentice-Hall, 1973.

1 0

[Bornat,1979]
Bomat,R., Understanding and Writing Compilers, Macmillan, 1978.

[Clocksin&Mellish,1981)
Clocksin, W.F. & Mellish,C.S., Programming in Prolog, Springer, 1981.

[Colmerauer ,1978]
Colmerauer, A., Metamorphosis Grammars, in Natural Language Communication with
Computers, Lecture Notes in Computer Science 63, Springer, 1978.

[Dahl&Abramson,1984]
Dahl,V. & Abramson, H., Gapping Grammars, Proceedings of the Second International
Conference on Logic Programming, Uppsala, Sweden, 1984.

[Dahl&Abramson,198?]
Dahl, V. & Abramson, H., Logic Grammars, in preparation.

[Dahl&St.Dizier,1985]
Dahl,V. & Saint-Dizier,P., Natural Language Understanding and Logic Programming,
North-Holland, 1985.

[Davie& Morrison ,1981]
Davie,A.J.T. & Morrison,R., Recursive Descent Compiling, Ellis Horwood - John Wiley, 1981.

[Ganzinger&Giegericb,1985]
Ganzinger, H. & Giegerich, R., An Experimenl in Logic Specification of Compilers and
Interpreters, Draft re~ FB Wormatik Universitat Dortmtind, 1985.

[Hammond,1982a]
Hammond, P., APES: A detailed description, Dept. of Computing, Research Report 82/10,
Imperial College, London, 1982.

[Hammond,1982a]
Hammond, P., APES: A user manual, Dept. of Computing, Research Report 82/9, Imperial
College, London, 1982.

[Henderson,1980]
Henderson,P., Functional Programming, Prentice-Hall, 1980.

[Horspool & Levey ,1986]
Horspool, R.N. & Level, M. Mkscan - an interactive scanner generator, to appear in Software -
Practice and Experience.

[Knuth,1968]
Knuth, D.E., Semantics of Context-Free Languages, Mathematical Systems Theory, vol. 2, no. 2,
1968, pp. 127-145.

[Maluszynski & Nilsson,1981]
Maluszynski, J. & Nilsson, J.F. A notion of grammatical unification
applicable to logic programming languages, Departtnent of Computer Science, Technical University
of Denmark, Doc. ID 967, August 1981.

[Maluszynski&Nilsson,1982]
Maluszynski, J. & Nilsson, J.F. Grammatical Unification, Information Processing Letters, vol. 15
no. 4, October, 1982.

[Matsumoto et al,1983]
Matsumoto, Y., et al, BUP: A Bottom-up parser Embedded in Prolog, New Generation

1 1
Computing, vol. 1, no. 2, pp. 145-158, 1983

[McCord,1985]
McCord, M., Modular Logic Grammars, Proceedings ACL Conference, 1985.

[Moss,1979]
Moss, C.D.S., A Formal Description of ASPLE Using Predicate Logic, DOC 80/18, Imperial
College, London.

[Moss,1981]
Moss, C.D.S.,The Formal Description of Programming Languages using Predicate Logic, Ph.D.
Thesis, Imperial College, 1981.

[Moss,1982]
Moss, C.D.S .• How to Define a Language Using Prolog, Conference Record of the 1982 ACM
Symposium on Lisp and Functional Programming,Pittsburgh, Pennsylvania, pp. 67-73, 1982.

[Nilsson,1986]
Nilsson,U., AID: An Alternative Implementation of DCGs, Draft Report, Dept. of Computer and
Information Science, Linkoping University, Linkoping, Sweden.

[Pereira,1981]
Pereira, F.C.N., Extraposition Grammars, American Journal of Computational Linguistics, vol. 7
no. 4, 1981, pp. 243-255.

[Pereira,1982]
Pereira, F.C.N. (editor), C-Prolog User's Manual, University of Edinburgh, Department of
Architecture, 1982.

[Pereira& Warren,1980]
Pereira, F.C.N. & Warren, D.H.D, Definite Clause Grammars for Language Analysis, Artificial
Intelligence, vol. 13, pp. 231-278, 1980.

