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Abstract 

A simple reduction from the tree contraction problem to the list ranking 

problem is presented. The reduction takes O(log n) time for a tree with n nodes, 

using O(n/log n) EREW processors. Thus tree contraction can be done as 

efficiently as list ranking. 

A broad class of parallel tree computations to which the tree contraction 

techniques apply is described. This subsumes earlier characterizations. 

Applications to the computation of certain properties of cographs are presented in 

some detail. 
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1. Introduction 

Toe tree contraction problem is to reduce a rooted ordered tree1 to its root by a 

sequence of independent vertex removals. Tree contraction can be viewed as a general 

technique for scheduling parallel computations on trees. We describe an efficient 

parallel algorithm for tree contraction based on a simple reduction to list ranking. The 

reduction for trees with n nodes can be implemented on an exclusive read - exclusive 

write (BREW) PRAM (see [V83] for a detailed comparison of parallel models of 

computation) in O(log n) time and using O(n/log n) processors. Combined with recent 

results on parallel list ranking, it leads to a simple optimal parallel tree contraction 

algorithm. 

Parallel algorithms for tree contraction have been studied before in several 

papers. Most of the earlier results have been described for the stronger concurrent 

read/exclusive write (CREW) model though they do not appear to make any essential 

use of concurrent reads. Miller and Reif [MR85] describe a deterministic algorithm 

which runs in O(log n ) time with O(n) processors. They present their algorithm in the 

context of dynamic expression evaluation for an expression presented in the form of a 

parse tree. A single step of their algorithm converts a current binary parse tree to a 

simpler one by removing in parallel all leaves (RAKE operation) and compressing 

maximal chains of nodes with only one child (COMPRESS operation). They show that 

after O(log n) such steps a given tree is reduced to its root. 

Miller and Reif apply their method to construct parallel algorithms for 

problems which can be reduced to computation on trees. They give a randomized 

algorithm for testing isomorphism of trees, a deterministic algorithm for constructing a 

tree of 3-connected components of a planar graph, and other algorithms. 

1Throughout this paper trees are all rooted and ordered. These adjectives will not be repeated hereafter. 
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He [H86] defines the binary tree algebraic computation (BT AC) problem and 

applies Miller and Reif s technique to obtain a parallel algorithm for this problem. 

Roughly speaking the BTAC problem is to compute the value of an algebraic 

expression given in the form of a parse tree under the assumption that the algebra in 

which the computation is performed has a finite carrier. 

Another approach to dynamic expression evaluation is presented by Gibbons 

and Rytter [GR86]. Their algorithm runs in O(log n) time using O(n/log n) processors. 

They assume, however, that the input (the string representing the expression to be 

computed) is given in an array and is hence preordered. Similarly to He, they prove that 

the algorithm can be applied to compute an algebraic expression in any algebra with 

finite carrier. 

Cole and Vishkin [CV86c] propose an alternative method for computation on 

trees. They solve the tree contraction problem by parallel reduction to the list ranking 

problem. In this respect their approach is similar to ours. Our reduction, an. abstraction 

of the technique used for the parallel preprocessing of region trees for fast (sequential) 

subdivision search [DK87], is simpler and more explicit than that of Cole and Vishkin; 

in particular, it completely avoids the centroid decomposition techniques that lie at the 

heart of their reduction. 

2. Reduction to list ranking 

Within a linked list, the rank of a given element is defined as the number of 

elements following that element. Given a linked list, the list ranking problem is to 

determine in parallel the rank of each element in the list Once each element has its rank, 

an ordered array of elements can be constructed simply by using the rank as an array 

index. The list ranking problem generalizes easily to the weighted list ranking problem, 

where each element has an associated weight and the goal is to determine the weighted 

rank - the sum of the weights of all subsequent elements - for each list element 
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The list ranking problem has received much attention in recent research (cf. 

[ADKP87], [CV86a], [CV86b]) because of its fundamental role in many parallel 

algorithms. Of particular interest is its role in the so-called Euler Tour Technique 

[TV84] which can be used to compute various functions on trees including preorder 

number, postorder number, descendent numbering and others. 

