
GENERALIZED LL (k) GRAMMARS FOR
CONCURRENT LOGIC PROGRAMMING LANGUAGES

by

Harvey Abramson

Technical Report 87-32

October 1987

Generalized LL(k) Grammars

for

Concurrent Logic Programming Languages

Harvey A bra ms on
Qe_partment of Computer Science

University of British Columbia
Vancouver, B.C.

Canada

ABSTRACT

We examine the compilation of the LL(k) determinis
tic context free grammars to Horn clause logic programs
and sequential and concurrent execution of these pro
grams. In the sequential case, one is able to take advan
tage of the determinism to eliminate the generation of
unnecessary backtracking information during execution of
the compiled logic program. In the concurrent case, gram
mar rules are simply and directly translated to clauses of
Concurrent Prolog, Parlog, or Guarded Horn Clause pro
grams, allowing grammatical processing directly in the
setting of committed or "don't care" nondeterminism.
LL(k) grammar rules are generalized so that grammatical
processing of streams involving derivations of infinite
length is possible. A top-down analogue of Marcus's
deterministic parser is a possible application of these gen
eralized LL(k) grammars.

October 19, 1987

Generalized LL(k) Grammars

for

Concurrent Logic Programming Languages

Harvey Abramson
Qe_partment of Computer Science

University of British Columb·a
Vancouver, B.C.

Canada

1. Introduction.
A grammar is a finite way of specifying a possibly infinite set of

sentences of a language. A logic grammar is a grammar whose rules
can be represented by or compiled to Horn clauses. A logic grammar
thus has not only a declarative reading, specifying the sentences of a
language, but also a procedural reading, permitting sentences of the
language to be analysed or synthesized. Since the introduction of
Metamorphosis Grammars n various kinds of logic grammars have
been devised (see 1), 2), 7, 8), 9), 12) and 13)). Although the
declarative reading of the orn clauses corresponding to grammar
rules in these various formalisms is quite general, the procedural read
ing has depended on the top down, left to right sequential execution
strategy of Prolog, in which backtracking is used to simulate non
deterministic search.

Recently logic programming languages have been defined which
directly exploit the possibilities of concurrency inherent in logic pro
gramming. The most successful such languages, Parlog 4), Concurrent
Prolog 14), and Guarded Horn Clauses 16), however, make use of
committed nondeterminism as a control strategy rather than full
and/or parallelism. (See 6) for discussion of a common execution
model for these languages.) The form of a clause in . these languages,
ignoring differences in notation, is roughly :

r(tl, ... ,tk) :- <guards> : <body>.

Both the guards and the body are a conjunction of goals. In
attempting to evaluate a goal r(pl , ... ,pk), all clauses for the relation r
are attempted in parallel. Here, attempted means matching the head
of the clause and successful evaluation of the guards. From those
clauses which are successfully attempted, one is selected, and the oth
ers are discarded. This is "don't care" or "committed"

- 2 -

nondeterminism: the discarded calls are not cared about, or, one is
committed to a particular choice once made. In practice, the first
attempt to succeed is chosen. In the languages mentioned there are
also synchronization mechanisms for delaying calls to make sure that
certain arguments are instantiated. In Concurrent Prolog this is done
by annotating arguments as read-only; in Parlog, mode declarations
specify which arguments are input or output arguments; in Guarded
Horn Clauses, neither annotations nor mode declarations are used,
but if during unification of the head or execution of the guards an
attempt is made to bind a non-local variable, then execution
suspends. During the attempt to evaluate a goal, any arguments, say
in a guard, which are not instantiated when they should be, result in
a suspension until the variable in question, shared by some other pro
cess, is more fully instantiated.

There is an obvious problem in parsing in a committed nondeter
ministic setting. From the productions. which may be successfully
attempted, the processor will select one, commit to it, and ignore all
the others. This will obviously allow the derivation to continue one
more step, but it may not allow the derivation to continue to a suc
cessful conclusion. For example, suppose we had the following pro
ductions for a nonterminal "x" and we were parsing in a setting of
committed nondeterminism:

X ::= [].
x ::= a, b, c.

