
A Simple Parallel
Tree Contraction Algorithmt

K. Abrahamson*, N. Dadoun
D.G. Kirkpatrick, T. Przytycka

Technical Report 87-30
August 1987

Abstract

A simple reduction from the tree contraction problem to the list ranking

problem is presented. The reduction takes O(log n) time for a tree with n nodes,

using O(n/log n) EREW processors. Thus tree contraction can be done as

efficiently as list ranking.

A broad class of parallel tree computations to which the tree contraction

techniques apply is described. This subsumes earlier characterizations.

Applications to the computation of certain properties of cographs are presented in

some detail.

f This research was supported in part by the Natural Sciences and Engineering Research Council of Canada.

* Current Address: Computer Science Dept., Washington State University, Pullman, Washington 99164, USA

1. Introduction

Toe tree contraction problem is to reduce a rooted ordered tree1 to its root by a

sequence of independent vertex removals. Tree contraction can be viewed as a general

technique for scheduling parallel computations on trees. We describe an efficient

parallel algorithm for tree contraction based on a simple reduction to list ranking. The

reduction for trees with n nodes can be implemented on an exclusive read - exclusive

write (BREW) PRAM (see [V83] for a detailed comparison of parallel models of

computation) in O(log n) time and using O(n/log n) processors. Combined with recent

results on parallel list ranking, it leads to a simple optimal parallel tree contraction

algorithm.

Parallel algorithms for tree contraction have been studied before in several

papers. Most of the earlier results have been described for the stronger concurrent

read/exclusive write (CREW) model though they do not appear to make any essential

use of concurrent reads. Miller and Reif [MR85] describe a deterministic algorithm

which runs in O(log n) time with O(n) processors. They present their algorithm in the

context of dynamic expression evaluation for an expression presented in the form of a

parse tree. A single step of their algorithm converts a current binary parse tree to a

simpler one by removing in parallel all leaves (RAKE operation) and compressing

maximal chains of nodes with only one child (COMPRESS operation). They show that

after O(log n) such steps a given tree is reduced to its root.

Miller and Reif apply their method to construct parallel algorithms for

problems which can be reduced to computation on trees. They give a randomized

algorithm for testing isomorphism of trees, a deterministic algorithm for constructing a

tree of 3-connected components of a planar graph, and other algorithms.

1Throughout this paper trees are all rooted and ordered. These adjectives will not be repeated hereafter.

1

He [H86] defines the binary tree algebraic computation (BT AC) problem and

applies Miller and Reif s technique to obtain a parallel algorithm for this problem.

Roughly speaking the BTAC problem is to compute the value of an algebraic

expression given in the form of a parse tree under the assumption that the algebra in

which the computation is performed has a finite carrier.

Another approach to dynamic expression evaluation is presented by Gibbons

and Rytter [GR86]. Their algorithm runs in O(log n) time using O(n/log n) processors.

They assume, however, that the input (the string representing the expression to be

computed) is given in an array and is hence preordered. Similarly to He, they prove that

the algorithm can be applied to compute an algebraic expression in any algebra with

finite carrier.

Cole and Vishkin [CV86c] propose an alternative method for computation on

trees. They solve the tree contraction problem by parallel reduction to the list ranking

problem. In this respect their approach is similar to ours. Our reduction, an. abstraction

of the technique used for the parallel preprocessing of region trees for fast (sequential)

subdivision search [DK87], is simpler and more explicit than that of Cole and Vishkin;

in particular, it completely avoids the centroid decomposition techniques that lie at the

heart of their reduction.

2. Reduction to list ranking

Within a linked list, the rank of a given element is defined as the number of

elements following that element. Given a linked list, the list ranking problem is to

determine in parallel the rank of each element in the list Once each element has its rank,

an ordered array of elements can be constructed simply by using the rank as an array

index. The list ranking problem generalizes easily to the weighted list ranking problem,

where each element has an associated weight and the goal is to determine the weighted

rank - the sum of the weights of all subsequent elements - for each list element

2

The list ranking problem has received much attention in recent research (cf.