Among the important contributions of Miller and Reif [MR85] is their 

abstraction of the problem of tree contraction. Titls leads to a separation of the problem 

from its familiar applications (notably, dynamic expression evaluation) and places it, 

along with list ranking, among the fundamental problems of parallel computation. A 

natural side effect has been the identification of new and unforeseen applications 

[DK87, He86, GR86]. To further solidify this abstraction we present the following 

definitions. 

We will assume that trees are presented as an (unordered) array of vertices each 

of which has associated with it a parent pointer and a doubly-linked list of children. (Of 

course, it is possible to efficiently convert to or emulate such a representation starting 

with other more primitive representations.) (Successive) vertices on any list of 

children are said to be (immediate) siblings. 

Let T be any binary tree with vertex set V(n. A sequence of trees T 1, T 2 , ••• 

T k is said to be a tree contraction sequence of length k for T if, 

(i) T1 = T; 

(ii) V( Ti ) ~ V( Ti-1) ; 

(iii) I V( Tk) I ~ 3 ; and 

(iv) if v e V( Ti_1) - V( Ti ) then either 

(a) v is a leaf of Ti-I , or 

(b) v has exactly one child, x, in Ti-I• x e V( Ti), and the parent of v 

in Ti-I is the parent of x in Ti. 
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It is clear from the definition that successive trees in a tree contraction sequence 

are formed by "independent" executions of the following two fundamental operations 

(see Figure 2.1): Prune(v)-leaf v is removed from the current tree; and Bypass(v) 

- non-root node v with exactly one child x is removed from the current tree, and the 

parent w of v becomes the new parent of x (with x replacing v as a child of w). 

V 

► 
Prune(v) 

► 
Bypass(v) 

w 

Figure 2.1. Prune and Bypass operations 
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By "independent" we mean that if v is pruned or bypassed then its parent is 

not bypassed. In this way tree modifications are ensured to be local and executable in 

parallel. 

It is clear that every binary tree with n nodes admits a contraction sequence 

of length n; simply prune n - I times in succession until the tree has been reduced to 

its root. On the other hand, since just over half of the nodes can be removed in any one 

step, every contraction sequence must have length at least log(n) - 1. We say that a 

contraction sequence is optimal if it has length O(log n). (Note, it may not be 

immediately obvious that every binary tree has an optimal contraction sequence, let 

alone that such a sequence can be constructed efficiently.) 

The tree contraction problem is to construct, for an arbitrary binary tree T, an 

optimal tree contraction sequence for T. It is not necessary to construct the sequence 

explicitly; it suffices to associate with each node v the index i of the highest indexed tree 

containing v in the sequence, together with pointers to the parent and child (if any) of v 

in Ti, 

It is meaningful to talk about tree contraction for non-binary trees as well. 

While a number of possible definitions suggest themselves the most natural is probably 

that which arises in conjunction with the familiar interpretation of general trees as 

regular binary trees (cf. Knuth[K68], pp. 332-345). Suppose T is an arbitrary ordered 

rooted tree. Consider the tree T constructed from T as follows: If v is a vertex of 

T with d children then the vertex set of T includes v 1, v2, ... , yd+l, Vertex vi+l 

is the right child of vertex vi in T, for 1 ~ i ~ d. Furthermore, if vertex w is the 

ith child of v in T then vertex w1 is the left child of vertex vi in T (see Figure 2.2). 
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T: 

T': 

Figure 2.2 Interpretation of Trees as Binary Trees 

Note that T is a regular binary tree (all of its internal nodes have exactly two 

children). Furthermore, there is no cost associated with the construction of T from T 

since it involves only a reinterpretation of pointers. Any tree contraction sequence for 

T yields - what we might define to be - a tree contraction sequence for T. A 

vertex v of T is pruned or bypassed at step i if the last of its associated vertices 

v 1, ... , vd+l in T' is pruned or bypassed at step i. A straightforward case analysis 

shows that the resulting sequence satisfies the additional "independence" condition that 

no two adjacent siblings are removed simultaneously. Since T has fewer than twice as 
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many vertices as T, it follows that any optimal tree contraction sequence for T yields 

an optimal tree contraction sequence for T. (This reduction of general tree contraction to 

binary tree contraction is similar to the "binarization" step of Cole and Vishkin 

[CV86c].) 