Suppose at some point in the parse, both productions were success
fully attempted (assume empty guards) but that the processor had
chosen the empty production to commit to. Even though the input
may be parsed as an "a" followed by a "b" and a "c", the wrong pro
duction (always applicable because of the empty right hand side) will
have been chosen and a parse will not be found.

Clearly, if there is to be any class of logic grammars for which
there is a simple direct translation of grammar rules to concurrent
logic program clauses in a setting of committed nondeterminism, then
that production (clause) must always be selected which will allow a
derivation to continue to a successful conclusion if one exists This will
happen if at any time at most one production can be used to continue
a derivation. Fortunately, there is a subclass of context free gram
mars, the LL(k) grammars, which provides a model for such a class of
logic grammars. The class of LL(k) grammars consists of those unam
bigous context free grammars in which input is parsed top down from
left to right with k-symbol lookahead. The lookahead enables one to
uniquely determine which production is to be used in continuing a
parse. H no production is applicable, then the input string is not in
the language generated by the grammar. This class is deterministic in

- 3 -

the sense that it can be accepted by a deterministic pushdown auto
maton.

We shall use the following 11(1) grammar., taken from 3), first to
show how deterministic grammars may be compiled as sequential
logic programs and then, generalizing, compiled to concurrent logic
programs with "don't care" nondeterminism (note the paradox: deter
ministic grammars compile easily into don t care nondeterministic
logic programs!) .

1.1. Sample grammar.
e ::= t,e_prime.

e_prime ::= "+" ,t,e_prime.
e_prime _: := [).

t ::= f,t_prime.

t_prime ::= "*" ,f,t_prime.
t_prime : := [].

f ··- "a" .. - .
f ··- "(" e ")" .. - ' ' .

See the last section of this paper for comments on nondeterministic . parsing.

1.2. The one character lookahead relation.
The following unit clauses define the one character lookahead

relation for the sample grammar. The first argument to the predicate
"lookahead" is a production, and the second is a list of characters
which permit use of that production in a derivation. For example, the
production "e::=t,e_prime" may be used if searching for an ''e" and if
the first unused character in the input string, the lookahead charac
ter, is either an "a" or a "(".

lookahead
lookahead
lookahead
lookahead
lookahead
lookahead
lookahead
lookahead

e: :=t,e_prime), "a(").
e_prime::="+'' ,t,e_prime),"+").
e_prime::. []) "Jc?"~.
t::=f,t_pnme\ 'a().
t_prime::="*~' f,t_prime) /'*").
t_prime: :=[J), d +) ?") .
f:: = "a"),''a }.
f:: = "(" ,e,")"),"(") .

The "?" is used to mark the end of the input string. The "looka
head" predicate may be calculated following a,n algorithm given in 3)

- 4 -

and is easily specified in Prolog (although some version of "setof'
must be used). The hand-coding of LL(k) grammars into Prolog
clauses was very briefly mentioned in 15) .

2. Compilation to sequential logic programs.
Although our principal motivation is to find a class of concurrent

logic grammars, we begin with the compilation of deterministic gram
mars to sequential logic program clauses: the sequential case is itself
interesting and gives the foundation of the method to be developed
for the concurrent case.

In compiling LL(k) grammars to sequential logic programs we
would like to take advantage of the determinacy of production use in
a derivation. We shall do so by treating the lookahead examination
as a guard on use of a clause compiled from a production. The logic
program clauses generated from the above grammar will each have as
their first goal a call to a predicate called "ll_guard". This is a. predi
cate of arity 4: the first argument is the original production used to
index into the lookahead predicate; the second argument is treated as
a node in the tree representation of the derivation and is a function
SfII:hol of the form guard(X), recording the lookahead string X (see
1 J for a description of Definite Clause Translation Grammars and the
automatic formation of a derivation tree); the last two arguments
represent the input string as a difference hst. For the LL(l) case, the
"ll_guard" predicate is specified as:

ll_guard(LookAhead,guard(X) ,[XIXs]) :
lookahead (LookAhead,List),
member(X'.,List) ,!.

