
Abstract

CONCEPfS and METHODS
for

DATABASE DESIGN

Paul C. Gilmore

Technical Report 87-31
August 1987

This report consists of drafts of chapters of a book prepared as course material for
CSCI 404 at the University of British Columbia

INDEX & Chapt 1(1-) INTRODUCTION. Copyright Paul C Gilmore, all rights reserved, August 11, 1987

INDEX
CHAPTER 1. INTRODUCTION
Sections:

1. RECORD KEEPING
2. DAT A and DATA PROCESSING
3. MACHINE ASSISTED DATA PROCESSING
4. DAT A PROCESSING PROGRAMS
5. FILE MANAGEMENT SYSTEMS
6. DATABASE MANAGEMENT SYSTEMS
7. INFORMATION NEEDS ANALYSIS AND DATABASE DESIGN
8. FOURTH GENERATION LANGUAGES
9. KNOWLEDGE BASE SYSTEMS
10.OVERVIEW OF BOOK

CHAPTER 2. BASIC CONCEPTS
Sections:

1. ENTITIES and SETS
1.1. Domain of a Set
1.2. Extensions Varying with Time
1.3. Ordered Sets and Tuples
1.4. Cartesian Products and Associations

2. DECLARATIONS and ARITY DOMAINS
2.1. Base Set Declarations
2.2. Naming Sets
2.3. Arity Domains

3. DEGREE DECLARATIONS
3.1. Degree of an Entity for an Association
3.2. Business Practices and Degrees
3.3. Notation for Degree Declarations
3.4. Partial, Total, Singlevalued, Multivalued, and Functional

Associations
3.5. Interpretation of Degrees of an Association with Domain an

Association
3.6. Degrees of Nonbinary Sets

4. VALUE SETS and DEFINED SETS
4.1. Strings and Primitive Value Sets
4.2. Declarations of Defined Sets
4.3. Defined Value Sets

5. ATTRIBUTES
5.1. Functional Attributes

1

INDEX & Chapt 1(1-) IN1RODUCTION. Copyright Paul C Gilmore, all rights reserved, August 11, 1987

5.2. Identifiers

6. PARTITIONS of DECLARED SETS
6.1. Choosing Base Sets
6.2. Domain Predecessors

7. A SET SCHEMA for the XYZ CORPORATION

8. DOMAIN GRAPHS and TREES
8.1. Directed Graphs
8.2. Directed Graphs as Domain Graphs
8.3. Paths and Cycles
8.4. Trees from Undirected Cyclic Graphs
8.5. Degrees for Edges of Domain Graphs and Trees

9. TYPES and ELEMENTARY ASSERTIONS
9 .1. The Extended Schema schema* and Types
9.2. Terms and Elementary Assertions
9.3. Type Assigning Elementary Assertions
9.4. Equality Assertions

CHAPTER3.THELANGUAGEDEFINE
Sections:

1. DOMAIN+VARIABLE DECLARATIONS

2. A MANAGEMENT SYSTEM for SET SCHEMAS
2.1. Internal Surrogates and Tuples of Surrogates
2.2. Users' View of the System
2.3. Immediate Predecessors

3. ELEMENT ARY and EQUALITY ASSERTION CLAUSES
3 .1. Assigning Truth Values to Elementary and Equality Assertions

4. THE BOOLEAN TRUTH VALUES and OPERATORS
4.1. Truth Values
4.2. Conjunctions and Disjunctions
4.3. Negation
4.4. Assertions wirth Identical Truth Values

5. QUANTIFIERS
5.1. Informal Introduction toExistential Quantifiers
5.2. Informal Introduction to Universal Quantifiers
5.3. Quantifier Variable Declarations
5.4. Assigning Truth Values to Quantified Assertions

2

INDEX & Chapt 1(1-) INTRODUCTION. Copyright Paul C Gilmore, all rights reserved, August 11, 1987

6. NESTED DECLARATIONS

7. PARAMETERIZED SET and TUPLE NAMES
7 .1. Parameterized Set Names in Quantifier Prefixes
7 .2. System Declared Functions
7.3. Ordered Sets and Parameterized Tuple Names
7.4. Nested Parameterized Names
7.5. The Form and Meaning of Parameterized Set Names

8. QUERIES

9. Toe CONSISTENCY of TRUTII VALUE ASSIGNMENTS

10. EXTENSIONS of DEFINE

CHAPTER 4. INFORMATION NEEDS ANALYSIS
Sections:

1. NAMING SETS
1.1. Restrictions on the naming of Sets

2. GUIDING PRINCIPLES for the CHOICE OF BASE SETS

3. The CHOICE of VALUE SETS

4. NULL VALUES

5. ENTITY-RELATIONSHIP DIAGRAMS

6. DATA STRUCTURE or BACHMAN DIAGRAMS

7. IS_A HIERARCHIES

CHAPTER 5. DESIGNING TABLES
Sections:

[Gil87a] is attached

CHAPTER6. DESIGNINGNETWORKS
Sections:

To be supplied

REFERENCES

3

INDEX & Chapt 1(1-) IN1RODUCTION. Copyright Paul C Gilmore, all rights reserved, August 11, 1987

CHAPTER 1. INTRODUCTION

1. Record Keeping

Record keeping is fundamental to all cooperative human activity and to much
individual activity as well, and evidence of it is as old as writing. The human brain
is capable of recording prodigous amounts of diverse information, but it is not an
accurate, reliable, and verifiable means for keeping most of the elementary
information vital to the operation of human societies. It would be impossible to
operate a chequing account at a bank, for example, if it was necessary for the bank
and an individual to agree on the selection of an individual to remember all the
transactions of the account and report on the current balance. No individual chosen
could be counted on to remember correctly all the transactions necessary, to be
available whenever called upon for information, and if that individual's memory
was the sole repository for the information, there would be no means to settle
disputes as to its accuracy.

The verb "to record" comes from the latin "to remember". For remembering such
a personal thing as future engagements, individualized engagement calendars are
widely used. For remembering the withdrawals, cheques written, and deposits for
chequing accounts, registers are provided to individuals by banks so that such
transactions can be written down as they occur, and so that they can be remembered
when necessary. The bank also sets down in some form of writing their experience
with transactions for the account, with the result that a basis for settling disputes
between the individual and the bank is provided by the two records.

Since record keeping is so widely and frequently used, short cuts are necessary to
decrease the time involved and to increase the accuracy of the records. An
engagement calendar for a year has for each day a designated space for recording
the engagements of the day. An individual may write 'Bob's birthday' into the space
for a particular day, say August 17. The format of the calendar, when properly
understood, permits the person to look up that date and read any entries that have
been made. If the person remembers who Bob is, then the person is reminded that
August 17 is his birthday. The entry 'Bob's birthday' by itself does not suggest the
date of the birthday, but recording its presence in a designated space does.
Similarly, the sequence of strings of characters '5/8/87', '821', 'UBC bookstore',
'39.46' has no meaning by itself, but does take on real significance if it is recorded
in a cheque register, the first under 'Date', the second under 'Cheque No.', the third
under 'Cheque Issued to or Description of Deposit', and the fourth under 'Cheque
Amount'. Each of the strings must be supplemented by additional information to be
unambiguously interpreted, but under one convention these entries can be
interpreted as abbreviating 'Dated August 5th, 1987, cheque number 821 was
written to the order of the UBC bookstore in the amount of $39.46'. The four short
strings are not only easier to write than the full sentence, but it is easier to review

4

INDEX & Chapt 1(1-) INTRODUCTION. Copyright Paul C Gilmore, all rights reserved, August 11, 1987

and process the entries in the cheque register than it would be the full sentences that
they abbreviate.

2. Data and Data Processing

Each of the strings of characters '5/8/87', '821 ', 'UBC bookstore', and '39 .46' is a
datum, sometimes called a data item. The data (plural of 'datum') entered into the
cheque register is the source of information on transactions in the chequing account.
Information on transactions is obtained by interpreting the data in the register. For
example '5/8/87', because it appears in the date column of the register is interpreted
as the date; if it is entered as day/month/year, then the data item is interpreted as the
date 5 August, 1987, while if it is entered as month/day/year it is interpreted as the
date May 8, 1987. The format of the register and the data entered into it, is
therefore fundamental to the interpretation of data entered into it. If the data is
entered in the proper place and in the proper form, the cheque register becomes a
reliable and verifiable source of correct information on the transactions. But if data
is not entered, or not entered in the proper columns in the correct format, then
confusion rather than good information is the result. Therefore essential to the
cheque register is a discipline of careful data entry and a precise data description
setting out the format of the register itself and of the data that may be entered into
it.

To enter or change data, to read and interpret data, or to read data and to calculate
the current balance are all common examples of the processing of data for the
cheque register. But other examples abound. A person may wish to calculate the
total of all deposits made in the last month, the total of all cheques to charities in the
past tax year, or the total interest paid to the account, all examples of specialized
data processing that is sometimes called data manipulation, since it does not involve
entering, changing or deleting data. There is no limit on the amount and kind of
data manipulation that an individual could do on a cheque register, the limit is only
on the patience, time, and needs of the individual. If no mechanical or electronic
aids are available, the individual's limit of patience and time is likely to be quickly
reached, no matter the needs; but with such aids, more needs can be met within the
limit of patience and time. This is the promise of machine assisted data processing
for individuals, as well as for enterprises of all kinds.

3. Machine Assisted Data Processing

Data manipulation often involves large amounts of simple computations. The
tedious nature of the task has long been recognized. For example, Pascal wrote in
an "Advertisement" for a machine that he had designed and built in 1642, "Dear
reader, this notice will serve to inform you that I submit to the public a small
machine of my invention, by means of which you alone may, without any effort,
perform all the operations of arithmetic, and may be relieved of the work which has

5

INDEX & Chapt 1(1-) IN1RODUCTION. Copyright Paul C Gilmore, all rights reserved, August 11, 1987

often times fatigued your spirit, when you have worked with the counters or with
the pen" , while Leibniz, who thirty years later improved on Pascal's machine,
wrote " .. it is unworthy of excellent men to lose hours like slaves in the labor of
calculation which could safely be relegated to anyone else if machines were used".
[D.E. Smith, A Source Book in Mathematics, Vol. 1, Dover, 1959].

Pascal's and Leibniz's machines were mechanical calculators with features that are
still present in today's machines. As calculators they served to assist in the
computations that are part of data processing, but not in the repetitive data entry that
is also a part. If a cheque register is maintained only in written form, then each time
a calculation is made on a mechanical calculator, data must be read from the register
and entered into the calculator. Repetitive reentry of data is not only tedious, but it
is also time consuming and error prone. To eliminate the necessity for it requires
that a means be found to store data in a machine readable form that can be
repetitively processed.

Cards with holes punched in them to record data were the next major step forward
in mechanical data processing. By sensing where holes are punched in a card, a
machine can "read" the data encoded in a card. Thus if data entry is thought of as
the punching of holes in cards, then it need only be done once, no matter how often
the data is to be manipulated. The invention of the punched card for storing data is
attributed to Jacquard who in 1805 invented a loom that used such cards for
controlling the patterns produced in the cloth woven by it.

The use of the card for true data processing began with the United States census of
1890. Machines invented by Hollerith were employed to record the raw data from
the census in punched card form, and to manipulate the data by sorting and
tabulating the cards. The necessity of the Hollerith machines for the census, and the
effect of them on the results derived from the census can be judged from the
following quote from [Robert P. Porter, "The Eleventh Census', Proceedings of the
American Statistical Association, no. 15 (1891)]:

The Eleventh Census handled the records of 63,000,000 people and
150,000 minor civil divisions. One detail (characteristic) alone
required the punching of one billion holes. Because the electrical
tabulating system of Mr. Hollerith permitted easy counting, certain
questions were asked for the first time. Examples of these were:

Number of children borth
Number of children living
Number of family speaking English

By use of the electric tabulating machine it became possible to
aggregate from the schedules all the information which appears in any
way possible. Heretofore such aggregations had been limited. With the
machines, complex aggregations can be evolved at no more expense than
the simple ones.

6

INDEX & Chapt 1(1-) IN1RODUCTION. Copyright Paul C Gilmore, all rights reserved, August 11, 1987

With data manipulation made easier, needs can be satisfied that would otherwise be
neglected. The questions that were posed depended upon the base of census data, or
database, of punched cards for their answers; more recent terminology would call
them queries for the database. The quote illustrates a continuing theme of data
processing: When queries can be more easily answered, that is when data
manipulation is simplified and its cost reduced, information needs can be satisfied
that would otherwise be neglected.

As detailed in [Herman H. Goldstine, The Computer, from Pascal to von Neumann,
Princeton University Press, 1972] Hollerith's machines evolved into the punched
card machines that remained fundamental to data processing, including what is
more commonly called scientific computation, until well after the first commercial
uses of electronic computers in 1950.

4. Data Processing Programs

The punched card of the Jacquard loom recorded data of a very special kind. The
holes in the card for such a loom were instructions to the machine as to which
threads were to be manipulated to form the intended pattern in the woven cloth.
Each card was a program for the loom. They were not data processing programs
since the function of the loom was to process threads, not data. But the concept that
they have in common with data processing programs for a modem computer is that
the same machine was programmed to do many different things.

Beginning approximately in 1960 data processing programs were increasingly
written in higher-level languages such as Fortran, Cobol, and PL/1. Each such
application·program, as they are often called, was written for a specific purpose, but
they all depended upon one or more files of records of data. A payroll program for
printing pay cheques would require data on the regular and overtime hours worked
for hourly employees, other data on government and employer dictated withholding
for taxes and pensions, and still more data on name and addresses and perhaps bank
accounts of employees into which salary was to be deposited. Some of this data
would be required by a program that provided quarterly reports and payments to
governments for taxes withheld, but that program would require further data on the
reporting requirements. The number, complexity, and size of the files required for
the data processing programs of a typical enterprise have grown at a rapid pace as
more and more applications were seen to be essential for or useful to the operation
of the enterprise. The only brake on the introduction of new useful programs has
been the cost of creating and maintaining them.

It was noted earlier that the ingredients for a successful cheque register are a
discipline of careful data entry and a precise data description setting out the format
of the register itself and of the data that may be entered into it. These ingredients
are even more critical for the maintainance of a files used by one or more data

7

INDEX & Chapt 1(1-) IN1RODUCTION. Copyright Paul C Gilmore, all rights reserved, August 11, 1987

processing programs. The commands of a program reading from or writing to a
file, that is the in.put/output commands, will only execute properly if they conform
exactly to the f onnat of the data specified for the file, and the whole program can
only produce correct results if the data kept in the file is correct. These elementary
facts, given the large number of existing programs that have been created and must
be maintained, and the continuous demand for new programs, have profoundly
influenced the direction of software development.

5. File Management Systems

Data has traditionally been recorded on paper and manually maintained in folders,
drawers, and filing cabinets. The advent of computers has not diminished the need
for such traditional storage methods, but has rather supplemented it. A database in
the current sense, is a computer maintained collection of files of records stored in
high speed memory, or on drums, disks, tapes, and mass storage devices. The
creation and maintainance of such a collection requires:

-Interpreting data declarations made by users
-Deciding how and where data is to be stored
-Adding and deleting data from a file as directed by a user
-Retrieving data from a file at the request of a user.

These have traditionally become the responsibilities of the file management part of
an operating system.

A file management system caters to users with their own individual files. Files that
must be accessed by a program are declared in the program; a file that must be
accessed by more than one program, must be declared in each of the programs.
Every change to a file requires a change in the declarations of each program
accessing the file.

A file management system gives its users full freedom to structure the data within
the file. A user can use any data structure to record desired data, and must include
in every program accessing the file the code necessary to process the data structures
used in the file.

With all its advantages, a file management system nevertheless has serious
disadvantages as well:

A user must take full responsibility for adding, deleting, and retrieving data from a
file, and for backout in case of system failure during these operations.

To retrieve information from the database in response to a query, it is necessary to
write an application program specifically written for the query.

When files are shared the corrupting of a file by one program or user, affects other

8

INDEX & Chapt 1(1-) IN1RODUCTION. Copyright Paul C Gilmore, all rights reserved, August 11, 1987

programs or users that must access the file.

When the format of data within a file is changed in any way, the declaration of every
program accessing the file must be changed as well. When large numbers of data
processing programs access the same files, the declarations of the formats of the
files are repeated many times, and the cost in programming effort of making even
minor changes can be prohibitive.

The problems that arise from the use of file management systems have been
collectively referred to as the "maintenance mess" in chapter 1 of Software
Maintenance, The Problem and Its Solutions, by James Martin and Carma McClure,
Prentice-Hall, 1983.

6. Database Management Systems

Some, but not all of the "maintenance mess" can be cleaned up through the use of a
database management system. Such a system caters to users and programs with
shared files. If required, every user can share every file, with sharing only
restricted by security considerations and application needs.

A database management system provides a high level conceptual or logical view of
the data recorded in the files of the database through the use of a data model.

All declarations of data format and all commands for adding, deleting, and
retrieving data from the database are expressed in a high level, generally
nonprocedural, language that uses the data model as a description of the data in the
database.

Centralized control over the declarations of data can be maintained by a database
administrator. Decisions as to where and in what format the data is to be stored can
be made to ensure good performance of the storage and retrieval commands, and to
reinforce the reliability and security of the database.

Simplified individual views of the database can be provided that are specifically
tailored for particular application programs and users. This too can increase the
security of the database by limiting a user's knowledge of the database to just that
data required for the applications for which the user is responsible.

A database management system provides three basic functions to its users:
1. The system accepts the declaration of a schema that describes the format of

data to be entered into the database in terms of the data model supported by the
system.

2. Update, add, and remove commands compatible with the declared schema
change the data recorded in the database as required.

9

INDEX & Chapt 1(1-) IN1RODUCTION. Copyright Paul C Gilmore, all rights reserved, August 11, 1987

3. Queries and individual views of the database are expressed as definitions.

7. Information Needs Analysis and Database Design

Given a database management system, the design and implementation of a database
for an enterprise to be supported by the system, is a complex process that can be
broken down into roughly four steps:

l .Inforrnation needs analysis:
An informal process during which information is obtained about the data that is to
be recorded in the database. The process requires an examination of the data
currently being process, either manually or by machine, as well as an understanding
of how the data needs of the enterprise are likely to evolve. The information
gathered during this stage is needed during the subsequent stages of design in order
to:

- clarify the meaning and use of data to ensure that the analysts' and users'
have a common understanding of how the data is to be intetpreted; and

- ensure that the data is properly represented during the formal stage of
design.

During the later operation of the database the infoonation is needed:
- by the management system to maintain the integrity of the database
- users to help them understand the database and correctly interpret

retrieved data.

This stage frequently requires the examination of manually maintained databases as
well as existing computer maintained databases.

2. Formal schema design:
The data model supported by a database management system determines the kind of
schemas used to specify formats for the data to be entered into the database. During
this stage schemas must be designed that will ensure that any data determined to be
necessary for the enterprise, can be completely and accurately recorded in the
database.

3. Physical design:
A database management system generally allows a user to specify how and where
data is to be stored to ensure efficient retrieval. During this stage must be
determined which data structures supported by the management system are to be
used to store data, and where in the physical storage devices available to the system
are files of these structures to be recorded.

4. Load & test:
Actual data is loaded into the database during this stage and the design is tested for
completeness, accuracy, and efficiency.

10

INDEX & Chapt 1(1-) INTRODUCTION. Copyright Paul C Gilmore, all rights reserved, August 11, 1987

These steps are rarely followed in a simple sequential order, but rather later stages
of design contribute to earlier stages with the consequence that several cycles
through all the stages may be necessary to arrive at a suitable design. But as the
needs of the enterprise evolve and grow, so must also the design of the database.
However, a good initial design, when s1 pported by a good managen1ent system, does
shoud provide the basis for many years of evolution and expansion.

Of the four stages, the information needs analysis stage is often the most difficult
and time consuming, for it requires a unified view of the information needs of the
enterprise rarely achieved by one person. Although one person may be responsible
for the information needs analysis for an enterprise, many different people are
likely to be involved if the enterprise is of any size or complexity. For only by
questioning users of data and examining how they use it, is it possible to know what
information is obtained from the data by interpreting it. An understanding of
simply the format of data being used is not enough, since that will not lead to an
understanding, for example, of how business practices of the enterprise affect the
relationships between different collections of data.

Several methods have evolved for undertaking an information needs analysis. The
most important of these as far as this book is concerned is the entity-relationship
approach of Chen that evolved from earlier methods developed by Bachman. These
methods will be discussed at greater length in chapters 2 and 4.

8. Fourth Generation Languages

The use of database management systems will reduce some of the "maintenance
mess11 arising from the use of file management systems. For example, queries can
be expressed in the data manipulation language of the management system, rather
than in the third generation application languages like FORTRAN.COBOL, PL/1,
PASCAL, or ADA. These third generation languages, like the languages of the two
preceding generations, namely machine language and assemply language, can only
be written and understood by trained programmers. So the maintainance of
programs written to provide answers to routine queries will also require the
services of trained programmers. This why the need for trained programmers has
in the past grown at such a rapid pace.

The generally nonprocedural fourth generation data n1anipulation language of a
modem database management system, on the other hand, can be understood by users
of the system. They can pose queries in the language and have them answered by the
system without the intervention of any trained programmers. Responsibility for the
maintainance of the database of an enterprise can be left in the hands of specialized
per onnel, but this task does not grow in size and complexity as the number of
application programs and queries written for it grows.

11

INDEX & Chapt 1(1-) INTRODUCTION. Copyright Paul C Gilmore, all rights reserved, August 11, 1987

The only part of the "mess" left in the hands of trained programmers by early
database management systen1s was the maillltainance of more complex data
processing programs such as report generators. But the newer fourth generation
languages have extended the data manipulation languages of database managment
systen1s to provide languages that integrate the specification of data processing
programs and routine queries into, and reduce even more the need for trained
programmers.

9. Knowledge Bases and Fifth Generation Languages

A database management system is used by an enterprise to maintain a repository of
data from which, through proper interpretation, the information essential to the
operation of the enterprise can be obtained. The advantages cited by Date in
[Date83] for the use of a database management system are the reduction of
redundancy, assistance in the elimination of inconsistencies and inaccuracies, the
sharing of data by many user , and the enforcement of standards and security
restrictions. As the information recognized as essential to an enterprise grows in
sophistication and subtlety, so too must the database. More advanced databases are
now called knowledge bases, since the interpretation of the data recorded in them
results in qualitatively different kinds of information from that in traditional
databases. Nevertheless the advantages cited for database management systems must
not be lost for knowledge base management systems intended for wide application.

Enterprises operate in a world in which much of what should be known is not, and
in which some of what is known is incorrect. Database management systems must
assist enterprises in reducing ignorance and error. Such systems must be able to
remind their users of missing data, and notify them of what might be unanticipated
consequences of proposed updates. To the extent that it is possible for what may be
a distributed repository the internal consistency of the repository should be
maintained.

Because of the sophistication of the data recorded in a knowledge base and the
difficulties involved in its interpretation, increasingly sophisticated languages are
needed as data manipulation languages. For example, to maintain the accessability
of the knowledge base to untrained personnel data manipulation languages have
been designed that are intended to be as easy to use as natural languages such as
English. Although it is not possible to remove from a user the responsibility to
understand and f 01mulate complex queries, it is possible to permit the formulation
of such queries in a language comprehensible to the casual user.

10. Overview of the Book

The purpose of this text is to provide an understanding of some of the concepts basic

12

INDEX & Chapt 1(1-) INTRODUCTION. Copyright Paul C Gilmore, all rights reserved, August 11, 1987

to database and knowledge base systems. The goal is to give a full overview of the
design process from information needs analysis for an enterprise through to the
design of a schema for a particular database managment system, and at the same
time deal with some aspects of physical implementation. The intuitive appeal of the
entity-relationship approach to information needs analysis has lead to its widespread
use, and it belongs as a part of any introductory course on database.; at the same
time a business oriented view of information rather than a data view can be
presented, an important broadening of perspective.

Tables are presentation data structures; the name 'relation' given to them in the
relational model gives that model its name Codd70, 72, 79].The simplicity of the
table view of data has resulted in the widespread use of relational database
management systems. As a consequence a number of methods for designing
relational databases have been described. A recent survey of such methods appears
in [TYF86]. The design of a table schema from a set schema is also a natural topic of
an introductory course on database. Finally a discussion of the network or DBTG
model of data gives an introduction to at least one form of implementation, but is
also important because of the wide continued use of network database management
systems.

An introductory course covering the three topics, entity-relationship design
methods, relational schema design, and implementations via a network model,
becomes rather disjointed, very crammed, and somewhat superficial when these
subjects are taught in a traditional way. The intuitive entity-relationship design
methods are informal and imprecise, and require considerable practice with
examples to master. The design of relational schema via traditional normalization
methods can be presented in a more formal way, but the methods are imprecise in
their goals at times outright contradictory, and dependent upon a dry and
unintutive theory. The teaching of a query language like SQL for the relational
model is a necessity, but the language requires a lot of practice to master its more
complex features. Finally, the construction of network implementations of
relational schema has been another art that is difficult to teach, much less master.

This book provides a unified treatment of these subjects through the use of the SET
model and the language DEFINE.

The SET model is based on the concept of set or class, one of the most fundamental
concepts of mathematics. The concept has been incorporated into scientific and
natural languages, as well as used extensively in database theory and practice. It is
explicitly used in the relational data model and in the entity-relationship approach to
information needs analysis. It has also been used in the entity set [SAAF73],
semantic [HaMc81], and functional data models (Ship81, LyKe86] , in the system
TAXIS [MW80], in the techniques descnbed in [FuNe86], and is implicitly used in
the network data model [TaFr76]. But the concept of set used is an intuitive one and

13

INDEX & Chapt 1(1-) IN1RODUCTION. Copyright Paul C Gilmore, all rights reserved, August 11, 1987

is combined with other related but independent concepts. The SET model, on the
other hand, uses set and ordered pair as its only fundamental concepts, with the
mathematical foundation for these concepts being provided by the provably
consistent set theories of [Gil86], while other needed concepts are defined in terms
of these using the specification/and data manipulation language DEFINE.

In chapter 2 the groundwork is laid for the SET model, and some experience
provided in an information needs analysis for a mythical XYZ corporation. The
result of such an analysis is a collection of declared sets is a set schema that describes
a formal SET model of the information needs. In chapter 4 some of the finer points
of information needs analysis are presented after necessary definitions are provided
in chapter 3.

The language DEFINE is introduced in chapter 3 to permit the definition of a set in
terms of previously declared sets. Such definitions are necessary not only for the
information needs analysis forming the basis for a SET database, but also for the
formulation of queries for such a database.

One of the major advantages of the SET model is demonstrated in chapter 5, where
tables are introduced as defined sets in a set schema. By defining an appropriate
collection of tables as a table schema , a table view of a set schema can be provided.
A simple technique is described for constructing a table view of a database schema
that was first described in [Gil87a,b]. The technique uses an algorithm for
constructing a table view that faithfully captures all the information of the database
schema, provided that a collection of integrity constraints for the relational model
are maintained. The technique also suggests some of the limitations of the relational
model that are now becoming more widely recognized [TrLo87]. The chapter ends
with a discussion of the data manipulation language SQL of the relational model.

In chapter 6 the network model is discussed and a technique described for designing
network schemas. A network schema consists of a collection of what are called
DBTG (for Data Base Task Group) sets [TaFr76]. An implementation of a network
schema is described in terms of pointers that may provide some understanding of
how a database for a set schema might be implemented. A simple technique is
described for constructing a network view of a set schema that faithfully and
efficiently captures all the information of the database schema, again provided that
network integrity constraints are maintained. In the same chapter appears a brief
discussion of the hierarchical model of data.

Like the entity-relationship approach to information needs analysis, the SET model
is object-oriented in the sense currently being used for this term [Cox86]. A chapter
to be written will discuss the object-oriented approach being used in system design.

Numbering convention for sections and subsections.

14

INDEX & Chapt 1(1-) IN1RODUCTION. Copyright Paul C Gilmore, all rights reserved, August 11, 1987

Introductory sections are not provided for chapters. Rather an introduction to a
chapter is provided prior to the numbered sections.
Sections within a chapter are numbered beginning with 1, and subsections are
similarly numbered. References to sections will be in the form:

chapter 2 section 9.2.
When the chapter number is omitted, the reference is to the current chapter.

Numbering conventions for figures.
In order to assist in the location of figures, figures will be given the number of the
subsection in which they appear (no figures appear in the introduction to chapters);
if there is more than one figure in a subsection, then they are numbered beginning
with 1. The convention for with references to subsections is used in references to
figures. For example,

chapter 2 figure 9 .1
refers to the only figure appearing in section 9 .1 of chapter 2, while

chapter 2 figure 9.3.2
refers to the second figure appearing in section 9 .3 of chapter 2.

15

Chapt 2(1-3) BASICS. Copyright: Paul C Gilmore, all rights reserved, August 10, 1987

CHAPTER 2. BASIC CONCEPTS

In this chapter the basic concepts of the SET model are described. Since they form
the foundation for the remainder of the book, it is important that they be thoroughly
understood. At the same time the chapter provides an introduction to information
systems needs analysis. This is the process by which the information needs of a
company are determined. The exposition here is presented as an information needs
analysis for the XYZ company.

1. EN'ITI'IES and SETS

An entity is "a thing that has real and individual existence in reality or in the mind",
while an object is "a thing that can be seen or touched; material thing" [Webster's
New World Dictionary]. An object, such as a car, has real and individual existence
in reality, while an entity may be an abstract thing such as colour with a real and
individual existence in the mind. Entities, and not just objects, are important for
databases, since it is often necessary to record information about abstract things.

A set is a selected collection of entities possessing a common property. The
collection of entitites form the extension of the set, while the common property is
the intension of the set. For example, the set EMPLOYEE of persons currently
employed by the XYZ company is a set with intension "persons currently employed
by the XYZ company" and with extension those persons who are currently
employed by the XYZ company. An entity satisfying the intension of a set, and
therefore in its extension, is said to be a member of the set. Thus if e is a current
employee of the XYZ company, then e is a member of EMPLOYEE; this is
expressed symbolicly as

e:EMPLOYEE.
Here':' is a shorthand for 'is a member of; traditionally 'e:' , the Greek letter
epsilon, has been used for this purpose, but the frequent use made of the notation
makes the change of font inconvenient. Besides, the use of':' in place of epsilon is
now well established in programming languages in type declarations.

It is necessary to specify the intension of a set in order that the membership of the set
can be clearly understood. For example, although the name of the set EMPLOYEE
is suggestive of its intension, it is necessary to know its intension in order to
determine that past employees, for example, are not to be members of
EMPLOYEE. Similarly a name 'DEPARTMENT' for a set declared for the XYZ
corporation may suggest different sets to different people. To one it may suggest
the set of current departments, and to another it may suggest all departments that the
corporation has had in the past and has in the present. An intension 'the currently
recognized department' removes the ambiguity.

In database terminology a set is often referred to as an entity set. Here the adjective

1

Chapt 2(1-3) BASICS. Copyright: Paul C Gilmore, all rights reserved, August 10, 1987

"entity" does not change the meaning of set. It is added to emphasize that the
members of the set may be physical or abstract things. Any entity about which
information is to be recorded or, like strings of characters, are used to record
information, may be members of a set. Throughout the book "entity" will not be
added as an adjective to "set".

No set can be presumed to pre-exist. Each set identified in an information needs
analysis of an enterprise must be declared by giving it a name and stating its
intension. In section 2 a format for the declaration of sets will be described. The
collection of all declarations obtained during the needs analysis for a particular
enterprise is called the set schema for the enterprise.

1.1. Domain of a Set

The intension of a declared set should specify the domain from which the members
of the set are selected. For example, the intension "the set of male members of
EMPLOYEE" for a set MALE specifies EMPLOYEE to be the domain of the set
MALE. The domain of a set must be a set that has been previously declared. But
since no sets can be assumed to preexist, and the process of declaring sets must be
started somewhere, some sets must be declared without a domain; such a set is called
a primitive set. For example, the set EMPLOYEE as given above does not specify a
domain from which its members are to be selected, and is therefore primitive.
However, if a set PERSON for example was declared first, then EMPLOYEE could
be declared to have PERSON as its domain.

The relationship between the extensions of a set and its declared domain is
illustrated in figure 1.1.

FIGURE 1.1

••Ill--· DOMAIN

The whole area inside the larger square, including the more darkly shaded area
inside the smaller square, represents the extension of the domain of the set, while
the smaller square represents the extension of the set. For example, the larger
square could represent the extension of EMPLOYEE while the smaller square could
represent the extension of MALE.

If EMPLOYEE is declared to be the domain of MALE, it is also said to be an
immediate domain predecessor of MALE.

2

Chapt 2(1-3) BASICS. Copyright: Paul C Gilmore, all rights reserved, August 10, 1987

A is a subset of B if every member of A is also a member of B. Necessarily a set is a
subset of its domain. Two sets are extensionally identical if each is a subset of the
other. Necessarily two sets with the same intensions are extensionally identical, but
two sets with different intensions may still be extensionally identical.

1.2. Extensions Varying with Time

Sets like EMPLOYEE that are identified during an information needs analysis have
most usually time dependent extensions. This means that, although their intensions
remain unchanged throughout time, a changing world results in a changing
extension. EMPLOYEE certainly has a time dependent extension, as its intension
clearly indicates. Another example is the set of cars licensed by the province of
British Columbia. This set has a well defined extension at any time, but it is an
extension that changes as new cars are licensed and old cars are removed from the
road. However some sets of importance to databases have a time independent
extension, or at least have extensions that vary very little. For example, the set of
letters in the English alphabet has an extension that for the purposes of databases
never changes with time. Similarly the set of digits 0, 1, ... ,9 has a time
independent extension.

Two sets with time dependent extensions may have identical extensions at one time,
and not identical extensions at another. For example, let MALE be the set of
persons of the male sex currently employed by the XYZ company. Then
EMPLOYEE and MALE would be extensionally identical at any time that the XYZ
company had only male employees.

Again one set may be a subset of another as an accident of time, should they have
time dependent extensions, or one may be a subset of another because of their
intensions. MALE is a subset of EMPLOYEE at all times because of the intensions
of the two sets. However, if MANAGER is declared to be the set of managers of
departments of the XYZ company, then MANAGER may be a subset of MALE at a
particular moment of time, and not a subset at another moment of time.

1.3. Ordered Sets and Tuples

A set never has duplicate members; a member appears in a set once and only once.
However when the extension of a set is listed in some fashion, such as in a file, or a
table, an order is given implicitly or explicitly in the listing to the extension of the
set; that is, there is a first element in the listing that is a member of the set, a second
element that is a member, and so on, and a member of the set may appear more than
once as an element of the listing.

A set whose extension has been ordered in some fashion is called an ordered set. A

3

Chapt 2(1-3) BASICS. Copyright: Paul C Gilmore, all rights reserved, August 10, 1987

member of an ordered set is as before an entity that .satisfies the intension of the set.
An element of an ordered set is a member of the set' together with its position in the
ordering. Necessarily an ordered set has no more members than it does elements.

It is important to know that specifying an order for a set does not change the
intension or extension of the set. An ordered set is just a set with an order that is to
be imposed on its extension. The order specified may be only evident when the set is
declared, or when the extension of the set is displayed in some fashion.

A tuple is an ordered set with finitely many elements explicitly listed. The notation
<al, ... , an> is used to denote the tuple with elements a 1, ... , ~ in the given order.

For example, <1,2,1> is a tuple with two members 1 and 2 and with three elements,
the first being 1, the second 2, and the third 1. The number of elements n in the tuple
is called the arity of the tuple.The arity of <1, 2, 1> is 3. <'ABC', 'CAR'> is a tuple
of arity two with members 'ABC' and 'CAR', and with two elements listed in the
order 'ABC', and 'CAR'. A tuple of arity two is also called a pair, a tuple of arity
three a triple, and a tuple of arity four a quadruple.

A tuple of arity one is not regarded as being distinct from the single entity that is its
element; for example, <'ABC'> is a tuple with one element but will be regarded
simply as another way of writing ABC. Tuples may be members of tuples. For
example, <3,<1,2 >,3 > is a triple with members 3 and <1,2 >, and with first
element 3, second element <1,2> and third element 3.

1.4. Cartesian Products and Associations

The cartesian product AxB of two sets A and B is the set of pairs <a,b> for which
a:A and b:B. For example, if THREE is the set { 1,2,3} and TB is the set { a,b}
then THREExTB is the set { <l,a>,<1,b>,<2,a>,<2,b>,<3,a>,<3,b> }. The
cartesian product of a set with itself may also be formed; for example, TBxTB is the
set { <a,a>,<a,b>,<b,a>,<b,b>}.

Cartesian products of any number of sets may be formed. The cartesian product
A 1 x ... x ~ of sets A 1, ... , An is the set of all tuples <a 1, ... , ~ > with n elements,

where a1 is a member of A1, ... , and~ is a member of An. When n =1, the

cartesian product is just the set A 1 ·

A set of arity n is a set whose only members are tuples with n elements. For
example, the set THREExTB, or any subset of it, is of arity 2. A set of arity n ~2 is
called an association. A binary association is an association of arity 2, a ternary of
arity 3, and a quadernary association one of arity 4. By an association without
qualification will always be meant a binary association, since attention will largely
be restricted to them.