Suppose once again that T is a binary tree. It is clear that if T has height h then 

T admits a contraction sequence of length h consisting entirely of prunes but when T 

is unbalanced such a sequence is far from optimal. Miller and Reif [MR85] introduce 

the idea of path compression - a familiar operation in the context of list ranking - to 

cope with trees, or parts thereof, that have become so unbalanced that they have 

degenerated into paths. Miller and Reif show that by interleaving global pruning ( that 

is, the removal of all leaves) with global path compression (the compression of all 

paths of length greater than one) it is possible to construct an O(log n) contraction 

sequence in O(log n) time using O(n) processors. The complications of Miller and 

Reifs approach, especially with regard to processor reduction, arise in the compression 

step. Our approach differs in that we define the primitive contraction operations at a 

more elementary level. By scheduling the order in which leaves are eliminated it is 

possible to completely eliminate the difficulties associated with path compression. 

Indeed, paths of length greater than two never arise as our algorithm contracts an 

(initially regular) binary tree. 

The pair of operations prune(v) followed by bypass(parent(v)) (where vis any 

leaf) form a conceptual unit in our algorithm. The algorithm proceeds in phases, each 

of which consists of a batch of these basic contractions performed in parallel. The 

independence of the underlying operations is guaranteed by a simple global schedule 

for leaf removal. Let the leaves be numbered in left to right order. A leaf is removed in 

phase t if the rightmost 1 in its leaf index is in position t. 
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Our binary tree contraction algorithm has the following simple description: 

procedure contract (D 

(* Assign leaf indices from O to n - 1 *) 

for each leaf v in parallel 
index( v) f- left_to_right leaf index of v 

(* Contraction iterations. *) 

repeat r log n l - 1 times 
for each leaf v in parallel 

w f- parent (v) 

if index(v) is odd and w * root 
then if v is a left child 

then prune (v) 
bypass (w) 

if v is a right child 
then prune (v) 

bypass (w) 

else index(v) f- index (v) /2 

Note that the innermost if statements, though they have opposite conditions, 

are intended to be executed in sequence, with appropriate synchronization in between. 

Thus, each iteration of the repeat loop has four slots in which prune or bypass 

operations may be executed. Accordingly, we associate four elements of the tree 

contraction sequence with each iteration of the repeat loop, describing the tree after 

each of the four slots. It is also helpful to view the behaviour of the algorithm at two 

other levels. It is immediate from the description that each prune operation is 

immediately followed by a bypass. Hence in each successive pair of slots a number of 

composite prune-bypass operations are executed in parallel. Each pair of these 

composite slots (making up an entire iteration of the repeat loop) serves to eliminate all 

of the leaves with odd parity in the current tree together with their parents. 
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Lemma 2.1. Procedure contract constructs an optimal tree contraction sequence. 

Proof: It suffices to demonstrate that the prunes and bypasses are performed 

independently. Since prunes and bypasses are never executed simultaneously, it need 

only be demonstrated that no vertex v and its parent w are ever bypassed 

simultaneously. Suppose this is not the case. Without loss of generality, v is the right 

child of w. Since they are bypassed simultaneously, they must both have leaves as 

left children. But since these leaves are adjacent in the left to right order and since the 

index array maintains each leafs left-to-right rank in the current contracted tree, v and 

w must have indices of opposite parity, a contradiction. • 

Theorem 2.1. Procedure contract provides an O(log n) time and O(n / log n) 

processor deterministic reduction of tree contraction to list ranking. 

Proof: First note that there is a straightforward reduction of the leaf ranking problem, 

which arises in the first step of procedure contract, to the list ranking problem. The 

method is called the Euler Tour technique [TV84]. Each node v of T is split into three 

nodes vT, vL and vR. For each of the resulting nodes we define a next field as 

follows. If v is a leaf then VT.next= vL and vL.next = vR. If w is the right child 

of v then vL.next = wT and wR .next = vR. If w is the left child of v then 

VT.next = wT and wR .next = vL. What results is a list that starts at root T and ends at 

rootR and traverses each edge of T once in each direction. If we assign weight(z) = 1 

if z = vT and v is a leaf and weight(z) = 0 otherwise, then the weighted rank of each 

node vT, where v is a leaf, gives the leaf index of v in T. 