[ADKP87], [CV86a], [CV86b]) because of its fundamental role in many parallel

algorithms. Of particular interest is its role in the so-called Euler Tour Technique

[TV84] which can be used to compute various functions on trees including preorder

number, postorder number, descendent numbering and others.

Among the important contributions of Miller and Reif [MR85] is their

abstraction of the problem of tree contraction. Titls leads to a separation of the problem

from its familiar applications (notably, dynamic expression evaluation) and places it,

along with list ranking, among the fundamental problems of parallel computation. A

natural side effect has been the identification of new and unforeseen applications

[DK87, He86, GR86]. To further solidify this abstraction we present the following

definitions.

We will assume that trees are presented as an (unordered) array of vertices each

of which has associated with it a parent pointer and a doubly-linked list of children. (Of

course, it is possible to efficiently convert to or emulate such a representation starting

with other more primitive representations.) (Successive) vertices on any list of

children are said to be (immediate) siblings.

Let T be any binary tree with vertex set V(n. A sequence of trees T 1, T 2 , •••

T k is said to be a tree contraction sequence of length k for T if,

(i) T1 = T;

(ii) V(Ti) ~ V(Ti-1) ;

(iii) I V(Tk) I ~ 3 ; and

(iv) if v e V(Ti_1) - V(Ti) then either

(a) v is a leaf of Ti-I , or

(b) v has exactly one child, x, in Ti-I• x e V(Ti), and the parent of v

in Ti-I is the parent of x in Ti.

3

It is clear from the definition that successive trees in a tree contraction sequence

are formed by "independent" executions of the following two fundamental operations

(see Figure 2.1): Prune(v)-leaf v is removed from the current tree; and Bypass(v)

- non-root node v with exactly one child x is removed from the current tree, and the

parent w of v becomes the new parent of x (with x replacing v as a child of w).

V

►
Prune(v)

►
Bypass(v)

w

Figure 2.1. Prune and Bypass operations

4

By "independent" we mean that if v is pruned or bypassed then its parent is

not bypassed. In this way tree modifications are ensured to be local and executable in

parallel.

It is clear that every binary tree with n nodes admits a contraction sequence

of length n; simply prune n - I times in succession until the tree has been reduced to

its root. On the other hand, since just over half of the nodes can be removed in any one

step, every contraction sequence must have length at least log(n) - 1. We say that a

contraction sequence is optimal if it has length O(log n). (Note, it may not be

immediately obvious that every binary tree has an optimal contraction sequence, let

alone that such a sequence can be constructed efficiently.)

The tree contraction problem is to construct, for an arbitrary binary tree T, an

optimal tree contraction sequence for T. It is not necessary to construct the sequence

explicitly; it suffices to associate with each node v the index i of the highest indexed tree

containing v in the sequence, together with pointers to the parent and child (if any) of v

in Ti,

It is meaningful to talk about tree contraction for non-binary trees as well.

While a number of possible definitions suggest themselves the most natural is probably

that which arises in conjunction with the familiar interpretation of general trees as

regular binary trees (cf. Knuth[K68], pp. 332-345). Suppose T is an arbitrary ordered

rooted tree. Consider the tree T constructed from T as follows: If v is a vertex of

T with d children then the vertex set of T includes v 1, v2, ... , yd+l, Vertex vi+l

is the right child of vertex vi in T, for 1 ~ i ~ d. Furthermore, if vertex w is the

ith child of v in T then vertex w1 is the left child of vertex vi in T (see Figure 2.2).