4

Chapt 2(1-3) BASICS. Copyright: Paul C Gilmore, all rights reserved, August 10, 1987

Given two declared sets, say EMPLOYEE and DEPARTMENT, the cartesian
product EMPLOYEExDEP ARTMENT of them may be thought of as being
implicitly declared. This means that EMPLOYEExDEPARTMENT can be
declared to be the domain of sets declared after EMPLOYEE and DEPARTMENT
have been declared.

Given declared sets A and B, any set AB which is declared to have AxB as its domain
is an association with domain AxB. The sets A and B are called immediate domain
predecessors of AB. It is also said to be an association between A and B. The sets A
and B are called immediate domain predecessors of AB. The relationship between
AB and its immediate domain predecessors A and B is illustrated in figure 1.4.1:

FIGURE 1.4.1

A:~~- AB ~
Diagrams such as this have a long history in databases. The first of this kind were
introduced by Bachman in [Bach69] and were called data struchn-e diagrams; they
have since been also called Bacl1man diagrams. Chen in [Chen76] introduced
another related diagram that he called entity-relationship diagrams. The diagram of
figw·e 2.2 has elements in common with both of these earlier diagrams. They are
called domain diagrams, since they illustrate the relationships between a set and the
sets whose cartesian product form the domain of the set. The arrows directed from
A to AB and from B to AB in figure 1.4.1 indicate that the domain of AB is either
AxB or BxA, but does not indicate which of these is actually the case; that can only
be determined from the set declarations.

Domain diagrams will be used throughout the book. On those rare occasions when
associations of arity greater than two must be portrayed, they are illustrated as
shown in figure 1.4.2 for ternary and quadernary sets.

FIGURE 1.4.2

An association may be declared between a set and itself. For example, AA may be
declared to be a subset of AxA as illustrated in the domain diagram of figure 1.4.3.

5

Chapt 2(1-3) BASICS. Copyright: Paul C Gilmore, all rights reserved, August 10, 1987
..... '

FIGURE 1.4.3

Let AB be an association between the sets A and B, as illustrated in figure 1 .4.1, and
let a:A and b:B; that is, let a be a member of A and b be a member of B. Then using
the set membership notation, <a, b >:AB expresses that <a b > is a member of AB,
which is to say that a is AB associated with b. A convenient infix notation to express
the same thing is a:AB:b.

2. DECLARATIONS and ARITY DOMAINS

During an infonnation needs analysis of an organization, sets discovered to be
central to those needs must be named o that they can be discussed, and their domain
and intension must be recorded. The declaration of a set is a formal statement that
gives this information about the set. In this section a declaration for base sets is
introduced; that is for sets such as EMPLOYEE, DEPARTMENT, and EMPDEPT
with intensions that can only be interpreted by hwnans. They are called 'base' since
they are the foundation upon which databases are built.

2.1. Base Set Declarations

The declaration for base sets all take the fonn:
setnm for { domain declaration I degree declaration I comment}.

Here se1nm is the name of the set, domain declaration is a machine interpretable
clause d1at states the domain of the set, degree declaration is a second machine
interpretable clause which may be blank or take a form described in section 4, and
comment is a human interpretable statement in any language or format of a user's
choosing describing the intension of the set. For example, the declaration

EMPLOYEE for {II current employees}
declares the set with setnm 'EMPLOYEE', domain declaration blank, degree
declaration blank, and comment 'current employees'. The name of the set is
therefore 'EMPLOYEE'. The fact that domain declaration is blank for
EMPLOYEE means that the set is primitive. The comment is an abbreviated
statemen of the intension of the set; the set is to consist of all current employees of
the XYZ company~ Similarly

DEPARTMENT for { II a currently approved department}
is a declaration of the primitive base set DEPARTMENT. An example of a
declaration of a nonprimitive base set is

EMPDEPT for {EMPLOYEExDEPARTMENTkl,1>,<1,*>I associates an
employee with his/her department}

The set EMPDEPT has domain EMPLOYEExDEPARTMENT; that is, it is a

6

Chapt 2(1-3) BASICS. Copyright: Paul C Gilmore, all rights reserved, August 10, 1987

nonprimitive set since its domain is the cartesian product of two previously declared
sets. The degree declaration '<1,1>,<1,*>' is a machine interpretable clause with a
meaning that is described in the next section. As before comment describes the
intension of the set.

The relationship between the three sets is illustrated in the domain diagram of figure
2.1, which is figure 1.4.1 with the sets renamed.

FIGURE 2.1

EMPLOYEE _I _I , __ ,◄ _I_, DEPARTMENT

EMPDEPT

Here the boxes for the primitive sets are drawn using broad lines so that they can be
easily recognized in the diagram. As noted before, it is not possible to determine
from the diagran1 whether the domain of EMPDEPT is
EMPLOYEExDEPARTMENT or DEPARTMENTxEMPLOYEE, and it does also
not state the intensions of the sets and associations. The diagram is therefore not a
substitute for the declarations of the sets, but simply a way of illustrating the
relationships among the domains of the sets.

Other examples of sets discovered during an information needs analysis of the XYZ
company are:

MANAGE for {EMPDEPTl<0,1>,<1,1>1 associates manager of dept with
dept}.

PROJECT for { II projects to which employees may be temporarily
assigned},

EMPPROJ for { EMPLOYEExPROJECTII associates employee
with project}, and

LEADER for {EMPPROJl<0,*>,<1,1>1 associates leader of project with
project}.

2.2. Naming Sets

It is assumed that the declaration of a set uniquely identifies the set. That is, if a
declaration is repeated, the second declaration will not be interpreted as the
declaration of another set with the same name, domain, and intension, but rather the
second declaration will be ignored. However, it is a common practice in database
design to have two sets with dfatinct declarations but the same name. The practice is
so widespread, and its value so evident, that it will be followed in this book. Since
the name of a set is regarded as an abbreviation of its full declaratio~ the practice
has the consequence that the name of a set will not necessarily identify it. However,
names of sets are rarely used in isolation, and from the context in which they are

7

Chapt 2(1-3) BASICS. Copyright: Paul C Gilmore, all rights reserved, August 10, 1987

used it will usually be possible to determine the set that they are naming. In section
1 of chapter 4 simple restrictions are stated on the naming of sets that ensure that in
most contexts the name of a set will uniquely identify it.

The choice of a name for a declared association should be made with some care,
since a wron cho · ce can be misleading. For example, the name 'EMPDEPT' has
been chosen rather than a name such as 'IS_IN', or 'HAS_MEMBER', because
'E:MPDEPT' does not suggest a direction to the assignment, while the latter names
do. Looking at the association from the point of view of an employee, the employee
has been assigned to, that is IS_IN, a department. Looking at the association from
the point of view of a department, the department has an employee as a member,
that is 'HAS_MEMBER' employee. These special points of view are important for
users of databases, but not immediately important to their design. This topic will be
discussed again in chapter 3 when the language DEFINE is available for defining
uch associations as 'IS_IN' and 'HAS_MEMBER' in terms of 'EMPDEPT'; there

the sets IS_IN and HAS_MEMBER will be seen to be aliases of the set EMPDEPT.

2.3. Arity Domains

The associations MANAGE and LEADER both may have a previously declared
association as its don1ain. For ex.ample, the domain of MANAGE i El\1PDEPT,
while the domain of EMPDEPT is known from its declaration to be
EMPLOYEExDEP ARTMENT. The fact that MANAGE is a binary association can
therefore be inferred from these domain declarations.

ElvIPLOYEExDEPARTMENTis the arity domain of MANAGE defined as
follows:
The arity domain of a primitive set is the set itself; the arity domain of a set with
domain a cartesian product of previously declared sets, is that cartesian product; the
arity domain of a set A with domain B, is the arity domain of B.

'Arity domain' is so called because the arity of a set can then be determined from it:
The arity of a primitive set is known to be one, the arity of a cartesian product is the
number of sets in the product. while the arity of any set that is not an arity domain is
the arity of its arity domain.

Thus since the arity domain of MANAGE is EMPLOYEExDEPARTMENT, its
arity is two. Similarly the arity domain of EMPPROJ is EMPLOYEExPROJECT
and the domain of LEADER is EMPPROJ, therefore the arity domain of LEADER
is EMPLOYEExPROJECT. The arity of LEADER is therefore two; it is a binary
set.

It is important to distinguish the arity domain of a set from the domain of the set.
The domain of a set is declared when the set is declared. The arity domain of a set,

8

Chapt 2(1-3) BASICS. Copyright: Paul C Gilmore, all rights reserved, August 10, 1987

on the other hand, must be calculated from the domain declaration of the set and of
other previously declared sets.

The fact that the arity of primitive set is always one has an important consequence:
From the definition of arity it is possible to determine the arity of any set from its
arity domain, and the arity of an arity don1ain is either that of a primitive set or that
of the cartesian product of sets. As a consequence it is not possible to declare sets of
mixed arity; that is sets with me1nbers say <1,2> and <1,2,1> that are tuples of
different arity. It is of course possible to declare a set of tuples consisting of tuples
of different arity, say with members <l,<1,2>> and <3,<2,1>>.

3.DEGREE DECLARATIONS
The information contained in the degree declaration of a base such as EMPDEPT is
so important for the design of a databases that it is put in a machine interpretable
form. Degrees can be declared for any nonprimitive base set, but generally degrees
are declared only for binary associations, so these will be discussed first.

3.1. Degree of an Entity for an Association

Let AB be a base association between the sets A and B and let a be any member of A.
The degree of a for AB at a given time is the number of members b of B for which
<a, b>:AB; that is, the number of members of B that are AB associated with a at the
given time. Similarly the degree of b for AB at a given time is the number of
members a of A that are AB associated with b at the given time. Consider for
example the situation illustrated in figure 3 .1.1.

FIGURE 3.1.1

A B

fu this figure the members of A are represented by the small black circles located
within the rectangle marked A, the members of B are represented by the sma.ll
circles located within the rectangle marked B, and the members of AB are
represented by the pairs of circles that are joined with a line. The figure gives a
picture of the memberships of A, B, and AB at a particular given time. At that time
the degrees of all the members of A are since there is exactly one line leaving each
member of A. Reading from top to bottom, the degrees of the members of B are
respectively 2, 0, 1, 3, and 0.

9

Chapt 2(1-3) BASICS. Copyright: Paul C Gilmore, all rights reserved, August 10, 1987

Incidentally, the use of 'degree' in this context corresponds exactly with the use of
the term in graph theory. Figure 3.1.1 illustrates what is called a bipartite graph
with nodes that are members of the sets A and B and with undirected edges joining a
member of A with a member of B. In graph theory terminology, the degree of a
node is the number of edges connected to the node.[Ore, Oystein, Theory of Graphs,
American Mathematical Society, 1962].

Since the association AB is a base set, it will have a time dependent extension so that
the degree of any particular a orb may change with time. In figure 3.1.2 the
memberships of A B, and AB are illustrated at another later time.

FIGURE 3.1.2

A B

Since the time of figure 3.1.1, the membership of A has decreased by 1, the
membership of B increased by 1, and the membership of AB has been changed but
not altered in nun1ber. Reading from top to bottom, the degrees of the members of
A are 1, 1, 1, 3, and 2, and the degrees of the members ofB are 2, 1, 2, 1, I, and 1.

3.2. Business Practices and Degrees

Business practices for an enterprise such as the XYZ corporation often dictate that
the degrees of entities for an association are limited in some fashion. For example,
in the XYZ corporation an employee mu t be assigned to exactly one department.
This means that for any employee e, there is exactly one department d for which
<e,d>:EMPDEPT, so that the degree of e for EMPDEPT is always 1. On the other
hand, an employee may be assigned to zero or more projects, which means that the
degree of an employee for EMPPROJ may be any integer including zero.

The smallest possible degree that an element from A can have for the association AB
is 0, while the largest might be any integer. The smallest possible degree that an
element from A can have for AB is called the lower degree of AB on A. For
example, the lower degree of EMPDEPT for EMPLOYEE is 1, while the lower
degree of EMPPROJ for EMPLOYEE is 0. Similarly, the upper degree of AB on
A , is the largest degree that an element from A can have for AB. For example, the
upper degree of EMPDEPT on EMPLOYEE is 1, while the upper degree of
EMPPROJ on EMPLOYEE may be any integer. The lower and upper degrees of
AB on B are similarly defined.

10

Chapt 2(1-3) BASICS. Copyright: Paul C Gilmore, all rights reserved, August 10, 1987

Although the lower and upper degrees of an association on a set may take on any
integer value, it is rarely necessary to know precisely what that value must be. It is
generally sufficient to know whether the lower bound is O or is greater than 0, and
whether the upper bound is 1 or greater than 1. Therefore the values of the lower
degrees will be restricted to being either O or 1, and the upper degrees to being 1 or
*, with the latter upper degree meaning 'unrestricted'. Hence if AB has a lower
degree of 1 on A, then at all times every member of A is AB associated with at least
one member of B, although a member may be AB associated with more than one
member. If it has an upper degree of* on A, then at some time there may be a
member of A that is AB associated with more than one member of B; if it has an
upper degree of 1 on A, then at no time may a member of A be AB associated with
more than one member of B.

Consider figure 3.1.1 for example. The degree of AB for each member of A is 1 at
the time for which the figure illustrates the memberships. If a business practice
dictates that that should be the case at all time, then both the lower and upper degrees
of AB on A are 1. However, the fact that the degree of AB for each member of A is
1 may be just an accident of time, so that from the figure alone the upper and lower
degrees of AB on A cannot be determined. On the other hand, the lower and upper
degrees of AB on B can be determined. The sn1allest of the degrees of AB for
members of B is 0, and the largest is 3. Since at one moment of time the smallest of
these degrees is 0, the lower degree of AB on B is 0, and since at one moment of
time the largest of these degrees is 3, which is greater than 1, the upper degree of
AB onB is*.

From the figure 3 .1.2, on the other hand, the lower degree of AB on neither A nor
B can be determined; business practices must dictate the lower degrees . The upper
degrees of AB on A and B, on the other hand, can both be determined to be*.

3.3. Notation for Degree Declarations

In the declaration of a base set AB that is an association with domain AxB, two pairs
of degrees must be supplied, the lower and upper degrees of AB on A, and the lower
and upper degrees of AB on B. The format used for the degree declaration clause of
a declaration is

<ldA,udA>,<ldB,udB>,
where ldA and udA are respectively the lower and upper degrees of AB on A, and
ldB and udB the lower and upper degrees of AB on B. For example,from the
degree declaration '<1,1>,<l,*>' for EMPDEPTcan be concluded that the lower
and upper degrees of EMPDEPT on EMPLOYEE are 1, and that the lower and
upper degrees on DEPARTMENT are O and*. They express that an employee must
be assigned to exactly one department, and that every department must have at least
one employee assigned to it.

11

Chapt 2(1-3) BASICS. Copyright: Paul C Gilmore, all rights reserved, August 10, 1987

The degree declaration for EMPPROJ is blank, which has the same meaning as the
degree declaration '<0,*>,<0,*>'. The rationale for this interpretation of a blank
degree declaration is the following: A lower degree of O and an upper degree of *
does not constrain in any way the degrees of entities for an association, for the
degree must always be a nonnegative integer, and may be any nonnegative integer.
Therefore if a blank degree declaration is to mean that the degrees are
unconstrained, then it has the same meaning as the degree declaration
'<0,*>,<0,*>'.

The degrees of an association can label the arrows of a domain diagram, so that the
diagram can provide additional information. For example, in figure 3.3 the degrees
of the association EMPDEPT label the arrows of the domain diagram of figure 2.1.

FIGURE 3.3

EMPDEPT

This device will be frequently employed.

DEPARTMENT

Because the lower degree O and the upper degree * do not enforce any constraints on
the membership of an association, they should not be declared if the tighter lower
degree 1 or tighter upper degree 1 can be declared. Failure to declare the tightest
possible bounds results in a larger burden being placed on the users of the resulting
database. They must insure in updating the membership of an association that the
business practices of the enterprise are respected. The importance of declaring the
tightest degrees possible will become evident in later chapters.

3.4. Partial, Total, Singlevalued, Multivalued, and Functional Associations

Definitions related to lower and upper degrees are useful as shorthand: An
association AB between A and B is said to be partial on A if its lower degree on A is
0, total on A if its lower degree on A is 1, to be singlevalued on A if its upper degree
on A is 1, and is said to be multivalued on A if its upper degree on A is *. It is said
to be functional on A if it is total and single valued on A. Definitions of partial,
total, singlevalued, multivalued, and functional on B, are defined similarly.

The association EMPDEPT is total on EMPLOYEE and on DEPARTMENT. It is
singlevalued on EMPLOYEE, but multivalued on DEPARTMENT. EMPPROJ on
the other hand is neither total nor singlevalued on either EMPLOYEE or
PROJECT.

12

Chapt 2(1-3) BASICS. Copyright: Paul C Gilmore, all rights reserved, August 10, 1987

3.5. Interpretation of Degrees of an Association with Domain an Association

The degrees of an association, which has another association as its domain, can,
when properly interpreted, express subtle but important facts about business
practices. For example, the domain of LEADER is EMPPROJ, while its arity
domain is EMPLOYEExPROJECT. The degrees of LEADER are declared to be
<0,*> and <1,1>. Although the arity domain of Leader is a cartesian product, its
domain is not, so that it is not clear how the degrees of LEADER are to be
interpreted. The degrees can encode different business practices depending on how
they are interpreted.

Consider first the simplest interpretation, for which the degrees are interpreted
relative to the sets EMPLOYEE and PROJECT, the sets whose cartesian product is
the arity domain of LEADER. Under this interpretation the degrees <0, *> of
LEADER on EMPLOYEE express that not every employee is the leader of a
project, and that an employee can be leader of any number of projects. The degrees
<1,1> of LEADER on PROJECT express that every project has a unique leader, so
that in fact no project can be without employees. Indeed, the lower degree 1 of
LEADER on PROJECT amounts to a tightening of the lower degree O of EMPPROJ
on PROJECT. Under this simplest interpretation of the degrees, therefore, every
project has a leader and has at least one employee assigned to it. If that is the
business practice of the XYZ corporation, then the lower degree of EMPPROJ on
PROJECT should be declared to be 1, rather than 0.

There is a second interpretation of the degrees, however, under which they express
a different business practice, namely that a project need not have an employee
assigned to it, but if it does, then it must have a unique leader assigned to it; that is, a
leader must be the first employee assigned to a project. This interpretation is
obtained if the degrees are understood to be relative to the set of projects to which
employees have been assigned, rather than relative to PROJECT.

The set of projects to which employees have been assigned is called the projection of
EMPPROJ on PROJECT, and is denoted by EMPPROJ.PROJECT. Similarly, the
set of employees that have been assigned to projects is the projection of EMPPROJ
on EMPLOYEE and is denoted by EMPPROJ.EMPLOYEE. This is illustrated for
a more general situation in the next figure:

13

Chapt 2(1-3) BASICS. Copyright: Paul C Gilmore, all rights reserved, August 10, 1987

FIGURE3.5

A AB B

C

The base association D has domain C. Between AB and C may be zero or more
other associations each with the previous association as its domain. The arity
domain of D and of C is therefore AxB. The degrees of D are interpreted relative
to the projections C.A and C.B of its domain on the sets A and B forming the
cartesian product AxB that is its arity domain. A, B, C, and D, in this figure could
be EMPLOYEE, PROJECT, EMPPROJ, and LEADER. C.A is then the employees
assigned to projects and C.B the projects to which employees have been assigned.

The sets A, B, C, and D, in the figure might also be EMPLOYEE, DEPARTMENT,
EMPDEPT, and MANAGE, with C.A the employees assigned to departments and
C.B the departments to which employees have been assigned. Since the lower
degrees ofEMPDEPTon EMPLOYEE and DEPARTMENT are both 1, the
projection EMPDEPT.EMPLOYEE of EMPDEPT on EMPLOYEE has the same
extension as EMPLOYEE and the projection EMPDEPT.DEPARTMENT of
EMPDEPT on DEPARTMENT has the same extension as DEPARTMENT.
Therefore it does not matter whether the degrees <0,1> and <1,1> declared for
MANAGE are interpreted relative to the projections EMPDEPT.EMPLOYEE and
EMPDEPT.DEPARTMENT or relative to EMPLOYEE and DEPARTMENT.
Under either interpretation the degrees express that not every employee is a
manager of a department, that an employee may manage at most one department,
and that every department has one and only one manager. Because EMPDEPT is
the domain of MANAGE, necessarily the manager of a department is assigned to the
department.

Undeclared sets such as C.A and C.B in figure 3.5 may be included in domain
diagrams. It is necessary to include them if the degrees of an association such as D
are to label arrows of the diagram as suggested in section 3.3, since these degrees
label the arrows from the projections to the association.

14

Chapt 2(1-3) BASICS. Copyright: Paul C Gilmore, all rights reserved, August 10, 1987

3.6. Degrees of Nonbinary Associations

Ternary and quademary associations were illustrated in figure 1.4.2. These are
associations with domain the cartesian product of three, respectively four, sets. For
example, the relationship between an association ABC with domain AxBxC and its
immediate domain predecessors A, B, and C, is illustrated in the domain diagram of
figure 3.6.1. Degrees of ABC on each of its immediate domain predecessors label
the arrows of the diagram.

FIGURE 3.6.1

<1,1> <0 *>
A ... ABC -· B - ~

a
<0,1>

C

The members of ABC are triples <a,b,c> for which a:A, b:B, and c:C. The lower
degree 1 of ABC on A means that

for each a:A, there is a <b,c>:BxC such that <a,b,c>:ABC.
The upper degree 1 of ABC on A means that

for each a:A, there is at most one <b,c>:BxC for which <a,b,c>:ABC.
Similarly, the degrees <0,*> of ABC on B mean that

for each b:B, there may be zero or more <a,c>:AxC for which <a,b,c>:ABC.
The degrees <0,1> of ABC on C mean that

for each c:C, there is at mose one <a,b>:AxB for which <a,b,c>:ABC.

If the set MALE is declared to have EMPLOYEE as its domain, EMPLOYEE is an
immediate domain predecessor of MALE, but it is the only one. The relationship
between MALE (M) and its only immediate domain predecessor EMPLOYEE (E)
is illustrated in figure 3.6.2.

FIGURE 3.6.2

The degrees <0, 1> of M on E mean that
for each e:E, there is at most one m:M for which e=m.

This is to be expected unless the XYZ corporation has a policy of not hiring females,
in which case the degrees should be <1,1>. But then it would be unnecessary to
declare M since it would have the same extension as E.

15

Chapt 2(1-3) BASICS. Copyright: Paul C Gilmore, all rights reserved, August 10, 1987

An upper degree of * declared for M on E would not be a tight bound and can
therefore be prohibited. Therefore the only reasonable degrees to declare for M on
E are <0,1>. For this reason, degrees are never declared for sets with a single
immediate domain predecessor. For example, E:MPPROJ is the only immediate
domain predecessor of LEADER, so no degrees are declared for LEADER on
EMPPROJ. The two pairs of degrees declared for LEADER are the degrees on the
projections EMPPROJ.EMPLOYEE and EMPPROJ.PROJECT.

16

Chapt 2 (4-7) BASICS. Copyright: Paul C Gilmore, all rights reserved, August 10, 1987

4. VALUE SETS and DEFINED SETS

Only base sets have been declared so far. They have been called "base" since they
are the foundation sets upon which databases are built. They may be either
primitive, like EMPLOYEE, DEPARTMENT, and PROJECTornonprimitive like
EMPDEPT, MANAGE, EMPPROJ, and LEADER. The intension of a base set is
expressed in a language and style of the declarer's choice in the comment part of its
declaration. As a consequence only humans can determine what entities are
members of a base set. But one of the purposes of a database is to use machines to
record information about the membership of such sets. But in order for a machine
to assist in recording such information, some means must be provided for humans to
represent the information in a machine readable and writeable form.

4.1. Strings and Primitive Value Sets

The primary means by which information is passed between humans and machines
is through the reading and writing of strings of characters. Strings of machine
readable and writeable characters can appear as values of fields of records that a
computer can store and process internally, and can print in some human readable
form. Humans can write such strings in a way that a computer can read
them.Therefore the declaration of sets of such strings, called value sets, is essential
for every information system. Value sets are distinguished from base sets such as
EMPLOYEE, DEPARTMENT, and EMPDEPT primarily by the fact that their
members can be recognized and manipulated by a computer.

A primitive set is one whose membership is not drawn from some previously
declared set; a primitive set has no domain, or at best it can be thought of as its own
domain. Primitive value sets are essentially the basic data types of a programming
language. For the purposes of this book, the primitive value sets will be taken to be
STRING, INTEGER,and REAL. The precise intensions of these sets need not be
stated since they are "built into" the programming language used to support any
information system. It is sufficient to know that STRING is the set of all strings of
machine readable and writeable characters, that INTEGER is the set of integer
number representations, and that REAL is the set of real number representations.

4.2. Declarations of Defined Sets

Primitive value sets are the first examples of defined sets. Unlike base sets, the
membership of defined sets can be determined by a machine. Like base sets,
however, they must be declared. The declaration of a defined set takes the form:

setnm for { domain+variable declaration I assertion I comment } .
It differs from the declaration of a base set in two ways: First the domain
declaration clause of a base set is replaced with the domain+variable declaration
clause which may never be blank, and second, the degree declaration clause of a base

1

Chapt 2 (4-7) BASICS. Copyright: Paul C Gilmore, all rights reserved, August 10, 1987

set is replaced with an assertion clause that is either blank or an assertion of the
language DEFINE described in chapter 3. A nonblank assertion clause, together
with the domain+variable declaration clause, describes the intension of the set in a
machine interpretable form. As with base set declarations, the comment clause is a
statement in any language or form of a users' choosing and is used to describe the
intension of the set informally.

The formulation of the intension of a defined set in the language DEFINE requires
greater care and precision than its expression for human interpretation only.
Further its precise form is often not needed until the last stages of an information
system design. Good system design therefore dictates that the task of stating the
intension of a defined set in the language DEFINE be delayed as long as possible.
For this reason, assertion may be left blank and completed when required. A
declaration with assertion blank can still be recognized as the declaration of a
defined set by the variable declarations appearing in the first clause of the
declaration. For example, declarations for the primitive value sets are:

STRING for { x:STRING II the finite sequences of characters recognized by the
system},

INTEGER for { x:INTEGER II the integers recognized by the system},
REAL for {x:REAL II the real numbers recognized by the system}, and
BOOLEAN for {x:BOOLEAN II the boolean truth values recognized by the

system}.
Since the membership of these sets is taken to be "built into the system", it will never
be necessary to complete the blank assertion clause; nevertheless the fact that the
variable 'x' is declared along with the domain in the first part makes these
declarations recognizable as declarations of defined sets. The fact that they are
declared to be their own domain in the domain+variable declaration clause means
that they are declarations of primitive sets.

4.3. Dermed Value Sets

The primitive value sets are rarely used directly to record information about
entities; defined subsets of them are used instead. For example, the set of strings of
digits of length 5, or the strings of characters of length 20 are defined value sets.
Another example of a set that may be declared as a defined value set is

COLOUR for { x:STRINGI x='RED' or x= 'ORANGE' or x='YELLOW' or
x='GREEN' or x='BLUE' or x='INDIGO' or x='VIOLET'}.

Here 'or' is the usual boolean disjunction of logic. The members of the set are
strings that are the names of the basic colours. An example of a ternary value set is
the following:

VDATE for {x:INTEGER, y:INTEGER, z:INTEGERII a value set for dates}.
This particularly broad declaration of a date value set permits freedom of choice for
later specialization to whatever format is desired. The assertion clause is left blank
because the choice of a particular format to be used for dates in the database need

2

Chapt 2 (4-7) BASICS. Copyright: Paul C Gilmore. all rights reserved, August 10, 1987

not be made until very late in the design of the database. If a more detailed
declaration is desired, value sets VDAY, VMONTH, and VYEAR can be declared
and VDATE declared to be

VDATE for {x:VDAY, y:VMONTH, z:VYEARII a value set for dates}.
The names of these value sets all begin with the letter 'V' as a reminder that the set is
a value set. There is no requirement to do so, VDA TE could just as well be given
the name 'DA TE', but discussions are often clarified when value sets are given
distinctive names. This is especially so when associations are given names similar to
value sets, a common practice in database design.

Because the committment to a particular format for the members of a value set need
not be made until very late in the design of a database, the format should in the early
stages be only loosely described. For example, to postpone all detailed decisions on
the format of dates, VOA TE can be declared to be

VOA TE for { x:INTEGERII a value set for dates}.
It is this declaration that will be assumed for most of the further discussions.
Similarly, although strings representing addresses will unquestionably be highly
structured, and probably defined in terms of value sets such as VSTREET# ,
VSTREET, VCITY, VPROV, and VPOSTALCODE, initially it is sufficient to give
a declaration such as

VADDRESS for {x:STRINGII a value set for addresses}.

As these examples illustrate, value sets may be primitive defined as with STRING,
or defined with domain a previously declared value set as with COLOUR or defined
with domain the cartesian product of previously declared value sets, as with one
declaration of VOA TE and of V ADDRESS. They must be declared before
information can be recorded in a data base. For example, it is not possible to list the
members of the set DEPARTMENT without having some way of them in a machine
readable and writeable way. A possible value set for this purpose is:

DEPTNAME for {x:STRING I x='FINANCE' or x='SHIPPING' or
x='PERSONNEL' or x='PURCHASING' I a value set for deptname}.

Here specific strings have been selected to name the existing departments, as was
done in the case of COLOUR. But such a value set would be a poor choice since it
would complicate the changing of names of departments and the adding and removal
of departments. A better value set of wider use would be

VNAME for {x:STRING I {x:L:} < 20 I a value set for names},
where the notation '{x:L:}' expresses the length of x, that is, the number of
characters in the string. DEPTNAME is a subset of VNAME, while VNAME might
be used as a source of names for employees for example.

Because of the uncertainty as to what value sets will actually be needed, however, it
may be better to use neither of these declarations at first and simply declare

VNAME for { x:STRING II a value set for names}.
The blank second part of the declaration can be completed when necessary, while

3

Chapt 2 (4-7) BASICS. Copyright: Paul C Gilmore, all rights reserved, August 10, 1987

the comment gives sufficient information about the use of the set.

5. A TIRIBUTES

To attribute a property or characteristic to an entity is to say that the entity has the
property or characteristic. For example, to attribute maleness to John Smith is to
say that he is male, or to attribute the address '1783 Sunset Drive' to him is to say
that that his address. Attributes are the means by which such attributions may be
made.

An attribute of a set A is an association AV between the set A and a value set V.
Thus the domain of AV may be AxVor VxA; however, the convention will be
followed of having the set A of which AV is an attribute as the first set in the
cartesian product so that the domain of AV is taken to be Ax V. The set V is called
the value set of the attribute. A value of AV for a member a of A, is a member v of
V for which <a,v>:AV; it is from this use of 'value' that value sets get their name.
An attribute on A is said to be partial, total, singlevalued, multivalued, and
functional, if it is respectively total, single valued, multivalued, and functional
association on the set A. Should AV be functional, then for each member a of A
there is a unique member v of V for which <a,v>:A V ; that value is referred to as
the value of AV for a.

5.1. Functional Attributes

Functional attributes are by far the commonest form of attribute, and it is common
practice to refer to a functional attribute as just an attribute, and refer to
nonfunctional attributes as partial or multivalued attributes. This practice will be
followed in this book.

An example of an attribute is the following name attribute.
NAME for {E:tv1PLOYEExVNAME 1<1,1>,<0,* >I name attribute for

employee}.
NAME associates with each member of E:tv1PLOYEE the string in the value set
VNAME that represents the name of the employee. Note that NAME is not a value
set since E:tv1PLOYEE is not a value set. It is an attribute of EMPLOYEE, and in
particular a functional attribute. The value of NAME for a member e of
EMPLOYEE, is the unique member nm of VNAME for which the pair <e,nm> is a
member of NAME.

Similarly an attribute that associates an address with each employee can be declared:
ADDRESS for {E:rv1PLOYEExVADDRESS 1<1,1>,<0,* >I address attribute of

employee}.
It does not matter for either of these declarations what particular format for
VNAME and V ADDRESS is finally chosen, NAME and ADDRESS will not have to

4

Chapt 2 (4-7) BASICS. Copyright: Paul C Gilmore, all rights reserved, August 10, 1987

be redeclared if these value sets are redeclared.

Attributes can be declared on any set, including associations. For example, it is
necessary to record the date on which the leader of a project is assigned to the
project since it is the date of the first serious committment to the project. The
appropriate attribute is therefore

LEADERDATE for {LEADERxVDATE kl,1>,<0,*>I date leader assigned to
project}

This means that a member of LEADERDA TE consists of a pair <<e,p>,d> with its
first element <e,p> a member of LEADER. The domain diagram of figure 5.1
illustrates the declaration of LEAD ERDA TE.

FIGURE 5.1

E - EP - p - -

H

L -- LD --~ VD --....
~

~...._ ~
~

INT ~
~

~
~
"' ~,.,,, ~

Although functional attributes are the commonest, an attribute need neither be total
nor single valued, as with the following attribute of PROJECT.

REVIEWDATE for { PROJECTx VDA TE II dates for project review}.
By the convention for declarations of base sets, the blank second part of the
declaration means the same thing as the degree declaration '<0, *>,<0, *>'.
Therefore review dates are required for only some of the projects, and any number
of review dates may be required.

5.2. Identifiers

A name can be used to identify an entity if the name is unique to the entity. For
example 'public relations' would identify a department of the XYZ corporation if
there was only one department with that name. The public relations department
might have more than one name, for example, it might also be known as the
community relations department, but still 'public relations' and 'community
relations' will identify the same department as long as no other department has been
given one of these names. Assume now that a name attribute NAME with value set
VNAME is to be declared that will provide names for members of DEPARTMENT
that identify them:

NAME for {DEPARTMENTxVNAME I degree declaration I name of dept
identifies it}.

5

Chapt 2 (4-7) BASICS. Copyright: Paul C Gilmore, all rights reserved, August 10, 1987

The degrees of NAME on VNAME must clearly be declared to be <0,1>, the lower
degree O because not every member of VNAME will be the name of a department,
and the upper degree 1 because if a member of VNAME is the name of a
department, it should be the name of exactly one department. With these degrees
declared it would be possible for a department to have more than one name.

Although it is convenient to permit more than one name for a department, especially
for name changes, there are other advantages to insisting that a department have a
unique name that arise during the processing of data. For this reason it is common
practice to require that the members of a declared set be identifiable with values of
an attribute that is functional on the set. Thus the NAME attribute for
DEPARTMENT is declared

NAME for {DEPARTMENTxVNAME 1<1,1>,< 0,1>1 dept has unique name}.
The degrees <1,1> of NAME on DEPARTMENT ensure that every department has
a single name assigned to it, while the degrees <0,1> ensure that a name is assigned
to exactly one department. There is, therefore, a one-to-one correspondance
between departments and their names.

An attribute such as NAME is an identifier of DEPARTMENT, since it is functional
on DEPARTMENT and singlevalued on VNAME. The NAME attribute of
EMPLOYEE, on the other hand, is not an identifier of EMPLOYEE since two
employees may have the same name.

An attribute AV with value set V on a set A that is an identifier of A associates a
unique member v of V with each member a of A. Because V is a value set, v can be
written and read by both humans and machines and can therefore be used to identify
a in fields or records.

Incidentally, although there are now two sets with the same name 'NAME', they can
be distinguished by their domains. One is an attribute of EMPLOYEE while the
second is an attribute of DEPARTMENT. A third set with the same name is also
declared as an identifier for PROJECT:

NAME for {PROJECTxVNAME 1<1,1>,< 0,1>1 a proj has a unique name}.

Every primitive base set requires an identifier. It is the practice of the XYZ
company to identify employees with 5 digit integers. Therefore a value set for the
employee number identifier of EMPLOYEE is

VEMP# for {x:INTEGER 110000 < x < 999991 a value set for emp#},
and an identifier is

El\1P# for {EMPLOYEExVEMP# 1<1,1>,< 0,1>1 emp has unique emp#}.

Although every primitive base set requires an identifier, a value set does not since
its members can be read and written by humans and machines, and therefore
identify themselves. Indeed any set of machine readable and writeable strings,

6

Chapt 2 (4-7) BASICS. Copyright: Paul C Gilmore, all rights reserved, August 10, 1987

whether it is a value set or not, needs no identifier. However all such sets may have
attributes declared for them, and the attributes may include identifiers. For
example, a set of very long strings, such as the chapters in this book, can be
provided with an identifier that represents the long strings by short ones, such as the
chapter names.

6. PARTITIONS of DECLARED SETS and DOMAIN PREDECESSORS

A set is declared to be either primitive or nonprimitive, and either base or defined,
so that there are four fundamental kinds of sets: primitive base, nonprimitive base,
primitive defined, and nonprimitive defined. The only examples of defined sets
introduced so far, primitive or nonprimitive, have been of value sets. But not all
defined sets are value sets, as one example in section 6.1 illustrates. A summary of
the relevance of the four kinds of sets is provided in section 6.2, and a guiding
principle to be used in choosing base sets is stated in section 6.3. Finally in section
6.4 the important domain predecessor between declared sets is defined.