As a consequence of the above, it suffices to prove that the iterated contraction 

step of procedure contract can be implemented in O(log n) time using O(n/log n) 

processors. An O(log n) time, O(n) processor implementation is immediate; if one 

processor is devoted to each leaf then each phase can be carried out in 0( 1) time. On 

the other hand if each of n / log n processors is assigned to a block of log n 
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successive leaves, the obvious simulation of the O(n) processor implementation incurs 

an additional additive overhead of only O(log n) time (cf. [B74], Lemma 2). • 

It follows from Theorem 2.1 that results for list ranking carry over directly to 

tree contraction. We summarize the most important implication in the following: 

Corollary 2.1. The tree contraction problem can be solved deterministically in 

O(log n) time using O(n / log n) processors. 

Proof: This is an immediate consequence of Cole and Vishkin's O(log n) time 

O(n / log n) processor deterministic list ranking algorithm [ CV86b ]. • 

The deterministic list ranking algorithm of [CV86b], though asymptotically 

optimal, does not provide a practical solution to the problem for lists of realistic size. A 

more practical deterministic solution - which uses O(log n log* n) time with 

O(n I (log n log* n)) processors- is described in [CV86a]. Alternatively, there exist 

practical randomized parallel list ranking algorithms that achieve the asymptotically 

optimal bounds [MR85, ADKP87]. 

3. Algebraic tree computations 

The applications presented in this and the following section serve to illustrate 

our tree contraction algorithm. In particular, we will use the explicit sequence of trees 

created by the algorithm in section 2 and treat each prune and its subsequent bypass as 

an indivisible operation. Though the descriptions benefit from the simplicity of our 

particular approach to tree contraction, it is clear that with suitable modifications other 

tree contraction schemes may be used for these applications. 
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A tree contraction algorithm gives a method for solving a large class of parallel 

tree computation problems. This class includes, for example, dynamic expression 

evaluation ([MR85], [GR86]). He [H86] and Gibbons and Rytter [GR86] noted that 

any algebraic expression with operands from an algebra with carrier of fixed finite size 

can be computed in the cost of tree contraction. This result provides efficient parallel 

algorithms for several optimization problems, for example minimum covering set, 

maximum independent set and maximum matching, when the underlying graph is a tree 

[H86]. 

In fact, we can relax the assumption that the carrier of the algebra is of fixed 

finite size and put some restrictions on the operations only. We can generalize He's 

binary tree algebraic computation problem in the following way: Let S be a set and 

F ~ if If: SxS➔S} a set of two-variable functions over S. The objective of 

bottom-up algebraic tree computations is to take any regular binary tree T whose leaves 

are labelled by elements of S and whose internal nodes are labelled by elements of F 

and to evaluate the algebraic expression associated with T (where functions at internal 

nodes denote operators and elements labelling leaves are operands). 

It is natural (and helpful) to generalize the above notion to include a set of 

functions G ~ {g I g: S➔S}, including the identity function, which serve as edge 

labels and influence the computation in the obvious way. The triple (S, F, G) defines a 

bottom-up algebraic tree computation (B-ATC) problem. Such an problem is said to 

be decomposable if 

(i) the sets F and Gare indexed sets and their elements can be evaluated in 0(1) 

sequential time; and 

(ii) for all gi, gj, e G,fm e F and a e S, the functions g8 and g1 given by 

g8(x) = gi(fm( gjCx), a) ) and g1(x) = gi( f m( a, gj(x) ) ) both belong to G and 

their indices s and t can be computed in 0(1) sequential time from i, j, m and a. 
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Condition (ii) defines a kind of closure operation on the sets F and G. Its 

significance is perhaps most easily understood by referring to the transformations of 

Figure 3.1. 