This does not use up any characters in the input string but merely
examines them. The cut, once the lookahead "List" has been
accessed, and the first character of the input string has been shown to
be a member of that list, is used to ensure that there will be no
backup in trying to use any other productions. (A clever compiler
might avoid generating choice points which would not be used.)

Here follows the set of clauses generated for the above sample
grammar. The call to "ll_guard" is automatically inserted by the
grammar compiler. The third argument to the function symbol
"node" represents an empty set of semantic rules. See 1) regarding
the semantic component of grammar rules.

e(node(e,(Guard,T ,E-;Prime],[)) ,S1,S3) :
U_guard((e::= t,e_pnrne) ,Guard,S1) ,
t(T ,Sl,S~2),
e_prirne(E_prime,S2,S3).

- 5 -

e_prime(node(e_primel[Guard,[+) ,T ,E_primel ,[]) ,S1,S4) :
ll_guard((e_prime::= +] ,t,e_prime) ,Guard,Sl),
c(Sl,+,S~,
t(T,S2,S3 ,
e_prime(_prime,S3,S4).

e_prime(node(e-:-Primet!Guard, rl], f]) ,S 1,S2) :
ll_gua.rd ((e_prrme: :=) , Guarct,8'1),
Sl=S2.

t(node(t,f Guard,F,T-:-Primel,[D ,S1,S3) :
ll_guarct~t::=f,t_prrme) ,Guard,S1),
f(F,S1,S2 ,
t_prime(_prime,S2,S3).

t_prime(node(t_prime,JGuard,[*),F ,T_primeJi\D ,S1,S4) :
ll~uard(~t_prime::=[~],f,t_prime) ,Guard,81 ,
C S1,* ,S2 '
f ,S2,S3 ,
t_prime(_prime,S3,84).

t_pr. ime(node(t-:Prime,JGuard ,rl],r]) ,81,82) :
ll_guard ((t_prrme: := D), Guard ,S 1),
Sl=S2.

f(node(f,[Guard,[a]] ,fJ) ,S1,S2} :
ll_guarct ((f::=[a]) ,Cuard,Sl),
c(Sl,a,S2).

f(node(f,[Gu_~rd~[',('] ,~,[:) ']] ,[1) ,SI ,S4) :
ll_guard ((f .. -[('],e,[)]),Guard,81),
c!S1, '(' ,82),
e E,82,83),
C 83, ') ',84) .

The predicate "c" is used to absorb a single terminal symbol:

c([XIY],X,Y).

The controlling predicate "e" appends the endmarker; in this case,
"?", calls the starting nonterminal of the grammar, and pretty prints
the result:

e(Source) :-
append.(Source, (?l ,EndMar ked),
el Guarcl,EndMarked,[?]),
pretty(Guard).

- 6 -

For example, a call of "e("a*a")" yields:

e
guard(a)
t

guard(a)
f

e;uard(a)
tal

it_prrme
~uard(*)
(1

~uard(a)
, ta]

t_pnme

. nuard(?)
e_prrme

Tiuard(?)

3. Compilation to concurrent logic program clauses.
We shall illustrate the compilation of a deterministic grammar to

a (don't care) concurrent logic program using the language Con
current Prolog as a target; compilation to Parlog and GHC is similar,
and we shall comment on this below. The basic idea is to turn the
predicate "ll_guard" into a true guard on the generated clause and
each nonterminal into a concurrent process. An attempt is made to
reduce the generated clause only if the guard succeeds. The processes
corresponding to nonterminals must be synchronized so that there is,
in the LL(l) case, a character in the input string against which a
guard may succeed or fail. The synchronization is accomplished by
annotating the first of the two hidden arguments with a "?·", the
read-only annotation. If the input string is not yet sufficiently instan
tiated, the process delays until an input character has appeared.
Here are the generated Concurrent Prolog clauses for our sample
grammar. The commit operator is indicated by a ";".