6.1. Nonvalue Defined Sets

The XYZ corporation finds it necessary to record the sex of its employees. The
value set and attribute for sex are declared:

VSEX for {x:STRING I x='MALE or x='FEMALE' I value set for sex
attribute}

and
SEX for {EMPLOYEExVSEX 1<1,1>,<0,*>I sex attribute}.

The set of male employees has EIMPLOYEE as its domain, and it can be declared as
a base set

BMALE for {EMPLOYEE II male employees}
or it can be declared as a defined set

MALE for { x:EMPLOYEE I <x,'MALE'>:SEX I male employees}.
Many other examples of defined sets that are not value sets will be given in chapter 3
where the language DEFINE is described.

6.2. Two Partionings of Declared Sets

The primitive value sets are the only examples of primitive defined sets introduced
so far, so that the kinds of sets introduced can be summarized in the diagram of
figure 6.1.

7

Chapt 2 (4-7) BASICS. Copyright Paul C Gilmore, all rights reserved, August 10, 1987

FIGURE6.1

PRIMITIVE

NONPRIMITVE

The large square consisting of four smaller rectangles represents all possible
declared sets. A declared set is either primitive or nonprimitive, and is either base
or defined. The horizontal line through the square represents the partitioning of the
sets into primitive and nonprimitive, while the vertical line represents the
partitioning into base and defined. A primitive set is one declared without a
domain, or equivalently declared with itself as its domain, while a nonprimitive set
has the cartesian product of one or more previously declared sets declared as its
domain. Base sets have intensions expressed in human understandable terms only,
while defined sets have intensions expressed in a machine interpretable language
such as DEFINE. A value set is a defined set of machine readable and writeable
strings of characters that is either primitive, or has the cartesian product of one or
more previously declared value sets as its domain. A nonprimitive base set on the
other hand may have the cartesian product of any previously declared sets as its
domain. Nonprimitve defined sets may be value or nonvalue sets. But for the
present, all primitive defined sets declared must be value sets. The restriction is
introduced now to avoid unnecessary complications at this stage. In a later chapter
dealing with extensions to the language DEFINE, the consequences of removing the
restriction will be fully discussed.

As noted before, one consequence of restricting the primitive defined sets to being
built in value sets is that sets of mixed arity cannot be declared; for example, a set
cannot have both a pair and a triple as a member.

6.3. Choosing Base Sets

The primitive defined sets are assumed to be declared prior to the information needs
analysis of an enterprise, and the choice of them has little relevance for an
information needs analysis. But the choice of the primitive base sets is fundamental
to a successful analysis. For each nonprimitive set, base or defined, has one or more
primitive sets as domain predecessors. But the choice of all the base sets, primitive
or nonprimitive, is important for a successful information neeeds analysis for an
enterprise. In chapter 4 some guiding principles for the choice of base sets are

8

Chapt 2 (4-7) BASICS. Copyright Paul C Gilmore, all rights reserved, August 10, 1987

described and justified. But one such principle should be evident already.

A goal of an information needs analysis is the construction of a set schema with as
few coherent base sets as are necessary for the needs of the enterprise. For as will
be seen, users of a management system must maintain the membership of all base
sets, while the system itself can maintain the membership of defined sets. For
example, users must maintain the membership of SEX, but the system can maintain
the membership of MALE. Therefore to ensure that as few base sets as possible are
declared, a set that can be declared as a defined set should never be declared as base.
For example, two declarations were given above for the set of male employees, one
as the base set BMALE and one as the defined set MALE. Clearly the declaration as
MALE is to be preferred over the one as BMALE. For one unfortunate
consequence of choosing BMALE would be that the users of the system would not
only have to maintain the membership of SEX, but would also at the same time
maintain the membership of B MALE and ensure that at all times it is the same as the
membership of MALE. This is not only an unnecessary burden for the users, but
also errors are very likely to occur. A guiding principle for the choice of base sets
should be, therefore:

Don't declare a set as base if it can be declared to be defined.
Other such principles will be given in chapter 4.

6.4. Domain Predecessors

The fact that the domain of a declared set is the cartesian product of one or more
previously declared sets is of fundamental importance. For it means that the
declared sets of a set schema for an enterprise have a natural ordering. For
example, the sets EMPLOYEE and PROJECT had to be declared before the set
EMPPROJ since it has EMPLOYEExPROJECT as its domain; they immediately
precede EMPPROJ in the order of declarations.

A declared set A is an immediate domain predecessor of a set B, if the domain of B
is the cartesian product of one or more sets which includes A.

So EMPLOYEE and PROJECT are immediate domain predecessors of EMPPROJ.
But also LEADER and VDA TE are immediate domain predecessors of
LEAD ERDA TE, while EMPPROJ is an immediate domain predecessor of
LEADER. Thus each of EMPLOYEE, PROJECT, EMPPROJ, LEADER, and
VDA TE precede LEAD ERDA TE in the order of declarations.

A declared set A is a domain predecessor of a declared set C, if A is an immediate
domain predecessor of C, or if there is a declared set B such that A is a domain
predecessor of B and B is a domain predecessor of C.

This definition of domain predecessor is typical of a simple but important class of

9

Chapt 2 (4-7) BASICS. Copyright: Paul C Gilmore, all rights reserved, August 10, 1987

recursive definitions. Domain predecessor is the transitive closure of immediate
domain predecessor.

7. A SET SCHEMA for the XYZ CORPORATION

During an information needs analysis of an organization, many sets will be
declared. The collection of all declared sets for an organization is called a set
schema for the organization. In this section a simple set schema for the XYZ
corporation is described to illustrate some of the concepts introduced. Rather than
declaring seperately each of the sets recognized during an information needs
analysis for the XYZ company, they are simply listed in the table of figure 7 .1. This
table will be referred to many times as a source of examples. The table is not a
substitute for full declarations since, for example, no assertion clauses fre listed for
defined sets. It also does not include the primitive value sets. By the database
schema of figure 7 .1 will be meant the schema with STRING and INTEGER, as
well as all the sets of the table.

FIGURE 7.1

DECLARED SETTABLE

NAME DOMAIN COMMENT

EMPLOYEE current employee
DEPARTMENT currently approved department
EMPDEPT EMPLOYEExDEPARTMENT emp assigned to dept
VNAME STRING value set for name attributes
NAME EMPLOYEExVNAME name attribute for employee
NAME DEPARTMENTxVNAME name is identifier for department
VEMP# INTEGER value set for employee numbers
EMP# EMPLOYEExVEMP# emp# is identifier for employee
VSEX STRING value set for sex attribute
SEX EMPLOYEExSEX sex attribute for employee
VADDRESS STRING value set for address attributes
ADDRESS EMPLOYEExV ADDRESS address attribute for employee
MANAGE EMPDEPT manager assigned to dept
PROJECT a cmrent or planned project
NAME PROJECTxVNAME name is identifier for project
EMPPROJ EMPLOYEExPROJECT emp assigned to proj
LEADER EMPPROJ leader of proj
VDATE INTEGER value set for date attributes
REVIEWDATE PROJECTx VDA TE some projects have review dates date
LEADERDATE LEADERxVDATE date leader is assigned to project
REVIEWDATE PROJECTx VDA TE dates for project review
MALE EMPLOYEE male employees
FEMALE EMPLOYEE female employees
SOCCER MALE players on all male soccer team
BASEBALL EMPLOYEE plavers on baseball team

Each row of the table of figure 7 .1 corresponds to the declaration of a single set.

10

Chapt 2 (4-7) BASICS. Copyright: Paul C Gilmore, all rights reserved, August 10, 1987

The order in which the rows are listed is not completely arbitrary. The row,
corresponding to a set that is a domain predecessor of a second set, is listed before
the row corresponding to the second set. This of course does not completely specify
the order of the rows; the order of the rows listed in the table is just one of many
possible orders in which the sets could be declared.

The degrees of the base sets that are associations are given in the companion table of
figure 7 .2. In that table by 'left set' and 'right set' is meant the first and second sets
appearing in the cartesian product that is declared as the domain of the set.

ASSOCIATION

EMPDEPT
EMP#
NAME
ADDRESS
SEX
NAME
MANAGE

NAME
EMPPROJ
LEADER

REVIEWDATE
LEADERDATE

FIGURE 7.2

ASSOCIATION TABLE

LDEGREE
LEFT SET RIGHTSET

LWR UPR

EMPLOYEE 1 1 DEPARTMENT
EMPLOYEE 1 1 VEMP#
EMPLOYEE 1 1 VNAME
EMPLOYEE 1 1 VADDRESS
EMPLOYEE 1 1 VSEX
DEPARTMENT 1 1 VNAME
EMPDEPT. 0 1 EMPDEPT.
EMPLOYEE DEPARTMENT
PROJECT 1 1 VNAME
EMPLOYEE 0 * PROJECT
EMPPROJ. 0 * EMPPROJ.
EMPLOYEE PROJECT
PROJECT 0 * VDATE
LEADER 1 1 VDA'IE

RDEGREE

LWR UPR

1 *
0 1
0 *
0 *
0 *
0 1
1 1

0 1
0 *
1 1

0 *
0 *

Each of the tables of figures 7 .1 and 7 .2 is an example of a common device used to
record infomation. A very important prerequisite to database design is the
understanding of the precise meaning of such tables. The language DEFINE,
described in the next chapter, provides the means for defining the intension of a
table in terms of declared sets and associations, while all of chapter 5 is devoted to
the design of tables from set schemas.

11

Chapt 2(8,9) BASICS.Copyright Paul C Gilmore, all rights reserved, August 10, 1987

8. DOMAIN GRAPHS and TREES

Domain diagrams have been used to illustrate the relationships between the domains
of declared sets. They consist of boxes labelled with declared sets and one or more
arrows directed between some of the boxes. An arrow is directed from one box to
another if the first box is labelled with an immediate domain predecessor of the set
labelling the second. A domain diagram is an illustration of a directed graph called a
domain graph defined in section 8.2 after an introduction to directed graphs in
section 8.1. In section 8.3 further definitions are provided and applied in section
8.4 where domain trees are defined and illustrated. Finally in section 8.5 the arrows
of domain graphs and trees are labelled with the degrees of associations defined in
section 3.

8.1. Directed Graphs

A directed graph is defined by a set of entities called nodes, and a set of pairs
<<nl,n2>,m>, where <nl,n2> is a pair of distinct nodes called an edge, and mis an
integer, m> 1, called the multiplicity of the edge. The edge is said to be directed
from the first node nl of the pair, called the tail of the edge, to the second node n2 of
the pair, called the head of the edge; it is said to connect the two nodes that are
elements of it.

Figure 8.1. is an illustration of a directed graph with edges all of multiplicity 1.
FIGURE 8.1

Ignoring the sets labelling the nodes, domain diagrams are also illustrations of
directed graphs. For example, figure 2.1 illustrates a directed graph with three
nodes, with edges of multiplicity 1 directed from the nodes labelled with
EMPLOYEE and with DEPARTMENT to the node labelled with El\1PDEPT.
Figure 5 .1 is similarly an illustration of a directed graph with edges of multiplicity
1. Figure 1.4.3 illustrates a directed graph with two nodes and a single edge of
multiplicty 2.

Edges of multiplicity greater than 1 are uncommon, so the multiplicity of an edge
will be assumed to be 1 unless a higher multiplicity is specifically stated.

1

Chapt 2(8,9) BASICS.Copyright Paul C Gihnore, all rights reserved, August 11, 1987

A head node of a directed graph is a node that is the head of some edge, while a tail
node is a node that is the tail of some edge. Nodes that are not head nodes are called
bottom nodes because all edges connected to them are directed away from them.
The directed graph illustrated in figure 8.1 has 5 bottom nodes. Nodes that are not
tail nodes are called top nodes because all edges connected to them are directed
towards them. The directed graph illustrated in figure 8.1 has 8 top nodes.

8.2. Directed Graphs as Domain Graphs

Domain diagrams are illustrations of directed graphs with nodes labelled with
declared sets of a given set schema. A directed graph is a domain graph for a set
schema if its nodes are labelled with declared sets so as to satisfy the following four
conditions:
DG 1. Each node of the graph is labelled with one declared set of the schema;
DG2. An edge is directed from one node to another if and only if the first node is

labelled with an immediate domain predecessor of the second;
DG3. The multiplicity of an edge <nl,n2> for which a set A labels nl and a set B

labels n2, is the multiplicity of A as a domain predecessor of B; and
DG4. No set labels more than one node of the graph.

All of the domain diagrams appearing in figures so far have all been domain graphs
for the set schema of figure 7 .1, or of some unspecified schema. For example,
figure 1.4.3 illustrates a domain graph for a set schema in which AxA is declared as
the domain of AA.

It is important to note that cartesian products of sets do not label nodes of a domain
graph. For example, although EMPLOYEExDEP ARTMENT is the domain of
EMPDEPT, it does not label a node of figure 2.1, only the immediate domain
predecessors of EMPDEPT do.

Although primitive sets generally label bottom nodes of a domain graph, a
nonprimitive set may also if none of its immediate domain predecessors label nodes
of the graph. However no primitive set can label a head node of the graph.

For a database schema there is a single domain graph in which every set of the
database schema labels a node. This domain graph is referred to as the maximal
domain graph of the database schema, or just the domain graph for short. Every
domain graph for a database schema is a node subgraph of the maximal domain
graph; that is it is obtained from the domain graph by selecting a subset of the
nodes, and selecting all edges between the selected subset of nodes.

Figure 8.1 is an illustration of a directed graph that can be converted into a domain
graph by labelling its nodes with some of the declared sets in the table of figure 7 .1.

2

Chapt 2(8,9) BASICS.Copyright Paul C Gilmore, all rights reserved, August 11, 1987

The reader is urged to find a labelling of the nodes of this directed graph that
satisfies the conditions DG1-DG4.

8.3. Paths and Cycles

Given a directed graph, a directed path of the graph is a sequence of nodes n 1, ... ,

nk, where k>l, such that <ni,ni+l> is an edge of the graph for 1< i < k. The length

of the path is k-1. For example, in figure 6.1 the nodes labelled E, EP, L, and LD,
form a directed path of length 3; the nodes labelled with INT and VD form a path of
length 1; and any one of the nodes forms a path of length 0.

A directed cycle is a path for which n 1 is the same node as nk. A graph is directed

cyclic if it has a directed cycle, and is otherwise called directed acyclic.

A domain graph is necessarily directed acyclic, since an immediate domain
predecessor of a declared set must be declared before the set can be declared.
Consider, for example, figure 8.3.1.

FIGURE 8.3.1

The path from the node labelled C to the node labelled D and back to the node
labelled C is a directed cycle. For this to be a domain graph it would be necessary to
declare AxD or DxA as the domain of C, so that D must be declared before C is
declared. But it would also require that BxC or CxB be declared as the domain of
D, so that C must be declared before D is declared. There can, therefore, be no set
schema with the illustrated domain graph.

An undirected path of a directed graph is a sequence of nodes n1, ... , nk, where

k> 1, such that either <ni,ni+ 1 > or <ni+ 1,ni> is an edge of the graph for 1 < i < k.

The length of the path is k-1. An undirected cycle is an undirected path for which
n 1 is the same node as nk. A directed graph is called undirected cyclic if it has an

undirected cycle, and otherwise undirected acyclic. Necessarily each edge· of an
undirected acyclic graph has multiplicity 1, since two edges between the same two
nodes would form a cycle of length 2.

Domain graphs, althoHgh alv.iays directed acyclic, are commonly undiract@d cy-olic.
-For example;-itt-figure 8.3.2---aB-u-ntHrected--ey€-le-ef the directed graph of figure 8.1
is illustrated.

3

Chapt 2(8,9) BASICS.Copyright Paul C Gilmore, all rights reserved, August 10, 1987

Domain graphs, although always directed acyclic, are commonly undirected cyclic.
For example, in figure 8.3.2 an undirected cycle of the directed graph of figure 8.1
is illustrated.

FIGURE 8.3.2

8.4. Trees from Undirected Cyclic Graphs

An undirected acyclic directed graph is called a tree. In figure 8.4.1 (a) a tree is
illustrated that has been obtained from the directed graph of figure 8.3.2 by
duplicating the uppermost node of the figure. In 8.4.1 (b) the same tree is
illustrated but with the duplicate node, and the edge of which it is tail, drawn
differently to emphasize the new node.

FIGURE 8.4.1

(a) (b)

This method of obtaining a tree from a directed graph by breaking one or more
undirected cycles will be often applied, and when it is, the tree will be illustrated as
in figure 8.4.1 (b). For example, in figure 8.4.2 (a) an undirected cyclic graph is
illustrated, while in (b) a tree obtained from it is illustrated. Two duplicate nodes
are necessary in this case because two cycles had to be broken.

FIGURE 8.4.2

(a) ~ (b)

4

Chapt 2(8,9) BASICS.Copyright Paul C Gilmore, all rights reserved. August 10, 1987

The tree illustrated in figure 8.4.3 has been obtained similarly from the directed
graph illustrated in figure 8.1.

FIGURE 8.4.3

An important property of trees, not possessed by graphs, is that between any two
nodes of the tree there is one and only one undirected path connecting them. This is
a consequence of the tree being undirected acyclic. For if there were two paths
between two nodes nl and n2, then one path could be used to go from nl to n2 and
the second path used to go back to nl; that is, there would be an undirected cycle in
the tree, which contradicts the definition of tree.

A domain tree for a set schema, like a domain graph, has its nodes labelled with
declared sets of the schema, but the same set may label more than one node. The
domain trees used in chapter 5 are all either domain graphs, or are obtained from
domain graphs by breaking undirected cycles in the manner described.

8.5. Degrees for Edges of Domain Graphs and Trees

Base associations have degrees declared for them, one pair of degrees for each
immediate domain predecessor of the association. These degrees have have been
used as labels for the arrows of domain diagrams as described in sections 3.3 and
3.6. They can also label the edges of domain graphs and trees. Since degrees are not
declared for defined sets, not all edges of a domain graph or tree can be labelled
with declared degrees.

Degrees are not declared for defined sets because the system is to maintain the
membership of defined according to the intension of the set stated in the language
DEFINE. Business practices that affect the membership of defined sets must be
expressed in the intensions of the sets. So it should be possible to calculate the
degrees of defined sets on their immediate predecessors.

Some extensions of the language DEFINE so increase its power that it becomes
impossible in general to calculate the degrees of defined sets. But for the form of
DEFINE described in chapter 3, it is generally quite easy to calculate the degrees of

5

Chapt 2(8,9) BASICS.Copyright Paul C Gilmore, all rights reserved. August 10, 1987

defined sets on their immediate domain predecessors. This is an important
assumption for the meiliods of chapter 5 where it will be assumed that every edge of
a domain graph or tree is labelled with its lower and upper degrees.

9. TYPES and ELEMENTARY ASSERTIONS

In the next chapter a description of the language DEFINE is given. Several
definitions preliminary to that description are given here. Throughout the section
schema will denote the current set of declared sets. For example, schema may be the
set DSET of declared sets with members INTEGER, STRING, and the declared sets
listed in figure 7 .1. Examples illustrating the definitions will be given using DSET.

9.1. The Extended Schema schema* and Types

The members of schema are explicitly declared sets each with a distinct declaration.
Cartesian products of declared sets are implicitly declared. It is useful to have a
common way of referring to declared sets and the nested cartesian products of
names of declared sets of a set schema. For this purpose schema*, the extended
schema, is defined as follows:

1. Any member of schema is a member of schema*; and
2. the cartesian product of any number of sets from schema* is a member of

schema*.

For example, if DSET is the set schema of figure 7.1, LEADERxVDATE is a
member of DSET* as is also (EMPLOYEExPROJECT)xINTEGER. TI1e latter is a
nested cartesian product of primitive sets only and is an example of what is called a
type, defined as follows:

Let pschema be the subset of schema consisting of primitive sets only. Then a
type for schema is any member ofpschema*.

For example, if schema is DSET, then pschema is the set with members
INTEGER, STRING, EMPLOYEE, DEPARTMENT, PROJECT

and a type for DSET is any one of these sets, or any cartesian product of these sets,
or any cartesian product of a type for DSET.

The immediate domain predecessor and arity domain associations between members
of a set schema schema have been previously introduced. One further association,
the type association, is needed in preparation for chapter 3. It assigns a type to each
member of schema* as follows:

1. The type of a primitive set is the set itself;
2. the type of the set A 1 x ... xAk is TA 1 x ... xT Ak, where T Ai is the type of

Ai; and

3. the type of a declared set A with domain B is the type of B.

For example, the type of LEADER is EMPLOYEExPROJECT, since the domain of
6

Chapt 2(8,9) BASICS.Copyright Paul C Gilmore, all rights reserved, August 10, 1987

LEADER is EMPPROJ, the domain ofEl\1PPROJ is EiviPLOYEExPROJECT, and
the type of EMPLOYEExPROJECT is itself. Similarly the type of LEAD ERDA TE
is (EMPLOYEExPROJECT)xINTEGER.

9.2. Terms and Elementary Associations

A constant is any member of a primitive value set. A term is a variable, a constant,
or a tuple of terms. Examples of tenns are

x, y, z, u, v, w, 'MALE', 123, <x, 'MALE' >,<x,123>, <<x,123>,'MALE'>,
and <x,<x,'FEMALE'>>.

The expressions 'x:EMPLOYEE', and '<x,'MALE'>:SEX' that have been used
earlier in the chapter are examples of elementary assertions. The general form of
an elementary assertion for a set schema schema is

tnn:setnm,
where trm is a term, called the term of the assertion, and setnm is the name of a set
in schema*, called the set of the assertion.

A second permitted infix form of an elementary assertion
<trml, trm2>:setnm,

is the expression
trml :setnm:trm2.

However, since this is simply an alternative notation introduced for convenience, it
is unnecessary to mention it seperately in most discussions relating to elementary
assertions. Only in section 6 of chapter 3 dealing with parameterized set names will
this form of elementary assertion reappear.

9.3. Type Assigning Elementary Associations

An elementary assertion trm:setnm is said to assign a member set of schema* to an
occurrence of a constant or a variable in trm if

1. trm consists of a single constant or variable, and setnm is set; or if
2. trm:setnm is <trm1, ... , tnnk>:setnm1 x ... x setnmk, where k>2, the

occurrence is in trmi, and trmi:setnmi assigns set to the occurrence; or if

3. trm is <trm1, ... , trmk>, where k>l, dsetnm is the immediate domain

predecessor of setnm, and <tnn 1, ... , trmk>:dsetnm assigns set to the

occurrence;

For example, the sets assigned to the occurrences of 'x' and 'y' in the term '<x,y>'
of the elementary assertion

<x,y>:LEADERDATE
are LEADER and VDA TE, since LEADERx VDA TE is the immediate domain
predecessor of LEAD ERDA TE.

7

Chapt 2(8,9) BASICS.Copyright Paul C Gilmore, all rights reserved, August 10, 1987

The sets assigned to the first and second occurrences of 'x' in the term of the
elementary assertion

<<x,x>,v>:LEADERDA TE
are assigned by

<x,x>:LEADER
and the ref ore by

<x,x>:E:MPPROJ
and the ref ore by

<x,x>:EMPLOYEExPROJECT.
The first occurrence is assigned EMPLOYEE, and the second occurrence is
assigned PROJECT. The set assigned to 'v' in '<<x,x>,v>' is VDA TE. Should 'v'
be replaced by 'MALE', then the occurrence of the constant 'MALE' would also
have VDATE assigned to it.

Another example of an elementary assertion that assigns two different sets to two
occurrences of the same variable is

<x,<x,y>>:SOCCERxLEADER.
The first occurrence of 'x' is assigned SOCCER, while the second is assigned
EMPLOYEE.

The following are examples of elementary assertions that fail to assign sets for all
occurrences of variables and constants in their terms:

<x,y>:EMPLOYEE and <x,<x,v>>:LEADERDATE.

An elementary assertion for a set schema is said to be type assigning if
1. it assigns a member of schema* to each occurrence of a variable or a

constant in its term;
2. the type of the set to which an occurrence of a constant is assigned is the

primitive value set of which the constant is a member; and
2. each occurrence of a variable in its term is assigned a set of the same type as

any other occurrence of the same variable.

Elementary assertions that are not type assigning are never used. The ref ore
henceforth by 'elementary assertion' for a set schema will be meant 'type-assigning
elementary assertion' for the schema.

If each constant and variable occurring in a term trm is assigned a type, then trm is
assigned a type also as follows:

1. If trm is a constant or variable, then the type assigned to that constant or
variable is the type assigned to trm; and

2. If trm is <trm 1, ... , trmk>, where k> 2, and trmi is assigned ~i, then tnn

is assigned the type <~1, ... , ~k>.

It follows, therefore, that an elementary assertion assigns a type to its term.
8

Chapt 2(8,9) BASICS.Copyright Paul C Gilmore, all rights reserved, August 10, 1987

9.4. Equality Assertions

An equality assertion is an expression of the form
trml=trm2,

where trml and trm2 are terms.

Examples of equality assertions are
x=<y,'MALE'>, 123=x, <x,<x,v>>=<x,y>

Unlike elementary assertions, an equality assertion does not assign types to variables
occurring in its terms. However, when types are assigned to the variables occurring
in the terms of an equality assertion, the assertion can only be interpreted if both
terms are assigned the same type.

An occurrence of a variable in an assertion assert of DEFINE, as defined in chapter
3, may have its occurrence in an elementary assertion that is a part of assert. Except
for the possibility of ambiguities arising from the same name being used for distinct
sets, each such occurrence has therefore a unique type assigned to it. Restrictions on
the definition of assertions, such as the restriction of elementary assertion to type
assigning elementary assertion, removes the possibility of conflicts in types.

9

Chapt 3 (1-3) DEFINE. Copyright: Paul C Gilmore, all rights reserved, August 10, 1987

CHAPTER 3 THE LANGUAGE DEFINE

This chapter is concerned with the form and meaning of declarations of defined sets.
It assumes a familiarity with chapter 2, especially the definitions provided in
section 9 of that chapter.

The declaration of a defined set is made in the context of a set schema schema
consisting of the previously declared base and defined sets. The format for the
declarations of defined sets introduced in section 4.2 of chapter 2 is

dsetnm for {d+v-decl I assert I comment},
where d+v decl is the domain+variable declaration clause, called briefly the
declaration clause in this chapter, and assert the assertion clause.

The machine interpretable declaration and assertion clauses have two purposes:
1. A domain for dsetnm is declared in d+v-decl that is a member of the

extended schema schema*; and
2. The intension of dsetnm, which determines its membership, is declared in

d+v-decl and assert.

For example, MALE was declared in section 6.1 of chapter 2 as follows:
MALE for {x:EMPLOYEE I <x,'MALE'>:SEX I male employees}.

The declaration clause declares EMPLOYEE to be the domain of MALE . That
clause together with the assertion clause declares that the membership of MALE is
to consist of those members x of EMPLOYEE for which <x,'MALE'> is a member
of SEX.

As will be seen in section 1 where declaration clauses are discussed, it is a simple
matter to restrict the format of a declaration of a defined set in order that the first of
the two purposes is served. But it is more difficult to restrict the format so as to
ensure that the second of the purposes is served. It is necessary to introduce two
restrictions that d+v-decl and assert must satisfy. They are

1. Every variable with a free occurrence in assert must be declared in d+v-decl;
and

2. The clauses d+v-decl and assert must be type compatible.
The meaning of 'free' and 'type compatible' will be defined in stages the first stage
in section 1, and later stages in sections 3 through 6 as increasingly complex forms
of assert are introduced. The first of the two restrictions is called the free variable
restriction, and the second the type compatibility restriction.

That some restriction on the pairs of declaration and assertion clauses admitted
should be considered, should be evident from the following expression:

N for { x:PROJECT I <x, 'MALE'>:SEX I nonsense}.
The type assigned to 'x' in the declaration clause is PROJECT, while the type

1

Chapt 3 (1-3) DEFINE. Copyright: Paul C Gilmore, all rights reserved, August 10, 1987

assigned to it in the assertion clause is EMPLOYEE; the declaration and assertion
clauses are not type compatible. Such a declaration could, of course, be taken to be a
declaration for an empty subset of PROJECT, but the better course is the
prohibitition of it. Not only does the prohibition result in a simple and clear
interpretation for declarations of defined sets, but it has practical benefits as well
since it results in the partitioning of the universe of all entities by the primitive sets.

A set schema schema is declared so that a database management system may
maintain a database with this schema. In section 2 a sketch is given of what a
database management system is expected to do with schema, and the interpretation
the system is expected to give to a declaration with an elementary or equality
assertion as its assertion clause. Sections 3-6 complete the description and at the
same time provide a full definition of the assertions of DEFINE. The interpretation
of assertion clauses given in sections 2-6 is the one that users of a management
system for set schemas must understand. Only then can they devise set declarations
that properly express their intent, both for declaring new members of a set schema,
and for formulating queries for the database based on the set schema.

The language of DEFINE has its basis in set theories that are described in [Gil86a].
The assertions of DEFINE are constructed from elementary and equality assertions
described in section 3, using the boolean truth values true and false and the boolean
operators and, or, and not, described in section 4, and the quantifiers [For some ...]
and [For all ...] described in section 5. In section 6 a functional notation is
introduced through the use of parameterized set names.

The remaining topics dealt with in the chapter are nested declarations in section 7,
the formulation of user queries in section 8, the consistency of the interpretation of
assertion in section 9, and extensions of DEFINE in section 10.

One assumption simplifies the task of describing an interpretation of the assertions
of DEFINE. Although declaring distinct sets with the same name can result in
ambiguities, the assumption will be made that they do not occur; that is, it is assumed
that each name of a declared set occurring in an assertion identifies a unique
member of the set of currently declared sets. Set naming rules that minimize the
risk of ambigities, as well as possible mechanisms for resolving them, will be
discussed in chapter 4.

1. DOMAIN+ VARIABLE DECLARATIONS

A declaration clause d+v-decl is an elementary assertion
trm:setnm,

necessarily type assigning as defined in section 9 of chapter 2. The domain declared
by the declaration is the set setnm. Since it is a member of schema*, the -

2

Chapt 3 (1-3) DEFINE. Copyright: Paul C Gilmore, all rights reserved, August 10, 1987

requirement that the domain of a set be declared before the set can be declared is
always satisfied.

The immediate domain predecessors of dsetnm are defined as follows:
Should setnm be setnm 1 x ... x setnmk, where k> 2, then setnm 1, ... , setnmk

are the immediate domain predecessors of dsetnm; otherwise setnm is the
only immediate define predecessor.

A declaration clause of the form
<trm 1, ... , tnnk>:setnm 1 x ... x setnmk

may also be written in the form
trm 1 :setnm 1, ... , tnnk:setnmk.

This second form, however, has the same meaning as the first. Therefore it may be
assumed that only the first form is used.

As described in section 9 of chapter 2, a clause d+v-decl assigns a type to each
variable occurring in its term, and the clause assert may assign a type to each
variable occurring in it. For the clauses to be type compatible, a type assigned to a
variable by assert must be the same as the type assigned to it by d+v-decl.

2. A MANAGEMENT SYSTEM for SET SCHEMAS

As described in chapter 1, a database management system should perform three
basic functions for its users. First it assists in the creation of databases by accepting
a set schema and preparing data structures designed to record the memberships of
sets declared in the schema. Second, it modifies its record of the membership of
declared sets by reacting to update commands given to it by users. Finally, it
responds to queries posed as declarations of defined sets by listing the membership
of the sets.

A first highly simplified description is given in section 2.1 of how a management
system records the memberships of sets. Fundamental to this description is the
concept of an internal surrogate for an entity. A thorough description involves
implementation issues that must await chapter???.

A users' view of the management system is sketched in section 2.2. For the present
it is assumed that a user may command the system to add a new member to, or
remove an existing member from, a declared base set. The form of such a
command, as well as the meaning that can be given to it when it is applied to a
defined set, rather than a base set, will be discussed in chapter ??? .

The section concludes with a definition and discussion of the immediate predecessor

3

Chapt 3 (1-3) DEFINE. Copyright: Paul C Gilmore, all rights reserved, August 10, 1987

association in section 2.3. It is an extension of the immediate domain predecessor
association.

2.1. Internal Surrogates and Tuples of Surrogates

The intension of a primitive base set such as EMPLOYEE is described in its
declaration in terms that only a human being can understand. Once that intension
has been described, it is possible for a human being to decide that a particular entity
is a member of the set and pass to a management system values of the entity's
attributes in the expectation that they will be recorded for later retrieval. For
example, if it is determined that a given person is a member of the set EMPLOYEE,
then values of the attributes EMP#, NAME, ADDRESS, and SEX for the person
may be passed.

For the system to record values of attributes, it must have some means of associating
them with the same entity, and for this purpose it creates an internal surrogate for
the entity. Such a surrogate may, for example, be the value of an identifier of the
entity, such as the value of EMP# for a member of EMPLOYEE, but more usually
it is simply an integer chosen by the system at the time that it is first needed and that
is unknown to any user of the system.

All values of attributes of an entity passed to an information system, including the
value of an identifier for the primitive base set of which the entity is a member, are
associated by the system with the internal surrogate of the entity. For example, if~
is an internal surrogate for the person that is a member of EMPLOYEE, then the
values of EMP#, NAME, ADDRESS, and SEX for the person, say respectively~'
nm, add, and sex, are passed to the system. Should these values be confirmed by the
system to be members respectively of the value sets VEMP#, VNAME,
V ADDRESS, and VSEX, then they are associated with~ by the system.

From the user's point of view the system is recording the pairs <~,e#>, <~,nm>,
<~,.rukt>, and <~,sex>, as members of the nonprimitive base sets EMP#, NAME,
ADDRESS, and SEX, although how it actually does so is irrelevent to the user. The
values of identifiers for the members of primitive base sets ensure a one-to-one
correspondance between the entities of the external world and the internal
surrogates representing them in the memory of the management system.

The pairs<~,~, <~,nm>, <~,add>, and <~,sex>, are examples of what are called
tuples of surrogates, defined as follows:

A tuple of surrogates is an internal surrogate for a member of a primitive base
set, a constant, or a tuple of tuples of surrogates.

Other examples of tuples of surrogates are
~, 'MALE', 123, and <~,'MALE'>,

4

Chapt 3 (1-3) DEFINE. Copyright: Paul C Gilmore, all rights reserved, August 10, 1987

where ~ is the internal surrogate for a member of EMPLOYEE.

An internal surrogate that is a member of a primitive base set is aid to have that set
as its type. A tuple of surrogates <!12.S.ri, ... , !12.S.rk> is said to have the type m1 x ... x

112k, where tpsri has the type 112.fil}

2.2. Users' View of the System

As far as users are concerned, the system can be thought of as maintaining the
membership of all primitive base sets through the creation of internal surrogates
representing the members added to the sets by the users. The membership of
EMPLOYEE, for example, can be thought of as consisting at any time of the
internal surrogates that have been recorded as its members by the system.

Further, the membership of the primitive value sets, that is of the primitive defined
sets INTEGER, STRING, and REAL, can be thought of as being maintained in a
virtual sense; the system does not actually maintain a list of all the members of these
sets, but is able to decide of any string presented to it whether it is a member of one
of them. Similarly the membership of nonprimitive values sets such as the value sets
of the attributes of EMPLOYEE can be thought of as being maintained in a virtual
sense also; the system can be understood to be capable of interpreting the intension
of such a set and of determining whether a given string satisfies the intension.

The members of nonprimitive base sets can be thought of as being tuples of
surrogates. For example, the members of SEX are the pairs <~,sex> for which~ is
an internal surrogate of a member of EMPLOYEE, ~ identifies a member of
VSEX, and sex has been passed to the system as the value of SEX for the employee
with internal surrogate~-

Just as the membership of the value sets can be thought of as being maintained in a
virtual sense by the system, the membership of a nonprimitive defined set such as
MALE can also be so regarded. For example, the variable 'x' occuring in the
declaration of MALE is assigned EMPLOYEE as its range. This means that the
possible values for 'x' are the internal surrogates that are currently members of
EMPLOYEE, and that 'x' can be bound to one of these internal surrogates. Once 'x'
has been so bound, say to ~, then it is possible to assert that x is a member of
EMPLOYEE. Also when 'x' has been so bound, <x,'MALE'> can be regarded as
being bound to <~,'MALE'>, and it is possible to assert that <x,'MALE'> is or is not
a member of SEX.

At any given time, therefore, the membership of MALE consists of those internal
surrogates~ for which x is a member of EMPLOYEE and <x,'MALE'> is a
member of SEX, when 'x' is bound to ~- Since the membership of MALE can be

5

Chapt 3 (1-3) DEFINE. Copyright: Paul C Gilmore, all rights reserved, August 10, 1987

calculated at any time, the membership can remain virtual and need not be recorded
in the actual manner that the membership of Elv.lPLOYEE is recorded as a list of
internal surrogates.

For the sake of efficiency the system can calculate the membership of any defined
set and make the membership actual, but without considerations of efficiency, the
membership of all defined sets can remain virtual. For the purposes of this chapter
it is irrelevent whether the membership of a defined set is maintained as an actual or
a virtual list.