► 
(a) 

► 
(b) 

a 

Figure 3.1 

Note that any algebra with a finite carrier has associated with it 

a decomposable B-ATC problem. It is also easy to see that general { +, -, *, /} 

arithmetic computations can be described as a decomposable B-ATC problem [B74], 

provided arithmetic operations are assumed to take constant time. 
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Theorem 3.1: If (S, F, G) is a decomposable B-ATC problem then for any input tree 

the associated algebraic expression can be evaluated in time proportional to the cost of 

tree contraction using the same number of processors. 

Proof: Condition (ii) of decomposability guarantees that each of the trees in the tree 

contraction sequence of T can be labelled in such a way that their associated algebraic 

expression is equivalent to that of T. Since this labelling can be computed in 0(1) time 

at each step the entire computation runs in time proportional to that of tree contraction.• 

Remark 3.1: We should note that we can easily modify the general computation 

scheme in such a way that we will compute also all the functions in internal nodes. In 

order to do so each bypassed node should maintain a pointer to the lower level endpoint 

of the bypassing edge (i.e. the node whose computation has to be finished in order to 

finish computation in the given node). For example, in Figure 3.1 the bypassed node 

labelledfm retains a pointer to the leaf labelled a and the root of the subtree Y. After 

finishing the computation of the function in the root we add a new phase to the 

algorithm. In this phase we allow all the internal nodes to finish computation of the 

values of the function assigned to these nodes. The computation is completed at vertices 

in the reverse of their order of elimination in the contraction sequence. 

Remark 3.2: Let us assume that we have computed the value of the expression 

defined by a given tree T. Assume now that we would like to compute an expression 

defined by the same expression tree except that one leaf has a new value. To compute 

this modified expression we can use all the partial results from the previous 

computation with the exception of the values on the path from the leaf to the root. We 

can do it in O(log n) sequential time using information stored in the sequence of trees 

constructed by the contraction algorithm. We need to make only one change in each of 
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the trees. By conditions (i) and (ii) we need constant time to correct each of them. There 

are 0(log n) trees so the algorithm runs in 0(log n) time. As an easy generalization, we 

note that in order to recompute the value of the expression when values in l leaves have 

been changed we need 0(log n) time with 0(min(l, n/log n)) processors. 

The B-ATC problem provides a useful abstraction of many bottom-up tree

based computations. In a number of applications it is necessary to consider top-down 

(or perhaps a combination of bottom-up and top-down) computations based on trees. 

Let S be a set as before and let H ~ {h I h: S➔S} be a set of one-variable functions 

over S. The objective of a top-down algebraic tree computation is to take any regular 

binary tree T whose root is labelled by an element of S and whose non-root nodes are 

labelled by elements of H and to evaluate the function associated with each node in the 

natural way (the root takes its given value and the value of a non-root node is its 

associated function applied to its parent's value). 

As with the B-ATC problem, it is natural to generalize this notion by 

associating elements of H (now assumed to include the identity function) with the edges 

of T as well; the resulting computation are modified in the obvious way. A pair (S, H) 

defines a top-down algebraic tree computation (T-A TC) problem. Such a problem is 

said to be decomposable if 

(i) the set H is indexed and its elements can be evaluated from their index and 

argument in 0(1) sequential time; and 

(ii) His closed under composition and for each hi, hj e H the index of hi o hj can 

be computed in 0(1) sequential time from i andj. 

Theorem 3.2 If (S," H) is a decomposable T-ATC problem then for any input tree T 

the value associated with each vertex can be computed in time proportional to the cost 

of tree contraction, using the same number of processors. 
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Proof: By the decomposability condition, each edge e introduced by a bypass 

operation can, as part of the tree contraction process, be labelled by the composition of 

the functions associated with the nodes and edges on the path (in T) joining the 

endpoints of e. The vertices of T are considered in the opposite order of their 

elimination in the tree contraction sequence. It is straightforward to confirm that the 

value of all vertices in tree Ti can be computed in 0(1) time knowing the values of all 

vertices in tree Ti-l· • 

4. An application of the tree contraction method: Parallel algorithms for 
some problems on cographs 

In this section, we illustrate the application of the tree contraction method to 

the solution of some problems for complement reducible graphs. 