5

T:

T':

Figure 2.2 Interpretation of Trees as Binary Trees

Note that T is a regular binary tree (all of its internal nodes have exactly two

children). Furthermore, there is no cost associated with the construction of T from T

since it involves only a reinterpretation of pointers. Any tree contraction sequence for

T yields - what we might define to be - a tree contraction sequence for T. A

vertex v of T is pruned or bypassed at step i if the last of its associated vertices

v 1, ... , vd+l in T' is pruned or bypassed at step i. A straightforward case analysis

shows that the resulting sequence satisfies the additional "independence" condition that

no two adjacent siblings are removed simultaneously. Since T has fewer than twice as

6

many vertices as T, it follows that any optimal tree contraction sequence for T yields

an optimal tree contraction sequence for T. (This reduction of general tree contraction to

binary tree contraction is similar to the "binarization" step of Cole and Vishkin

[CV86c].)

Suppose once again that T is a binary tree. It is clear that if T has height h then

T admits a contraction sequence of length h consisting entirely of prunes but when T

is unbalanced such a sequence is far from optimal. Miller and Reif [MR85] introduce

the idea of path compression - a familiar operation in the context of list ranking - to

cope with trees, or parts thereof, that have become so unbalanced that they have

degenerated into paths. Miller and Reif show that by interleaving global pruning (that

is, the removal of all leaves) with global path compression (the compression of all

paths of length greater than one) it is possible to construct an O(log n) contraction

sequence in O(log n) time using O(n) processors. The complications of Miller and

Reifs approach, especially with regard to processor reduction, arise in the compression

step. Our approach differs in that we define the primitive contraction operations at a

more elementary level. By scheduling the order in which leaves are eliminated it is

possible to completely eliminate the difficulties associated with path compression.

Indeed, paths of length greater than two never arise as our algorithm contracts an

(initially regular) binary tree.

The pair of operations prune(v) followed by bypass(parent(v)) (where vis any

leaf) form a conceptual unit in our algorithm. The algorithm proceeds in phases, each

of which consists of a batch of these basic contractions performed in parallel. The

independence of the underlying operations is guaranteed by a simple global schedule

for leaf removal. Let the leaves be numbered in left to right order. A leaf is removed in

phase t if the rightmost 1 in its leaf index is in position t.

7

,

Our binary tree contraction algorithm has the following simple description:

procedure contract (D

(* Assign leaf indices from O to n - 1 *)

for each leaf v in parallel
index(v) f- left_to_right leaf index of v

(* Contraction iterations. *)

repeat r log n l - 1 times
for each leaf v in parallel

w f- parent (v)

if index(v) is odd and w * root
then if v is a left child

then prune (v)
bypass (w)

if v is a right child
then prune (v)

bypass (w)

else index(v) f- index (v) /2

Note that the innermost if statements, though they have opposite conditions,

are intended to be executed in sequence, with appropriate synchronization in between.

Thus, each iteration of the repeat loop has four slots in which prune or bypass

operations may be executed. Accordingly, we associate four elements of the tree

contraction sequence with each iteration of the repeat loop, describing the tree after

each of the four slots. It is also helpful to view the behaviour of the algorithm at two

other levels. It is immediate from the description that each prune operation is

immediately followed by a bypass. Hence in each successive pair of slots a number of

composite prune-bypass operations are executed in parallel. Each pair of these

composite slots (making up an entire iteration of the repeat loop) serves to eliminate all

of the leaves with odd parity in the current tree together with their parents.

8

Lemma 2.1. Procedure contract constructs an optimal tree contraction sequence.

Proof: It suffices to demonstrate that the prunes and bypasses are performed

independently. Since prunes and bypasses are never executed simultaneously, it need

only be demonstrated that no vertex v and its parent w are ever bypassed

simultaneously. Suppose this is not the case. Without loss of generality, v is the right

child of w. Since they are bypassed simultaneously, they must both have leaves as

left children. But since these leaves are adjacent in the left to right order and since the

index array maintains each leafs left-to-right rank in the current contracted tree, v and

w must have indices of opposite parity, a contradiction. •

Theorem 2.1. Procedure contract provides an O(log n) time and O(n / log n)

processor deterministic reduction of tree contraction to list ranking.