Similarly the system can be thought of as recording the membership of any set in
schema*. For example, should (EMPLOYEExPROJECT)xINTEGER be the type
of the tuple of surrogates <<~,12>,g>, then the system can be assumed to record
those <<~,12>,d> that are members ofLEADERDATE.

Terms as well as variables can be bound to tuples of surrogates: Should each
variable that occurs in a term trm be bound to a tuple of surrogates, then trm itself is
bound to a tuple of surrogates defined as follows:

1. Should trm be a constant, then trm is bound to that constant;
2. Should trm be a variable var, then trm is bound to the tuple of surrogates to

which var is bound; and
3. Should trm be <trm1, ... , trmk>, then trm is bound to the tuple

<tup1, ... , .Il!Pk>, where trmi is bound to tuPi·

Using this notion of the binding of terms to internal surrogates, the role a
declaration clause trm:setnm plays in the specification of the intension of a defined
set can now be better understood. The variables occurring in trm are necessarily
assigned types by the clause in such a way that the type assigned to trm is the type of
setnm. When those variables are assigned tuples of surrogates from the sets that are
their types, trm is assigned a tuple of surrogates of the same type as setnm. The
extension of the declared set, therefore, is drawn from those tuples of surrogates
that are members of setnm.

To list the membership of a set for a user, the system replaces internal surrogates
with identifiers. For example, to list the membership of MALE, the system can be
thought of as binding 'x' in tum to each member~ of EMPLOYEE and then
printing for the user the values of Elv.lP# for those ~ for which <x,'MALE'> is a
member of SEX.

2.3. Immediate Predecessors

The immediate domain predecessors of a defined set are, as described in section 1.1,
determined by the declaration clause. The immediate define predecessors of the set

6

Chapt 3 (1-3) DEFINE. Copyright: Paul C Gilmore, all rights reserved, August 10, 1987

are similarly determined by the assertion clause. For example, the set EMPLOYEE
is the only immediate domain predecessor of MALE, while SEX is its only
immediate define predecessor. As different forms of assertion clauses are
considered in sections 3 through 6, the immediate define predecessor association
will be defined for each form. Since the declaration of a base set does not have an
assertion clause, a base set has no immediate define predecessors.

An immediate predecessor of a declared set, either base or defined, is a set that is
either an immediate domain predecessor or an immediate define predecessor of it.
For example, both EMPLOYEE and SEX are immediate predecessors of MALE.
The domain graphs introduced in chapter 2 can be extended to predecessor graphs
by adding edges <nl ,n2> for which the node nl is labelled with an immediate define
predecessor of the set labelling n2. For example, in figure 2.3, a predecessor graph
is illustrated with nodes labelled with the sets EMPLOYEE (E), SEX, VSEX (VS),
STRING (STR), and MALE.

FIGURE 2.3

E ~ SEX
_.... vs _.... STR - ~ -

.... , .. ,,,
H ~

MALE

A different style of arrow is used in this figure to illustrate the single edge arising
from the immediate define association.

Just as the domain predecessor association was defined to be the transitive closure of
the immediate domain predecessor association, so is the predecessor association the
transitive closure of the immediate predecessor association:
A declared set A is a predecessor of a declared set C, if A is an immediate
predecessor of C, or if there is a declared set B such that A is a predecessor of B and
B is a predecessor of C.

The only domain predecessor of MALE is EMPLOYEE. But the predecessors of
MALE are EMPLOYEE, SEX, VSEX, and STRING.

Domain graphs are directed acyclic because each immediate domain predecessor of
a set must be declared prior to the declaration of the set. Similarly predecessor
graphs are also directed acyclic because each immediate define predecessor of a
defined set must also be declared prior to the declaration of the set.

7

Chapt 3 (1-3) DEFINE. Copyright: Paul C Gilmore, all rights reserved, August 10, 1987

Illustrations of predecessor graphs can be useful for users of a management system
for a set schema, while the graphs themselves are useful for the system itself.

3. ELEMENT ARY and EQUALITY ASSERTION CLAUSES

In this section declarations are considered of the form
dsetnm for { trm:setnm I assert I comment},

where assert is either an elementary assertion
trma:setnma,

or an equality assertion
trml=trm2.

Each occurrence of a variable in trma:setnma or trml=trm2 is a free occurrence.
By the free variable restriction, therefore, every variable occurring in assert must
occur in trm. Therefore each variable occurring in assert has a type assigned to it
by trm:setnm. Should assert be trma:setnma, then the variable also has a type
assigned to it by trma:setnma. For the declaration and assertion clauses to be type
compatible it is necessary that the types be the same for each variable occurring in
assert. Should assert be trml=trm2, then for the clauses to be type compatible it is
necessary that the type assigned to trml be the same as the type assigned to trm2.

The declaration and assertion clauses of the declaration of MALE are type
compatible. An example, although an artificial one, of a declaration with an
equality assertion as its assertion clause is:

EL for {x:EMPPROJ, <y,z>:LEADER I x=<y,z> I an example declaration}.
Since the type assigned to 'x' is EMPLOYEExPROJECT, the type assigned to 'y' is
EMPLOYEE, and the type assigned to 'z' is PROJECT, the type assigned to both 'x'
and '<y,z>' is EMPLOYEExPROJECT. The members of EL consist of those pairs
<<~,l2,>,<~,l2,>> for which <~,12> is a member of LEADER.

The immediate define predecessors of dsetnm are defined as follows:
1. Let assert be trma:setnma. Should setnma be setnm 1 x ... x setnmk, where

k>2, then setnm1, ... , setnmk are the immediate define predecessors

of dsetnm; otherwise setnma is the only immediate define predecessor.
2. Let assert be trml=trm2. Then dsetnm has no immediate define

predecessors.

3.1. Assigning Truth V aloes to Elementary and Equality Assertions

The declaration and assertion clauses trm:setnm and assert of the declaration of
dsetnm are type compatible, and every variable occurring in assert occurrs in trm.
Let the variables occurring in trm be bound to tuples of surrogates from their types

8

Chapt 3 (1-3) DEFINE. Copyright: Paul C Gilmore, all rights reserved, August 10, 1987

in such a way that tnn is bound to a tuple of surrogates that is a member of setnm.

Consider first the case that assert is tnna:setnma. Each variable occurring in tnna is
necessarily bound to tuples of surrogates for which trma is bound to a tuple of
surrogates ms_r that is has the type of setnma. Then~ may or may not be a
member of setnrna. If it is, trma:setnma is assigned the truth value true, and if it is
not trma:setnma is assigned the truth value false.

Consider now the case that assert is trml=trm2. The terms trml and trm2 are
assigned the same type and necessarily each is assigned a tuple of surrogates that is
of the same type. The tuples of surrogates may or may not be identical. If they are,
tnnl=tm12 is assigned the truth value true, and if they are not trml=trm2 is
assigned the truth value false.

9

Chapt 3 (4) DEFINE. Copyright: Paul C Gilmore, all rights reserved, August 10, 1987

4. THE BOOLEAN TRUTH VALUES and OPERA TORS

In this section declarations are considered of the form
dsetnm for { trm:setnm I assert I comment},

where assertion is one of three forms, truth values discussed in section 4 .1,
conjunctions or disjunctions discussed in section 4.2, and negations discussed in
section 4.3. In section 4.4 truth functional identities for assertion clauses are listed.

4.1. Truth V aloes

The assertion clause assert may be just one of the truth values true or false.

No variable occurs free in a truth value. Necessarily therefore the free variable and
type compatibility restrictions are satisfied for any declaration clause trm:setnm
when the assertion clause assert consists of a truth value. In that case the set dsetnm
has no immediate define predecessors.

For example, the declaration
WORKER for {x:EMPLOYEE I true I an alias for EMPLOYEE}

essentially provides a different name for the set EMPLOYEE, or what is called an
alias for EMPLOYEE. The sets WORKER and EMPLOYEE are always
extensionally identical, no matter the membership of EMPLOYEE, because the
assertion clause is always assigned the truth value true.

The declaration
EMPTY for {x:EMPLOYEE I false I an empty set}

on the other hand never has any members, for its assertion clause can never be
assigned the truth value true.

4.2. Conjunctions and Disjunctions

The assertion clause of a declaration may be the conjunction
(assertl and assert2),

of the assertions assertl and assert2, or may be the disjunction
(assertl or assert2)

of them, provided that each of assertl and assert2 separately satisfies the free
variable and the type compatibility restrictions with the declaration clause
trm:setnm. The parenthesis'(' and')' may be omitted for repeated conjunctions and
disjunctions and where they are not required to determine the arguments of the
operators or and and.

1

Chapt 3 (4) DEFINE. Copyright: Paul C Gilmore, all rights reserved, August 10, 1987

The assertions assertions assertl and assert2 may be elementary or equality
assertions, truth values true and false, or assertions making use of any number and
mixture of conjunctions and disjunctions, or assertions making use of negations and
quantifiers introduced below.

A free occurrence of a variable in assert 1 or assert2 is a free occurrence in the
conjunction and the disjunction. So that if assertl and assert2 separately satisfy the
free variable restriction, so must the conjunction and disjunction as well. Similarly,
since an occurrence of a variable in the conjunction or disjunction must be an
occurrence in either assertl or assert2, and since assertl and assert2 must separately
satisfy the type compatibility restriction, the conjunction and disjunction satisfy the
restriction as well. The immediate define predecessors of dsetnm when assert is
either (assertl and assert2) or(assertl or assert2) are those it would have if assert
were assertl as well as those it would have if assert were assert2.

When each variable with a free occurrence in assertl and assert2 has been bound to
an internal surrogate that is a member of its type, then each of assertl and assert2 is
assigned a truth value. The truth value that is then assigned to their conjunction and
disjunction is determined from truth tables given in figure 4.2. These truth tables
are the conventional ones for conjunction and disjunction.

FIGURE4.2
assert2 assert2

and true ! false
•

or true I false t

true true ! false true true
I

true ' \

' assertl --······ ···-···-,~---····· assertl -·~-~···~·-------false false : false
\

false true \ false \
\

An example of a declaration using or is the following:
B+F for {x:EMPLOYEE I x:BASEBALL or x:FEMALE}.

The set B+F has as its members the employees who are members of BASEBALL,
or who are members of FEMALE. An employee who is a member of both sets is a
member of B+F. The or connective is always used in this nonexclusive sense of
allowing one or the other or both cases to be true.

Another example using or is the following,
RU for {x:PROJECT I <x,'RECRUITING'>:NAME or

<x,'UNITEDW A Y'>:NAME}.
If 'RECRUITING' and 'UNITEDW A Y' are members of the value set for the
attribute NAME of PROJECT, then the members of RU are employees assigned to
one or the other or both of the projects.

2

Chapt 3 (4) DEFINE. Copyright: Paul C Gilmore, all rights reserved, August 10, 1987

A declaration using and is:
SB for {x:EMPLOYEE I x:SOCCER and x:BASEBALL}.

The members of the set SB are members of both SOCCER and BASEBALL.

The next example of the use of and declares a set of triples.
DEP for {x:DEPARTMENT, y:EMPLOYEE, z:PROJECT I

<x,y>:EMPDEPT and <x,z>:EMPPROJ}
The members of DEP consist of the triples <.d,t,]2.> of surrogates for which ~ has
been assigned to both .d and 12·

A declarations using both and and or is :
A for {x:EMPLOYEE, y:PROJECT I <x,y>:EMPPROJ and

(<y,'RECRUITING'>:NAME or <y,'UNITEDWA Y>:NAME)}
The members of this set consist of the pairs <t,]2.> of surrogates for which the
employee with surrogate .e. is assigned to a project with surrogate 12 that has the name
'RECRUITING' or the name 'UNITEDW A Y'.

The parentheses used in the assertion clause indicate the order in which the boolean
connectives are to be applied. The or connective is applied first, and the and
operator applied second. An equivalent declaration using the previous example RU
1s:
A for {x:EMPLOYEE, y:PROJECT I <x,y>:EMPPROJ and y:RU}.

The choice of the name 'A' for the set illustrates that it is not always necessary to
invent descriptive names for sets. Definitions of sets, it will be seen, are often only
needed for contexts in which brevity of name is desirable and in which the intension
of the set is immediately at hand to clarify the meaning of the name. These contexts
include nested declarations of defined sets discussed in section 5.

Exercise: Verify for each of the declarations that the assertion clause is acceptable
for the domain+variable declaration clause.

4.3. Negation

The assertion clause of a declaration may be the negation
not assert,

of the assertion assert provided assert satisfies the free variable and type
compatibility restrictions with the declaration trm:setnm.

The assertion assert may be an elementary or equality assertion, a truth value true
or false, or an assertion making use of any number and mixture of conjunctions and
disjunctions, or an assertion making use of quantifiers introduced below.

3

Chapt 3 (4) DEFINE. Copyright: Paul C Gilmore, all rights reserved, August 10, 1987

A free occurrence of a variable in assert is a free occurrence in not assert.
Therefore if assert satisfies the free variable restriction with trm:setnm, so does
trm:setnm. Similarly, if assert satisfies the type compatibility restriction with
trm:setnm, so does trm:setnm. The immediate define predecessors of dsetnm when
its assertion clause is not assert are those it would have if its assertion clause were
assert.

Under the assumption that a truth value has been assigned to assert, the negation is
assigned the truth value given in the truth table of figure 4.3. This table is the usual
truth table for negation.

FIGURE4.3

not
true false
false true

A declaration using not is:
NONSOCCER for {x:MALE I not x:SOCCER I male employees not playing

soccer}.
The members of NONSOCCER is the set of internal surrogates ~ of employees that
are male and do not play soccer.

Note that a declaration such as
NONSENSE for {x:DEPARTMENTI not x:EMPLOYEE I nothing defined}

is not properly formulated because the assertion clause 'not x:EMPLOYEE' is not
type compatible with the domain+variable declaration clause 'x:DEPARTMENT'.
The type assigned to 'x' by the first is EMPLOYEE, while the type assigned to 'x' by
the second is DEPARTMENT.

4.4. Assertions with Identical Truth V aloes

From the truth tables for conjunction, disjunction, and negation, it can be seen that
certain pairs of assertions always have the same truth values. The pairs listed in
figure 4.4 are some of the more obvious ones.

assert or true
assert or false

FIGURE4.4

4

true
assert

Chapt 3 (4) DEFINE. Copyright: Paul C Gilmore, all rights r~rved, August 10, 1987

assert and true
assert and false
not (assertl or assert2)
not (assertl and assert2)

5

assert
false
not assert! and not assert2
not assertl or not assert2

Chapt 3 (5) DEFINE. Copyright: Paul C Gilmore, all rights reserved, August 10, 1987

5. THE QUANTII~'IERS

This section is concerned with the form and meaning of declarations
dsetnm for {trm:setnm I rguan gvardec](assert) I comment}

where the assertion clause
[guan qvardec](assert),

is called a quantified assertion provided it satisfies a type compatibility restriction
described in section 5.3.

The assertion assert is called the scope of the quantifier prefix [!U!fill qvardec]. The
parentheses '(' and ')' may be omitted when assert is itself a quantified assertion, or
when it is an elementary or equality assertion. The expression guan in the
quantifier prefix, called the quantifier, is either 'For some' or 'For all', called
respectively the existential and the universal quantifier.

The expression qvardec, called the quantifier variable declaration, has for the
present the same form as a domain+variable declaration, namely an elementary
assertion. As before the variable declaration

< trm 1, ... ~ trmk>:setnm 1 x ... x setnmk

may also be written
trm 1 :setnm 1, ... , trmk:setnmk.

In section 6 a more general form of quantifier variable declaration is admitted.

As noted above, the definition of the type compatibility restriction that [guan
gvardec] (assert) must satisfy to be a quantified assertion is postponed until section
5.3. Also postponed are the definitions of free occurrence and of the immediate
domain predecessors of dsetnm, as well as a discussion of the free variable and type
compatibility restrictions that the declaration and assertion clauses must satisfy.
This permits an informal introduction to quantified assertions to be given first.

Many examples of set declarations with quantified assertion clauses appear in
sections 5.1 and 5.2, with examples of the existential quantifier given in section 5.1,
and the universal in section 5.2. In section 5.4 a detailed treatment of the assignment
of truth values to quantified assertions is provided.

5.1. Informal Introduction to Existential Quantifiers

The meaning of the existential quantifier can be illustrated with a simple example.
Consider the quantified assertion

(1) [For some x:BASEBALL] x:SOCCER.
In this assertion '[For some x:BASEBALL]' is the quantifier prefix, and

1

Chapt 3 (5) DEFINE. Copyright: Paul C Gilmore, all rights reserved, August 10, 1987

'x:SOCCER' is the scope of the quantifier prefix. There is only one occurrence of
the variable'x' in the scope and it is said to be bound by the quantifier prefix.

fufonnally, the assertion (1) is true if there is a baseball player who plays soccer,
and false if there is not one. In particular, the assertion is false if no employee is
playing baseball. More precisely, EMPLOYEE is the type of both BASEBALL and
SOCCER. If there is an internal surrogate ~ in EMPLOYEE that is a member of
both BASEBALL and SOCCER, then (1) is true. Stating the same thing in another
way, each of 'x:BASEBALL' and 'x:SOCCER' is assigned a truth value whenever
'x' is bound to an internal surrogate ~ that is a member of EMPLOYEE. If there is
an ~ for which both are assigned the truth value true, then (1) is assigned the truth
value true also; if there is no such~, then (1) is assigned the truth value false.

The possible relationships between the extensions of SOCCER and BASEBALL
within the extension of EMPLOYEE is illustrated in figure 5.2. In that figure the
names of the sets have been abbreviated to the first letter of the names. In all of the
situtations illustrated, with the exception of (b) where it is false, the assertion (1) is
true.

FIGURE 5.1

(a) (b)

E

(c) (d)

~
~1

E

E

There is a simple connection between the existential quantifier and the boolean
connective or. Let h1, ... , 12Ic be a list of the internal surrogates that are members

of BASEBALL. Let x 1, ... , xk be distinct variables of type EMPLOYEE that are

bound respectively to h1, ... , bic· Then the assertion (1) has the same truth value as

the assertion
(2) x1 :SOCCER or ... or xk:SOCCER.

2

Chapt 3 (5) DEFINE. Copyright: Paul C Gilmore, all rights reserved, August 10, 1987

If one of the employees corresponding to the internal surrogates does play soccer,
then assertion (2) is true, and if none do, then it is false.

The assertion (2) has the same truth value as (1) only when 121, ... , hic are the

internal surrogates of all employees who play baseball; should the list of baseball
playing employees change, it will be necessary to change (2) in order to have the
same truth value as (1). This is the primary reason that quantified assertions are
needed and are not be replaced with an assertion like (2). The assertion (1) does,
however, have the same meaning as

(3) [For some x:SOCCER] x:BASEBALL.

The following is an example of a declaration of a defined set with a quantified
assertion clause.

EJ\.1PPROJ.EMPLOYEE for {x:EMPLOYEE I
[For some y:PROJECT] <x,y>:EJ\.1PPROJ I

the projection of EMPPROJ on EMPLOYEE}.
This declaration declares the projection operator that was used in section 3.5 of
chapter 2. The immediate predecessors of EMPPROJ.EMPLOYEE are
EMPLOYEE, PROJECT, and EMPPROJ.

The members of EMPPROJ.EMPLOYEE are those employees assigned to projects.
The existential quantifier has the effect of converting the pairs <~, 12 > that are
members of EMPPROJ into a subset of EJ\.1PLOYEE by "projecting" on the first
element of the pair.

The set of employees of just the projects RECRUITING and UNITEDW A Y can be
similarly declared by applying an existential quantifier to the association A defined
in section 4.2.

A.EMPLOYEE for {x:EMPLOYEE I [For some y:PROJECT] <x,y>:A}

Another example of the use of existential quantifiers is provided by the next
declaration.

EJ\.1PLOYEE for { u:VEJ\.1P#, v:VNAME, w:VADDRESS, z:VSEX I
[For some x:EJ\.1PLOYEE] (<x,u>:EJ\.1P# and <x,v>:NAME

and <x,w>:ADDRESS and <x,z>:SEX)I the employee table }
The association being defined can be given the name 'EMPLOYEE', even though
that name has already been used, because the two sets named EMPLOYEE can be
distinguished by their domains. The arity 4 set EMPLOYEE is called a table in the
relational model.

In the assertion clause of the declaration there are four occurrences of 'x' that are
bound by the quantifier prefix [For some x:EJ\.1PLOYEE]. The immediate

3

Chapt 3 (5) DEFINE. Copyright: Paul C Gilmore, all rights reserved, August 10, 1987

predecesors of the declared set EMPLOYEE of arity 4 are the sets VEMP#,
VNAlY.IE, V ADDRESS, VSEX, the arity 1 set EMPLOYEE, EMP#, NAlY.IE,
ADDRESS, and SEX.

The use made of the existential quantifier in the assertion clause of the table
EMPLOYEE can be understood in terms of a projection operator similar to the one
used in EMPPROJ.EMPLOYEE. Consider the set JTE defined as follows:

JTE for
{u:VEMP#, v:VNAME, w:VADDRESS, z:VSEX, x:EMPLOYEE I

<x,u>:EMP# and <x,v>:NAlY.IE and <x,w>:ADDRESS and <x,z>:SEX I
the join of the attributes of EMPLOYEE}.

In the terminology of the relational algebra, JTE is the join of the relations EMP#,
NAlY.IE, ADDRESS, and SEX, on the attribute EMPLOYEE. Using this declaration
of JTE, a set E can be declared that has the same extension as the table EMPLOYEE:

E for {u:VEMP#, v:VNAME, w:V ADDRESS, z:VSEX I
[For some x:EMPLOYEE] < u,v,w,z,x>:JTE I}.

This use of the existential quantifier will be frequently applied in chapter 5 where a
method for designing tables from a set schema is described.

5.2. Informal Introduction to Universal Quantifiers

The meaning of the universal quantifier can be illustrated with a simple example.
Consider the assertion

(4) [For all x:BASEBALL] x:SOCCER.

The assertion(4) is true if each baseball player also plays soccer; in particular the
assertion is true if no employee is playing baseball. This assertion is false if there is
a baseball player who does not play soccer. More precisely, EMPLOYEE is the
type of both BASEBALL and SOCCER. If each member~ of EMPLOYEE that is a
member of BASEBALL is also a member of SOCCER, then (4) is true. Stating the
same thing in another way, each of 'x:BASEBALL' and 'x:SOCCER' is assigned a
truth value whenever 'x' is bound to an internal surrogate~ that is a member of
EMPLOYEE. If for each ~ for which 'x:BASEBALL' is assigned true,
'x:SOCCER' is also assigned true, then (4) is assigned true ; if there is an~ for
which'x:BASEBALL' is assigned true and 'x:SOCCER' is assigned false, then (4) is
assigned false.

The possible relationships between the extensions of SOCCER and BASEBALL
within the set EMPLOYEE have been illustrated in figure 5.1. In all of the
situations illustrated, with the exception of (d), the assertion (4) is false; in that
situation the assertion is true. The assertion is still true if the rectangle B in (d) is
empty, that is if there are no employees playing baseball.

4

Chapt 3 (5) DEFINE. Copyright: Paul C Gilmore, all rights reserved, August 10, 1987

There is a simple connection between the universal quantifier and the boolean
connective and. As before let 121, ... , bk be a list of the internal surrogates that are

members of BASEBALL, and let x 1, ... , xk be distinct variables of type

EMPLOYEE that are bound respectively to 121, ... , Ilk· Then the assertion (4) has

the same truth value as the assertion
(5) x 1 :SOCCER and ... and xk:SOCCER.

If every one of the employees with internal surrogates h1, ... , hk plays soccer, then

assertion (5) is true, and if one does not, then it is false.

The assertion (4) does not have the same meaning as
(6) [For all x:SOCCER] x:BASEBALL.

The assertion (6) is true for the situation illustrated in (d) of figure 5.1, and false for
the other three.

In figure 4.4 pairs of assertions with the same truth values were listed. The
corresponding figure for quantified assertions is figure 5.2.

not [For some ...)(assert)
not [For all ...](assert)

FIGURE5.2
[For all ...] not (assert)
[For some ...] not (assert)

The following is an example of the use of a declaration with a universally quantified
assertion clause.

LEADSALL for {x:EMPLOYEE I [For all y:PROJECT] <x,y>:LEADER I}
An employee is a member of LEADSALL if the employee is leader of every
project.

The employees that have been assigned to every project are in the following set.
ALLPROJ for {x:EMPLOYEE I [For all y:PROJECT] <x,y>:EMPPROJ I}

The following declaration of the set of departments with an employee in common
with every project requires the use of both a universal and an existential quantifier:

D for{y:DEPARTMENT I [For all z:PROJECT] [For some x:EMPLOYEE]
<x,y>:EMPDEPT and <x,z>:EMPPROJ I}.

It should be clear from the meaning of the quantifiers that they must be used with
care if an assignment of a truth value to an assertion in which they appear is to be
realistically determined. For example, the use of quantifier prefixes such as [For
some x:INTEGER] or [For all x:INTEGER] with some scopes can result in an

5

Chapt 3 (5) DEFINE. Copyright: Paul C Gilmore, all rights reserved, August 10, 1987

assertion with a truth value that cannot practically be determined.

5.3. Quantifier Variable Declarations

The declaration for dsetnm is assumed to be
dsetnm for {trm:setnm I [guan gtnn:gsetnm](assert) I comment},

where r guan gtnn:gsetnm](assert) satisfies a type compatibility restriction about to
be described, that ensures that tnn:setnm and [Qllilll gtnn:gsetnm](assert) satisfy the
required free variable and type compatibility restrictions.

The immediate derme predecessors of dsetnm are those of assert and gtnn:gsetnm.

Let lvr be a list of all the variables that occur in both tnn and gtrm, and let lvm be a
list of distinct variables of the same length as lvr, each distinct from any variable
occurring in either trm or gtrm. Let [lYmllvr]trm be the term obtained from trm
by replacing each occurrence in trm of a variable from the list lvr with the
corresponding variable from the list lvm.

Consider now the elementary assertion
< [!Ym/lvr]tnn, gtrm >: setnm x gsetnm.

It is type assigning because there is no variable with a free occurrence in both
[lYm/lvrltrm and gtrm, and each of the elementary assertions [lYm/lvr]trm:setnm
and gtrm:gsetnm are type assigning. It may, therefore, be the declaration clause of a
defined set declaration, either as written or in the alternative form

(a) [lYm/lvr]tnn:setnm. gtnn:gsetnm.

The type compatibility restriction that [mum gtnn:gsetnm](assert) must satisfy is
the following:

The assertion assert must be type compatible with the declaration (a).
This restricts the quantifier prefixes fguan gtnn:gsetnm] that may have scope assert.
For example,

[For some x:PROJECT] <x,y>:EMPPROJ
is not a quantified assertion because x:PROJECT] and <x,y>:EMPPROJ are not type
compatible no matter what type is assigned to 'y'.

Let var be a variable occurring in assert. An occurrence of var in assert is a free
occurrence in f guan gtnn:gsetnm](assert) if var does not occur in gtnn; otherwise
it is an occurrence bound by the quantifier prefix fguan gtnn:gsetnm]. For example

[For some y:PROJECT] <x,y>:EMPPROJ
is a quantified assertion in which the single occurrence of 'x' is a free occurrence,
and in which the second occurrence of 'y' is bound by the quantifier prefix
[For some y:PROJECT]. It is this sense of 'free' that determines whether the

6

Chapt 3 (5) DEFINE. Copyright: Paul C Gilmore, all rights reserved, August 10, 1987

declaration and assertion clauses satisfy the free variable restriction requiring that
each variable with a free occurrence in fguan gtrm:gsetnm](assert) occurs in trm.

Each variable with a free occurrence in [guan gtrm:gsetnm](assert) may have a type
assigned to it because it is an occurrence in assert. That trm:setnm and
[quan gtrm:gsetnm](assert) are type compatible, however, follows from the fact
that (a) and assert are type compatible.

5.4. Assigning Truth V aloes to Quantified Assertions

Consider now the assertion clause
(b) fquan qtrm:gsetnml(assert).

of the declaration of dsetnm.

Let fvr be a list of all the variables with a free occurrence in (b), and let ftpsr be a
list of tuples of surrogates, each of the same type as that assigned to the
corresponding variable of fvr by the declaration clause trm:setnm. To say that fvr
is bound to .fnm: is to say that each variable in the list fvr is bound to the
corresponding tuple of surrogates in the list ftpsr.

Let bvr be a list of all the variables with a free occurrence in assert that are bound
by the quantifier prefix [guan gtnn:gsetnm] in (b). Necessarily each variable with a
free occurrence in assert is in one and only one of the lists fvr and bvr. Also each
variable in bvr occurs in gtnn, although variables may occur in gtnn that do not
occur in the list.

Let !Pfil1, ... , tpsrk, where k>O, be all the tuples of surrogates of the type of qsetnm

which are members of gsetnm. Each !llfil:i is the tuple of surrogates to which qtrm is

bound when each variable occurring in qtnn is bound to a tuple of surrogates of the
type assigned to the variable by qtnn:qsetnm. In particular therefore, each ~i

determines a list btpsri of tuples of surrogates, each of the same type as as that

assigned to the corresponding variable of bvr. To say that bvr is bound to btpsri is

to say that each variable in the list bvr is bound to the corresponding tuple of
surrogates in the list .btnfil:i.

The truth value assigned to (b) when fvr is bound to fn,sr is determined as follows:
1. Let ,mmn be For some.

The assertion (b) is assigned true if for at least one of the lists btpsri, the

assertion assert is true when bvr is bound to btpsri; otherwise it is assigned

false. In particular it is assigned false if k=O.

7

Chapt 3 (5) DEFINE. Copyright: Paul C Gilmore, all rights reserved, August 10, 1987

2. Let mum be For all.
The assertion (b) is assigned true if for all of the lists btpsri, the

assertion assert is true when bvr is bound to btpsri; otherwise it is assigned

false. In particular it is assigned true if k=O.

Consider, for example, the quantified assertion
[For some <x,y>:EMPPROJ] <x,z>:EMPDEPT.

The term Qtrm is <x,y>, setnm is EMPPROJ, and assert is <x,z>:EMPDEPT. The
list fvr has 'z' as its only member, and the list bvr has 'x' as its only member. The
variable 'y' occurring in Qtrm does not occur in assert.

Let .d be a current member of DEPARTMENT. The list ftpsr of tuples of
surrogates includes only .d so that the truth value of the assertion will be determined
when 'z' is bound to ,d.

Let <~1 ,121>, ... , <~k,12k> be all the current members of EMPPROJ. Then each

btpsri has ~i as the only tuple of surrogates in it.

The truth value assigned to the assertion when 'z' is bound to .d, is determined as
follows: The value is true if for some ~i the assertion <x,z>:EMPDEPT is true
when 'x' is bound to ~i· Otherwise it is false.

8

Chapt 3 (6,7) DEFINE. Coyright: Paul C Gihnore, all rights reserved, August 10, 1987

6. NESTED DECLARATIONS

A declaration can sometimes be made more comprehensible by including within it a
nested declaration that declares a set that is not needed outside the declaration. For
example, short aliases may be declared in a nested declaration to permit the
shortening of a longer name. Also the nesting of declarations permit a complicated
assertion of DEFINE to be understood in stages through an understanding of the
nested declarations. For example, the nested declaration

PFU for { y:PROJECT I [For some <x,y>:FU] <x,y>:EMPPROJ I}
where FU for {x:EMPLOYEE I <x,'FINANCE'>:NAME or

<x,'UNITEDFUND'>:NAME I} end
has included within it a declaration of FU enclosed between where and end. The
declaration of FU is only needed for the purpose of declaring PFU, and is intended
to make the meaning of its declaration clearer. It is not added as a member to the set
schema consisting of declared sets, only the set PFU is added. Therefore there is
greater freedom in the choice of name for FU; it could be any name that does not
conflict with names used in the declaration of PFU.

The declarations nested within a given declaration appear as a sequence of
declarations following it. A nested declaration may itself have nested declarations
within it. The following syntax is used for representing a declaration declr0 in

which is nested the declarations ~1, ... , declrk:

declr0 where declr1, declrk end
Assuming this declaration is made in the context of a set schema schema, it has the
effect of making the declarations in the reverse order. That is, the set declared in
the last declaration declrk, may only have members of schema as its immediate

predecessors, while the set declared in decll'.k-i may have the sets declared in declrk,

... , declrk-i+ 1, as well as the members of schema, as its immediate predecessors.

Thus the set declared in declr0 may have any of the sets declared in declrk, ... ,

declr1, as well as the members of schema, as its immediate predecessors.

Declarations can be nested to any depth; that is, each of the declarations declr 1, ... ,

declrk may itself be a nested declaration.

Further examples of nested declarations will appear in the next section.

7. PARAMETERIZED SET and TUPLE NAMES

The declaration of a set of arity greater than 1 can be thought of as implicitly
declaring many other sets. For example, assuming that 'y' is bound to an internal
surrogate of a member of PROJECT, the expression

1

Chapt 3 (6,7) DEFINE. Coyright: Paul C Gilmore, all rights reserved, August 10, 1987

{ x:EMPLOYEE I <x,y>:EMPPROJ}
can be thought of as declaring the set of employees assigned to the project to which
'y' is bound. Similarly, assuming 'x' is bound to the internal surrogate of a member
of EMPLOYEE, the set of projects to which the employee is assigned can be thought
of as being declared by the expression

{y:PROJECT I <x,y>:EMPPROJ}.

Proper declarations of defined sets cannot be formed from either of these
expressions since a variable occurring in what would be the assertion clause is not
declared in the domain+variable declaration clause: In the first 'y' is undeclared,
while in the second 'x' is undeclared. In each of these the undeclared variable acts as
a parameter. Whenever the variable with a free occurrence is declared bound to an
internal surrogate, the declaration can be though of as the declaration of a defined
set.

A parameterized set name is the means by which declarations of this kind are
admitted without being explicitly made. The first is expressed as

{ <:,y>:EMPPROJ}
and the second as

{ <x,:>:EMPPROJ}.
The appearance of':' in place of 'x' and 'y' respectively indicates that the
parameterized set name represents a set abstracted using a variable of the
domain+variable declaration in that location. A parameterized set name introduces
a functional notation into DEFINE; the tuples of surrogates to which the parameters
may be bound are the 'inputs' for the function, and the locations of':' specify the
elements of the tuple of surrogates that is its 'output'.

Parameterized set names may be created from set names of any number of
arguments. For example, consider again the arity 4 set EMPLOYEE declared in
section 5 .1 :

EMPLOYEE for { u:VEMP#, v:VNAME, w:VADDRESS, z:VSEX I
[For some x:EMPLOYEE] (<x,u>:EMP# and <x,v>:NAME

and <x,w>:ADDRESS and <x,z>:SEX)I the employee table } .
The parameterized set name

{ <u,:,:,:>:EMPLOYEE}
has the same meaning as would the expression

{v:VNAME, w:VADDRESS, z:VSEX I <u,v,w,z>:EMPLOYEE}
were it to declare a set when 'u' has been assigned to a member e# of VEMP#; that
is, it is the set of triples <nm,add,sex> of values of the attributes NAME,
ADDRESS, and SEX, for which <e#,nm> is a member of NAME, <e#,add> is a
member of ADDRESS, and <e#,sex> is a member of SEX. An 'input' to
{ <u,:,:,:>:EMPLOYEE} is any member~ of VEMP#, and its corresponding
'output' is <nm,add,sex>.

2

Chapt 3 (6,7) DEFINE. Coyright: Paul C Gilmore, all rights reserved, August IO, 1987

The seperation of the 'input' from the 'output' can be made more explicit by
declaring a binary version PFE# of the arity 4 set EMPLOYEE as follows:

PFE#for {u:VE#, <v,w,z>:VNAMExVADDRESSxVSEXI
<u,v,w,z>:EMPLOYEE I a partial function of employee#}.

It is called a partial function of EMPLOYEE# since its degrees on VE# can be
calculated to be <0,1>. It is a function that is only defined for those members of
VE# that have been assigned as employee numbers by EMP# to members of
EMPLOYEE; that is to members of the projection of EMP# on VEMP#. But for
each such employee number there is a unique triple that is a member of
VNA:MEx V ADDRESSx VSEX.

Because functions arise naturally from binary sets, a simplified notation for
parameterized set names obtained from binary sets is introduced. The alternative
infix form for an elementary association <tnnl ,tnn2>:setnm that was briefly
mentioned in section 9 of chapter 2, is employed. The alternative form

trml :setnm:trm2
is suitable only for binary sets setnm. For example, 'x:EMPPROJ:y' expresses that
the internal surrogate to which 'x' is bound is EMPPROJ-associated with the
internal surrogate to which 'y' is bound. This alternative form provides a simpler
notation for parameterized set names. The first two such names introduced above
can be written respectively

{:EMPPROJ:y} and {x:EMPPROJ:}.
By using the defined set PFE#, the simpler parameterized set name { u:PFE#:} can
be used in place of { <u,:,:,:>:EMPLOYEE}.