[Salim,1985]
Salim, J., An Expert System Shell/or Processing Logic Grammars, M.Sc. Thesis, University of
British Columbia, Vancouver, B.C.

[Sergot,1983]
Sergot, M., A Query-the-user facility for logic programmiag, Integrated Interactive Computer
Systems, P. Degano & E. Sandewall (eds) North-Holland, 1983.

[Turner,1979]
Turner, D.A., A new implementation technique/or applicative languages, Software - Practice and
Experience, vol. 9, pp. 31-49.

[Warren,1977]
Warren, David H.D., Logic programming and compiler writing, DAI Research Report 44,
University of Edinburgh, 1977.

\
I

Appendix I. Lexical rules.

reserved(div .op(2,intdiv)).
reserved(mod,op(2,mod)).
reserved(if.if).
reserved(then,then) .
.reserved(else,else).
reserved(while, while).
reserved(do,oo).
reserved(read,read).
reserved(write, write).

lexemes(X) ::=space,!, lexemes(X).
lexemes([XIY])·::= lexeme(X), !, lexemes(Y).
lexemes(□) ::= □.

lexeme(Token) ::=
word(W), { is_token(W,Token)).

lexeme(Con) ::= constant(Con) .
lexeme(Punct) ::= punctuation(Punct) .
lexeme(op(Binding,Op)) ::= op(Binding,Op) .
lexeme(relop(Rel)) ::= relop(Rel).

is_token(W,Token) :- name(X,W), token(X,Token).

token(X,Token) :- reserved(X,Token) , !.
token(XJd(X)).

space ::= " " ' !.
space::= [10), !. /* carriage return •1

num(num(N)) ::= number(Number) , I , { name(N,Number)) .
number([DIDs]) ::= digil(D), digits(Ds).

digit(D) ::= [DJ ' { is_digi.l(D)) .

is_digit(D) :- 0>47, D<58. /* 0-9 •1

digits([DIDs]) ::= digit(D) 'digits(Ds).
digits(□) ::= o.
word([l..lu]) ::= letter(L), lords(Ls).

letter(L) ::= [L] , { is_letter(L)) .

is_letter(L) :- L>96, L<123, I./* a-z *I
is_letter(L) :- L>64, L<90. /* A-Z *I

lords([LILs]) ::= (letter(L)) , lords(Ls).
lords([LILs]) ::= (digil(L)) , lords(Ls).
lords(□) ::= □.

op(l,'+') ::= "+" .
Op(l '.'\ .. _ "-"

' J •• - •

1 2

Op(2 •·'\ ··- "•" • J •• - •

op(2,'f) ::= "r .

relop(le)
relop(lt)
relop(ge)
relop(gt)
relop(ne)
relop(eq)

::= "<=", !.
::= "<".
::-= ">=". I.
::= ">".
::= "-=", !.
··- "-" .. - - .

constant(C) ::= num(C), I.

punctuationOparen)
punctuation(rparen)
punctuation(':=')
punctuation(';')

··- "(" I •• - t ••

::= ")" • !.
::=":=",I.
··- "·" ' •• - t ' ••

r The following predicates constiblte the interface
between lexical and syntactic analysis. Predicates
with names starting with 't', eg, tCOLON, are the
tenninals in syntactic analysis . . ,

tLPAREN ::= [lparen].
tRPAREN ::= [rparen].
tASSIGN ::= [':=1,
tIF ::= [if].
tTHEN ::= [then].
tELSE ::= [else].
tWHILE ::= [while].
tDO ::= [do].
tREAD ::= [read].
tWRITE ::= [write].
tSEMICOLON ::= [';'].
tlDENT ::= [id(Id)]<:>prefix(ld).
tCONST ANT ::= [num(C)]<:>prefix(C).
tOP(l) ::• [op(l,'+')]<:>prefix(add).
tOP(l) ::• [op(l,'-')]<:>prefix(sub).
tOP(2) ::= [op(2,'•')]<:>prefix(mult).
tOP(2) ::= (op(2,'/)J<:>prefix(div).
tOP(2) ::= [op(2,mod)]<:>prefix(modulus).
t0P(2) ::-= [op(2,intdiv)]<:>prefix(intdivide).
op_com ::= [relop(lt)]<:>prefix('<').
op_com ::= [relop(le)]<:>prefix('<=').
op_com ::= [relop(gt)]<:>prefix('>').
op_com ::-= [relop(ge)]<:>prefix('>=').
op_com ::= [relop(eq)]<:>prefix('=').
op_com ::= [relop(ne)]<:>prefix('-=').