Proof: First note that there is a straightforward reduction of the leaf ranking problem,

which arises in the first step of procedure contract, to the list ranking problem. The

method is called the Euler Tour technique [TV84]. Each node v of T is split into three

nodes vT, vL and vR. For each of the resulting nodes we define a next field as

follows. If v is a leaf then VT.next= vL and vL.next = vR. If w is the right child

of v then vL.next = wT and wR .next = vR. If w is the left child of v then

VT.next = wT and wR .next = vL. What results is a list that starts at root T and ends at

rootR and traverses each edge of T once in each direction. If we assign weight(z) = 1

if z = vT and v is a leaf and weight(z) = 0 otherwise, then the weighted rank of each

node vT, where v is a leaf, gives the leaf index of v in T.

As a consequence of the above, it suffices to prove that the iterated contraction

step of procedure contract can be implemented in O(log n) time using O(n/log n)

processors. An O(log n) time, O(n) processor implementation is immediate; if one

processor is devoted to each leaf then each phase can be carried out in 0(1) time. On

the other hand if each of n / log n processors is assigned to a block of log n

9

successive leaves, the obvious simulation of the O(n) processor implementation incurs

an additional additive overhead of only O(log n) time (cf. [B74], Lemma 2). •

It follows from Theorem 2.1 that results for list ranking carry over directly to

tree contraction. We summarize the most important implication in the following:

Corollary 2.1. The tree contraction problem can be solved deterministically in

O(log n) time using O(n / log n) processors.

Proof: This is an immediate consequence of Cole and Vishkin's O(log n) time

O(n / log n) processor deterministic list ranking algorithm [CV86b]. •

The deterministic list ranking algorithm of [CV86b], though asymptotically

optimal, does not provide a practical solution to the problem for lists of realistic size. A

more practical deterministic solution - which uses O(log n log* n) time with

O(n I (log n log* n)) processors- is described in [CV86a]. Alternatively, there exist

practical randomized parallel list ranking algorithms that achieve the asymptotically

optimal bounds [MR85, ADKP87].

3. Algebraic tree computations

The applications presented in this and the following section serve to illustrate

our tree contraction algorithm. In particular, we will use the explicit sequence of trees

created by the algorithm in section 2 and treat each prune and its subsequent bypass as

an indivisible operation. Though the descriptions benefit from the simplicity of our

particular approach to tree contraction, it is clear that with suitable modifications other

tree contraction schemes may be used for these applications.

10

A tree contraction algorithm gives a method for solving a large class of parallel

tree computation problems. This class includes, for example, dynamic expression

evaluation ([MR85], [GR86]). He [H86] and Gibbons and Rytter [GR86] noted that

any algebraic expression with operands from an algebra with carrier of fixed finite size

can be computed in the cost of tree contraction. This result provides efficient parallel

algorithms for several optimization problems, for example minimum covering set,

maximum independent set and maximum matching, when the underlying graph is a tree

[H86].

In fact, we can relax the assumption that the carrier of the algebra is of fixed

finite size and put some restrictions on the operations only. We can generalize He's

binary tree algebraic computation problem in the following way: Let S be a set and

F ~ if If: SxS➔S} a set of two-variable functions over S. The objective of

bottom-up algebraic tree computations is to take any regular binary tree T whose leaves

are labelled by elements of S and whose internal nodes are labelled by elements of F

and to evaluate the algebraic expression associated with T (where functions at internal

nodes denote operators and elements labelling leaves are operands).

It is natural (and helpful) to generalize the above notion to include a set of

functions G ~ {g I g: S➔S}, including the identity function, which serve as edge

labels and influence the computation in the obvious way. The triple (S, F, G) defines a

bottom-up algebraic tree computation (B-ATC) problem. Such an problem is said to

be decomposable if

(i) the sets F and Gare indexed sets and their elements can be evaluated in 0(1)

sequential time; and

(ii) for all gi, gj, e G,fm e F and a e S, the functions g8 and g1 given by

g8(x) = gi(fm(gjCx), a)) and g1(x) = gi(f m(a, gj(x))) both belong to G and

their indices s and t can be computed in 0(1) sequential time from i, j, m and a.