e(node(e,rGu~d ,T ,E_primel ,[]) ,81,83~ :
lLGuarcl ((e .• -t,e_prrme) ,Guard,81),
t(T ,81? ,82),
e_prime(E_prime,S2? ,S3).

e_prime(node(e_prime,[Guard,.[11,[l) {S1 ,S2) :
ll_Guard((e_prime::=U) ,Guarct,S'l J;

- 7 -

S1? = S2.

e_prime(node(e_prime,[Guard,[~],T ~E_primel ,rl),S1,S4) :
ll_Guard((e_pnme::= {+],t,e_pr1meJ ,Guard,Si);
c(Sl? ,+,82) ,
t(T,S2?,S3),
e_prime(E_prime,S3? ,S4).

t(node(t,f Guard,F ,T _primel ,[]) ,S1,S3) :
ll_Guarct((t::= f,t_pnme) ,Guard,81);
f(F ,S1? ,S2),
t_prime(T_prime,82? ,83).

t_prime(node(t_prime,[Guard ,[ll ,rl) \81,82) :
ll_:Guard ((t_prrme: := 1]), Guard ,S 1 J;
S1? = 82.

t_prime(node(t_prime,[Guard,[~],F {T _primel ,rJ) ,S1,S4) :
ll_Guard ((t_pnme: :=1*],f,t_pruneJ ,Guard,Si);
c(S1?,*,S2),
f(F,S2? ,83),
t_prime(T _prime,S3? ,S4).

f(node(f,[Guardl('\'],E,1').']] ,rl) ,S1,S4) :
ll_Guard ((f::= (],e,[']),Cuard,S1); c[Sl? ,'f ,82),
e E,S2. ,83),
c S3?,')',S4).

f(node(f,(Guardf[a]] ,fl) ,81,S2) :
ll_Guard ((f::= a]),Cuard,S1);
c(S1? ,a,S2).

We use the following definition of "member" in the Concurrent Pro-
log setting: '

member(X,[Yj_]) :-
X = Y; true.

me!Ilber(X~[YIZ]) :-
dif(X, Y ;
member(,Z).

The definition of the "ll_guard" predicate must be changed slightly
since it examines the input string: it delays until there is a character
in the input stream and the lookahead "List" has been supplied:

- 8 -

ll_guard(LookAhead,guard(X) ,[XIXs]) :
lookahead (LookAhead ,List),
member(X? ,List?).

The controlling predicate now calls on the Concurrent Prolog inter
preter to solve the goal "e", with the endmarked input string, yield
ing if succesful, the derivation tree "T":

e(Source~:-
append Source,"?" ,EndMarked),
solve(e(,EndMarked,"?")),pretty(T).

In the case of Parlog, the compiler from grammars to Parlog clauses
would have to annotate the processes corresponding to nonterminals
with mode declarations which would insure that the last but one
argument is an input variable. The predicate "ll_guard" would act as
a guard to the generated Parlog clauses. This example has in fact
been converted to Parlog by S. Gregory 10). Conversion of this tech
nique to Guarded Horn Olauses should not be difficult.

4. Generalized deterministic grammars.
We have so far shown how LL(k) grammars could be compiled

directly into either sequential or don't care nondeterministic logic
programming languages. The class of LL(k) languages is in some
respects a restrictive one: it does not include all context free gram
mars, for example. Thus, one could not take an arbitrary context
free grammar and transform it into an LL(k) grammar and then gen
erate an efficient logic program (efficient in the sense of not requiring
backtracking). In practice, however, many languages (probably most
programming languages) can be formulated using LLlk) grammars.
It is fairly likely that any language (presumably, for convenience to
the user, a fairly restricted subset of natural lanaguage) which might
be used as a command language to a logic operating system could be
specified by an LL(k) grammar for some small value of k. One would
then be able to use the hardware of a concurrent logic .machine to
handle the necessary grammatical processing directly rather than
relying on an attached sequential grammar processor for this task.