In 7 .1 and 7 .2 the uses of parameterized set names in quantified assertions and in
representing system defined functions are informally described. A variant of
parameterized set names, called a parameterized tuple name, that is needed for
declaring certain kinds of queries is described in section 7.3. Since parameterized
set names are to provide a functional notation, the nesting of them as functions is
permitted. This use of the notation is explained in section 7.4. Finally in section
7 .5, a formal treatment of parameterized set and tuple names is provided.

7.1. Parameterized Set Names in Quantifier Prefixes

An example of a declaration using a parameterized set name is the following:
ALLMALE for {y:PROJECT I [For all x:{EMPPROJ:y}] x:MALE I

projects staffed only with males }
In this declaration, the variable 'y' used as a parameter in the parameterized set
name {EMPPROJ:y} is declared in the declaration clause of the set declaration,
rather than being declared in the quantifier prefix in which it appears. The
members of ALLMALE are those projects with only male employees assigned to

3

Chapt 3 (6,7) DEFINE. Coyright: Paul C Gilmore, all rights reserved, August 10, 1987

them. Its membership may be any subset of PROJECT, depending upon how male
employees are assigned to projects. In constrast the set

A for {y:PROJECT I [For all <x,y>:EMPPROJ] x:MALE I}
can have only two subsets of PROJECT as its membership; it will have every project
as a member if only male employees are assigned to all projects, or will have no
project as a member otherwise.

7.2. System Declared Functions

The primitive value sets INTEGER, STRING, and REAL have system defined
associations declared with them. For example,
= for { x:INTEGER, y:INTEGER I system defined I identity of integers},
and
> for { x:INTEGER, y:INTEGER I system defined I ordering on integers}
are associations that one expects to find available. Another is
L for {x:STRING, y:INTEGER I sytem defined I the length of a string}.
L is functional, that is, an integer is determined for any string in STRING that is the
length of the length of the string. Therefore the parameterized set name { x:L:} can
be usefully employed in declarations of defined sets. For example, the following
declaration appeared in section 4 of chapter 2:

VNA:ME for {x:STRING I {x:L:} < 20 I a value set for names}.
This use of { x:L:} is typical of a functional notation.

A number of other associations are need for many queries. For example, the
associations COUNT, SUM, AVG, MAX, and MIN are called built-in functions in
the language SQL for the relational model. These are different from any
associations considered so far in as much as they are associations with first argument
a set. For example, COUNT would be declared

COUNT for {x:DSET, y:INTEGER I system defined!# of members in the set}.
Here DSET is the set of all currently declared sets, and COUNT associates with a
member of DSET the number of its members.

With COUNT available the following set can be declared :
PROJSIZE for {x:PROJECT, y:INTEGER I {:EMPPROJ:x}:COUNT:y I}.

When 'x' is bound to a member of PROJECT, {:EMPPROJ:x} is the set of
employees that are assigned to the project. Therefore, PROJSIZE associates with a
project the number of employees assigned to the project.

The association PR OJ COUNT associates with a department, the number of projects
to which employees assigned to the department have been assigned. It is declared

PROJCOUNT for {x:DEPARTMENT, y:INTEGER l{x:DP:}:COUNT:y I}
where DP for {y:DEPARTMENT, z:PROJECTI

[For some x:EMPLOYEE](x:EMPDEPT:y and x:EMPPROJ:z I} end

4

Chapt 3 (6,7) DEFINE. Coyright: Paul C Gilmore, all rights reserved, August 10, 1987

7.3. Ordered Sets and Parameterized Tuple Names
The functions SUM and A VG must often take an ordered set, rather than just a set as
their argument. Assume for example that a SALARY attribute has been declared
for EMPLOYEE . To sum the salaries of all employees, SUM does not take the set

SE for {z:REAL I [For some x:EMPLOYEE] x:SALARY:Z I }
of salaries of employees as its 'input'. Because of the likelyhood of two employees
having the same salary the sole member of

TOTALSALARY for {z:REAL I SE:SALARY:z I}
is not the desired sum. The declaration of SE as a set must be replaced by a
declaration of it as an ordered set.

Recall from section 1.3 of chapter 2 that an ordered set is a set with an order
specified for its members, and because it is ordered, it may have more elements than
it has members. Ordered sets have been employed in the form of tuples in which the
elements of the set are explicitly listed.

Rather than declaring SE as a set, it must be declared as an ordered set as follows:
SE for< z:REAL I [For some x:EMPLOYEE] x:SALARY:Z I>.

This declaration differs from the previous only in having '<' and '>' replace ' {' and
'} '. It declares SE to be a tuple of real numbers. There will be the same number of
elements in SE as there are employees since SALARY is functional. With the new
declaration of SE, the sole member of TOT ALSALARY is the desired sum.

A more complicated example is the following. Assume that an association
PROJCOST is to be declared that associates the sum of the salaries of employees
assigned to a project with the project. The following declaration of PR OJ COST not
only employs the declaration of an ordered set, but also a parameterized tuple name.

PROJCOST for {x:PROJECT, z:REAL I <x:PS:>:SUM:z I} where
PS for <x:PROJECT, z:REALI

[For some y:EMPLOYEE] (x:EMPPROJ:y and x:SALARY:z)I> end
PS must be declared as an ordered set to avoid losing pairs corresponding to
employees with duplicate salaries. Similarly, the parameterized tuple name <x:PS:>
must be used instead of the parameterized set name { x:PS:}.

A simpler declaration of PROJCOST is provided in the next section.

7.4. Nested Parameterized Names

The declaration of PS nested in the declaration of PROJCOST makes use of an
existential quantifier in a frequently occurring manner. By allowing parameterized
names to be nested in the manner of functions, the declaration of PROJCOST can be
simplified to the following:

5

Chapt 3 (6,7) DEFINE. Coyright: Paul C Gilmore, all rights reserved, August 10, 1987

PR OJ COST for { x:PROJECT, z:REAL I
<{:EMPPROJ:x}:SALARY:>:SUM:z I}

SALARY has domain EMPLOYEExREAL. The argument { :EMPPROJ:} used in
< { :EMPPROJ :x} :SALARY:> is not of type EMPLOYEE, but rather of subsets of
EMPLOYEE. This deliberate mismatching of types can be recognized as such and
can be translated by the sytem. The term< { :EMPPROJ :x} :SALARY:> that offends
the type structure can be replaced by <x:PS:>, and PS given a nested declaration as
in the first declaration of PR OJ COST.

This method of introducing a functional notation was described in [Gil77] for Horn
clause defmitions of sets, but it can be usefully employed in the more general
context of DEFINE. Examples of its use will appear in later sections of this chapter,
and in other chapters.

7.5. The Form and Meaning of Parameterized Set Names

To be supplied.

6

Chapt 3(8-10) DEFINE. Copyright: Paul C Gilmore, all rights reserved, August 10, 1987

8.QUERIES

A query is a command to list the members of a set. The system interprets that to
mean that a list of the identifiers of the set is desired. A suitable format for the
command is

list setnm.
where setnm is the name of a declared set, or if a temporary declaration of the set is
all that is needed, the command can take the form

list declaration.
The name of the set declared in declaration may be omitted if it is not needed
elsewhere, and nested declarations may be used.

9. CONSISTENCY OF TRUTH VALUE ASSIGNMENTS

In sections 3 through 5 has been described how an assertion of DEFINE, that is type
compatible with a variable+domain declaration, is assigned a truth value when each
variable occurring free in it is bound to a tuple of surrogates of the type assigned to
the variable by the declaration. Such an assignment of truth values is said to be
complete if every assertion receives a truth value under a variable+domain
declaration with which it is type compatible,and under any binding of tuples of
surrogates of the types of its free variables to its free variables. Such an assignment
is said to be consistent if at most one of the truth values true and false is assigned to
an assertion.

In this section it will be proved that the assignment is both complete and consistent;
that is that one and only one of the truth values true and false is assigned to an
assertion. The proof that this is the case rests on two assumptions:

Al. Elementary assertions take the form trm:setnm where setnm is the name of
a declared set, or the name of the cartesian product of declared sets.

A2. The sets referenced by a set must be declared previously to the set.

The assumption Al will be relaxed in a later chapter. There an elementary assertion
can take the form trml:trm2, where trml and trm2 are terms, with the expectation
that trm2 will be bound to the name of a declared set. But throughout this chapter
the assumption has held.

The fact that the reference graph of a database schema is acyclic is a consequence of
assumption A2. This assumption does not allow in the assertion clause a commonly
used form of recursive definition, where the definition of a set is allowed to
reference the set. This is the form of recursive definition used in the language
PROLOG. This form of definition can be regarded, as it is in PROLOG, as a
specification of a method of computation. In a later chapter it will be seen that
recursively defined sets can be declared in an extended language DEFINE even
though A2 is maintained, by expressing the intensions of the such sets in a manner

1

Chapt 3(8-10) DEFINE. Copyright: Paul C Gilmore, all rights reserved, August 10, 1987

not suggestive of a particular method of computation.

The completion of this section will be supplied later.

10. EXTENDING DEFINE

Three ways in which the language DEFINE can be extended are:

1. Allowing trml :trm2 as an elementary assertion, where trml and trm2 are terms.
With this relaxation of assumption Al of section 9, truth values may not always be
assigned to assertions, and the assignment is not complete.

2. Allowing recusively defined sets to be declared.

3. Allowing primitive defined sets to be declared other than the primitive value
sets. For example, allowing a primitive set to be declared that is the union of
DEPARTl\ffiNT and PROJECT.

To accommodate declared sets that are possible under any one of combination of
these extensions requires a reworking of the way in which truth values have been
assigned to assertions. A discussion of these extensions will be left to a later chapter.

2

Chapt 4(1-7) ANALYSIS. Copyright Paul C Gilmore, all rights reserved, August 10, 1987

CHAPTER 4. INFORMATION NEEDS ANALYSIS

This chapter covers some of the finer points of information needs analysis, the
naming of sets in section 1, the choice of base sets in section 2, the choice of value
sets in section 3, and the role of null values in section 4. The remainder of the
chapter relates don1ain diagrams to other commonly used diagramming techniques ,
to entity-relationship diagrams in section 5, data Structure or Bachman diagrams in
section 6, and IS_A hierarchy diagrams in section 7.

1. NAMING SETS

Like so many entities, sets are referred to by their names. But to allow them to be
referred to only by their nan1es requires that their names be unique. Although such
a restriction on naming sets could be maintained, it has clearly not been maintained
for the declared sets of figure 7 .1 of chapter 2. The restriction has not been
maintained since it requires inventing large numbers of awkward and artificial
nrunes for sets that otherwise can be given simple and intuitive ones. Consider, for
example, the several uses that have been made of the set name 'NAME'. The
multiple uses of 'NAME' do not generally lead to ambiguities because the name is
usually used in a context that identifies the intended attribute. For example,
although the assertion

x:NAME:nm
gives no hint as to whether 'x' is to be bound to a member of EMPLOYEE,
DEPARTMENT, or PROJECT, such an assertion is rarely used without a
declaration of 'x'. While it might be used in a quantified assertion such as

[For some x:NAME:nm] true,
which provides no hint of the type of 'x', such an assertion is unlikely to be needed.
More likely is in an assertion such as

[For some x:EMPLOYEE] x:NAME:nm
where the type of 'x' is declared, and 'NAME' is no longer ambiguous.

Nevertheless, if names of sets are not to be unique it is necessary to describe some
restrictions on how they are to be named, since the confusion that would arise from
using a single name for all sets could not be tolerated. And once restrictions are
stated, it is necessary to provide some mechanism for resolving ambiguities of
names on the occasions that they arise. With a well chosen restrictions, however,
those occasions should be rare.

Restrictions on the naming of sets.
1. Distinct primitive sets must be given distinct names.
2. Sets of the same type must be given distinct names.
3. Let T be a type that is not that of a value set. Let A and B be two members of

the extended schema schema* of type T, and let C and D be any members.

1

Chapt 4(1-7) ANALYSIS. Copyright Paul C Gilmore, all rights reserved. August 10, 1987

Sets with domains AxC or BxD must be given distinct names, as must sets
with domains CxA or DxB.

The first restirction has been followed with the naming of sets in figure 7. I of
chapter 2, since EMPLOYEE, DEPARTMENT, and PROJECT have names that are
distinct from each other and from any of the primitive value sets.

The sets MALE, FEMALE, SOCCER, and BASEBALL all have EMPLOYEE as
their type. Therefore the second restriction has been clearly followed as well, but it
is too liberal for sets of arity greater than 1. The third restriction tightens the
second for binary sets. One purpose of the restriction is to avoid ambiguities that
might otherwise arise from the naming of attributes. For example, restriction 2
would not prohibit giving several of the attributes of EMPLOYEE the same name,
greatly increasing the possibilities for ambiguities. However, it does allow
attributes on different sets, but with the same value set, to have the same name, such
as the three attributes all with the same name 'NAME'.

The definition of type ensures that once a set has been declared with a name not
violating the rule for naming sets, then its name will never violate the rule as long as
subsequent declarations obey the rule as well. This stability is of great importance
for the integrity of a data base for an organization. The stability arises from the fact
that the domain graph for a database schema is acyclic.

The rules have been designed to allow the name of a set to unambiguously identify
the set in commonly occuring, but not all, contexts. Some mechanism for resolving
ambiguities must therefore be provided.

Enough infonnation is known about any declared set to unambiguously identify it,
for no two sets of the same type can have the same name. A declared set can,
therefore, be identified by its name and type. But since the domain of a set identifies
its type, it may be sufficient to supply the domain of a set in order to resolve
ambiguities. Through a prompting mechanism, the system can be expected to
request the resolution of ambiguities from its users.

2. GUIDING PRINCIPLES for CHOOSING BASE SETS

The process of constructing a set schema for an enterprise is a difficult exercise
requiring an ability to abstract from a large amount of inf onnation of varying
quality, the essential entities of the enterprise. The process makes use of more art
than science. It will never be possible to remove the art entirely from the process,
but it is possible to provide guiding principles that reduce the art.

The only entities about which information can be recorded for a database are the

2

Chapt 4(1-7) ANALYSIS. Copyright Paul C Gilmore, all rights reserved, August 10, 1987

members of primitive sets and tuples or nested tuples of such members. Since the
primitive value sets are assumed to have been declared and be available before an
information needs analysis is begun, their choice is out of the hands of an analyst.
But the choice of the primitive base sets is not, and the success of a SET model for an
enterprise is critically dependent upon that choice.

The primitive base sets for the set schema of the XYZ corporation are
EMPLOYEE, DEPARTMENT, and PROJECT. The members of these sets are
entities that are not machine readable and writeable strings, but can be distinguished
by a human being from other members of the same or different primitive base sets.
Thus the most elementary entities encountered in SET modelling are recognized
only as members of primitive sets, and each is a member of exactly one such set.

The members of the primitive defined sets INTEGER and STRING identify
themselves; for example each member of STRING is a sequence of characters that
can be read and written by machine. The members of the primitive base sets, on the
other hand, are identified respectively by EMP#, NAME for DEPARTMENT, and
NAME for PROJECT, all attributes with values from subsets of INTEGER and
STRING. Although a single attribute will generally suffice as an identifier, as with
these two examples, for some a pair or even a triple of attributes may be needed.
Identifiers need never be provided for nonprimitive sets, however, since those that
are not identifiers, such as EMPDEPT, inherit their identifiers from their
immediate predecessors, while those that are do not need an identifier.

The first guiding principle to be applied in ET modelling is:
I. Primitive base sets should be chosen to be the largest sets that contain

only entities of interest to the organization, and that can be easily identified
and distinguished.

For example, although in the set schema for the XYZ corporation no set of
customers is presently declared, in some extension of the model it 1nay be declared
It may then be desirable to declare a set PERSON, and declare El\.1PLOYEE and
CUSTOMER to have PERSON as their common domain. Such generalization may
not be known in advance, so that EMPLOYEE, for example, may initially be
declared as primitive base. But the redeclaration of EMPLOYEE with domain
PERSON after the latter set has been declared as primitive base may be the
reasonable thing to do. But it would not be reasonable to declare EMPLOYEE and
DEPARTMENT to have a common domain since they are unlikely to have
attributes in common, and it would be difficult to declare a natural common
identifier for them. It may be reasonable to declare a common domain for
DEPARTMENT and PROJECT, if they have enough common attribues and if they
do not in fact differ that much in character.

The second guiding principle for SET modelling is:

3

Chapt 4(1-7) ANALYSIS. Copyright Paul C Gilmore, all rights reserved, August 10, 1987

II. Don't declared a set as base if it can be defined in terms of previously
declared sets.

As noted before, it would be a serious mistake to declare MALE as a base set. For
the membership of a base set must be maintained by humans, while that of defined
sets can be maintained by the system. If MALE were declared as base along with the
base set SEX, the membership of both these sets would have to be maintained by
humans, and furthermore they would have to be maintained so as to ensure that
MALE had the membership determined by the given declaration.

The third guiding principle for SET modelling involves defined sets as well. It
often occurs that the membership of a base set is restricted in some fashion. For
example, the set SOCCER is a base set with domain the defined set. It would be
possible to declare SOCCER directly as a base set with domain EMPLOYEE as its
domain, and rely on human understanding of the restriction on soccer players to
ensure that only male employees w~re made members of SOCCER. But again it is
better to rely upon the system's capacity to maintain defined sets as stated in the
third principle:

III. Whenever possible declare a defined set as the domain of a base set to
enforce restrictions on the membership of the base set.

At first hand the fourth guiding principle may appear curious:
IV. Sets that can be declared with arity greater than 1 should not be declared as

primitive sets of arity 1.
For example, it would be possible to declare EMPPROJ (EP), presently declared as
illustrated in the domain diagram of figure 2.1 (a), as a primitive base set PEP along
with two additional base sets EPEP and PPEP, as illustrated in figure 2.1 (b).

FIGURE 2

E EP P E p

~ (b)

EPEP PPEP
PEP

Toe sets EPEP and PPEP are typical fansets of a network implementation of a
database, they are the "roles" of E and Pin the association PEP as described by
Bachman in [Bach77].

The principle states that EP should be declared, not PEP, EPEP, and PPEP. If for
some reason the role sets EBEP and PBEP are needed, for example, in a network
implementation of the database, they can be declared as defined sets. The principle
applies equally well to sets of arity greater than two.

4

Chapt 4(1-7) ANALYSIS. Copyright Paul C Gilmore, all rights reserved, August 10, 1987

Although in this case the application of the principle leads to a "natural" declaration,
in other cases the principle may lead to what may appear to be an "unnatural"
declaration. For example, courses at universities are frequently identified by the
department in which they are taught and a number. If VCOURSE# is declared as a
value set the course numbers, and DEPARTMENT is the set of departments, then
the principle states that COURSE should be declared as a base set with domain
DEPARTMENTxVCOURSE#, rather than as a primitive base set. Were it to be
declared as a base set, then it would be necessary to declare an association with
domain COURSExDEPARTMENT, and an attribute with domain
COURSEx VCOURSE#. It would then be more difficult to declare appropriate
degrees for these two associations.

The principle clearly applies to sets of arity greater than two. Consider, for
example, figure 2.3.

FIGURE 3

A
(a) (b)

C

In figure 2.3(a) is illustrated a ternary association ABC with domain AxBxC, while
in 2.3(b) is illustrated how it might be declared using only sets of arity 1 and 2.
Again, however, the declarations illustrated in 2.3(b) are not recommended because
they require declaring as base sets the associations AABC, BABC, and CABC that in
2.3(a) can be declared as defined sets.

A fifth guiding principle asserts, however, that figure 2.3(a) may not be the correct
declaration for ABC either. Figure 2.4(a) repeats the illustration of the declaration
of the ternary association ABC of figure 2.3(a), while 2.4(b) illustrates how it could
be declared as a binary association (AB)C, once the binary association AB is first
declared.

5

Chapt 4(1-7) ANALYSIS. Copyright Paul C Gilmore, all rights reserved, August 10, 1987

FIGURE4
A ABC B

(a) (b)
A AB B

(AB)C

C
The association AB consists of those pairs <a,b> for which <a,b,c> is a member of
ABC for some c, while (AB)C consists of those pairs <<a,b>,c> for which <a,b,c>
is in ABC. The lower degree of (AB)C on AB is necessarily 1. Whether 2.4(a) or
2.4(b) is the correct declaration depends first upon the upper degree of (AB)C on
AB. When that upper degree is 1, then 2.4(b) is clearly the correct declaration,
while if it is *, then 2.4(b) is more rarely the natural declaration. The fifth and final
guiding principle presented here is therefore:

V. A base set ABC of arity 3, should be declared as a base set (AB)C of arity 2
whenever its upper degree on AB is 1.

Again the principle can be generalized to sets of greater arity.

3. The CHOICE of VALUE SETS

The discussion of value sets in chapter 2 will be enlarged here. In particular a
discussion of the date value sets in the EXCEL spreadsheet program will be used to
illustrate the discussion. Also the question of "code or not to code" raised by Brian
Mullen in his Centre course will be discussed.

4. NULL VALUES

A null value is a member of a value set of an attribute that is used to convey the fact
that a "normal" value for the attribute is not available. There are two reasons why a
normal value may not be available, and there are two kinds of null values used to
express the two reasons, the NIA or not applicable null value, and the D/K or don't
know null value.

The N/ A null value is used to express that a given attribute does not, and should not,
have a value for a particular entity. The purpose of introducing a N/A null value
into the value set of an attribute is to extend the set for which the attribute has
values. Consider the following example. Let VSOC be declared

VSOC for {x:STRING I x='YES' or x='NO' or x='N/A'}
and let SOC be the defined set:

SOC for {x:EMPLOYEE, v:VSOC I (x:MALE and x:SOCCER and x='YES') or
(x:MALE and not x:SOCCER and x='NO') or

6

Chapt 4(1-7) ANALYSIS. Copyright Paul C Gilmore, all rights reserved, August 10, 1987

(x:FEMALE and x='NIA')}

Without the availability of the NIA value in the value set VSOC, the attribute SOC
could only be given proper meaning for male employees. Of course, without N/ A
available in VSOC, SOC could be given the value NO for female employees, but the
attribute so defined would be misleading. It would suggest that the fact that no
female employee is a member of the soccer team is an accident of time rather than a
result of policy. With the NI A value available, there is less likely to be an incorrect
assignment of a female employee to the soccer team.

The D/K null value is used to express that a given attribute should have a value for a
particular entity, but that the value is not known at the present time to those
responsible for maintaining the base of information. A D/K null value, therefore,
does not express information about an entity, but rather information about a lack of
knowledge on the part of those responsible for having knowledge. For example, the
attribute SOC would be recorded as having the value D/K for a particular male
employee, if it was not known whether the employee played on the soccer team.

The treatment of D/K null values is fundamentally different from the treatment of
NI A null values, and requires a careful examination of what is meant by an entity.

Base sets of entities are sets whose membership can only be understood by humans.
To determine whether an entity is a member of a base set, it is necessary for the
people responsible for maintaining the base of infonnation to possess information
about the entity. To know whether a male employee is a member of SOCCER it is
necessary to know whether the employee plays on the soccer team. Further, once an
entity is known to be a member of a set, it may be necessary to know other
information as well. For example, when a person is known to be a member of
EMPLOYEE, it is necessary to know the person's employee number, name,
address, sex, and department, since the attributes and the association EMPDEPT all
have lower degree 1 on EMPLOYEE.

The fact that so much information is needed about a person that is a member of
EMPLOYEE, means that there will be many occasions when all the information is
not available. ff a means is not provided within the information system foI dealing
with these occasions, then it is probable that informal files of information will be
created for dealing with them, and as a consequence, the information system will be
incomplete.

5. ENTITY-RELATIONSIIlP DIAGRAMS

Entity-relationship diagrams were introduced by Chen in [Chen76] as a way of
recording information obtained during an information needs analysis of an

7

Chapt 4(1-7) ANALYSIS. Copyright Paul C Gilmore, all rights reserved, August 10, 1987

enterprise. The domain diagrams introduced in chapter 2 to illustrate the sets
declared in a set schema for an enterprise are closely related.

Figures 5.1 and 5.2 illustrate corresponding entity-relationship and domain
diagrams. Figures 5.1 (a), (c), and (e) are commonly used entity-relationship
diagrams, and (b), (d), and (f) illustrate the domain diagrams. The difference here
is that the lines that appear in the entity-relationship diagrams are replaced with
arrows in the domain diagram.

FIGURE5.1

(a) (b)
S1 A S2

S A
(c) (d)

A1

(e) (f) S2

A2

In figure 5.2, less commonly used entity-relationship diagrams are illustrated with
their corresponding domain diagrams.

FIGURE 5.2

8

Chapt 4(1-7) ANALYSIS. Copyright Paul C Gilmore, all rights reserved, August 10, 1987

(a) (b) S1

S2

S1 S1 S2

(c) (d)

A2

Figure 8.3 illustrates how domains that are supersets are represented in set
assocation diagrams and in domain graphs. An example of the situation of figure
8.3 (a) is EMPLOYEE and MALE and an example of the situation of figure 8.3 (c)
is EMPPROJ and LEADER.

The situtation illustrated in figure 5 .2 (c) must be carefully distinguished from the
situation illustrated in figure 5.3 (a). The latter illustrates the representation for a
ternary association A with domain the cartesian product, in some order, of Sl, S2,
and S3. As can be seen in figures 5.2 (d) and 5.3 (b), the situations are distinguished
in a domain graph by the directions of the arrows.

FIGURE 5.3

S1 A S2

(a) (b)

A large number of variations and extensions to the entity-relationship diagrams
originally proposed by Chen have been proposed with the intent of representing all
the information that can be given in the declaration of a base set. Often the diagrams
are proposed with the understanding that they provide all the information needed.
But as has been noted before, they are not a substitute for the declaration of sets, but
only a means of illustrating the declarations.

6. DATA STRUCTURE or BACHMAN DIAGRAMS

9

Chapt 4(1-7) ANALYSIS. Copyright Paul C Gihnore, all rights reserved, August 10, 1987

Using a data structure diagram, often called a Bachman diagram after its inventor,
the relationship between the sets DEPARTMENT (D), EMPLOYEE (E), and
EMPDEPT (ED) can be represented in a single diagram as shown in figure 6.1.

FIGURE 6.1
D

E

The arrow is directed from D through ED to E because the association ED has
degrees <1,1> on E and <l,*> on E. That is, for each department there is a set of
employees that are assigned to it. Actually, as discussed in chapter 6, the box
labelled D represents the record type for DEPARTMENT, so that it contains a field
for recording the value of every functional attribute on D; for the case at hand the
name of the department is the only attribute that has been declared. Similarly, the
box labelled E represents the record type for EMPLOYEE, so that it contains a field
for recording the value of every functional attribute on E, but does not contain a
field for recording the name of the department to which an employee has been
assigned. The oval labelled ED represents the ED association between E and D. In
these diagrams it is regarded as having a direction from D to E, indicated by the
arrow.

A more complicated Bachman diagram is illustrated in figure 6.2, where as before
E abbreviates EMPLOYEE, and now P abbreviates PROJECT, and EP abbreviates
EMPPROJ. Note the oval boxes are now labelled with the projections of EP on E
andP.

FIGURE 6.2
E p

This diagram arises, in contrast to that of figure 6.1, because the lower degree of EP
on E and on P is each 0. The two diagrams can be combined into one as illustrated in
figure 6.3. In figure 6.4 a complicated diagram is illustrated in figure 6.4.

FIGURE 6.3

10

Chapt 4(1-7) ANALYSIS. Copyright Paul C Gilmore, all rights reserved, August 10, 1987

D

FIGURE 6.4

AP RAP

7. IS A IIlERARCHIES

IS_A hierarchies, sometimes called semantic nets, are widely used in artificial
intelligence work to represent relationships between sets of entities. Domain
diagram are a generalization of the hierarchies in the sense that domain diagrams
can illustrate the relationship between a set and its immediate domain predecessors,
even when it has more than one, while IS_A hierarchies only illustrate the
relationship between a set and its domain. However, IS_A hierarchies allow for
individual entities to label nodes, while the nodes in a domain diagram can only be
labelled with declared sets. A thorough di cussion of them is given in [Sowa84J.

11

BIBLIOGRAPHY for Book. August 10, 1987

BIBLIOGRAPHY

[Bach69] Bachman, C.W., Data structure diagrams. Data Base 1 (1969), 4-10.

[Bach77] Bachman, C.W., The role concept in data models. Proc. 3rd Int. Conf.
Very Large Databases (1977).

[BCP86] Benoit, Christophe, Caseau, Yves, and Pherivong, Chantal, The LORE
Approach to Object Oriented Programming Paradigms. Memo C29.0,
Laboratoires de Marcoussis, Centre de Recherches de la C.G.E. (1986).

[Bem76] Bernstein, P.A., Synthesizing third normal form relations from
functional dependencies. ACM Trans. Database Syst. 1 (1976),
271-298.

[Blac85] Black, Michael Julian, Naive Semantic Networks, Final Paper,
Directed Study in Computer Science, Univ. of B.C., (1985).

[Chen76] Chen, Peter Pin-Shan, The Entity-Relationship model - toward a
unified view of data, ACM Trans. Data Base Syst., 1 (1976), 9-36.

[Chen77] Chen, Peter Pin-Shan, The Entity-Relationship model - A basis for the
enterprise view of data, AFIPS Conf. Proc., 46 (1977).

[Chen85] Chen, Peter Pin-Shan, Database Design Based on Entity and
Relationship,in: Yao, S. Bing (ed.). Principles of Database Design,
Volume I, Logical Organizations (Prentice-Hall, 1985) 174-210.

[Clar78] Clark, K.L., Negation as Failure, in: H. Gallaire and J. Minker (eds.),
Logic and Data Bases (Plenum, New York, 1978).

[Codd70] Codd, E.F., A relational model of data for large shared data banks,
Comm. ACM 13 (1970), 377-387.

[Codd72] Codd, E.F., Relational completeness of data base sublanguages, in: R.
Rustin (ed.), Data Base Systems (Prentice-Hall, 1972)

[Codd79] Codd, E.F., Extending the Database Relational Model to Capture More
Meaning, ACM Trans. Database Syst., 4 (1979).

[Cox86] Cox, Brad J., Object-Oriented Programming (Addison-Wesley, 1986)

[Date83] Date, C. J., An Introduction to Database Systems, Volume II

1

BIBLIOGRAPHY for Book. August 10, 1987

(Addison-Wesley 1983)

[DJNY83] Davis, Carl G., Jajodia, Sushil, Ng, Peter Ann-Beng, and Yeh,
Raymond T., Entity-relationship approach to software engineering,
(North-Holland, 1983)

[DiDa86] Dittrich, Klaus, and Dayal, Umeshwar, (Eds.) Proc. Int. Workshop
Object-Oriented Database Systems, ACM and IEEE (1986) 23-26

[Flan86] Flannigan, Tim, The Consistency of Negation as Failure, J. Logic
Programming, 2 (1986), 93-114.

[FuNe86] Furtado, Antonia L.and Neuhold, Erich J., Formal Techniques for
Data Base Design (Springer-Verlag, 1986)

[Gil86] Gilmore, Paul C., Natural deduction based set theories: a new
resolution of the old paradoxes, J. Symb. Logic, 51 (1986), 393-411.

[Gil87a] Gilmore, Paul C.,The SET Conceptual Model and the Domain Graph
Method of Table Design, Tech. Report 87-7, Dept. of Comp. Sc., Un.
of B.C. (March 87)

[Gil87b] Gilmore, Paul C., Justifications and Applications of the SET
Conceptual Model, Tech. Report 87-9, Dept. of Comp. Sc., Un. of
B.C. (April 87)

[Gil87c] Gilmore, Paul C.,Attribution by Default, Tech. Report 87-26, Dept. of
Comp. Sc., Un. of B.C. (July 87)

[HaMc81] Hammer, Michael, and McLeod, Dennis, Database description with
SDM: a semantic database model, ACM Trans. Database Syst., 6
(1981), 351-386.

[Kell85] Keller, Arthur M, Updating Relational Databases Through Views,
Stanford Computer Science Department Tech. Report
STAN-CS-85-1040 (Feb 1985)

[Kent78] Kent, William, Data and Reality (North-Holland, 1978)

[Kent83] Kent, William, Fact-based data analysis and design,in: [DJNY83] 3-54.

[LeSa83] Lenzerini, Maurizio, and Santucci, G., Semantic integrity and
specifications,in: [DJNY83] 529-550.

2

BIBLIOGRAPHY for Book. August 10, 1987

[LyKe86] Lynback, Peter, and Kent, William, A Data Modelling Methodology
for the Design and Implementation of Information Systems, in:
[DiDa86] 6-17.

[Mark85] Mark, Leo. Self-describing database systems - formalization and
realization. Tech. Rep. #1484, Dept. Comp. Sci. Un. Maryland (1985)

[Morr] Morrison, Roderick,Implementation Considerations for a Set Based
Data Model and its Data Definition/Manipulation Language, PhD
thesis, Dept. of Comp. Sc., Un. B.C. In progress.

[MW80] Mylopoulos, J., and Wong, H., Some features of the TAXIS data model,
Proc. 6th Int. Conf. Very Large Databases, Montreal (1980)

[Rock81] Rock-Evans, Rosemary, Data analysis (IPC Electrical-Electronic Press
Ltd, Sutton, Surrey, England 1981)

[SAAF73] Senko, M.E., Altman, E.B., Astrahan, M.M., and Fender, P.L.,Data
structures and accessing in data-base systems, IBM Syst. J. 12 (1973),
30-93.

[Ship81] Shipman, David W.,The functional data model and the data language
DAPLEX, ACM Trans. Database Syst., 6 (1981), 140-173.

[Sowa84] Sowa, J.F., Conceptual Structures: Information Processing in Mind and
Machine (Addison-Wesley, 1984)

[TaFr76] Taylor, Robert W. and Frank, Randall L., CODASYL Data-Base
Management Systems, ACM Comp. Sur .. 8 (1976), 67-103.

[TYF86] Teorey, Toby J., Yang, Dongqing, and Fry, James P., A Logical
Design Methodology for Relational Databases Using the Extended
Entity-Relationship Model, ACM Comp. Sur., 18 (1986), 197-222.

[TrLo87] Tryon, D.C. and Lloyd, D.G., Information Resource Depository:
History, Current Issues, and Future Directions, Pacific Bell, A Pacific
Telesis Company. Presentation to Canadian Information Processing
Society, Vancouver, Canada, February 1987.

3

THE SET CONCEPTIJAL MODEL
and the

OOMAJN GRAPH METI-1OD
of

TABLE DESIGN

Paul C. Gilmore

Technical Report 87-7
March 1987

ABSTRACT: A purely set-based conceptual model SET is described along with a
specification/query language DEFINE. SET is intended for modelling all phases of
database design and data processing. The model for an enterprise is its set schema,
consisting of all the sets that are declared for it.

TI1e domain graph method of table design translates the set schema for an
enterprise into a table schema in which each table is a defined user view declared as
a set in DEFINE. But for one initial step, the method can be fully automated. The
method makes no use of normalization.

Two kinds of integrity constraints are supported in the SET model. Although
these constraints take a simple form in the set schema for an enterprise, they can
translate into referential integrity constraints for the table schema of a complexity
not previously considered.

The simplicity of the constraints supported in the SET model, together with the
simplicity of the domain graph table design method, suggests that a conceptual view
of an enterprise provided by the SET model is superior to the lower level data
presentation view provided by the relational model.

The research reported on in this paper has been supported by grants of the Natural
Sciences and Engineering Research Council of Canada

I.Introduction
1.1. Why Another Model?

To master the complexity of the information processed by a typical enterprise, it
is necessary to present abstract descriptions, called data models, or in their more
abstract form, conceptual models of the information [Knt78, BMS84]. The earliest
models, the hierarchical and network, are low level models in the sense that they are
abstract de criptions of implemented data structures that store the required data.
The relational model is a higher level model in that it provides abstract descriptions
of the data as it is presented to the users in the form of tables. The relational model
has freed users from most implementation concerns, but it forces users to be
concerned with the presentation of data at the earliest stages of database design when
a higher level conceptual view of information needs is more appropriate.
Consequences of this insufficiently abstract view of information are evident in the
unnecessarily complex normalization medb.ods of table schema design used to ensure
the absence of update anomalies, and also in the inability of the relational model to
deal with referential integrity in a uniformly simple fashion.

The entity-relationship (ER) model has found a way to avoid both the excessive
implementation concerns of the hierarchical and network models, and the
restrictive presentation concerns of the relational model.[Chen76,77] The strength
of the ER model is that it is neither implementation nor presentation oriented, but
rather conceptually oriented. The weakness of the ER model, on the other hand, is
that it lacks a sound foundation upon which a management system mjght be based.
The primary motivation for the development of the purely set-based data and
conceptual model SET and its specification/query language DEFINE has been to
provide such a foundation. There are several reasons why this is necessary:

1. For the unified view of data proposed in [Chen761 to be fully achieved,
a database is needed that i capable of recording a high level conceptual
model of an enterprise and at the same time of providing the tables for a
relational database schema as a defined user view in its
specification/query language.