11

Condition (ii) defines a kind of closure operation on the sets F and G. Its

significance is perhaps most easily understood by referring to the transformations of

Figure 3.1.

►
(a)

►
(b)

a

Figure 3.1

Note that any algebra with a finite carrier has associated with it

a decomposable B-ATC problem. It is also easy to see that general { +, -, *, /}

arithmetic computations can be described as a decomposable B-ATC problem [B74],

provided arithmetic operations are assumed to take constant time.

12

Theorem 3.1: If (S, F, G) is a decomposable B-ATC problem then for any input tree

the associated algebraic expression can be evaluated in time proportional to the cost of

tree contraction using the same number of processors.

Proof: Condition (ii) of decomposability guarantees that each of the trees in the tree

contraction sequence of T can be labelled in such a way that their associated algebraic

expression is equivalent to that of T. Since this labelling can be computed in 0(1) time

at each step the entire computation runs in time proportional to that of tree contraction.•

Remark 3.1: We should note that we can easily modify the general computation

scheme in such a way that we will compute also all the functions in internal nodes. In

order to do so each bypassed node should maintain a pointer to the lower level endpoint

of the bypassing edge (i.e. the node whose computation has to be finished in order to

finish computation in the given node). For example, in Figure 3.1 the bypassed node

labelledfm retains a pointer to the leaf labelled a and the root of the subtree Y. After

finishing the computation of the function in the root we add a new phase to the

algorithm. In this phase we allow all the internal nodes to finish computation of the

values of the function assigned to these nodes. The computation is completed at vertices

in the reverse of their order of elimination in the contraction sequence.

Remark 3.2: Let us assume that we have computed the value of the expression

defined by a given tree T. Assume now that we would like to compute an expression

defined by the same expression tree except that one leaf has a new value. To compute

this modified expression we can use all the partial results from the previous

computation with the exception of the values on the path from the leaf to the root. We

can do it in O(log n) sequential time using information stored in the sequence of trees

constructed by the contraction algorithm. We need to make only one change in each of

13

the trees. By conditions (i) and (ii) we need constant time to correct each of them. There

are 0(log n) trees so the algorithm runs in 0(log n) time. As an easy generalization, we

note that in order to recompute the value of the expression when values in l leaves have

been changed we need 0(log n) time with 0(min(l, n/log n)) processors.

The B-ATC problem provides a useful abstraction of many bottom-up tree

based computations. In a number of applications it is necessary to consider top-down

(or perhaps a combination of bottom-up and top-down) computations based on trees.

Let S be a set as before and let H ~ {h I h: S➔S} be a set of one-variable functions

over S. The objective of a top-down algebraic tree computation is to take any regular

binary tree T whose root is labelled by an element of S and whose non-root nodes are

labelled by elements of H and to evaluate the function associated with each node in the

natural way (the root takes its given value and the value of a non-root node is its

associated function applied to its parent's value).

As with the B-ATC problem, it is natural to generalize this notion by

associating elements of H (now assumed to include the identity function) with the edges

of T as well; the resulting computation are modified in the obvious way. A pair (S, H)

defines a top-down algebraic tree computation (T-A TC) problem. Such a problem is

said to be decomposable if

(i) the set H is indexed and its elements can be evaluated from their index and

argument in 0(1) sequential time; and

(ii) His closed under composition and for each hi, hj e H the index of hi o hj can

be computed in 0(1) sequential time from i andj.

Theorem 3.2 If (S," H) is a decomposable T-ATC problem then for any input tree T

the value associated with each vertex can be computed in time proportional to the cost

of tree contraction, using the same number of processors.