There are, however, some obvious generalizations of the tech
niques displayed above which get out of the restrictive LL(k) class.

Firstly, the guards may be generalized to do more than look at a
certain number of characters of the input stream. Grammar produc
tions could be written in the form:

nonterminal ::= <guards>: <right-hand side>

where the nonterminal "expands" to the right-hand side only if the

- 9 -

guards are succesfully evaluated. It would be up to the grammar
writer to provide specifications of the guards so that the wrong pro
duction is not selected in the committed nondeterministic setting.

Secondly, the nonterminal symbols may be allowed, as in the case
of Definite Clause Grammars or Definite Clause Translation Gram
mars, to have more arguments than just those automatically added
by the compiler from grammar rules to logic programming clauses.
This certainly takes the grammar rules out of the very restrictive
LL(k) class, and even, as is well known from the DOG and DCTG
experience, out of the class of context free grammars.

Thirdly, the right-hand side of extended grammar rules may also
include communication with concurrent processes other than ones
corresponding to nonterminal symbols. As in the case of DCGs and
DCTGs, one might use the notation in the right-hand part of a gram
mar rule:·

{ concurrent_process(A, ... ,Z) }

to specify that some concurrent process with shared variables "A" to
"Z" must be successfully reduced for parsing to succeed.

One should also note that in the concurrent setting derivations
may be of infinite length. The guards above are used to determine
whether a derivation may be continued or not: they do not enforce
any restrictions on the length of input. Thus, one may think of the
generalized grammar rules as allowing one to do grammatical process
ing on streams rather than on finite strings. In this view, the gram
mar rules provide a notation for operating on what might be termed
a "hidden stream": it is a mechanical task to generate the concurrent
logic program clauses which make that stream explicit as above in the
simple LL(l) case.

5. Related work and future investigations.
An analogy can be made between SLD-resolution over Horn

clause programs and context-free derivations over context-free gram
mars. In place of grammar rules one has a program of Hom clauses;
instead of replacing a nonterminal by the righthand side of a gram
mar rule whose lefthand side is that nonterminal, one seeks to unify a
goal with the head of a clause, and if successful replace that goal
either by the empty clause or by the body of the clause using the sub
stitution derived from unification to instantiate variables. In the
context-free grammar situation one tries to derive a sentential form
without nonterminals; in SLD-resolution one tries to remove all
subgoals, deriving the empty clause. Thus, SLD-resolution over Horn
clause programs generalizes context-free derivations.

- 10 -

In this paper we have drawn an analogy between LL(k) gram
mars, a subclass of context-free grammars and commited choice non
deterministic concurrent logic programming. LL(k) grammars consti
tute a proper subclass of context-free grammars which can be parsed
efficiently. The drawback to this class is that the grammars of the
class are viewed as being less "natural" and less "expressive" than full
context-free grammars. Given the analogy drawn between LL(k)
grammars and committed choice concurrent programming languages,
one hopes that the lack of "naturalness" and "expressiveness" charac
teristic of the grammars does not carry over to the programming
languages. If it does, one might wish to investigate specifying prob
lems in full and / or parallel logic and use some heuristic program
transformation techniques to derive efficient, but possibly less
"natural", committed choice concurrent programs. Note that commit
ted choice concurrent programming languages, as well as generalized
LL(k) grammars for such languages, have the full computing power of
a Turing machine. The concepts "natural" and "expressive" hence are
intuitive and must be placed within quotation marks.

Other approaches may be taken to parsing in languages such as
Parlog, Concurrent Prolog and Guarded Horn Clauses. One could
simply avoid the problem and drop into Prolog, making use of known
classes of logic grammars for parsing; if all possible parses of a sen
tence were required, one could make use of various "all solutions"
predicates for gathering the parses into a list. This method, although
effective, is not very interesting as far as exploitation of concurrent
logic programming languages is concerned.