Such a management system will avoid the hand translation process that
intervenes between the high level and the user table view of an enterprise [Chen77,
HaMc81 , Rock81, Knt83a, Chen85, TYF86]. As the enterprise's information needs
evolve, such a hand translation will inevitably result in either the conceptual model
or the tables being out of date, or very likely the conceptual model, with all its
valuable high level inf onnation, just being discarded. The SET model integrates the
two stages. In tl1e first stage, sets are declared and recorded in a set schema that is a
conceptual model for the enterprise; the tables needed for the second stage are just
user views of the enterprise defined within the specification/query langttage
DEFINE. As the enterprise's information needs evolve, the model is updated by the
declaration of new sets, or by the removal of sets from the set schema. TI1e users'

2

tables are then either automatically updated or if necessary redefined. As illustrated
in section 3, much of the design and definition of the tables can be automated.

In as much as the SET model is object-oriented in the sense of [Ditt86], it
contributes to the requirement for a high quality database design method called for
there.

Queries for a relational database supported by a managen1ent system based on
the SET model can be posed in DEFINE, or in a language for a relational database
schema. The latter would then be translated into DEFINE queries.

2. The modelling process used in ER modelling requires a greater
discipline than is now possible.

A tentative beginning is provided in section 2.13 to removing some of the a1t from
conceptual modelling, and in providing a basis for some of the decisions that must
be made while modelling. Several principles are stated that should be used in
designing conceptual models. These principles cannot be understood without a
rigorous foundation such as provided by the SET model.

3. A provably sound foundation is needed for databases that can reference
and describe themselves.

A conceptual model for an enterprise requires the capture of large amounts of
what is called meta-data that records information about the common data processed
in the enterprise's daily activities [Lyke86, DKM86]. As that information is
gathered, the meta-data expressing it must be recorded so that it can be queried and
updated like any other data. Traditionally data dictionaries have been used for this
purpose but they beg the question "where is the meta-data for a data dictionary to be
stored?". To avoid an infinite sequence of data dictionaries it is necessary to begin
with a database capable of recording information about itself. Although the need
for such self-describing databases has been recognized before [LyKe86, Mark85
TrLo87], a concern that they raise has gone unnoticed: If such a base is not to fall
prey to the paradoxes and contradictions of set theory that shook the fow1dations of
mathematics early in this century, then it must be provided with a provably sound
foundation. The necessity for this has been demonstrated again more recently; the
semantic networks described in [Sowa84] are subject to the same contradictions as
naive set theory [Blac85].

4. A fully unified model of an enterprise is needed that at the same time
can give a conceptual view of the enterprise, a user's view of data as it is
presented, a data administrator's view of data as it is stored, and a
programmer's v,iew of the processing of the data.

The construction of such a unified model of an enterprise is ambitious, but is

3

nevertheless necessary. For without such a unified model there will always remain
the need for moving from one model to another when dealing with different aspects
of information and its processing, with the probable consequence of the different
models becoming inconsistent with one another. The need for such a unified model,
raised in [Knt78] and repeated in [LyKe86], is argued forcefully in [TrLo87].

5. Sound foundations are needed for knowledge base systems capable of
dealing with incomplete information.

Such systems require distinctions that can only be made precise in a formally
described model. For example, it is necessary to distinguish between sets with
intensions that can only be understood by humans, and sets with intensions expressed
in a language like DEFINE that can be understood by both humans and machines. It
is also necessary to distinguish between an internal surrogate for an entity
maintained by a management sy tern and a character su·iog that is an identifier for
the entity, in order to deal adequately with identity [Knt78, Codd79 KhCo86].

1.2. Summary
The concept of a set or class is one of the most fundamental of mathematics and

has been incorporated into scientific and natural languages, as well as used
extensively in database theory and practice. It is explicitly used in the relational and
entity-relationship models, but also in the entity set [SAAF73], semantic [HaMc81],
and functional data models [Ship81, LyKe86], in the system TAXIS [MyWo80], in
the techniques described in [FuNe86], and implicitly used in the network data model
[TaFr76]. But the concept of set used is an intuitive one and is combined with other
related but independent concepts. The SET model, on the other hand, uses set and
ordered pair as its only fundamental concepts, with the mathematical foundation for
these concepts being provided by the provably consistent set theories of [Gil86a],
while other needed concepts are defined in terms of these.

The purpose of this paper is to provide an introduction to a simple form of the
SET model, and demonstrate that it supports a unified process of conceptual and
presentation modelling called for in (1). A secondary purpose is to demonstrate that
it also can contribute to (2). That it can contribute to the remaining three demands,
and that DEFINE can be used as a query language; is demonstrated in [Gil87].

In section 2, the elementary features of the SET n1odel and the language
DEFINE are introduced through an exercise in conceptual modelling for an
enterprise called Simple University, a university so simplified that it does not have
any students. The exercise is designed to illustrate how the integrity cons raints
supported by the model can be used to formalize semantic information about an
enterprise.

In section 3 a table design method is described and a table schema for Simple
Univer. ity obtained. Because the set model for Simple University and the
presentation model in the form of the table schema are both described in the same

4

language, and because the tables are defined user views, it is possible to prove that
the tables correctly record all required data; that is, they are provably free from
anomalies. This justification of the method is stated as a theorem in 3.6, the proof of
which is postponed to [Gil87]. The method, unlike [TYF86], makes no use of
normalization, although it is related to the synthetic method of [Benl7 6], and the
method of [Knt83a].

Using the Simple University example, the integrity constraints supported in the
SET model are compared in section 4 with those customarily supported in the
relational and network models. The conclusions of the paper are presented in
section 5.

Of the cited papers [LyKe86] comes closest to presenting a model with the same
intended scope as SET. There are several differences that can be noted between the
IRIS model briefly presented there and SET. One superficial distinction is that IRIS
is based on functions, while SET is based on sets. But the types of IRIS are sets, and
functions are admitted as types. A more profound difference is in the management
of declarations. The simple form of the model demands a discipline in the
declarations of sets that is absent from IRIS. This may be important to conceptual
modelling and to the design of databases.

A detailed description of the syntax and semantics of DEFINE is not given in the
paper, but is only introduced as it is needed. It is assumed that the reader is familiar
with the semantics for the boolean operators and, or, and not, and for the boolean
quantifiers [For some ...] and [For all ...]. However, the demands on prior
knowledge of mathematical logic are minimal throughout the paper.

1.3. Acknowledgements
Frege's invention of the predicate logic provided a new standard of precision for

mathematical theories that logicians have been exploiting for nearly a century. A
demand for a computer implementation of a theory can contribute not only to that
standard, but also to the usefulness of the theory. The hard-nosed views of Roderick
Morrison in particular, but also of Brian Mullen and of students both undergraduate
and graduate, including Michael Black, Julie Abrahamson, Georgis Tsikinis and
Michael Kreykenbohm, have contributed to the SET model.

2. Elementary Features of the SET Model
A distinctly computer science view of sets is taken in the SET model. No set can

be presumed to preexist; each required set must be explicitly declared. All the
declared sets of an enterprise form a set schema for the enterprise. A set has an
intension and an extension. The intension of a set is the property that an object must
possess to be a member of the set; the extension of a set is the collection of objects
satisfying the intension of the set. The intension of a set is to be thought of as time
invariant, while the extension of a set changes as circumstances change. The
intension of a set may be expressed in a natural language statement intended for
human understanding only (the base sets), or may be expressed in a language like

5

DEFINE that can be understood by both humans and machines (the defined sets).
The extension of a set is drawn from its domain as illustrated in figure 2.1.

FIGURE 2.1
DOMAIN

II . .
The domain of a set S is the extension of the cartesian product of one or more
previously declared sets. Each set DS occuring in the cartesian product is an
immediate domain predecessor of S of multiplicity the number of times DS occurs
in the product. To avoid an infinite regression of domains, it is necessary to assume
that some sets are declared without domains; these are the primitive sets.

2.1 Simple University

To illustrate these and other elementary features of the model their application to
the following example will be demonstrated: At Simple University (SU) there are
departments, each identified by its name. Each employee of SU is a member of
exactly one department, and is identified by a number. Each course taught at SU is
identified by a course number and the department responsible for it. An academic
department is one responsible for some courses. An instructor is a member of an
academic department who is competent to teach some of the courses of the
department to which he/she belongs; an instructor is currently teaching some of the
courses he/she is competent to teach. When taught, a course is taught by exactly one
instructor. Exactly one instructor of an academic department is manager of the
department. Exactly one member of a nonacademic department is manager of the
department. Although in a more realistic example employees, departments, and
courses, would have attributes declared for them, they will be largely ignored so as
to concentrate on more important features of conceptual modelling.

The set of departments of SU is a primitive base set. This set can be declared as
follows:

D for {D II the current departments of SU}
The name D of the set appears to the left of 'for'. The fact that D is a primitive set is
indicated by the second occurrence of D, where normally the domain of a declared
set is recorded. The two vertical bars separate the domain declaration from a
comment that expresses the intension of D. Since only humans can determine
whether an entity satisfies the intension of D, it is a base set. In declarations of
nonprimitive base sets and of defined sets, a machine interpretable expression
appears between the two vertical bars.

6

2.2 Internal Surrogates and Identifiers

The result of the declaration of a primitive base set for a management system is the
preparation of a file where internal surrogates of members of the set can be
recorded. When a user of the system indicates that a new member is to be added to
the set, the system generates a new distinct internal surrogate for the entity. Thus at
any time the internal surrogates recorded by the system as members of the set
should be in one-to-one correspondance with the entities that users perceive as
members of the set.

The internal surrogate of a department must be distinguished from an identifier of
the department. The former need not be known to users of the system, while the
latter, as stated in the description of SU, is its name. The names of departments are
particular strings of characters that can be written and read by both humans and
machines. Such strings are the means by which humans and machines communicate
with each other. For example, if 'ENGLISH' is the nan1e of one of the departments
of SU, then the management system will have been instructed to associate the string
with the internal surrogate of a member of the set D that was created when the
English Department was added to the set. By using the string 'ENGLISH' in an
appropriate way, a user can convey information to the management system about
the department represented by the internal surrogate, and subsequently ask for
information about the department.

2.3. The Kernel Schema and V aloe Sets
The strings that are names of departments are members of a set STR of all strings
that is supported by the management system. In programming language
terminology, it is a data type. Another such data type is INT, the set of integers.
Each of these is a primitive defined set. They are primitive sets since there is not a
previously declared set from which their extensions can be drawn, and they are
defined since the management system can determine whether an entity is or is not a
member of it.

The declaration of STR is:
STR for {x:STR Ix system defined I the set of strings of characters } .

The assertion 'x:STR' in the declaration expresses two things: First that the domain
of STR is STR, and second that the variable 'x' is declared to be a member of STR.
This is typical of the declaration of a defined set. The assertion 'x system defined'
expresses that the membership of STR is determined by the system; it is assumed to
be a primitive assertion of DEFINE that can be read and understood by both humans
and machines. Finally the phrase 'the set of strings of characters' is an informal
comment describing the membership of STR in human understandable terms only;
such a comment may be added to the declaration of any defined set, but must not be
confused with the intension of the set.

7

The declaration of INT is:
INT for{x:INT I x system defined I the set of integers } .

This declaration, along with that of STR, are among those declarations of sets
needed by the system managing set schemas; they form what is called the kernel
schema of the system. Users of the system cannot change the kernel schema in any
way, although the declarations must, of course, be available to users. Kernel
schemas are discussed at greater length in [Gil87].

It is possible, and at times useful, to regard the members of INT and STR as
entities with internal surrogates and surface identifiers, just like the members of
base sets, even though they are defined sets [Morr]. In this paper, however, the
simpler view of these sets as sets of strings will be maintained.

Nonprimitive sets must also be declared in the kernel schema:
< for {x:INT, y:INT I <x,y> system defined Ix is less than or equal toy}.

Since the domain of< is the cartesian product of previously declared sets, < is a
nonprimitive set; INT is an immediate domain predecessor of< of multiplicity 2.
The declaration of< makes it possible to express that an integer x is less than or
equal to an integer y by the usual infix notation 'x < y', although the standard form
of the infix notation in DEFINE is 'x:<:y', the colons being used to separate the two
arguments from the name of the set.

Another example of a nonprimitive set declared in the kernel schema is:
L for { x:STR, y:INT I <x,y> system defined I x is a string with length y } .

L is a nonprimitive defined set with extension those pairs <x,y> admitted by the
system. The declaration of L makes it possible to express that a string x has length
an integer y with the assertion 'x:L:y'. The same fact can be also expressed with the
assertion '<x,y>:L'. The two assertions 'x:L:y' and '<x,y>:L' have exactly the same
meaning, but the infix form will be seen to be more convenient at times.

L is usually thought of as a function; that is, it takes an argument x and returns a
value y. Expressed in the usual functional notation, y is L(x). The intension of L,
when elaborated, describes how the value L(x) is determined from the argument x.
But the extension of Lis nevertheless a set of pairs <x,y>, where xis a member of
STR and y is a member of INT. To avoid syntactic confusions, the usual functional
notation will not be used, but rather a notation that emphasizes the fact that functions
are just sets of pairs. For example, instead of 'L(x)', the notation ' { x:L:}' will be
used. The semantics of the notation is provided in the manner of the functional
notation of [Gil77].

Not all members of STR are admitted as names of departments, but only those of
length at most 10 characters. The subset of such strings is declared as follows:

VN for {x:STR I {x:L:} < 10 I a value set for names of departments } .
The assertion { x:L:} < 10 expresses that for x to be a member of VN, it must have
length not exceeding 10.

The comment in VN refers to it as a value set. These sets are defined recursively
as follows: Each of the primitive defined sets STR and INT is a value set, the
cartesian product of value sets is a value set, and any defined set with domain a value

8

set is a value set. The sets <, L, and VN are all value sets by this definition, but
unlike the first two sets, VN is not declared in the kernel schema, but is a user
declared set. Generally the particular form of such sets is one of the least important
considerations in the design of a set schema. Therefore good design practice
dictates that the statement of the intension of value sets within DEFINE be
postponed as long as possible. [Knt83a]

2.4. Degrees of Base Associations
With each member of D, a unique member of VN must be associated. The

required declaration is:
DN for {D, VN I <1,1>, <0,1> I a unique name from VN is associated with each

department } .
The domain of DN is the cartesian product of its immediate domain predecessors D
and VN listed in that order in the declaration. The intension of DN follows the
second of the two vertical bars in the form of a comment. Since the comment cannot
be interpreted by machine, DN is a base set: The names to be given to the
departments of SU are determined by humans. The machine interpretable
expression between the two vertical bars is a degree declaration. It consists of two
pairs of degrees, with the first pair relating to D and the second pair to VN, which is
in the order specified in the domain declaration.

The first element of a pair of degrees is the lower degree and may be 0 or 1,
while the second is the upper degree and may be 1 or *. The lower degree of the
first pair <1,1> of degrees states that for every member of D there is at least one
member of VN associated with it; that is, each department must have a name
associated with it. The upper degree of the first pair states that with a member of D
no more than one member of VN can be associated; that is, each department must
have at most one name associated with it. The constraints expressed by the first pair
<1,1> of degrees ensures, therefore, that each department has a single name
associated with it.

The lower degree 0 of the second pair <0,1> of degrees expresses that not every
member of VN need be associated with a member of D; that is, not every member of
VN is necessarily the name of a department. The upper degree 1 of the second pair
expresses that a member of VN can be associated with at most one member of D;
that is, the san1e name is never assigned to two departments. The constraints
expressed by the second pair <0,1> of degrees ensures, therefore, that if a member
of VN is used as a name, then it is used as the name of a single department. The
constraints expressed by the two pairs of degrees <1,1> and <0,1> ensures that each
department has a single nan1e that is unique to the department.

The need for degrees has been widely recognized. In [Knt83a, LyKe86] they are
called respectively the least and maximum participation, and in [LeSa83] the
minimum and maximum cardinalities. In [LyKe86] the upper degree* is denoted
by m. In [TYF86] the upper degrees are referred to as the cardinalities of the
connectivity of a relationship, while the lower degrees are described as optional or

9

mandatory connectivity. They have been called degrees in the SET model because
they can be regarded as lower and upper bounds on the degrees of nodes of bipartite
graphs representing the associations. For example, the bipartite graph representing
the DN association has one set of nodes representing the members of D and one set
of nodes representing the members of VN. The undirected edges of the bipartite
graph connect each member of D to the member of VN that is DN associated with it.
The degree of a node in a graph is the number of edges that connect to it.

Degrees can be declared for base sets that have any number of immediate
domain predecessors. For example, a base set P with domain Q can be declared to
have lower degree O or 1, 0 meaning that the extension of P is a proper subset of the
extension of Q, and 1 meaning that they are extensionally identical. Since there is no
need to declare P as a base set if it is to be extensionally identical to Q, only a lower
degree of O is needed. Also only an upper degree of 1 makes sense, since for each
member of P there is exactly one member of Q.

Degrees can also be declared for sets with more than two immediate domain
predecessors. For example, if A is declared with base PxQxR, then the lower
degree of A on P is the least number, for any p, of pairs <q,r> for which <p,q,r>
may be a member of A. The upper degree of A on P is similarly defined.

Degrees are declared only on base sets, and are integrity constraints expressing
restrictions or constraints on the membership of the sets. They should be regarded
as part of the intension of the sets; they are a machine readable part of an otherwise
machine unreadable intension. The degree constraints, together with the implicit
inclusion constraints expressed when the domain of a set is declared, are the only
integrity constraints that can be expressed in the SET model.

Degree constraints can provide the foundation for the dependency theories of
the relational model and are shown, in section 3, to be fundamental to the design of a
table schema that can record data without anomalies. In [Gil87] the satisfiability and
maintainance of degree constraints are discussed.

2.5. A Domain Graph
Graphical representations are an important way of providing a user with an

overview of declarations that have been made. The diagrams of the ER model and
the Bachman diagrams [Bach69] of the network model are examples of such
representations, as are illustrations of domain graphs for the SET model, an
example of which is given in figure 2.2. It must be stressed, however, that an
illustration of a domain graph is not a substitute for set declarations, but only
provides an overview of the domain declarations of the declared sets.

FIGURE 2.2

10

□
, ,,,,.

Primitive Base ' ~ Primitive Defined ~ ~
l ""....,..J

□ Nonprimitive Base □ Nonprimitive Defined

A domain graph of a set schema is a directed graph with nodes labelled with
declared sets of the schema, at most one node for each set, and with directed edges
<ndel, nde2> for which the tail ndel is labelled with an immediate domain
predecessor of the head nde2. fu figure 2.2 each of the sets D, STR, VN, and DN
labels a node, and the arrows point from the immediate domain predecessor STR of
VN to VN, and from the immediate domain predecessors D and VN of ON to DN.
The boxes representing the nodes of this simple domain graph are drawn with
different lines simply to emphasize the four kinds of sets that have been declared.

fu the domain graph illustrated in figure 2.2, at most a single edge appears
between any two nodes. That need not always be so. For example, in a domain
graph with nodes labelled with the system declared sets < and INT, there would be
two edges directed from the node labelled with INT to the node labelled with <,
since the immediate domain predecessor INT of< has multiplicity 2.

Since the immediate domain predecessors of a set must be declared previously to
the set, a domain graph of a set database schema is necessarily directed acyclic; that
is, it is not possible to follow a path from a node back to itself by traversing edges in
their specified direction. However, a domain graph may be undirected cyclic; that
is, it may be possible to follow a path of edges from a node back to itself if edges are
traversed in any direction. The domain graph with nodes labelled with< and INT,
for example, has an undirected cycle.

2.6. An Ontology of Sets
The declared sets in a set schema are either primitive or nonprimitive, and either

base or defined. There are therefore four possible classes of sets. These are
illustrated in the figure 2.3.

FIGURE 2.3

◄ BASE ► ◄ DEFINED ►

a
PRIMITIVE NONVALUE VALUE ~,

a

NONPRIMITiVE NONVALUE VALUE+
NONVALUE

H

11

D is primitive base and not a value set, STR and INT are primitive defined and are
value sets, DN is nonprimitive base and not a value set, and VN, <, and L are
nonprimitive defined and value sets. The diagram indicates that all primitive
defined sets are value sets; this is true of the sets declared so far since STR and INT
are the only primitive defined sets that are value sets. The diagram illustrates the
simplest form of the model that will be used throughout this paper. That form of
the model is adequate for declaring the set schemas of ordinary enterprises, but the
more general form of the model in which not all primitive defined sets are value sets
is needed to declare the kernel schema described in [Morr] and discussed in [Gil87].

The primitive defined sets that are value sets are provided by the system with
identifiers. For example, the members of INT can be regarded as strings that
identify themselves since they are strings that can be read and written by both
humans and machines. To refer to a member of INT, it is only necessary to state it
as a string. The members of STR are also such strings; to refer to a member of STR
it is only necessary to enclose it in quotes. A primitive base set, on the other hand,
must have an identifier declared for it that provides a one-to-one association
between its members and a subset of a value set. The set DN is an identifier for the
primitive base set D. Nonprimitive sets inherit identifiers from their immediate
domain predecessors. For example, if dep is the internal surrogate of the
department with name 'ENGLISH', then the pair <dep, ENGLISH> is a member of
DN and is identified by the pair <ENGLISH, 'ENGLISH'>, since the first element
of the pair identifies dep, and the second element the member of VN that is the name
of dep.

12

2. 7. Employees and Courses
The next set to be declared for the SU schema is
E for { E II the set of current employees } .

Employees are identified by employee numbers.
VE# for {x:INT I 1000 < x < 9999 I }
E# for{ E, VE# I <1,1>, <0,1> I each employee has a unique employee number}
Each employee is assigned to a single department. The association between

employees and departments is declared next:
ED for{E, DI <1,1>, <1,*> I associates each employee with a unique dept}

The second pair of degrees in this case indicates that a department must have at least
one member and that it can have any number of members.

A course is identified by a department responsible for it and a course number.
Course numbers are selected from a value set:

VC# for{x:INT 1100 < x < 6991 }.
A course can therefore be regarded as an association between departments and
course numbers:

C for{ D, VC# I <0*>, <0*> I a course is identified by a responsible dept and a
course#}.

The lower degrees in this case mean that not every department is responsible for
courses, and not every member of VC# is a course number. The upper degrees
mean that a department can be responsible for any number of courses and that a
course number may be the number for any number of courses.

An alternative to the given declaration of C would be to declare it as a primitive
base set and then to declare an association IDC that identifies members of C through
members ofDxVC#. From the IDC association there then could be defined the
associations between C and D and between C and VC#. The declaration chosen for
C avoids the need for additional declarations, although it does so at the price of some
artificiality.

If it is desired that course numbers carry additional meaning, such as the year in
which a student is expected to talce the course, then that meaning should be expressed
as part of the intension of the C association. Such a restraint can of course only be
enforced by those who assign numbers to courses.

2.8. Defined Sets and Define Predecessors
The next set to be declared requires some explanation. An academic department

is one responsible for courses; an instructor is a member of an academic department
who is competent to teach some of the courses of his/her department. Let ICC be the
association between an instructor and a course the instructor is competent to teach.
ICC is clearly a nonprimitive base set and a subset of ExC. However, ICC cannot be
just any subset of ExC, for an instructor is restricted to being competent to teach
courses only of his/her department. If EDC is the association between an employee
and all the courses for which the employee's department is responsible, then clearly
ICC has EDC as its domain. EDC can be declared as a nonprimitive defined set; it is
the first example of such a set that is not a value set:

13

EDC for{x:E, <y,z>:C I <x,y>:ED I associates the courses for which an
academic department is responsible with a member of the department}.

The declaration of a defined set such as EDC has two formal parts and one
optional informal part. The optional informal part is a comment on the intension of
the set. The first of the formal parts consists of the domain assertions, one or more
elementary assertions such as the assertions x:E and <y ,z>:C for EDC. These
assertions accomplish two purposes. First they declare the domain of the defined
set, so their order is significant; for EDC the domain is ExC. Second they declare
the range of the variables or tuples or nested tuples of variables that appear in them.
For EDC the range of the variable x is declared to be the set E, and the range of the
pair of variables <y ,z> is the set C. Although the latter declaration has the effect of
declaring y to be restricted to D and z restricted to VC#, it is of course not
equivalent to the domain assertions y:D and z:VC#. To ensure a proper declaration
of the domain to which it is to be bound, a variable can have at most a single
occurrence among the domain assertions of the declaration.

The second of the formal parts of the declaration of a defined set is an assertion
of DEFINE that expresses the set's intension. For EDC the intension is the assertion
<x,y>:ED. The domain assertions together with the intension of the declaration
determines the extension of the set. The pairs <x,<y ,z>> that are members of EDC
are those for which x is a member of E, <y ,z> is a member of C, and <x,y> is a
member of ED. They are therefore those pairs <x,<y,z>> for which the employee
x is assigned to the department y responsible for the course <y ,z>. The domain
graph illustrated in the figure 2.4 shows how EDC is related to E, D, and ED.

FIGURE 2.4

Notice that no degrees are declared for the defined set EDC. Since the membership
of EDC is determined by the system from its intension, the degrees of EDC on E
and C must follow from that intension, that is, they can be calculated. Although the
calculation of the degrees of defined sets is in general an unsolvable problem, they
can be quite simply determined for the defined sets usually declared for the set
schema of an enterprise. The degrees for EDC, along with the degrees of other
defined sets for the set schema of Simple University, are calculated in section 3.1.

The set ICC can now be properly declared:
ICC for {EDC I <0,*>, <l,*> I some employees of an academic department are

competent to teach some of the courses of the department } .
The meaning of the degrees of ICC will be described in 2.10, after some required

14

definitions are given here and in 2.9.
The defined set EDC, like the previously declared defined sets VN and VE#, is

of little direct interest. Its primary purpose is to provide a domain for ICC.
Consequently a management system is unlikely to keep a list of internal surrogrates
of members of EDC, but rather use the definition of EDC to check that proposed
members of ICC are members of EDC. EDC is therefore called a virtual defined
set as opposed to an actual defined set for which the management system is
instructed to maintain a list of internal surrogates that are members. In an
implementation of the SET model it is expected that a user could declare whether a
defined set should be virtual or actual.

The sets E and C are immediate domain predecessors of EDC. The set ED used
in the intension of EDC is an immediate defme predecessor of EDC. Every defined
set, apart from the system defined sets appearing in the kernel schema, has one or
more immediate define predecessors. An immediate predecessor of a set is either an
immediate domain predecessor or an immediate define predecessor. The immediate
domain predecessors are the only iinmediate predecessors of a nonprimitive base
set, while a nonprimitive defined set such as EDC has immediate predecessors that
are immediate domain predecessors and ones that are immediate define
predecessors. A predecessor graph for a set schema is obtained by adding edges to
the domain graph corresponding to the immediate define predecessors of defined
sets. Like a domain graph, a predecessor graph must be acyclic because sets must be
declared before they can be used in the intension of a declared set. It is sometimes
useful to display a predecessor graph in a diagram as has been done with domain
graphs, although that is not done in this paper.

A predecessor of a set is defined recursively: It is either an immediate predecessor
of the set or an immediate predecessor of a predecessor of the set. That one set is a
predecessor for a second means that the extension of the second set can be dependent
upon the extension of the first. For example, although ICC is a base set, it has a long
list of predecessors, namely EDC, E, C, ED, D, VC#, and INT, that can affect its
extension.

2.9. Arity Domains, Arity Predecessors, and Arity
The members of EDC are pairs <x,y>, with x a member of E and ya member of

C; it is a binary set because it has two immediate domain predecessors. The
members of ICC are also pairs although ICC has only the single immediate domain
predecessor EDC; but that single predecessor is binary, so ICC is binary also. EDC
is the arity don1ain of ICC, defined recursively as follows: The arity domain of a
primitive set, or of a set with two or more immediate domain predecessors, is the set
itself. The arity domain of a set with a single immediate domain predecessor is the
arity domain of that predecessor. Since EDC has two immediate domain
predecessors, it is its own arity domain. Since EDC is the only immediate domain
predecessor of ICC, the arity domain of EDC is the arity domain of ICC.

An arity predecessor of a nonprimitive set is any immediate domain predecessor
15

of the arity domain of the set. E and Care the two arity predecessors of ICC. The
multiplicity of an arity predecessor is the multiplicity of it for the arity domain.
Each of E and C have multiplicity I since tl1ey occur only once in the cartesian
product that is the domain of EDC. Toe arity of a set is 1 if its arity domain is
primitive, and is otherwise the sum of the multiplicities of i s arity predecessors.
The arity of ICC is the sum of the multiplicities of E and C, which is 2. An arity 2
set is said to be binary, and an arity 3 set ternary.

2.10. The Degrees of Base Sets that are not Arity Domains
Consider now the degrees declared for ICC. Since ICC is not its own arity

domain, these degrees are declared relative to the projection of EDC, its immediate
domain predecessor, on the immediate domain predecessors E and C of EDC. TI1is
is illustrated in figure 2.5.

FIGURE 2.5
EOC.E

E 111,,]lj~f H
.<0,*>
":"

The projections EDC.E and EDC.C are not declared, although they could be if
desired. For example, EDC.C could be declared

EDC.C for (y:C I [For some x:D] <x,y>:EDC I the projection of EDC on C } .
EDC.E is the set of employees of academic departments and is a proper subset of E,
while EDC.C is the set of courses for which department are responsible and has
therefore the same extension as C.

The graph illustrated in figure 2.5 is not a domain graph because tl1e sets EDC.E
and EDC.C have not been declared. It is called an augmented domain graph.

The degrees <0, *> of ICC on EDC.E mean that not all employees of academic
departments are competent to teach courses, and that an employee of such a
department may be competent to teach any number of courses. The degrees <1,*>
on EDC.C mean that for every course there is an employee of an academic
department competent to teach it. and tl1at there may be any number of such
employees.

Toe next set to be declared is ICT:
ICT for {ICC I <0, *>, <0,1> I associates an instructor with the courses he/she is

currently teaching }
ICT also has EDC as its arity domain, since its immediate domain predecessor ICC
has EDC as its arity domain. The degrees of ICT are therefore declared relative to
the projections ICC.E and ICC.C as shown in the augmented domain graph

16

illustrated in the next figure.

- -- -- -- -f r <0,1>

C .. ,(111 •■· .. ·1111
•}/::~

1[!:I!il
EDC.C ICC.C

ICC.E is the set of instructors since each member of the set is competent to teach at
least one course. ICC.C has again the same extension as C since for every course
there is an instructor competent to teach it.

2.11. Managers of Departments
There remains now to declare the sets needed to express the manages

associations between departments and employees. Because the manager of an
academic department must be an instructor of the department, and the manager of a
nonacademic department must be a member of the department, it is necessary to
again declare some defined sets before declaring some base sets with the defined sets
as domains:

IAD for {<x,y>:ED I [For some v:VC#] (<y,v>:C and <x,<y,v>>:ICC) I
associates an instructor with his/her academic dept }

MA for {IAD I <0,1>, <1,1> I an instructor of an academic dept manages it}
ENA for { <x,y>:ED I not [For some v:VC#] <y,v>:C I associates employees of

nonacademic depts with their depts }
MNA for{ENA I <0,1>, <1,1> I an employee of a nonacademic department

manages it}
M for { z:ED I z:MA or z:MNA I associates manager of a dept with the dept }
The augmented domain graph of the next figure illustrates the relationships

between these declared sets and the projections that are not declared.

FIGURE 2.7

17

The immediate predecessors of M are the sets ED, MA, and MNA, but among its
predecessors is the set ICC. This means that changes in the extension of the base set
ICC could result in changes to the extension of M.

2.12. A Set Schema for Simple University
A summary of the declarations of all the sets of the schema for Simple

University is provided in the next figure. As noted before, a more realistic
example would have attributes declared for some of the declared sets, but they are
unnecessary for the purposes of this paper.

NAME

STR
INT
<
L

D
VN
N
E
VE#
E#
ED
VC#
C
EDC
ICC
ICT
IAD

DOMAIN

x:STR
x:INT
x:INT, y:INT
x:STR, y:INT

D
v:STR
D,VN
E
u:INT
E, VE#
E,D
w:INT
D,VC#
x:E, <y ,z>:C
EDC
ICC
<x,y>:ED

FIGURE 2.8

INTENSION/ COMMENT

x system defined I the integers
x system defined I the strings of characters
x system defined I x is less than or equal to y
<x,y> system defined I y is the length of x

I a current department
{ x:LNG:} < 10 I a value set for names of departments
<1,1>, <0,1> I identifies a dept by a name
I current employees
1000 < u < 9999 I a value set for employee numbers
<1,1>, <0,1> I identifies an employee by a number
<1,1>, <1, *> I associates emp with a single dept
100 < w < 699 I a value set for course numbers
<0, *>, <0, *> I identifies course by dept and course #
<x,y>:ED I an employee's dept's courses
<0,*>, <l,*> I instructor competent to teach courses
<0, *>, <0,1> I instructor currently teaching courses
[For some v:VC#] (<y,v>:C and <x,<y,v>>:ICC) I

18

MA

ENA

MNA

M

IAD

<x,y>:ED

ENA

z:ED

associates an instructor with his/her academic dept
<0,1>, <1,1> I an instructor of an academic dept
manages it
not [For some v:VC#] <y,v>:C I
associates emp of nonacademic depts with their depts
<0,1>, <1,1> I an emp of a nonacademic department
manages it
z:MA or z:MNA I associates manager of a dept with
the dept

The first four declarations in this schema are part of the kernel schema. A domain
graph for the schema of SU is illustrated in the next figure.

FIGURE 2.9

2.13 Principles of Set Modelling

D Primitive Base

t' ... '1
~ ~ Primitive Defined
"~ ;'II,,,,

□ Nonprimtive Defined

D Nonprimitive Base

The existence of a precise model to support the earliest stage of conceptual
modelling permits the statement of principles that can be used to guide that
modelling. Principles of design that have been followed in the modelling of Simple
University are:

+ A primitive base set should have as members only those entities of
interest to the enterprise, but should be as large as possible consistent
with the provision of a simple identifier.

+ A set that can be declared to be defined should not be declared to be
base.

+ Machine maintainable constraints on the membership of a base set
should be expressed in the intension of a defined set that is the domain
of the base set.

The primitive base set E has been declared so as to include all employees of SU,
and D has been declared so as to include all departments. There are subsets of each
of these sets that are important to SU, for example the instructors which are a subset
of E, and the academic departments which are a subset of D. But these subsets
should not be declared as primitive base since the larger sets can be declared just as
easily. However, a primitive base set with extension employees and departments has

19

not been declared because a natural identifier for such a set would be difficult to
provide.

Although the set of academic departments has not had to be explicitly declared, it
could be declared as follows:

AD for { x:D I [For some y:VC#] <x,y>:C I the academic departments } .
It is clearly a defined set, not a base set, so that its extension can be maintained by the
system. To declare AD as a base set BAD would be a serious mistake. For the
extension of BAD would then have to be maintained by humans; in order to
maintain the integrity of the model of SU it would be necessary for them to ensure
that the extension of BAD was at all times the same as the extension of AD, an
unnecessary task that can be eliminated by declaring AD rather than BAD. In
[TYF86] a weak form of defined set is called a redundant relationship and the
principle is recognized that redundant relationships should be eliminated.

Instructors of SU are never declared to be competent in courses of departments
other than their own. The base set ICC could have been declared to have ExC as its
domain, and the constraint could be maintained by users of the system. But it is
better to have the system maintain the constraint to ensure that it is not violated. To
accomplish this EDC was declared as a defined set and ICC declared as a base set
with EDC as its domain.

Another principle that has been followed in the modelling of SU is the
following:

+ A set that can be declared to be nonprimitive should not be declared to
be primitive.

The set C has been declared as nonprimitive, although it could be declared as
primitive. Although some artificiality results from this declaration, it is
compensated for by the resulting simplification in the set schema. Nevertheless this
principle is one that should be followed with care. Carried to the extreme, the
principle could result in the set D being declared as a base set with domain VN, and
E being declared as a base set with domain VE#.

Another principle expressed in [Gil86b], but not relevant for the SU example,
concerns the declaration of sets of arity greater than two. No such base set should be
declared with upper degree 1 on any of its immediate predecessors, since such a
degree indicates that the set can be naturally defined in terms of sets of lesser arity.
[TYF86] also recognizes the need for such a principle.

3. The Domain Graph Method of Table Design
Tables are commonly used presentation data structures. Given a set schema, it is

often desirable to declare a table schema capable of correctly recording the
extensions of declared ets of the set schema. In this section a method for designing
such a table schema is described. The resulting table schema is a user view of the set
schema in the sense that each table in the schema is declared as a defined set and
becomes an additional declared set of the set schema. The method is best described
in terms of operations on the augmented domain graph of the set schema. For this
reason it is called the domain graph method of table design.

20

A summary of the steps in the method are:

1. Each edge of the augn1ented domain graph of the set schema is labelled
with the lower and upper degrees that have been declared or calculated
for it. The calculation of the degrees for defined sets requires human
intervention.

2. Subgraphs of the augmented domain graph are detemrined by selecting
edges that have been labelled with a lower degree 1, or with the degrees
<1,1>. Which subgraphs to select requires design decisions as to which
sets should have their extensions recorded, and what kinds of tables are
acceptable. However, the latter decision can be automated if one kind
of table is always acceptable. The resulting subgraphs are simplified by
eliminating all nodes labelled with undeclared sets , and by replacing
directed paths through such nodes with a single edge connecting nodes
labelled with declared sets.