14

Proof: By the decomposability condition, each edge e introduced by a bypass

operation can, as part of the tree contraction process, be labelled by the composition of

the functions associated with the nodes and edges on the path (in T) joining the

endpoints of e. The vertices of T are considered in the opposite order of their

elimination in the tree contraction sequence. It is straightforward to confirm that the

value of all vertices in tree Ti can be computed in 0(1) time knowing the values of all

vertices in tree Ti-l· •

4. An application of the tree contraction method: Parallel algorithms for
some problems on cographs

In this section, we illustrate the application of the tree contraction method to

the solution of some problems for complement reducible graphs.

A complement reducible graph, also called cograph, is defined recursively in

the following way:

(i) A graph on a single vertex is a cograph.

(ii) If G and H are cographs, then so is their union.

(iii) If G is a cograph, then so is its complement.

A cograph can be represented by its parse tree. Let us assume that this parse

tree has a form of a full binary tree with two kinds of internal nodes: union nodes and

complement-union nodes (that is nodes representing complement of the union of the

graphs described by the descendent nodes). An example of a cograph and its parse tree

(not unique) is given in Figure 4.1.

15

•
e

e

C
a b

b

Figure 4.1 A cograph and its parse tree (complement union nodes are denoted by *)

Suppose that G is a cograph and Tis a parse tree representation of G. For

each node x of T, we denote by Gx the cograph represented by the subtree of T rooted

at x. It is helpful to label each internal node x of T by its complement parity in T, i.e.

by 0 if the number of complement-union nodes between the node x and the root

(inclusive) is even and 1 otherwise. This labelling makes it possible to decide if two

given nodes (leaves in the parse tree) are connected, simply by checking the label of

their lowest common ancestor in the parse tree. It also simplifies descriptions of

algorithms and has been used in conjunction with a normal form for cograph parse

trees, called cotrees [CLS81].

Note that the problem of computing the complement parity of all nodes is a

simple instance of a decomposable T-A TC problem. The set S is just { 0, 1 } , the root

is labelled by 1 if it is a complement-union node (0 otherwise), and internal nodes have

associated the function/(x) = 1 - x if they are complement-union nodes (and /(x) = x

otherwise). Thus by Theorem 3.2, the complement parity of all nodes can be computed

in parallel in the time of tree contraction.

16

The representation of a cograph as a parse tree with complement parity

labelling leads to polynomial algorithms for many problems which are very difficult for

general graphs ([CLS81], [L71], [S78]). With the help of the parallel tree contraction

algorithm, some of those functions can be computed in logarithmic parallel time. The

algorithms presented below can be also applied to the cotree representation of a cograph

if we assume that they are preceded by a binarization step.

Consider the problem of computing the size of the largest clique in a given

cograph G (cf. [S78]). (In the case of cographs this value is equal to the chromatic

number of the graph.) We assign the value 1 to each of the leaves of G's parse tree T.

To internal nodes with complement parity O (0-nodes) we associate the function

fo(x,y) = max(x,y) and to those with complement parity 1 (1-nodes) we associate the

function / 1 (x,y) = x + y. It is easy to confirm that the value computed at the root of T

gives the size of a largest clique in G. More generally, the value computed at node x of

T is the size of the largest clique in G x• if x has the same complement parity as the root,

and the largest independent set in Gx, otherwise. Call this value the clique size value

associated with x.

Notice that it is possible to avoid the preprocessing of the parse tree needed to

obtain the complement parity. Having an unlabelled parse tree we can compute both

maximal clique and maximal independent set together and switch those values when the

complement operation is performed.

The functions associated with edges all have the form: g(x) = max(a, x+b).

Initially we set for each edge g(x) = x = max(O, x+o). To prove that the problem can be

solved in the cost of tree contraction it suffices to check condition (ii) in Section 3. But

that follows easily from the identity max(u, v) + max(w, x) = max(u+w, u+x, v+w,

v+x).