A complement reducible graph, also called cograph, is defined recursively in 

the following way: 

(i) A graph on a single vertex is a cograph. 

(ii) If G and H are cographs, then so is their union. 

(iii) If G is a cograph, then so is its complement. 

A cograph can be represented by its parse tree. Let us assume that this parse 

tree has a form of a full binary tree with two kinds of internal nodes: union nodes and 

complement-union nodes (that is nodes representing complement of the union of the 

graphs described by the descendent nodes). An example of a cograph and its parse tree 

(not unique) is given in Figure 4.1. 
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C 
a b 

b 

Figure 4.1 A cograph and its parse tree (complement union nodes are denoted by *) 

Suppose that G is a cograph and Tis a parse tree representation of G. For 

each node x of T, we denote by Gx the cograph represented by the subtree of T rooted 

at x. It is helpful to label each internal node x of T by its complement parity in T, i.e. 

by 0 if the number of complement-union nodes between the node x and the root 

(inclusive) is even and 1 otherwise. This labelling makes it possible to decide if two 

given nodes (leaves in the parse tree) are connected, simply by checking the label of 

their lowest common ancestor in the parse tree. It also simplifies descriptions of 

algorithms and has been used in conjunction with a normal form for cograph parse 

trees, called cotrees [CLS81]. 

Note that the problem of computing the complement parity of all nodes is a 

simple instance of a decomposable T-A TC problem. The set S is just { 0, 1 } , the root 

is labelled by 1 if it is a complement-union node (0 otherwise), and internal nodes have 

associated the function/(x) = 1 - x if they are complement-union nodes (and /(x) = x 

otherwise). Thus by Theorem 3.2, the complement parity of all nodes can be computed 

in parallel in the time of tree contraction. 
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The representation of a cograph as a parse tree with complement parity 

labelling leads to polynomial algorithms for many problems which are very difficult for 

general graphs ([CLS81], [L71], [S78]). With the help of the parallel tree contraction 

algorithm, some of those functions can be computed in logarithmic parallel time. The 

algorithms presented below can be also applied to the cotree representation of a cograph 

if we assume that they are preceded by a binarization step. 

Consider the problem of computing the size of the largest clique in a given 

cograph G (cf. [S78]). (In the case of cographs this value is equal to the chromatic 

number of the graph.) We assign the value 1 to each of the leaves of G's parse tree T. 

To internal nodes with complement parity O (0-nodes) we associate the function 

fo(x,y) = max(x,y) and to those with complement parity 1 (1-nodes) we associate the 

function / 1 (x,y) = x + y. It is easy to confirm that the value computed at the root of T 

gives the size of a largest clique in G. More generally, the value computed at node x of 

T is the size of the largest clique in G x• if x has the same complement parity as the root, 

and the largest independent set in Gx, otherwise. Call this value the clique size value 

associated with x. 

Notice that it is possible to avoid the preprocessing of the parse tree needed to 

obtain the complement parity. Having an unlabelled parse tree we can compute both 

maximal clique and maximal independent set together and switch those values when the 

complement operation is performed. 

The functions associated with edges all have the form: g(x) = max(a, x+b). 

Initially we set for each edge g(x) = x = max(O, x+o). To prove that the problem can be 

solved in the cost of tree contraction it suffices to check condition (ii) in Section 3. But 

that follows easily from the identity max(u, v) + max(w, x) = max(u+w, u+x, v+w, 

v+x). 

More generally we can find the size of a largest clique of an arbitrary chosen 

induced subgraph of G. To do so simply assign 1 to the leaves of T representing nodes 
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of the chosen subgraph and O to all other nodes. With this modification the above 

algorithm finds the size of a largest clique in the subgraph induced on the chosen 

nodes. Note that if the chosen subgraph is updated (by adding or/and removing some 

nodes) the result can be recomputed in the way described in Remark 3.2. 

By exchanging functions in 0-nodes with functions in 1-nodes we obtain an 

algorithm for computing the size of a largest independent set in the given cograph. 

Using the tree contraction method we can also solve the following problems for 

cographs : number of maximal cliques , number of maximal independent sets, number 

of cliques of largest size and number of independent sets of largest size. 