3. Each undirected cycle of a subgraph determined in 2 is broken by
removing an edge of it with tail a bottom node of the cycle. The result
of this step is a forest of trees.

4. Each tree obtained in 3 is extended with new nodes and edges to form
its identifier extension. In the tree that is the identifer extension of a
given tree, every set labelling a node in the tree ha an identifier
labelling a node of the tree.

5. From the identifier extension of each tree obtained in 4, a declaration
of a table as a defined set is constructed.

Each set, that was selected in 2 to have its extension recorded, will label a node of
exactly one of the subtrees obtained in that step. Each subtree selected will result in
a single table of the table schema obtained in 5, so that the number of subtrees
selected is the number of tables that will appear in the table schema. That number is
t11e nunimum possible consistent with the decision made in 2 to keep only edges of
lower degree 1, or to keep only edges of degrees <1,1>, if the subgraphs selected in
2 are maximal.

The subsections 3.1 through 3.5 are devoted to these five steps. In 3.6 a
justification for the method is stated and proved. It is shown that the extension of
each set labelling a node of a subtree obtained in step 2 is correctly recorded
through its identifers in the table construcited for the subtree. Finally in 3.7
motivations for the design decision of step 2 are discussed.

3.1. Degrees for all the Edges of an Augmented Domain Graph
Consider the edges of an augmented domain graph. Each edge with head a node

labelled with a base set, has a tail that is a node la:belled with an immediate domain
predecessor of the set. Each such edge can therefore be assumed to have been
labelled with a pair of degrees since the degrees for a base set of arity one are
always assumed to be <0,1>, while those of base sets of a.Iity greater than one are

21

always declared. Edges of the augmented domain graph remaining to be labelled
are therefore of two kinds, those that are directed to nodes labelled with undeclared
but implicitly used sets, and those that are directed to nodes labelled with defined
sets.

Consider first those edges that are directed to nodes labelled with undeclared but
implicitly used sets. In figure 3.1 a typical case for such sets is illustrated.

FIGURE 3.1

The sets P and Q may have been declared as either base or defined, or they may
themselves be undeclared sets. In either case the sets PQ and SPQ will have been
declared as either base or defined, with PQ the domain of SPQ. For example, in
figure 2.6, P, Q, PQ, and SPQ could be respectively E, C, EDC, and ICC, or they
could be respectively EDC.E, EDC.C, ICC, and ICT. In figure 2.7, they could be
respectively E, D, ED and any one ofIAD, ENA, or M. The degrees of PQ on P
have been declared or calculated to be <lP,u.P>, and those on Q to be <lQ,uQ>.

Degrees for the edge from P to the undeclared set PQ .P, and the edge from Q to the
undeclared set PQ.Q, must be calculated. The upper degrees are both necessarily 1
since PQ.P is a subset of P, and PQ.Q a subset of Q. The lower degree for the edge
from P to PQ.Q is necessarily IP, the lower degree of PQ on P, and the lower degree
for the edge from Q to PQ.Q is necessarily IQ. In the diagram the calculated
degrees have been underlined.

Consider next those edges that are directed to nodes labelled with defined sets.
In figure 3.2 three typical cases are illustrated.

FIGURE 3.2

q;JQP
(i) [ii (ii)

In case (i) Q is defined with domain P, in case (ii) PQ is defined with domain PxQ,
and in case (iii) SPQ is defined with domain PQ. The illustration in case (iii) is a

22

repetition of figure 3.1. An example of case (i) appears in figure 2.2 where Pis
STR and Q is VN. An example of case (ii) appears in figure 2.4 where P, Q, and PQ
are respectively E, C, and EDC. Three examples of case (iii) appear in figure 2.7;
in each case P, Q, and PQ are respectively E, D , and ED, while SPQ is !AD, ENA,
orM.

It is not possible in general to calculate the degrees of a defined set, since given a
sufficiently rich language for stating the intensions of defined sets, it is possible to
have the extension of a defined set express solutions to unsolvable problems, such as
the halting problem for Turing machines. However, for the defined sets usually
declared for a set schema of an enterprise, the degrees can be calculated. Tilis is the
case for the degrees of all the defined sets in the set schema for Simple University.

VN, VE#, and VC# are the only defined sets of the set schema that fall under
case (i). The degrees for each of these on their domains are clearly <0, 1> since each
is a proper subset of its domain. Indeed, this will in general always be the case for
(i), since there is no need to declare Q if it always has the same extension as P.

EDC is the only example to fall under case (ii). To see how the degrees of EDC
are calculated consider figure 3.3 in which is illustrated the domain graph of figure
2.4 with degrees labelling its edges.

FIGURE 3.3

The calculated degrees for EDC are underlined, while those that have been declared
are not. Consider the undirected path from E to C via ED and D. There are two
edges on this path directed in the direction of the path, the edge from E to ED, and
the edge from D to C. The product of the lower degrees 1 and O respectively of
these two edges is 0. Therefore the lower degree of EDC on E is 0. The product of
the upper degrees 1 and * is *. Therefore the upper degree of EDC on C is *. Now
consider the path from C to E. Since each member of C is a pair with first element a
member of D, for every C there is a member of D. Further, the lower degree of the
edge from D to ED is 1. Therefore the lower degree of EDC on C is 1. Every
course has a single responsible department, but the upper degree of the edge from D
to ED is *. Therefore the upper degree of EDC on E is *.

Consider now the case (iii) for the defined sets IAD, ENA, and M; it is helpful to
refer to figure 2.7. Their degrees on the undeclared sets ED.E and ED.D can be
calculated. First note that ED.E has the same extension as E and that ED.D has the
same extension as D, since the degrees of ED are <1,1> on E and <l, *> on D.
Therefore the degrees ofIAD and ENA on ED.E are <0,1> and <0,*> on ED.D,
since not every employee is an instructor and not every department is academic.

23

The degrees of M are more difficult to calculate. First note that the union of
IAD and ENA is a subset of ED, and that Mis a subset of this union. Therefore the
degrees of Mon ED.E must be <0,1>. However, since the degrees of MA on IAD.D
and of MNA on ENA.Dare <1,1>, and a department is either academic or not, the
degrees of Mon ED.Dare <1,1> also.

It is only in the calculation of degrees for defined sets that any significant human
intervention is needed in the domain graph method of table design. The
development of an algorithm for calculating the degrees of most of the defined sets
declared in a typical set schema remains a research challenge.

24

3.2. <1,1>- and I-subgraphs of an Augmented Domain Graph
It is now assumed that each edge of an augmented domain graph is labelled with

a pair of degrees. A <1,1>-subgraph of an augmented domain graph is a connected
subgraph with edges just those that are labelled with the degrees <lJ>. A
1-subgraph is a connected subgraph with edges just those that are labelled with the
lower degree 1. A <1,1>- or I-subgraph is maximal if it cannot be enlarged by the
addition of nodes that are connected by edges labelled with <1,1>, respectively the
lower degree 1, It is elementary that the maximal 1-subgraphs of a domain graph
provide a unique partition of its nodes, as does also the maximal <1,1>-subgraphs.
Further, the nodes of each maximal I -subgraph are partitioned by the maximal
<1,l>~subgraphs. Only maximal 1- and <1.1>-subgraphs need be used in table
design, although norunaximal ones may be used.

In figure 3.4 (i) some of the <1,1>-subgraphs of the augmented domain graph for
the set schema for Simple University are illustrated.

FIGURE 3.4

(i) [;I ~ §]

::r~~;;. ,,,11 .. ~ fcl
_£ . ;~ L':J

ON

Exan1ples of I-subgraphs are obtained if the missing edge from D to ED, which is
labelled with the degrees <1,*>, is replaced, or the node labelled withEDC.C is
restored with its edges from C and to ICC.

The choice of whether tables hould be constructed from the I-subgraphs or the
<1,1>-subgraphs is the second human intervention needed in the domain graph
method of table design. Motivations for this choice will be discussed in section 3.7.
In the meantime, the method will be illustrated using <1,1>-subgraphs.

Not all <1,1>-subgraphs of the augmented domain graph are illustrated in figure
3.4 (i). The only subgraphs illu trated are those that contain a node labelled with a
set whose membership is to be recorded. The membership of value sets need not be
recorded, nor is it necessary to record the membership of defined sets such as EDC,
ENA, and IAD, since they were needed only as domains for ba e sets, o the
subgraphs containing nodes labelled with these sets have been dropped. Also the
nodes labelled MA and MN A have been dropped because the membership of these
sets can be obtained from M. They could, of course, be retained if it is desirable to
have all base sets represented as tables.

25

In figure 3.4 (ii) one of the subgraphs of (i) has been simplified by eliminating
the node labelled with the undeclared set ED.D, and replacing the directed path via
the node with a single edge, as called for in step (2) of the method. The result is a
graph that is no longer a subgraph of the augmented domain graph. Since each edge
of the directed path from the node labelled D to the node labelled M has lower
degrees <1,1>, the new edge introduced has those degrees also. It is these
simplified subgraphs that will be used to determine tables.

3.3. Breaking Undirected Cycles in Subgraphs
All of the subgraphs of figure 3.4 (ii) are undirected acyclic; that is, they are

tree . If one was not a tree, then it would be necessary to remove edges to make it
so, as illustrated in the next figure.

FIGURE 3.5

(i) (ii)

Although the cycles of (i) could be broken by dropping any two edges that leaves the
graph connected, the edges chosen to form (ii) have tails that are the bottom nodes
labelled P and Q; that is, they are nodes of the cycle that are not the head of an edge
of the cycle. To select other edges to break cycles results in a table with more
columns than are necessary. However, any pair of edges that break the cycles, and
that have tails the bottom nodes labelled P and Q, can be selected.

The trees obtained from step 2, and where necessary step 3, will be called
henceforth the selected trees.

3.4. The Identifier Extension of a Selected Tree
A member of a value set can always be recorded in a table since it can be read by

both humans and machines. A membei: of other sets can only be indirectly recorded
in a table by recording an identifier for it. For example, a table of members of E
consists of all the employee numbers that had been assigned to members of E.
Similarly, at.able of the names of departments in Dis used to record the members of
D. A table of the members of a nonprimitive set consists of the tuples of identifiers
of the tuples that are members of the set; for example, a table for ED consists of the
pairs <e#, dn> for which the employee with employee number e# has been ED
associated with the department with name dn.

To construct a table from a selected tree it is necessary to extend the tree in
order Lo ensure that every set that labels a node of the tree is provided with its
identifier. The resulting tree is called the identifier extension of the selected tree.
An algorithm for constructing the identifier extension for any selected tree will be

26

described.
Recall from 2.9 that an arity predecessor of a nonprimitive set is any immediate

domain predecessor of the arity domain of the set, and that the multiplicity of an
arity predecessor is the multiplicity of it for the arity domain. When edges are
dropped from the augmented domain graph to form a forest of trees, a
nonprimitive set labelling a node of the graph can become disconnected from one or
more of its arity predecessors. For example, in figure 3.4 (ii), each of the sets E#,
ED, DN, and C is its own arity domain and was disconnected from one or more of
its arity predecessors, which are in these cases immediate domain predecessors: E#
was disconnected from VE#, ED from D, DN from VN, and C from both D and
VC#. In addition each of the sets M, ICC, and JCT, with arity domains ED, EDC,
and EDC, respectively, was disconnected from one or more of its arity
predecessors: M was disconnected from E, and both ICC and JCT were disconnected
from both E and C.

In order to ensure that every member of every set labelling a node of a selected
tree can be given an identifier, it is necessary to first extend the tree to one in which
each node nd is arity predecessor complete; that is to say, nd satisfies the following
condition: Let S be a set of arity m labelling nd, and let S 1, ... , Sm be the arity

predecessors of S, with repititions appropriate for the multiplicities. Then there are
nodes nd 1, ... , ndm, labelled respectively with S 1, ... , Sm, and such that for each

ndi, <ndi, nd> is an edge of the tree.

By beginning with a selected tree, and repeatedly adding as needed new nodes
nd' and edges <nd', nd>, with nd' labelled with an arity predecessor of the set
labelling nd, an extension of the tree can be obtained that is arity predecessor
complete for each of its nodes.

Each bottom node nd of the resulting tree will be labelled with a primitive base
set, or a value set. Nothing more need be done for a value set since it is its own
identifier. For a primitive base set S, an identifier must be provided. Let S be a
primitive base set labelling nd, and let IS be its identifier with value set VIS. Nodes
nd' and nd" labelled with IS and VIS respectively are added to the tree together with
the edges <nd, nd'> and <nd", nd'>, if such nodes do not already exist.

The identifier extensions of three of the selected trees illustrated in figure 3.4
(ii) are illustrated in figure 3.6. The nodes that have been added to the selected trees
to form their identifier extensions are all represented by cross-hatched boxes.

(i)

:
(><XX> i;,QQQ() lQOQQ

: D 1""•111••· DN ••Ill· VN
"~JI: ·~ ~

FIGURE 3.6

fel 111,-r!J-•, ,1, w -r ~

(ii) ~

i,,~~•••••u~llill""~

27

(iii)

1V'v'N

VC#
""l""

$
~ QQOQC :,QQQC)

! D 1""•11••· DN •111!1 VN
hl x .-. rvvYY ,yyyy,

The identifier extension of the tree (ii) of figure 3 .5 is illustrated in figure 3. 7. It is
assumed that IP is an identifier for P with value set VP, and that IQ is an identifier
for Q with value set VQ.

FIGURE 3.7

3.5. The Table for a Selected Tree
The declaration of a defined set, and therefore of a table for a selected tree, has

the form of the declaration of EDC in section 2.8. The two formal parts needed for
the declaration are the intension of the set expressed as an assertion of DEFINE, and
the domain assertions that simultaneously declare the domain and the ranges of the
variables appearing in the assertions.

The intension of the defined set that is the table for a given selected tree is
obtained in two steps. A conjunction of elementary assertions, called a join
assertion of the tree, is determined from the identifier extension of the tree. To
form a join assertion, distinct variables must be assigned to each of the bottom nodes
of the identifier extension, and then these variables, or nested tuples of them, are
assigned to the other nodes in a manner described below. Each elementary
assertion of the join assertion is then of the form tup:S, where S is a nonprimitive set
labelling a node of the identifier extension that is not a bottom node, and tup has
been assigned to the node. The intension of the table for the given selected tree is
formed from a join assertion by prefixing it with an existential quantifier for each
variable assigned to a node that is labelled with a primitive base set.

The domain assertions all take the form var: VL, where VL is a value set
labelling a bottom node of the tree, and var is the variable assigned to the bottom
node. The order of the domain assertions determines the order of the columns
appearing in the table and is unrestricted. A convenient order is to have the
identifier(s) for a set labelling a node preceed attributes of the set and associations
with other sets. Since each such set labels a node of exactly one selected tree, the
order can be determined automatically.

The process of assigning variables and nested tuples of variables to the nodes of
the identifier extension of a selected tree is a simple one that can best be described by
examples. In figure 3.8, variables and tuples have been assigned to the nodes of the
trees of figure 3 .6.

FIGURE 3.8

28

x <x,u> u
~ l<X2<)Uf UUUU<

W""'III••! E#-=••111·"• VE#
r ~ nN>N

(ii) l ~ l <x,y>

T <y,v> v
~ ¢¢00< 0000<)

Y l u !""111 11• DN ·•1111 ···· VN
,;)MDt:lt ~ ~

~ y <y,v> V

L ~,1111-<~

w
;xxxx;

VC#
~

½
(iii) I ~ I <y,w>

; <y,V> V
~ IOO<><> 0000(

Y I D l"''""'I• ON ••llll•u• YN
MXX~) ~

Consider, for example, the tree (ii). The nodes labelled E, VE#, D, and VN, are the
bottom nodes of the tree. They have been assigned the distinct variables x, u, y, and
v. The node labelled E# is assigned <x,u> because the node labelled E has been
assigned x and the node labelled VE# has been assigned u, and the domain of E# is
Ex VE#. Similarly for the node labelled ON. The node labelled Mis assigned <x,y>
because the node labelled E is assigned x, the node labelled D is assigned y, and the
domain of the arity domain ED of M is ExD.

Variable assignments to the tree illustrated in figure 3.7 can be given in a similar
fashion. For example, let the variables ur and us be assigned to the two nodes
labelled VP, the variables vr and vs to the two nodes labelled VQ, the variables xr
and xs to the two nodes labelled P, and the variables yr and ys to the two nodes
labelled Q, all in order from top to bottom in the diagram. Assume that the domain
of Rand of S is PxQ, and that the domain of Tis RxS. Then the tuple assigned to the
node labelled Tis<< xr,yr>,< xs,ys>>.

The tables corresponding to the trees in figure 3.8 are:
TE for { u:VE#, v:VN I [For some x:E, y:D] (<x,u>:E# and <x,y>:ED and

<y,v>:DN) I } ,
TD for { v:VN, u:VE# I [For some x:E, y:D] (<x,u>:E# and <x,y>:M and

<y,v>:DN) I) , and
TC for { v:VN, w:VC# I [For some y:D] (<w,y>:C and <y,v>:D) I}.

In a more realistic example the tables would have additional columns for the values
of attributes of declared sets. However, the table TE would not have columns for the
attributes of D, since such attributes would never label nodes of the selected
subgraph containing tl1e original node labelled with E. Similarly the attributes of D
would appear only in TD, and the attributes of C in TC. The tables obtained from
the other two selected trees of figure 3.4 are declared:

TICC for { u:VE#, v:VN, w:VC# I [For some x:E, y:D] (<x,u>:E# and
<y,v>:DN and <x,<y,W>>:ICC) I}, and

TICT for { u:VE#, v:VN, w:VC# I [For some x:E, y:D] (<x,u>:E# and
<y,v>:DN and <x,<y,w>>:ICT) I }.

The table obtained for the tree of figure 3.7 under the variable assignment given
earlier is

TPQRST for { ur:VP, vr:VQ, us:VP, vs:VQ I [For some xr:P, yr:Q, xs:P, ys:Q]
(<xr,ur>:IP and <xs,us>:IP and <yr,vr>:IQ and <ys,vs>:IQ and <xr,yr>:R
and <xs,ys>:S and <<xr,yr>,<xs,ys>>:T) I } .

29

3.6. Justification for the Method
Consider any set schema Sch. Let S be a set declared in Sch of interest to users. S

1abels exactly one node of the domain graph of Sch, and therefore exactly one node
nde of the augmented domain graph. Let Tdg be the single tree obtained in step 3 of
3.1 of which nde is a node. Let Tr be the identifier extension of Tdg obtained in step
4, and let T(Tr) be the table obtained in step 5. If the domain graph method is
correct, then it should be possible for a user to determine the membership of S from
the table T(Tr).

Consider, for example, the table TE. E and ED are the only two sets of interest
to users of TE that label nodes of the selected tree of figure 3.4 (ii) for which the
tree (i) of 3.6 is the identifier extension. From knowledge of E# and DN, a user can
determine from TE the membership of two related sets EU and EDU declared as
follows:

EU for {x:E I [For some u:VE#,v:VN] (<u,v>:TE and <x,u>:E#) I}, and
EDU for { <x,y>:ExD I [For some u:VE#,v:VN] (<u,v>:TE and <x,u>:E# and

<y,v>:DN) I }.
As far as the user is concerned, the table TE is correct for E if EU has the same
extension as E, and EDU has the same extension as ED. Similarly TC is correct for
C if the set

CU for { <y,w>:DxVC# I [For some v:VN] (<v,w>:TC and <y,v>:DN) I }
has the same extension as C.

In [Gil87] a definition is given of the user form SU of S, of which EU, EDU, and
CU, are special cases, and the following theorem is proved:

Theorem: Asswne that all declared and defined degree constraints labelling
edge of an augmented domain graph are satisfied by the membership of the
declared sets. Let S be a declared set labelling a node of a 1-connected, not
necessarily maximal, subtree of the domain graph, and let SU be the user form
of S declared for the table obtained from the subtree. Then S and SU have the
same extension.

The statement and proof of a simple sufficient condition on the satisfiability of the
degree constaints, is also given there.

3.7.1-Connected or <1, 1>-Connected Selected Trees?
Since tables obtained from 1-connected or <1,1>-connected subgraphs are

equally correct, the decision as to which tables to use depends upon other
considerations, sometimes upon taste.

When the tables are declared as defined actual, and correspond to flat file data
structures that record them, duplication of data is a concern. Using 1-connected
subgraphs can result in tables with unnecessary duplication of data, and it is
therefore prudent to consider <1,1>-connected subgraphs. Because the
<1,1>-connected subgraphs partition the nodes of the 1-connected subgraphs, the
tables obtained from the <1,1>-subgraphs split the tables otained from the
I-connected subgraphs. Therefore using <1,1>-connected ubgraphs results in the

30

construction of more than the minimum number of tables, and therefore in the
unnecessary duplication of data. A simple calculation will determine which kind of
duplication is the least demanding of space.

When the tables are used purely as presentation data structures, the choice is
more fully a matter of taste. Taste need not be restricted to the unnecessary, and
often artificial first normal form. Tables that are not in that form can be easily
defined, and the additional formatting provided for data can make them more
comprehensible to users. The restriction to first normal form demanded in the
relational model results, after all, from a burdening of a presentation view of data
with implementation concerns. Other evidence of that burdening is the necessity to
declare keys for tables in addition to the identifiers declared for the primitive base
sets upon which the tables are based.

It is interesting to note that the synthetic method of table design described in
[Bern76], which also found a minimum number of tables, is dependent upon
functional dependencies for attributes that can be defined in terms of the pairs <1,1>
of degrees. The domain graph method is also related to the method described in
[Knt83a]. Its relationship to the method described in [TYF86] is less clear because
of the use of normalization in that method.

4. Integrity Constraints
Only two kinds of integrity constraints are expressible in the SET model, the

constraints implicit when one set is declared to be the domain of another, and the
degree constraints declared for base sets. As explained in 2.10, the two interact.
For example, the effect of the degree constraints of ICT are described in terms of its
arity domain EDC and its arity predecessors E and C. In 4.1 the effect of these
constraints on the tables declared in 3.5 is described, while in 4.2 the possibility of
using the fanset data structure of the network model to maintain the constraints is
discussed.

4.1. The Relational Model
The domain graph method of designing tables from a set schema for an

enterprise results in a relational schema for the enterprise. Since the tables are
defined sets, the membership of them is automatically maintained by a management
system supporting the set schema. From the definitions of the tables can be
determined constraints that will be automatically maintained by the management
system, but that will have to be declared for a relational database.

Consider, for example, the constraints that are determined by the definitions of
the tables TD, TE, TC, TICC, and TICT given in 3.5:

1. the VE# values of TD, TICC, and TICT, must appear in TE;
2. the VN values of TE, TC, TICC, and TICT, must appear in TD;
3. the VC# values of TICC and TICT must appear in TC;
4. the <VN, VE#> values of TD must appear reversed in TE;
5. the <VE#, VN> values of TICC must appear in TE;
6. the <VN, VC#> values of TICC must appear in TC;

31

7. for those VN values appearing in TICC, the <VN, VE#> values of TD must
appear in TICC; and

8. the <VE#, VN, VC#> values ofTICT must appear in TICC.
The constraints 1-4 can be seen to be determined from the identifier extensions for
the trees from which the definitions of the tables were obtained. The identifier
extensions from which TE, TD, and TC were obtained are illustrated in figure 3.8.
Note that the node labelled Din (i) was added while forming the identifier extension
(i) of a selected subtree of the domain graph. Similarly for the nodes labelled E in
(ii) and Din (iii). There is only one set E and one set Din the set schema for SU.
Consequently any value of VE# appearing in TD must be among the values of VE#
appearing in the table TE. Similarly any value of VN appearing in TE or TC must
be among the values ofVN appearing in the table TD. But also the <VN, VE#>
values of TD must appear reversed in TE, since every pair that is a member of
ED.D must be a member of ED. The constraints involving TICC and TICT are
obtained in a similar fashion.

The given constraints are all examples of what has been called referential
integrity constraints [Date83], although they are much more complicated than those
discussed in the literature. Nevertheless, were the tables TE, TD, TC, TICC, and
TICT, to be declared for a relational database, the management system for the
database would have to maintain these constraints.

The fact that the constraints do not have to be explicitly recognized in the set
schema for SU, but that they follow implicitly from the declarations of the tables as
defined sets, indicates one advantage a conceptually oriented model such as SET has
over a presentation oriented model such as the relational. Although the domain and
degree constraints of the SET model express simple real world constraints in a
simple fashion, the form that these constraints take in the defined tables is much less
transparent. In more complex databases, such as those supporting a kernel schema
or knowledge bases, the number of such inclusion constraints that have to be
maintained overwhelms any benefits that can be expected from the presentation
oriented relational database model.

4.2. Fansets and Referential Integrity
In [Date83] the use of the fanset data structure in the maintenance of referential

integrity constraints is discussed. With an appropriate pointer implementation, the
constraints 1-4 can be maintained using fansets, although the reversal in the fourth
adds a complication. The constraints 5 and 6 present much greater difficultes, while
7 is of a kind not customarily implemented using fansets. The difficulties presented
by 5 and 6 arise from the fact that the two pairs <VE#, VN> and <VN, VC#> have
VN in common; although a single pointer can maintain either one of these
constraints, a pair of pointers will not maintain the pair. It is therefore not clear
how the tables would be implemented in the Network Model. On the other hand, a
fanset implementation of a set schema may be feasible if defined sets can be
maintained virtually.

32

5. Conclusions
The presentation orientation of the relational model provided a more abstract

view of data than could be provided by the hierarchical or network models. The
model did not, however, completely free a user from implementation concerns. Its
emphasis on first normal form and the need for keys are consequences of its
treatment of tables as flat file storage structures, regardless of whether they are
actually to be so used. More importantly, the concentration of the relational model
on data, rather than on the reality the data is intended to describe, has resulted in
unnecessarily complicated table design methods and integrity constraints. Through
the use of the specification/query language DEFINE of the SET model, the design of
presentation data structures such as tables can be almost fully automated, declared as
defined sets; and proved to be correct. As a consequence integrity constraints for
presentation data structures need not be stated, but are maintained by any system
that maintains the domain and degree constraints of the SET model.

BIBLIOGRAPHY

[Bach69] BACHMAN, C.W. Data structure diagrams. Data Base l,2 (Summer
1969), 4-10.

[Bern76] BERNSTEIN, P.A. Synthesizing third normal form relations from
functional dependencies. ACM Trans. Database Syst., l, 4 (March
1976), 271-298.

[Blac85] BLACK, MICHAEL JULIAN. Naive Semantic Networks. Final Paper,
Directed Study in Computer Science. Dept of Comp. Sci., Univ. of B.C.
Jan 22, 1985.

[BMS84] BRODIE, MICHAEL L., MYLOPOULOS, JOHN, AND SCHMIDT,
JOACHIM W. On conceptual modelling, Springer-Verlag, 1984.

[Chen76] CHEN, PETER PIN-SHAN. The Entity-Relationship model - toward a
unified view of data. ACM Trans. Data Base Syst., l, 1 (March 1976),
9-36.

[Chen77] CHEN, PETER PIN-SHAN. The Entity-Relationship model -A basis
for the enterprise view of data. AFIPS Conference Proceedings, Vol.
46, 1977 NCC.

[Chen85] CHEN, PETER P.S. Database Design Based on Entity and
Relationship. [Yao85], 174-210.

[Codd79] CODD, E.F. Extending the Database Relational Model to Capture More
Meaning. ACM Trans. Database Syst., 4, 4 (Dec 1979)

[Date83] DATE, C.J. An Introduction to Database Systems, Vol.II.
Addison-Wesley, 1983.

[DJNY83] DA VIS, CARL G., JAJODIA, SUSHIL, NG, PETER ANN-BENG,
AND YEH, RAYMOND T. Entity-relationship approach to software
engineering, North-Holland, 1983.

33

[DKM86] DE TROYER, 0., KEUSTERMANS, J., AND MEERSMAN, R. How
Helpful is an Object-Oriented Database Model?. [DiDa86]. 124-132.

[Ditt86] DITIRICH, KLAUS R. Object-oriented Database Systems: The Notion
and the Issues. (extended abstract) 1986 International Workshop on
Object-Oriented Database Systems. 2-4.

[DiDa86] DITIRICH, KLAUS, AND DAY AL, UMESHW AR. (Eds) Proc.
International Workshop on Object-Oriented Database Systems. ACM
and IBEE. Sept 23-26, 1986.

[FuNe86] FURTADO, ANTONIO L. AND NEUHOLD, ERICH J. Formal
Techniques for Data Base Design. Springer-Verlag. 1986.

[Gil77] GILMORE, PAUL C. Defining and computing many-valued functions.
Parallel Computers - Parallel Mathematics. FEILMEIBR, M. (ed.),
North-Holland (1977), 18-23.

[Gil86a] GILMORE, PAUL C. Natural deduction based set theories: a new
resolution of the old paradoxes. J. Symb. Logic, 51, 2 (June 1986),
393-411.

[Gi186b] GILMORE, PAUL C. Class notes for CPSC 404. Dept of Computer
Science, Un. of B.C. August 11, 1986.

[Gil87] GILMORE, PAUL C. Justifications and Applications of the SET
Conceptual Model.Dept of Computer Science Tech. Report 87-9, Un.
of B.C. April 1987.

[HaMc81] HAMMER, MICHAEL, AND McLEOD, DENNIS. Database
description with SDM: a semantic database model. ACM Trans.
Database Syst., 6, 3 (Sept 1981), 351-386.

[Knt78] KENT, WILLIAM. Data and Reality, North-Holland, 1978.
[Knt81] KENT, WILLIAM. Consequences of Assuming a Universal Relation.

ACM Trans. Database Syst., 6, 4 (Dec 1981), 539-556.
[Knt83a] KENT, WILLIAM. Fact-based data analysis and design, [DJNY83],

3-54.
[Knt83b] KENT, WILLIAM. The Universal Relation Revisited. ACM Trans.

Database Syst., 8, 4 (Dec 1983), 644-648.
[KhCo86] KHOSHAFIAN, SETRAG N. AND COPELAND, GEORGE P. Object

Identity. [Meyr86]. 406-416.
[LeSa83] LENZERINI, MAURIZIO, AND SANTUCCI, G. Semantic integrity

and specifications, [DJNY83], 529-550.
[LuK186] LUK, W.S. AND KLOSTER, STEVE. ELFS: English Language for

SQL. ACM Trans. Database Syst., 11, 4 (Dec 1986), 447-472.
[LyKe86] LYNGBACK, PETER, AND KENT, WILLIAM. A Data Modelling

Methodology for the Design and Implementation of Information
Systems. [DiDa86]. 6-17.

[Morr] MORRISON, RODERICK. Implementating a Set Based Data Model
and its Data Definition/Manipulation Language. PhD thesis,
Department of Computer Science, Un. British Columbia. In progress.

[MyWo80] MYLOUPOLOS, J., AND WONG, H. Some features of the TAXIS
34

data model. Proc. 6th Int. Conj. Very Large Databases, Montreal
(1980).

[Rock81] ROCK-EVANS, ROSEMARY. Data analysis. IPC
Electrical-Electronic Press Ltd, Sutton, Surrey, England (1981).

[SAAF73] SENKO, M.E., ALTMAN, E.B., ASTRAHAN, M.M., AND
FENDER, P.L. Data structures and accessing in data-base systems.
IBM Syst. J. 12, 1 (1973), 30-93.

[Ship81] SHIPMAN, DAVID W. The functional data model and the data
language DAPLEX. ACM Trans. Database Syst., 6, 1 (March 1981),
140-173.

[Sowa84] SOWA, J.F. Conceptual Structures: Information Processing in Mind
and Machine. Addison-Wesley, 1984.

[TYF86] TEOREY, TOBY J., YANG, DONGQING, AND FRY, JAMES P. A
Logical Design Methodology for Relational Databases Using the
Extended Entity-Relationship Model. ACM Computing Surveys, 18, 2
(June 1986). 197-222.

[TaFr76] TAYLOR, ROBERT W.; AND FRANK, RANDALL L. CODASYL
Data-Base Management Systems. ACM Comp. Surveys. 8,1 (March
1976), 67-103.

[TrLo87] TRYON, D.C.; AND LOYD, D.G. Information Resource Depository:
History, Current Issues, and Future Directions. Pacific Bell, A Pacific
Telesis Company. Presentation to Canadian Information Processing
Society, Vancouver, Canada, February 1987.

[Yao85] YAO, S. BING (editor). Principles of Database Design, Volume I,
Logical Organizations. Prentice-Hall, 1985.

35

1. Introduction

JUSTIFICATION
for

DOMAIN GRAPH METHOD OFT ABLE DESIGN
A Supplement to Tech Report 87-7

Paul C Gilmore

In the paper [Gil87b] it was argued that the conceptual orientation of the entity-relationship
(ER) model [Chen76,77] permits it to avoid both the excessive implementation concerns of the
hierarchical and network models, and the restrictive presentation concerns of the relational model.
The weakness of the ER model, on the other hand, is its lack of a sound foundation upon which a
management system might be based. The primary motivation for the development of the purely
set-based data and conceptual model SET and its specification/query language DEFINE described
in [Gil87b] was to provide such a foundation. Five reasons were offered as to why this is
necessary:

1. For the unified view of data proposed in [Chen76] to be fully achieved, a database
is needed that is capable of recording a high level conceptual model of an enterprise
and at the same time of providing the tables for a relational database schema as a
defined user view in its specification/query language.

2. The ER modelling process requires a greater discipline than is now possible.
3. A provably sound foundation is needed for databases that can reference and describe

themselves.
4. A fully unified model of an enterprise is needed that at the same time can give a

conceptual view of the enterprise, a user's view of data as it is presented, a data
administrator's view of data as it is stored, and a programmer's view of the
processing of the data.

5. Sound foundations are needed for knowledge base systems capable of dealing with
incomplete information.

The domain graph method of table design described in [Gil87b] translates the set schema
obtained from the modelling of an enterprise using SET, into a table schema in which each table is a
defined user view declared as a set in DEFINE. But for one initial step. the method is fully
automated A theorem stated in the paper assens that the method will always result in correct
tables; that is, tables that are free from any anomalies. But no proof was provided for the theorem.
The first purpose of this paper is to remedy that deficiency, so that (1) can be offered as an
advantage of the SET model. That proof is provided in section 2.

A tentative beginning was made in [GiJ87b] in providing a basis for some of the decisions that
must be made while modelling, so that (2) can be offered as an advantage of the SET model as
well. An ther purp se of this paper is to demonstrate that DEFINE can be used as a query
language for the SET model, and that the model al o satisfies the demand (3)-(5). While doing
this, applications and extensions of the SET model will be described in section 3. The final
purpose of this paper, accomplished in section 4, is to sketch the basis for the consistency of the
model and its integrity constraints.

Familiarity with the paper [Gil87] is presumed.

2. Correctness of the Domain Graph Method of Table De ign
The domain graph method of table design described in [Gi187b] translates the set schema

obtained from the modelling of an enterprise using SET, into a table chema in which each table is a
defined user view declared as a set in DEFINE. The method was described in terms of operations
on the augmented domain graph of the set schema The steps of the method are:

1. Each edge of the augmented domain graph of the set schema is labelled with the
lower and upper degrees that have been declared or calculated for it.

I

2. I -connected subgraphs of the augmented domain graph are determined by selecting
only edges that have been labelled with the lower degree 1. The resulting subgraphs
are simplified by eliminating all nodes labelled with undeclared sets, and by
replacing directed paths through such nodes with a single edge connecting nodes
labelled with declared sets.

3. Each undirected cycle of a subgraph detennined in 2 is broken by removing an edge
with tail a bottom node of rhe cycle. The result of this step is a forest of trees.

4. Each tree obtained in 3 is extended with new nodes and edges to form its identifier
extension.

5. From the identifier extension of each tree obtained in 4, a declaration of a table as a
defined set is constructed.

The construction in (4) of the identifier extension of a tree needed in (3) was described in 3.4
of [Gil87] . The following lemma ex-presses a fundamental property of identifier extensions:

Lemma 1: Let Tdg be any tree obtained in step 3, and let Tr be its identifier extension obtained
in step 4. Let ndo, nd1, ••• , n~, be an undirected path of Tr for which ndo is a node of Tdg.

Let the edge from ndi, to ndi+l' have lower degree 0. Then the edge has head ndi and tail

ndi+l·
Proof of lemma 1: An edge of lower degree O is not an edge of Tdg, but has been added in making
a node arity predecessor complete or in adding a pair of nodes labelled with an identifier for a
primitive base set and with a value set for the identifier. The former must point towards the node
that is arity predecessor incomplete without it, while the latter must point towards the node labelled
with the identifier.
End of proof of lemma 1

Consider now any set schema Sch. Let S be a set declared in Sch of interest to a user. S labels
exactly one node of the domain graph of Sch, and therefore exactly one node ode of the allgmented
domain graph. Let Tdg be the single tree obtained in step 3 of which nde is a node. Let Tr be the
identifier extension of Tdg obtained in step 4, and let T(Tr) be the table obtained in step 5. If the
domain graph method is correct, then it should be possible for a user to determine the membership
of S from the table T(Tr).