More generally we can find the size of a largest clique of an arbitrary chosen

induced subgraph of G. To do so simply assign 1 to the leaves of T representing nodes

17

of the chosen subgraph and O to all other nodes. With this modification the above

algorithm finds the size of a largest clique in the subgraph induced on the chosen

nodes. Note that if the chosen subgraph is updated (by adding or/and removing some

nodes) the result can be recomputed in the way described in Remark 3.2.

By exchanging functions in 0-nodes with functions in 1-nodes we obtain an

algorithm for computing the size of a largest independent set in the given cograph.

Using the tree contraction method we can also solve the following problems for

cographs : number of maximal cliques , number of maximal independent sets, number

of cliques of largest size and number of independent sets of largest size.

Finally, consider the problem of identifying a clique of maximum size in G.

Specifically, we would like to label the leaves of T by O or 1 according to whether or

not the corresponding node belongs to the chosen largest clique. More generally, we

would like to compute at each non-root node x a binary value indicating whether or not

any node of Gx belongs to the chosen largest clique. Call this the clique choice value

associated with x. Assume that we have evaluated the clique size value associated with

all of the internal nodes in T (cf. remark 3.1). We now associate new functions with

each non-root node of T as follows. Suppose that x is a node with children y and z in

T and suppose, without loss of generality, that the clique size value of y is at least the

clique size value of z. If x has complement parity 1 then both y and z are assigned the

identity function. Otherwise, y is assigned the identity function and z is assigned the

zero function.

If the root is assigned the value 1 then this local assignment of functions

creates an instance of another decomposable T-ATC problem. A leaf x gets the final

value 1 if and only if all of the vertices on the path from x to the root are assigned the

identity function. By construction, the lowest common ancestor of any two leaves with

final value 1 must have complement parity 1 (i.e. they must be connected in G).

Furthermore, if the maximum clique has size t, then exactly t leaves get final value 1

18

(i.e. these leaves form a maximum clique). By Theorem 3.2, it follows that a clique of

maximum size in a cograph (represented by its parse tree) can be identified in parallel in

the time of tree contraction.

5. Discussion

The optimal reduction of tree contraction to list ranking allows us to construct

a simple tree contraction algorithm which runs in the cost of the chosen list ranking

algorithm. As a consequence, we have an optimal solution to parallel tree contraction

using the list ranking results of Cole and Vishkin [CV86b]

Gibbons and Rytter [GR86] have presented an optimal algorithm for dynamic

evaluation of algebraic expressions assuming that the input is given in an array. They

apply the algorithm of Bar-On and Vishkin [BV85] to obtain a parse tree. The leaves

of the parse tree are numbered from left to right on the basis of their index in the input

array. This numbering makes it possible to group leaves in blocks of O(log n) size and

then to perform computation in each block in parallel. As a result the parse tree is

contracted to a tree of size O(n/log n), at which point the algorithm of Reif and Miller

computes the tree contraction using an optimal number of processors.

If we assume that the input is given in the form of a binary tree instead of an

array the algorithm of Gibbons and Rytter can still be applied by numbering the leaves

of the tree in a preprocessing step. As in our algorithm, this can be done in the cost of

list ranking using the Euler tour technique [TV84]. An advantage of our approach is

the clear identification of the role played by list ranking in tree contraction. In our

approach the method in which a tree is contracted does not depend on the actual size of

the tree. In this respect, our approach is more similar to that of Cole and Vishkin

[CV86c].

19

Cole and Vishkin's tree contraction algorithm uses the same two basic parallel

operations as ours. The first stage of Cole and Vishkin's algorithm is to compute for

each tree vertex v the function SIZE(v), which is equal to the number of nodes in the

subtree rooted at v. This step is done using the Euler tour technique. Then, using

function SIZE, the tree is partitioned into the so-called centroid paths. The bypass

operation can be applied only to a node which does not have a non centroid child. The

next step of the algorithm (called the scheduling stage) is to compute the order in which

the prune and bypass operations should be performed. In the last stage, called the

evaluation stage, the prune and bypass operations are performed according to the order

computed in the previous stage. In the evaluation stage some work has to be done in

order to assign processors to the jobs.