Finally, consider the problem of identifying a clique of maximum size in G. 

Specifically, we would like to label the leaves of T by O or 1 according to whether or 

not the corresponding node belongs to the chosen largest clique. More generally, we 

would like to compute at each non-root node x a binary value indicating whether or not 

any node of Gx belongs to the chosen largest clique. Call this the clique choice value 

associated with x. Assume that we have evaluated the clique size value associated with 

all of the internal nodes in T (cf. remark 3.1). We now associate new functions with 

each non-root node of T as follows. Suppose that x is a node with children y and z in 

T and suppose, without loss of generality, that the clique size value of y is at least the 

clique size value of z. If x has complement parity 1 then both y and z are assigned the 

identity function. Otherwise, y is assigned the identity function and z is assigned the 

zero function. 

If the root is assigned the value 1 then this local assignment of functions 

creates an instance of another decomposable T-ATC problem. A leaf x gets the final 

value 1 if and only if all of the vertices on the path from x to the root are assigned the 

identity function. By construction, the lowest common ancestor of any two leaves with 

final value 1 must have complement parity 1 (i.e. they must be connected in G). 

Furthermore, if the maximum clique has size t, then exactly t leaves get final value 1 
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(i.e. these leaves form a maximum clique). By Theorem 3.2, it follows that a clique of 

maximum size in a cograph (represented by its parse tree) can be identified in parallel in 

the time of tree contraction. 

5. Discussion 

The optimal reduction of tree contraction to list ranking allows us to construct 

a simple tree contraction algorithm which runs in the cost of the chosen list ranking 

algorithm. As a consequence, we have an optimal solution to parallel tree contraction 

using the list ranking results of Cole and Vishkin [CV86b] 

Gibbons and Rytter [GR86] have presented an optimal algorithm for dynamic 

evaluation of algebraic expressions assuming that the input is given in an array. They 

apply the algorithm of Bar-On and Vishkin [BV85] to obtain a parse tree. The leaves 

of the parse tree are numbered from left to right on the basis of their index in the input 

array. This numbering makes it possible to group leaves in blocks of O(log n) size and 

then to perform computation in each block in parallel. As a result the parse tree is 

contracted to a tree of size O(n/log n), at which point the algorithm of Reif and Miller 

computes the tree contraction using an optimal number of processors. 

If we assume that the input is given in the form of a binary tree instead of an 

array the algorithm of Gibbons and Rytter can still be applied by numbering the leaves 

of the tree in a preprocessing step. As in our algorithm, this can be done in the cost of 

list ranking using the Euler tour technique [TV84]. An advantage of our approach is 

the clear identification of the role played by list ranking in tree contraction. In our 

approach the method in which a tree is contracted does not depend on the actual size of 

the tree. In this respect, our approach is more similar to that of Cole and Vishkin 

[CV86c]. 
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Cole and Vishkin's tree contraction algorithm uses the same two basic parallel 

operations as ours. The first stage of Cole and Vishkin's algorithm is to compute for 

each tree vertex v the function SIZE(v), which is equal to the number of nodes in the 

subtree rooted at v. This step is done using the Euler tour technique. Then, using 

function SIZE, the tree is partitioned into the so-called centroid paths. The bypass 

operation can be applied only to a node which does not have a non centroid child. The 

next step of the algorithm ( called the scheduling stage) is to compute the order in which 

the prune and bypass operations should be performed. In the last stage, called the 

evaluation stage, the prune and bypass operations are performed according to the order 

computed in the previous stage. In the evaluation stage some work has to be done in 

order to assign processors to the jobs. 

In our algorithm the reduction to list ranking is done in a simpler way. The 

only information which is used to schedule the order of performing bypass operations 

is the initial numbering of the leaves. Consequently we do not need a separate 

scheduling phase, which in Cole and Vishkin's algorithm is quite complicated. Also the 

assignment of processors to the jobs is simpler in our approach. 

Acknowledgment. We wish to express our thanks to Nicholas Pippenger who first 

pointed out the connection between our work on parallel processing of region search 

trees [DK87] and Miller and Reif's work on parallel tree contraction [MR85]. 
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