The bottom nodes of Tr are labelled with value sets or primitive base sets only, while all other
nodes are Labelled with nonprimitive sets. The declaration ofT(Tr) makes us of an assignment of
variables to the bottom nodes of Tr with a distinct variable assigned to each node. Every other
node nd of Tr is then assigned a nested tuple tp of the variables assigned to the bottom nodes; tp is
a tuple of the tuples assigned to the nodes that are immediate predecessors of nd Associated with
each node of Tr is therefore an assertion tp:SS, called the assertion of the node, where tp is the
variable or tuple assigned to the node1 and SS is the set that labels the node. Join(Tr) is an
assenion of DEFINE consisting of the conjunction of all such assertions for nodes that are not
bottom nodes of Tr. The declaration of T(Tr) is then:

T(Tr) for { v1:V1' ... , vn:Vn I [For some bv1:BSp ... , bvm:BSm] Join(Tr) I}.
Here V 1, •.. , V n are all the value sets that label bottom nodes of Tr in some order with repititions if
necessary, and vl' ... , vn are the variables assigned to those nodes; BSl' ... , BSm are all the
primitive base sets that label bottom nodes of Tr in some order with repititions if necessary, and
bv 1, .•. , bv m are the variables assigned to those nodes.

Consider now how a user determines the membership of S from T(Tr). First the columns of
T(Tr) that identify members of S must be known to the user. These columns are determined as
follows: Let tup be the tuple assigned to the node nde that S labels. The variables occurring in tup
are among the variables v 1' ••. , v n and bv 1' ••• , bv m• since these are all the variables assigned to

bottom nodes of Tr. By reordering the columns of T(Tr) it can be assumed that v 1, ... , vj are the

variables among v 1' ••• , v n that occur in tup. Without loss of generality it may be assumed that

bvl' ... , bvb are those variables among bvl' ... , bvm that occur in tup. Join(Tr) necessarily
includes a conjunction

bv1:IBS1:vbv1 and ... and bvm:IBSm:vbvm,

2

where IBSi, ... , IBSm are identifiers for BS1, ..• , BSm, and vbv1, ... ,vbvm are among the

variables vl' ... , vn. None of the variables vbvi, ... , vbvb occur among Vi, ••• , vj since Tr is a

tree. Therefore by a father reorder·ng of the columns they may be assumed to be vj+l' ...• vj+b·
The columns ofT(Tr) that are used to identify members of Sare therefore those for the variables
v 1, ... , vj, vj+l ' •.. , vj+b·

Wirh knowle.dge of the columns of T(Tr) that identify members of S, a user determines the
members of S as follows: From a selected row of T(Tr), a user can determine a member of V 1 x ...

x Vj+b· From knowledge of the identifiers ms l' ... , IBSb a user can therefore determine a j+b

tuple that is a member of V 1 x ... x VjxBS 1 x ... xBSb. This j+b tuple is a flattened version of a
member of a S, provided ti at the table T(Tr) is correct. No matter whether T(fr) is correct or not,
it is a flattened version of a member of a set SU that will be declared after one more definition is
given to make more precise what is meant by "flattened".

The bottom domain of a set labelling a node of Tr is defined recursively as follows: 111
bottom domain of the value set or primitive base set that labels a bottom node of Tr is the set itself.
Let SS label a node nd that is not a bottom node, and let SS 1 x ... xSSk be the domain of the arity
domain of SS. Necessarily there are exactly k nodes that are tails of edges with bead nd and these
nodes are labelled with SSl' ... , SSk. Let BDSSl' ... , BDSSk be the bottom domains of SSi, ...

, SSk, respectively. Then the bottom domain of SS is BDSS1x ... xBDSSk.
Let BDS be the bottom domain of S. Then the set SU, called the user form of S, is declared:
SU for {tup:BDS I [For some vj+1:Vj+l' ... , vn:Vn] (<vi, ... , vn>:T(Tr) and
<bv1 v.+1>:IBS1 and ... and <bvb,vj+b>:IBSb) I}.
The fofiowing theorem justifies the domain graph method oft.able design.
Theorem: Assume that all declared and defined degree constraints labelling edges of an
augmented domain graph are satisfied by the membership of the declared sets. Let S be a
declared set labelling a node of a 1-connected. not necessarily maximal, subtree of the domain
graph, and let SU be the user form of S declared for the table obtained from the subtree. Then
Sand SU have the same extension.

Proof of theorem: Let Sch, S, nde, Tdg, Tr, and, T(Tr), be as described. To avoid clashes of
bound variables, the variables bvi, ... • bvb in the declaration of T(Tr) wiU be replaced below by

the distinct variables bv' 1, •.• , bv'b that are distinct from any variables assigned to nodes of Tr.
Join(Tr) is the join assertion for Tr for the given variable assignment. Join'(Tr) results from
Join(Tr) by replacing occurrences of bvl' ... , bvb by bv'l' ... , bv'b respectively.

To prove the theorem it is sufficient to prove that the assertions
1. [For all s:SU] s:S, and
2. [For all s:S] s:SU,
are assigned true whenever all declared and defined degree constraints labelling edges of the
augmented domain graph are satisfied by the membership. of the declared sets.

By a variable binding B Var is meant a binding of some or all of the variables v 1, •.• , v n• bv 1,

... , bv m• and bv' 1, .•• , bv'b to members, or internal surrogates of members, of the sets that label

the bottom nodes of Tr. A variable vi is bound to a member of Vi, and a variable bvi or bv/, is

bound to an internal surrogate of a member of BSi. A variable binding BVar' is an extension of
BVar if the variables bound by BVar are all bound to the same entities in BVar'.

Consider assertion (1). Should the node nde that S labels be a bottom node, then that (1) is
assigned true follows immediately from the definition of SU. Jt may be assumed therefore that nde
is not a bottom node and that S is oonprimitive.

Lets be bound to the internal surrogate of a member of SU. Necessarily that internal surrogate
takes the form of tup with its variables bound by a variable binding BV ar, for which the assertion
3. tup:SU
is assigned true. It is sufficient to show that the assertion
4. tup:S

3

is also assigned true under BVar.
From (3) and the declaration of SU it follows that the assertion

5. tup:BDS and [For some vj+1:Vj+l• ... , vn:Vn]
(<vi, ... , vn>:T(Tr) and <bvl'vj+l>:IBS1 and ... and <bvb,vj+b>:IBSb)

is also assigned true under BVar. Therefore the following assertion is also assigned true:
6. [For some vj+l:Vj+l' ... , vn:Vn]

(<v1, ••• , vn>:T(Tr) and <bvi,vj+1>:IBS1 and ... and <bvb,vj+b>:IBSb)
Necessarily there is an extension BVar' of BVar, in which the variables vj+l' ... , vn are bound to

members of Vj+ 1, ••. , V n' under which the following assertion is also assigned true:
vj+1:Vj+1and ... and vn:Vn and
<vi, ... , vn>:T(Tr) and <bvl'vj+l>:IBS1 and ... and <bvb,vj+b>:IBSb.

From the declaration of T(Tr) the following assertion must also be assigned true:
vj+1:Vj+1and ... and vn:Vn and
[For some bv\:BSi, ... , bv'b:BSb, bvb+1:BSb+1' ... , bvm:BSm] Join'(Tr) and
<bvl'vj+l>:IBS1 and ... and <bvb,vj+b>:IBSb.

Therefore there is an extension BVar" of BVar', in which the variables bv\, ... , bv'b• bvb+l' ... ,

bvm are assigned to internal surrogates of members of BS1, ••. , BSb, BSb+l' ... , BSm, under
which the following assertion is assigned true.

vj+1:Vj+1and ... and vn:Vn and
bv\:BS1and ... and bv'b:BSband bvb+l:BSb+land ... and bvm:BSm and
Join'(Tr) and <bvi,vj+l>:IBS1 and ... and <bvb,vj+b>:IBSb.

Since the assertion Join'(Tr) includes a conjunction
<bv\,vj+l>:IBS1 and ... and <bv'b,vj+b>:IBSb,

and since the degree constraints are assumed to be satisfied, the internal surrogates to which bv\,

... , bv'b have been bound are the same as the internal surrogates to which bv 1, ... , bvb are
bound. This follows from the fact that each of IBSi, ... ,IBSb has upper degree 1 on its value set.
Necessarily, therefore, the assertion
7. vj+1:Vj+1and ... and vn:Vn and

bv1:BS1and ... and bvb:BSband bvb+l:BSb+land ... and bvm:BSm and
Join(Tr) and <bvl'vj+l>:IBS1 and ... and <bvb,vj+b>:IBSb

is also assigned true under BVar". Since Join(Tr) includes (4) as one of its conjuncts, (4) is also
assigned true under BVar", and therefore under BVar as well.

Note that in this half of the proof the only use made of the assumption on the satisfiability of
the degree constraints concerned the upper degrees of JBS 1, •.. ,IBSb on their value sets. That
these are all 1 are the only degree assumptions necessary to show that (1) is assigned true.

Now consider the assertion (2). Let s be bound to the internal surrogate of a member of S.
Again that internal surrogate talces the form of tup with its variables bound by a variable binding
BVar. Under BVar the assertion (4) is assigned true. It is sufficient to prove that (3) is assigned
true also. The following lemma is required for the proof.

Lemma 2: There is an extension BV ar" of BV ar for which (7) is assigned true.
Proof of lemma 2: Recall that the assertion of a node nd of Tr is the assertion tp:SS, where SS
labels nd and tp is assigned to nd. A node of Tr will be said to be true for a binding of variables, if
the assertion of the node is assigned true for the binding. Each conjunct of (7) is the assertion of a
node of Tr. Therefore to prove the lemma, it is sufficient to prove that there is an extension BVar"
of BV ar for which every node of Tr is true.

(4) is the assertion of the node nde of T dg. Since Tr is a connected tree, there is a unique
undirected path from nde to any other node of Tr. It will be proved by induction on the length of
such paths that there is an extension B Var" of B Var for which the end node of any path beginning

4

at nde is true. Since the node nde is true for BVar, the result is true for paths of length 0.
Consider now a path nde, ... , nd1, nd, where nd1 may be nde. Assume that there is an

extension BVar' of BVar for which all of the nodes nde, ... , nd1 are true. It is sufficient to show
that there is an extension BVar" of BVar' for which nd is also true.

Let tp:SS be the assertion of nd, and tp1 :SS 1 the assertion of nd1• The latter is assigned true
under the variable assignment BVar' since nd1 is true by the induction assumption. The edge of the
path connecting nd1 and nd may have head nd1 or head nd. The two possibilities are illustrated in
figure 2.1.

(i)

true

•
I
I

.

~ tpl:SSI

~ tp:SS

FIGURE2.1

<tupl, ... ,tupk>:S (ii) true §I

tp:SS

' '
~true nd: ,-~---····

true 8 tpl:SSI

<tupl, ... ,tupk>:S

Consider (i) first. In this case SS is an immediate predecessor of SSi, or of the arity domain of
SS1. Therefore tp1 must either be tp, or of the form< ... , tp, ... >. Since tp1 :SS1 is assigned true,
tp1 must be in the domain of SS1, so that tp:SS is assigned true also.

Now consider (ii). By lemma 1, the edge <ndei,nd> necessarily has lower degree 1. Let ndl'
... , ndd, d ~1. be the nodes of Tr for which <ndi, nd> is an edge of Tr, and let tpi:SSi be the
assertion of ndi. Therefore tp is tp1 if d=l, and is otherwise <tpi, ... , tpd>. The situation is
illustrated in figure 2.2 for d=2.

<tp l ,tp2>:SS

FIGURE2.2

true 8 <tupl, ... ,tupk>:S

. -
I

• .

tpl:SSl

Since the edge <nd1, nd> has lower degree 1, SS has lower degree 1 on SS 1. The theorem being
proved assumes that all degree constraints are satisfied by the memberships of the declared sets.
Therefore there must be an extension B V ar11of B Var', binding all the variables occurring in tp,
under which the assertion of nd is assigned true.
End of proof of lemma 2

In the first part of the proof of the theorem an argument was given that concluded that if (3) is
assigned true under a variable binding BVar, then there exists an extension BVar" under which (7)
is assigned true also. In this second part, the lemma establishes that if (4) is assigned true under a
variable binding BVar, then there is an extension BVar" of BVar under which the assertion (7) is
assigned true. Now consider the reverse of the argument used in the first part of the theorem. It is
elementary to establish that (6) is necessarily assigned true under BVar", and therefore under
BVa.r. Further, tup:BDS is assigned true under BVar, since BDS is the bottom domain of S and

5

tup:S is assigned true. Therefore (5) is assigned true under BVar, and hence (3) also.
End of proof of theorem.

In the first half of the proof of the theorem, the only degrees that were required to be satisfied
are the upper degrees of 1 of IBS1, •.. , IBSb on their value sets. It is possible, therefore, to relax
the definition of identifier by requiring it to have only the degrees <l , *> on the set it identifies,
rather than <l, l>. But efficiency considerations often dictate that there should be a single
identifying string for each member of a primitive base set

The more interesting conclusion from this observation is, however, that SU is a subset of S,
no matter what node S labels, or no matter from what subtree of the domain graph Tr was
constructed The worst that can happen is that SU loses members of S. The theorem establishes
sufficient conditions that SU does not lose members. Therefore, rather than saying T(Tr) is correct
for S when SU has the same extension as S, the tradition of the relational model could be followed
and T(Tr) could be said co be lossle~ for S.

The assumption of the theorem concerning the satisfiability of the degree constraints will be
discussed in 4.1.

3.2. A Kernel Schema
The SET model can provide a provably sound foundation for databases that can reference and

describe themselves. Such a base will be sketched here while the basis for its justification as
"provably sound" will be sketched in 4.1.

In figure 2.9 of [Gil87] a summary of the declarations of all the sets of the schema for Simple
University was given in a table. That table should be defined from a set schema, called a kernel
schema, in the same manner that the tables for Simple University were defined from its set schema.
The kernel schema can be thought of as the schema that will soppon the enterprise of set schema
design. It must be capable, therefore. of storing the information contained in any set schema,
including itself. The design of such a kernel schema, as a set schema that is at the same time a
schema for its own "data dictionary". was one of the orginal motivations for developing the SET
model An incomplete kernel schema has been found to be useful in the teaching of the
entity-relationship approach in undergraduate and graduate courses in database design since 1979
[Gil86b]. The equivalent of such a schema for relations is described in [Mark85].

The rudiments of a kernel schema are evident from figure 2.9 of [Gil87]. First the set of
declared sets must be declared:

DSET for (DSET II all declared sets } .
DSET is a primitive base set that has as its members all declared sets. Since DSET is itself a
declared set, it will be a member of itself. TI1e first four sets declared for Simple University,
namely STR, INT, L, and 5, are also in the kernel schema, and are members of DSET.

The identifier for DSET is the declaration attribute DEC that associates the declaration of a set
with the set. The declaration of the value set VDEC for the attribute requires the defirution of the
full syntax of assertions of DEFINE as well as of declarations, and is beyond the scope of this
paper Assuming the declaration of VDEC, however, the declaration of DEC can be given:

DEC for { DSET, VDEC I <1,1>, <0,1> I the declaration attribote } .
Although the declaration of a set is its ultimate identifier, some abbreviation of the declaration is

necessary for a reasonable syntax, and the name of a set, which is part of its declaration, is so
used. In the set schema for SU, each set has a unique name so that the name attribute of sets could
be used as an identifier in that model. But for practical modelling it is essential that some
duplication of names be permiued. For example, there are likely to be several attributes on different
sets all with the same value set VN, and it should be possible to call them all NAME.

When duplicate names are allowed, the name of a set appearing in isolation need not uniquely
identify the set. In the context of an assertion of DEFlliE, however, the name of a set should
identify the set, or at least narrow its identification sufficiently to permit the system to request
clarification from the user, or make intelligent guesses. The following roles for naming ~ets, using
definitions given in 2.10 of fGil87], appear to satisfy this requirement:

1. Each primitive set must have a name distinct from the name of any other set.
2. Sets of the same arity. with a common arity predecessor that is not a value set, must have

distinct names.
The need for the first rule is transparent The second rule reflects the fact that members of value

6

sets are generally not entities about which information is recorded, but are used in human-machine
commwrication to record and retrieve information about other sets. 111Us a variety of attributes all
with the same value set VN, but on different sets, may have the ame name NAME. But different
attribute of the same set, whether inherited from the arity domain of the set or not, must have
different names. If in a kernel schema it is necessary to declare attributes on sets of strings, for
example on the set VDEC, then distinct names can be given to the attributes although by rule 2 they
are not required to be distinct.

Fro the DEC attribute it is possible to declare the immediate domain predecessor, the
immediate define predecessor, and the immediate predecessor associations as defin d sets with
domain DSETxDSET. TI1e names given to them are assumed to be IDMP, IDFP, and IP,
respectively. The set of primitive sets can then be declared as a defined set:

PSET for { x:DSET I not [For some y:DSE11(x:IDMP:y or x:IDFP:y) I }.
The need for the assertion x:IDFP:y will be apparent shortly.

The ontology of sets, described in 2.7 of [Gil87] for a simple form of the SET model, admitted
as primitive defined sets only the primitive value sets such as S1R and INT. Other primitive
defined sets, however, are needed for a kernel schema. They are not members of PSET because,
although they do not have an immediate domain predecessor, they do have an immediate define
predecessor. The most important of these is the set of entities that are members of members of
PSET:

UV for { x:UV I [For some y:PSET] x:y I }.
UV is a defined set since its intension is stated in DEFINE, but it is a primitive set since there is not
a previously declared set from which its extension can be drawn, since its members are drawn from
the extensions of all the primitive sets. The members of UV form the basic universe of the model
for the enterprise described in a set schema. All other entities are nested tuples of members of UV.

One of the important ways in which SET differs from the similarly motivated models of
[LyKe86, BCP86J is that UV is a primitive defined set in SET, while in the other models it is a
primitive base set. It is possible to declare UV as a primitive base set in SET, although that would
offend the first principle of conceptual modelling stated in 2.14 of [Gil87], ince an identifier for
UV cannot be declared apart from the identifiers for the primitive sets.

The effect on the language DEFINE of admitting sets such as UV is profound. In the simple
form of the model each entity that was a member of a set could be uniquely "typed" as a member of
the arity domain of the set. The language DEFINE is monomorphic without such sets, and
polymorphic with them, since a member of UV ls also a member of some other primitive et
fCaWe85, Ing86.

A second related effect concerns the arity of sets. Each set that can be deolared in the simple
form of the SET model has as members oaly tuples of length the arity of the sec. That is no longer
the case in the extended model. For example, the union of any two sets of different arity can be
declared as a primitive defined set. By definition the set will have arity 1, although its members are
cot tuples of length 1, or even tuples all of the same length.

3.3. Recursively Defined Sets
It is necessary to declare as sets of the kernel schema some of the associations that were

defined informally in section 2 of [Gil87]. For example, domain predecessor, the transitive closure
of immediate domain predecessor, must be declared as a recursively defined set:

DMP for (DSET, DSET I [For all x:IDMP] x:DMP and
[For all 11,v1w:DSET] if (<u,v>:DMP and <v,w>:DMP) then <u,w>:DMP I

the domain predecessor association) .
Although DMP is a defined set, its domain declaration does not declare variables. The

declaration can be recognized as recursive from the fact that the machine readable portion of it
between the two vertical bars is not a degree declaration, but rather an assertion of DEFINE.

The declaration appears to offend the requirement that the predecessor a ·sociation be acyclic,
since DMP is used in its own declaration. But when the declaratfon is properly interpreted, this is
not so. The meaning of uch a definition is that DMP is the mallest transitively closed subset of
DSETxDSET that includes IDMP. A fonnal expression of hi meaning requires a sec nd order set
theory of the kind introduced in rGil86a]. For example, using second order variables, DMP can be
declared:

7

DMP for { z:DSETxDSET I [For all X~DSETxDSET]
if ([For all y:IDMP] y:X and

[For all u,v,w:DSET] if (<u,v>:X and <v,w>:X) then <u,w>:X)
then z:XI }.

Note the quantifier for X ranges over subsets of DSETxDSET. The fact that this range is not a
previously declared set, but rather all possible subsets of a previously declared set, makes it a
second order variable that cannot be replaced. by a first order variable without explicitly declaring
every possible subset.

The form of the DMP declaration is one that has been widely used in logic for defining
recursive sets. The assertions used in the if ... then clauses take the form of pure Hom clauses,
that now form the basis for the programming language PROLOO. Restricting the intension of
recursively defined sets to the use of pme Hom clauses avoids the complications that are necessary
when PROLOG is extended to include nonHom clauses [ABW86]. Given the ability to use any
assertion of DEFINE in the intensions of nonrecursively defined sets, no loss of expressive power
results.

The set TUP of all tuples of members of the set UV can be defined recursively in the usual
way. With that set available, COUNT can also be defined recursively with domain TUPxINT, as
can also SUM.

3.4. Updates and Data Proc~ing
Once a set schema has been declared, a user must be able to add members to any declared set,

and a command must be available for doing this. The form of a suitable command is:
Add tup to S where assert
where the variables occurring in tup occur unbound in the assertion assert; the latter provides an
appropriate description of the entity to be added to the declared. set S. A companion command
removes an entity from a set:
Drop tup from S where assert.

In the most elementary form. of the Add and Drop commands, S mast be restricted to being
base, and the meaning of the commands when S is defined must be reduced to the elementary form.
For humans are responsible only for the membership of base sets, while the system is responsible
only for the membership of defined sets. A command to add or drop a member of a defined set
must, therefore, be interpretable as one or more commands to alter the membership of base sets.
But how such commands are to be interpreted requires more research; the equivalent problem for
the relational model is the updating of virtual relations, or views [Date83, Ke1185].

In a kernel schema, the declaration of a set is equivalent to adding the set to the primitive base
set DSET. The sets declared in the kernel schema itself are assumed predeclared and therefore
have members detennined by the schema. But when a member is added to DSET by a user, the
declaration attribute DEC must be updated. During such a transaction, the system must ensure that
cycles are not introduced into the immediate predecessor association; it is sufficient for the system
to ensure that the immediate predecessors of a set are declared before the set can be declared.

In 1.1 of [Gil87] it was argued that a fully unified model of an enterprise is needed that at the
same time can give a conceptual view of the enterprise, a user's view of data as it is presented, a
data administrator's view of data as it is stored, and a programmer's view of the processing of the
data. A commonly encountered perception of the latter is that the dynamic nature of data processing
prevents the .representation of a programmer's view in a "static" model such as SET.

In as much as the commands Add and Drop are extensions to DEFINE, the perception is
soundly based. For example, it is not possible to represent the addition of a new employee to the
primitive base set E as an association in the same sen e that the assignment of an employee to a
department is represented by ED: First, the new employee, before being added to the set E, is not a
member of any se t, so that a domain for Add is not available; and second, the effect of adcting the
employee to Eis not to change its intension, but only its extension. When an entity that is a
member of the domain of a nonprimitive base set is added to the set, a change of extension is the
result. Such an application of Add can be regarded as an association between two states of the
extensions of the declared sets. But that requires treating the extensions of all the declared sets as a
tuple of tuples, something theoretically possible but often impractical

A recognition of the need for Add and Drop, and the form of them given above, is one of the
8

contributions of [Morr].
On the other hand, each defined set can be regarded as a "program" that determines the

membership of the set from the membership of its immediate predecessors. In this sense,
therefore, the perception of the SET model as only supporting static description is not soundly
based. Typical data processing requires in part the use of the Add and Drop commands, sometimes
imbedded in assertions, but also a substantial number of defined sets.

l11e two cornerstones of bject-oriented programming encapsulation and inheritence [Cox 861,
are central features of the SET model. These are the features also of the object~oriented data
modelling ethodology for information systems desc..nbed in lLyKe86]. TI1e objects of the SET
model are the members of declared sets. TI1e list, Add, and Drop commands provide the
procedural element, as the comparable commands do in [LyKe86]. In the LORE approach to object
oriented programming[BCP86], the procedw-al element is introduced thmugh message passing,
traditionally a pan of object-oriented programming.

4. Consistency and Integrity
Ia the last section a sketch was given of a kernel chema that can reference and describe itself.

It remains. to be shown however that such a schema is a provably sound foundation for databases.
A basis for a proof of this is given in 4.1. In 4.2 the satisfaction and maintenance of the integrity
constraints of SET are discussed.

4.1. Consistency
"Consistency" is used here in the sense employed in logic and mathematics: A theory is

consistent if it is not possible to conclude that both a sentence and it negation are true for the
theory. The meaning given in [Date83] is included in the meaning of "inte&rrity" u ed here.

In a consistent database in which all integrity constraints have been satisfie.d, it is not possible
to conclude that a sentence and its negation are both true. But a consequence of the high level of
abstraction tolerated in kernel schemas, is that such schema might satisfy vecy strong int.egri y
constraints but neverthless not be consistent, unless care is exercised in its implementation.
Con. ider. for example, the following declared set:

R for{ x:DSET I not x:x I) ;
the members of R are those declared sets that are not members of themselves. The set E for
example, is a member of R, while the set DSET is not.

There i nothing inherently wrong with the declaration of R, and it is even conceivable that it
might prove useful for some purposes, but the set has a notorious past: It is the basis for the
Russell paradox that shook the foundations of mathematics at the tum of the century. The paradox
arises when one asks whether R is a member of itself. Using naive reasoning it can be concluded
that R is a member of itself, and that it is also not a member of itself. Thus a database system that
permits the declaration of R, or some similar set, and that permits naive reasoning will be
inconsistent, even though it enforces very strong integrity constraints. Th.is is what [Blac85]
demonstrated for the semanti networks described in [Sowa84) .

Since the discovery of the Russell and other paradoxes, a number of set theories have been
invented that maintain consistency by restricting the declaration of sets in a variety of ad hoc
fashions. In [Gil86a] it is argued that it is the reliance on naive reasoning, rather than the definition
of R, that js the source of the paradoxes.

An assumption employed in naive reasoning is that every sentence is either true or false. A
careful examination of dus assumption shows however, that it can only be made for atomic
sentences, or what is called in theorem proving, ground sentences. The truth vaJue for a complex
sentence must be reduced to the truth values of simpler sentences, and be ultimately expressed in
te1ms of the truth values of atomic sentences. If it is nor possible to ground a truth value for a
complex sentence in atomic sentences, then the sentence receives no truth value. It is this provably
sound resolution of the paradoxes that is used to maintain the consistency of the SET model.

This simple resolution of the paradoxes has an imponant consequence. Some sentences, such
as R:R, cannot be grounded in atomic sentences and therefore bave no truth value assigned to them.
On the basis of the semantics, he correct answer is "no" to a query as to whether R is a member of
itself, since R:R is not true; it is also the correct answer to a query as to whether R is not a member
of itself, since R:R is not false. Negation cannot therefore be understood in the sense of 11negation

9

as failure" as suggested in [Clar78] and criticized in [Flan86]; the negation of an assertion is
assigned a truth value if and on:ly if the assertion has been assigned a truth value, and it then
receives the opposite truth value. In this sense a negated assertion derives its meaning from the
assertion tha1 can be obtained from it by driving negations down to the level of assertions of
membership in base sets. All assertions expressing membership in defined sets must be replaced
with their intensions, with. membership in recursive sets requiring "recursive'1 treatment Once n.
query has been grounded in this sense. a truth value can be determined for it, but not before.
Therefore a management system can respond to a query as to whether R is a member of itself, with
a report of failure to ground the query.

4.2. Integrity in the SET Model
Two 1dnds of integrity constraints are expressed in the domain and degree declarations. The

maintenance of these constraints presents different problems to a management system.
The maintenance of domain constraints is a relatively simple matter. There are no constraints

on adding new members to primitive base sets such as E or D. Domain constraints affect users
actions only when a new member is to be added to a nonprimitive base set such as ED; then the
new member must be selected from the domain of the set.

The degree constraints on base sets present problems of a different character. There is first the
question as to whether the degree constraints can be satisfied at all. Consider, for example, a base
association R with domain PxQ and degrees <1,1> and <1,1>, where

P for (x:INT I x=l }, and Q={ x=INT I x_=l or x.=2 I }.
Clearly U1e degrees can never be satisfied since they require tha P and Q have the same number of
members. The satisfaction problem for degree constraints is unsolvable when a sufficiently rich
form of DEFINE is available for defining sets; fo example, the halting problem for a Turing
machine can be expressed as the problem of determining whether two defined sets have the same
number of members. But degree constrclints satisfying one simple condition can always be
satisfied.

A membership specifying path in a domain graph is a directed path in which the first node is·
labelled. with a primitive defined value set, and every edge <ndel, nde2> for which nde2 i labelled
with a base set has lower degree 1. For example, the nodes labelled with INT, P, and R form a
membership specifying path, as do the nodes labelled with INT, Q, and R.

Theorem: Consider a set schema for which no base set labels a node of a membership
specifying path. Then the degrees of the set schema are satisfied if every set that does not label
a node-of a membership specifying path is empty.

Proof: By induction on the maximum length of directed paths in the domain graph. IT that length is
0 then every set that does not label a node of a membership specifying path is necessarily primitive
base and can therefore be empty. Consider now a schema m which the maximum length of directed
paths is greater than 1, and let S be a nonprimitive set labelling a node that is not in a membership
specifying path. Should S be defined, then each immediate domain predecessor of S may be
assumed to be empty, so that S may be assumed to be empty also. Should S be base, then each
immediate domain predecessor of S that does label a node on a memberships specifying path, may
be assumed to be empty. The lower degree of any edge from a node labelled with an immediate
domain predecessor of S to the node labelled with S is necessarily O if the immediate domain
predecessor labels a node of a membership specifying path. Therefore S may in this case also be
assumed to be empty.
End of proof

Assuming that the degree constraints of a set schema can be satisfied, they nevertheless present
special problems to a management system that must maintain them. The lower degree constraints
are the most difficult since lower degrees of 1 may require that new members be added to an
association such as ED in response to the addition of a new member to E or a new member to D.
Combined with upper degree constraints, lower degree constraints may even compel the addition of
a new member to a primitive base set. For example, adding a new member to D will compel at the
very least a changing of the membership of ED, and could compel the adding of a member to E.
Since there is no limit on the size of]-connected subgraphs, here is no limit on the number of Add
and Drop commands that must be executed in a b'fill&action that transforms a database state in which
all degree constraints are satisfied, to another such state. However, the existence of these

10

subgraphs permits transactions to be checked for degree preservation before being committed. The
provision of assistance to users in the management of degree preserving transactions is an
interesting research problem. Aspects of the problem are addressed in [ApPu87l.
BIBLIOGRAPHY
[ABW86] APT, K., BLAIR. I ., AND WALKER A. Towards a Theory of Declarative

Knowledge. Proc. Workshop on Fowzdations of Deductive Databases and Logic
Programming. Washington, D.C. 546-629. 1986.

[ApPu87] APT, KR SZTOF 9. AND PUGIN,JEAN-MARC. Maintenance of Stratified
Databa,se Viewed as a Belief Revision System. Proc. Sixth ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems.
136-145. March 1987.

[BCP86] BENOIT, CHRISTOPHE, CASEAU, YVES, AND PHERIVONG, CHANTAL. The
LORE Approach to Object Oriented Programming Paradigms. Memo C29.0,
Laboratoires de Marcoussis, Centre de Recherches de la C.G.E. April 15, 1986.

[Blac85] BLACK, MICHAEL JULIAN. Naive Semantic Networks. Final Paper, Directed
STudy in Computer Science. Dept of Comp. Sci., Univ. of B.C. Jan 22, 1985.

[CaWe85] CARDELL , LUCA, AND WEGNER, PETER. On understanding types, data
abstraction, and polymorphism. ACM Comp. Surveys 17, 4 (Dec. 1985), 471-522.

[Chen76] CHEN, PETER PIN-SHAN. The Entity-Rela ionshlp model - toward. a unified view
of data ACM Trans. Data Base Sysr., 1, 1 (March 1976), 9-36.

[Chen77] CHEN, PETER PIN-SHAN. The Entity-Relationship model- A basis for the
enterprise view of data. AFIPS Conference Proceedings, Vol. 46, 1977 NCC.

[Clar78] CLARK, K.L. Negation as Failure. H. Gallaire and J. Minker (eds.), Logic and Data
Bases, Plenum, New York, 1978.

[Cox86] COX.BRAD J. Object-Oriente.d Programming. Addison-Wesley, 1986.
[Date81] DATE, C.J. An Introduction to Database Systems, Vol.I, 3rd ed. Addison-Wesley,

1981.
[Date83] DATE, C.J. An Introduction to Database Systems, Vol.II. Addison-Wesley, 1983.
[DKM86] DE TROYER, 0., KEUSTERMANS, J., AND MEERSMAN, R. How Helpful is an

Object-Oriented Database Model?. [DiDa86]. 124-132.
[DiDa86] DITTRICH. KLAUS, AND DAYAL. UMESHWAR. (Eds) Proc. International

Workshop on Object-Oriented D· tabase Systems. ACM and lEEE. Sept 23-26, 1986.
[Ethn86] ETHERINGTON, DAVID WJLLIAM. Reasoning with Incomplete Information:

Investigations of Non-Monotonic Reasoning. PhD Thesi , Dept. Comp. Sci., Univ.
of B.C. April 198 .

[Flan86] FLANNAGAN, TIM. Tl1e Consistency of Negation as Failure. Journal of Logic
Programming, 2 (986), 93-114.

[Gil77] GILMORE, PA UL C. Defining and computing many-valued functions. Parallel
Computers-Parallel Mathematics. FEILMEIER, M. (ed.), North-Holland (1977),
18-23.

[Gil86a] GILMORE, PAUL C. Natural deduction based set theories: a new resolution of the
old paradoxes. J. Symb. logic, 51, 2 (June 1986) 393-411.

[Gil86b] GILMORE, PAUL C. Class notes for CPSC 404. Dept of Computer Science Un. of
B.C. August 11, 1986.

[Gil87] GILMORE, PAUL C. The SET Conceptual Model and the Domain Graph Method of
Table Design. Dept of Computer Science Tech. Report 87-7, Un. ofB.C. March

987.
[Kell85] KELLER, ARTHUR M. Updating Relational Databases Through Views. Stanford

Comparer S ·ence Department Tech. Report STAN-CS-85-1040. Feb 1985.
[Knt81] KENT, WILLIAM. Consequences of Assuming a Universal Relation. ACM Trans.

Database Syst., 6 4 (Dec 1981), 539-556.
[Knt83] KENT, WILL,1.AM. The Universal Relation Revisited. ACM Trans. Database Syst., 8,

4 (Dec 1983), 644-648.
[KhCo86] KHOSHAFIAN, SETRAG N. AND COPELAND, GEORGE P. Object Identity.

[Meyr86]. 406-416.
[Krey87] KREYKENBOHM, MICHAEL. Optimizing DEFINE Queries. Term Project, Dept of

11

Computer Science, Un of B.C. March 1987.
[LuK186] LUK. W,S. AND KLOSTER, STEVE. ELFS: English Language for SQL. ACM

[LyKt86]

[.Mark:85]

Trans. Database Syst., t 1, 4 (Dec 1986), 447-472.
L YNGBACK, PETER, AND KENT, WILLIAM. A Data Modelling Methodology for
the Design and Implementation of Infonnation Systems. [DiDa86]. 6-17.
MARK LEO. Self-describing database systems - formalization and realization.
Technical Repon - #1484. Dept. Comp. Sci. Un. Maryland. April. 1985.

[McC801 Circumscription - A Form of Non-monotonic Reasoning. Artificial l ntelligence 13,
295-323. 1980.

[Meyr86] MEYROWITZ, NORMAN. (ed.) Proc. Object-Oriented Programming Systems,

[Morr]
Language and Applications. ACM Sigplan Notices, 21, 11 (Nov 86).
MORRISON, RODERICK. Implementating a Set Based Data Model and its Oat.a
Definition/Manipulation Language. PhD thesis, Department of Computer Science,
Un. British Columbia. In progress.

[Ship81] SIDPMAN, DAVID W. The functional data model and the data language DAPLEX.
ACM Trans. Database Syst., 6, 1 (March 1981), 140-173.

[owa84] SOWA, J.F. Conceptual Structures: Information Processing in Mind and Machine.
Addison-Wesley, 1984.

[TrLo87] TRYON, D.C.; AND LOYD, D.G. Wormation Resource Depository: History,
Current Issues, and Future Directions. Pacific Bell, A Pacific Telesis Company.
Presentation to Canadian Information Processing Society, Vancouver, Canada,

[Ul180]

[Ul182]

[Ul183]

February 1987.
ULLMAN, JEFFREY D. Principles of Database Systems. Computer Science Press,
1980.
ULLMAN, J.D. The U.R. Strikes Back. Proc. ACM Symp. Principles of Databse
Systems. 1982, 10-23.
ULLMAN, J.D. On Kent's "Consequences of Assuming a Universal Relation. ACM
Trans. Database Syst., 8, 4 (Dec 1983), 637-643.

[VaTo87] VAN GELDER, ALLEN AND TOPOR, RODNEY W. Safety and Correct
Translation of Relational Calculus Formulas. Proc. Sixth ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems.
313-327. March 1987.

12