1 3

Appendix n. Syntax and attribute rules.

% this is an implementation in Definite Clause Translation Grammars of
% the toy language in David Warren's paper on Logic Programming and
% Compiling which appeared some time ago in Software: Practice and
% Experience. There are slight diff eren~ in the target machine,
% a lexical grammar, and a Translation Grammar in place of Warren's
% straight Prolog code.
%
% Here in place of gen_code in the text of the paper we simply write code.

program ::= statementsMS
<:>
code(Dic,Code) ::- SMcode(Dic,Code).

statements ::= statementMS, stl MS 1
<:>
code(Dic,[SCode,S lCode]) : :

SMcode(Dic,SCode),
S 1 Mcode(Dic,S lCode).

stl ::= tSEMICOLON, I, statementsMS
<:>
code(Dic,Code) ::- SMcode(Dic,Code).

stl ::= D

statement::= tIDENTMJd, tASSIGN, expressionME
<:>
code(Dic,[Exprcode,instr(store,Addr)]) : :-
lci"-"prefix(ldeotifiet),
loolwp(Identifiez ,Dic,Addr),
EMcode(Dic,Exp-code).

statement::= tWlflLE, testMT, tDO, statementMS
<:>
code(Dic,[label(Ll),Testcode,Docode,instr(jwnp,Ll),label(L2)]) ::-
TNlcode(Dic,l..2,Testcode),
SMcode(Dic,Docode).

statement::= tIF, testMT, tTHEN, statementMSl, tELSE, statementMS2
<:>
code(Dic,ff estcode, Thencode,inslr(jwnp,L2),label(Ll).Elsecode,label(L2)]) : :
TNlcode(Dic,L l ,Testcode),
S 1 Mcode(Dic,Thencode),
S2Nlcode(Dic,Elsecode).

statement ::= tREAD, tIDENTMJ
<:>
code(Dic,[instr(reai,Addr)]) ::-
IMprdix(ldentifier),
lookup(ldentifier ,Dic,Addr).

statement ::= tWRI1E, expressionME
<:>
code(Dic,[Exprcode,instr(write,0)]) ::-

14

statement::= tLPAREN, statementsAAS, tRPAREN

oode(Dic,Scode) ::- SMoode(Dic,Scode).

test::= expressionAAEl, op_oom.VO, eXJRSSiooME2
<:>
code(Dic,Label,[Exprcode,inslT(Jurnpif ,Label)]) ::-
El Mprefix(Argl),
E2Mprefix(Arg2),
()IV<prdix(Op),
encode_prefix(expr(sub.Argl.Ar,t},),0,Dic.Exprcode),
unlessop(Op)umpif).

expression ::= c:xpl(0)ME
<:>
(code(Dic,Code) ::- EMprefix(Prefix),

encode_prefix(Prefix,0,Dic,Code)),
(prefix(X) ::- EMprefix(X)).

expl(Binding) ::= primaryMP, exp2(Binding)ME2

prefix(X) ::- P""Prefix(Primary),
E2Mprefix(Primary ,X).

exp2(Binding) ::= tOP(Q)M()p, { Binding < Q) ,
expl(Q)MEl, exp2(Binding)ME2

<:>
prefix(F,X) ::-()p""prefix(Operator),

ElMprefi.x(Fl),
E2Mprefix(expr(Operator~,Fl),X).

exp2U::=O
<:>
prefix(F,F).

primary ::= lCONST ANTAAC
<:>
prefix(nwn(X)) ::- C""prefix(X).

primary ::= tIDENTMI
<:>
prefix(ld(X)) ::- IMpefix(X).

primary ::= tLPAREN, expressionME, tRPAREN
<:>
prefix(X) ::- EMprefix(X).

15