The approach taken by Matsumoto in 11) with respect to parsing
in a concurrent setting is an alternative to ours and is more general,
but posssibly less efficient. Matsumoto's approach is to allow non
deterministic grammars and utilise a parsing method related to Chart
Parsing and Earley Parsing. Potentially, all possible parses may be
gathered and merged into a list of parses. This seems quite suited to
non-deterministic natural language parsing but may be unnecessarily
powerful when used with deterministic formal languages. Also, ther
may be problems when nonterminal symbols have arguments contain
ing uninstantiated variables.

Having said that nondeterministic parsing may be more suitable
for natural language parsing in general, we still think that determinis
tic concurrent parsing may be applied to natural language parsing in
some cases. Marcus has reported considerable success with a deter
ministic bottom up parser which is essentially an LR(3) parser. It is
tempting to speculate that a top down analogue of his parser can be
as succesful.

On a less speculative level, one would like to have the grammati
cal processes in the concurrent setting as efficient and as inexpensive
as possible. For much of the time the process corresponding to a

- 11 -

nonterminal may be inactive, coming alive only when some input had
arrived on its input stream. These processes could presumably be
efficiently implemented by having them do a busy wait or be blocked
until activated.

Acknowledgment
This research was supported with the aid of an SUR grant from IBM
Canada. An earlier version of this paper appears in Lecture Notes in
Computer Science 225, Third International Conference on Logic Pro
gramming, London, England, July, 1986, edited by E. Shapiro,
Springer.

References.

1) Abramson, H., Definite Clause Translation Grammars, Proceedings
1984 International Symposium on Logic Programming, Feb. 6-9,
1984, Atlantic City, New Jersey, pp. 233-241.

2) Abramson, H. Definite Clause Translation Grammars and the
Logical Specification of Data Types as Unambiguous Context Free
Grammars, Proceedings of the International Conference on Fifth
Generation Computer Systems, Tokyo, Nov. 6-9, 1984.

3) Aho, A.V. & Ulhnan, S., Principles of Compiler Design, Prentice
Hall, 1977.

4) Clark, K. & Gregory,. S., Parlog: Parallel Programming in Logic,
lmperial College, Research Report DOC 94/ 4, London, 1984.

5) Colmerauer, A., Metamorphosis Grammars, in Natural Language
Communication with Computers, Lecture Notes in Computer Sci
ence 63, Springer, 1978.

6) Crammond, J., An Execution Model for Committed-Choice Non
beterministic Languages, Proceedings 1986 IEEE Symposium on
Logic Programming, September 22-25, 1986, Salt Lake City, 148-158.

7) Dahl, V., More on Gapping Grammars, Proceedings of the Interna
tional Fifth Generation Computer Systems Conference, Tokyo, 1984.

8) Dahl, V. & Abramson, H., Gapping Grammars, Proceedings -
Second International Logic Programming Conference, Uppsala,
Sweden, 1984.

9) Dahl, V. & McCord, M., Treating coordination in logic grammars,
American Journal of Computational Linguistics, vol. 9, pp. 69-71,

- 12 -

1983.

10) Gregory, S. private communication.

11) Matsumoto, Y., A Parallel Parsing System for Natural Language
Analysis, Lecture Notes in Computer Sc ience 225, Third Interna
tional Conference on Logic Programming Proceedings, London, Eng
land, July, 1986, edited by E. Shapiro, Springer, pp. 396-409.

12) McCord, M., Modular Logic Grammars, Proceedings - Association
for Computational Linguistics Conference, July, 1985.

13) Pereira, F.C.N. & Warren, D.H.D, Definite Clause Grammars for
Language Analysis, Artificial Intelligence, vol. 13, pp. 231-278, 1980 .

..

14) Shapiro, E.Y., A subset of Concurrent Prolog and its interpreter,
Technical Report TR-003, ICOT, Tokyo, 1983.

15) Stabler, E., Deterministic and bottom-up parsing in Prolog,
Proceedings, AAAI, pp. 383-386, 1983.

16) Ueda, K., Guarded Horn Clauses, ICOT Technical Re_port TR-
103, Institute for New Generation Computer Technology, Tokyo,
June, 1985.