In our algorithm the reduction to list ranking is done in a simpler way. The

only information which is used to schedule the order of performing bypass operations

is the initial numbering of the leaves. Consequently we do not need a separate

scheduling phase, which in Cole and Vishkin's algorithm is quite complicated. Also the

assignment of processors to the jobs is simpler in our approach.

Acknowledgment. We wish to express our thanks to Nicholas Pippenger who first

pointed out the connection between our work on parallel processing of region search

trees [DK87] and Miller and Reif's work on parallel tree contraction [MR85].

References

[ADKP87] K. Abrahamson, N. Dadoun, D. Kirkpatrick and T. Przytycka. "A simple
optimal randomized parallel list ranking algorithm". Computer Science
Department Technical Report 87-14, University of British Columbia,
Vancouver, May 1987.

[B74] R. Brent. "The parallel evaluation of general arithmetic expressions".
Journal of the ACM 21, 2, April 1974, pp. 201-206.

20

[BV85] I. Bar-On and U. Visbkin. "Optimal parallel generation of a computation
tree fonn". ACM Transaciions on Programming Languages and Systems
7,2, 1985, pp. 348-357.

[CLS81] D.G. Corneil, H. Lerchs and L. Stewart. "Complement reducible graphs."
Jownal of Discrete and Applied Mathematics 3. 1981, pp. 163-175.

[CV86a] R. Cole and U. Vishkin. "Deterministic coin tossing and accelerating
cascades: micro and macro techniques for designing parallel algorithms. " In
18th Annual Symposium on Theory of Computing, 1986 pp. 206-219.

[CV86b] R. Cole and U. Vishldn. "Approximate and exact parallel scheduling with
applications to list, tree and graph problems. " In 27th Annual Symposium
on Foundation.s of Computer Science, 1986, pp. 478-491.

[CV86c] R. Cole and U. Vishkin. "The accelerated centroid decomposition technique
for optimal parallel tree evaluation in logarithmic time". Ultracompoter Note
#108 TR-242, Dept. of Computer cience, Courant Institute NYU, 1986.

[DK87] N. Dadoun and D. Kirkpatrick. "Parallel processing for efficient
subdivision search". In 3rd ACM Symposium on Computational Geometry,
Waterloo. Ontario, 1987, pp. 205-214.

[GR86] A. Gibbons and W. Ryner. "An optimal parallel algorithm for dynamic tree
expression evaluation and its applications". Io Symp. on Foundations of
Software Technology and Theoretical Comp. Sci., 1986, pp. 453-469.

[H86] X. He. "Efficient parallel algorithms for solving some ttee problems. " In
24th Allerton Conference on Communication Control and Computing,
1986, pp. 777-786.

[K68] D. Knuth, The Art of Computer Programming Volume 1: Fundamental
Algorithms, Addison-Wesley, 1968.

[L 71] H. Lerchs. "On cliques and kernels. " Dept. of Comp. Science , University
of Toronto, March 1971.

[Me83] N. Megiddo. "Applying parallel c mpotation algorithms in the design of
serial algorithms." Journal of the ACM, 30, 4, Oct. 1983, pp. 852-865.

[MR85] G. L. Miller and J. Reif. 11Parallel tree contraction and its application. " In
26th IEEE Symp. on Foundations of Computer Science, 1985, pp. 478-89.

[S78] L. Stewart. Cographs, A Class of Tree Representable Graphs. M. Sc.
Thesis, Dept. of Computer Science, Univ. of Toronto, TR 126n8, 1978.

[TV84] R. E. Tarjan and U. Vishkin. "Finding biconnected components and
computing tree functions in logarithmic parallel time. " ln 25th Annual
Symp. on Foundations of Comp. Science, 1984, pp. 12-22.

[V83] U. Vish.kin. "Synchronous parallel compatation - a survey. " TR-71,
Dept. of Computer Science. Courant Institute, NYU, 1983.

21

