
FORMALIZING ATTRIBUTION BY DEFAULT 
by 

Paul C. Gilmore 

Technical Report 67-26 
July 1967 

ABSTRACT: Attribution by default occurs When, in the absence of 
information to the contrary, an entity is assumed to have a property. The 
provision of information to the contrary results in the withdrawal of the 
attribution. It has been argued that classical logic cannot formalize such 
commonsense reasoning and that the development of a nonmonotonic logic 
is necessary. Evidence is offered in this note that this is not the case for 
some important defaults. 



1. Introduction 
To assert "AU birds fly" is to attribute the ability to fly to each and 

every bird. From that assertion, and the knowledge that Tweetie is a bird, 
follows inevitably the attribution of the ability to fly to Tweetie. The 
discovery that Tweetie is a nonflying bird of some kind, say a penguin, 
results in a contradiction. But if the first attribution is intended as a 
default attribution, that is the intent of the assertion is "In the absence of 
evidence to the contrary, assume of each bird that it can fly", no 
contradiction results since the discovery that Tweetie is a penguin is 
evidence that Tweetie cannot fly. 

It has been argued by Minsky in [ 1], by Reiter in [2], and by Etherington 
in l.31, that this and other examples of attribution by default provide 
evidence for the failure of classical logic as a substitute for commonsense 
reasoning and that the development of a nonmonotonic logic is necessary. 
This short note demonstrates that this is not the case for some important 
defaults. A formalization of attribution by default is possible within a 
classical logic through the use of the standard database method of 
recording attribution, and the recognition of the subtleties of updating a 
database. 

2. Purpose of Admitting Defaults 
There is an underlying assumption in this paper as to the purpose of 

admitting attribution by default that should be explicitly stated. 
A database management system is used by an enterprise to maintain a 

repository of data from Which, through proper interpretation, the 
information essential to the operation of the enterprise can be obtained. 
The advantages cited by Date in [SJ for the use of a database management 
system are the reduction of redundancy, assistance in the elimination of 
inconsistencies and inaccuracies, the sharing of data by many users, and 
the enforcement of standards and security restrictions. As the information 
recognized as essential to an enterprise grows in sophistication and 
subtlety, so too must the database. More advanced databases are now 
called knowledge bases, since the interpetation of the data recorded in 
them results in qualitatively different kinds of information from that in 
traditional databases. Nevertheless the advantages cited for database 
management systems must not be lost for knowledge base management 
systems intended for wide application. 

Enterprises operate in a world in Which much of What should be known 
is not, and in Which some of What is known is incorrect. Database 
management systems must assist enterprises in reducing ignorance and 

2 



error. Such systems must be able to remind their users of missing data, 
and notify them of what might be unanticipated consequences of proposed 
updates. To the extent that it is possible for what may be a distributed 
repository, the internal consistency of the repository should be maintained. 
This paper is intended as a contribution to the development of such 
systems. 

The development of knowledge bases for purposes other than for use 
by an enterprise may, of course, be necessary. For example, the 
development of a system having some of the characteristics of human 
knowtege bases, such as faulty reasoning, inconsistent beliefs, and leaps of 
imagination, may be essential for the testing of theories of human 
reasoning, but this paper is not intended as a contribution to such a 
development. 

3. Predicates and Attributes 
Predicate letters are used in first order logic to express membership in 

sets. For example, 'BIRD' may be used as a predicate letter of arity one to 
express in the assertion 'BIRD(x)' that what ·x· denotes is a member of the 
set of birds. A syntactic variant of this assertion is ·x:BIRD', where ·:· has 
been used instead of the conventional 'e:' to express set membership. If 
'Tweetie' is admitted as an individual constant, then 'Tweetie:BIRD' is true 
when'Tweetie' denotes the bird in question and 'BIRD' denotes the set of 
birds. In a similar fashion an assertion 'Tweetie:FLIES' can be used to 
express that Tweetie can fly. But the difficulties with attribution by 
default suggest that that is a poor formalization. 

Using current terminology for database design, the set BIRD is an entity 
set, and FLIES is an attribute of BIRD. Depending upon the scope of the 
database to be developed, BIRD may be a primitive set without a larger set 
as its domain, or it may have a larger set say ANIMAL as its domain, 
meaning that BIRD is declared to be a subset of ANIMAL. In the second 
case FLIES may be an attribute of the larger set, and therefore also of BIRD, 
or it may be an attribute of BIRD but not of ANIMAL. Which of these 
options is chosen is irrelevent to the purposes of this note; it will be 
assumed that BIRD is a primitive set. More accurately, using the 
terminology of [61, BIRD is assumed to be a primitive~ set. A base set, 
in contrast to a defined set, has an intension that can only be understood 
by humans. No machine can be programmed to recognize whether an 
entity is a bird or not; representatives of birds are added to BIRD at the 
request of users of the database. In contrast the number of members of 
BIRD can be determined at any time by the database system. 

FLIES is an attribute of BIRD, not an entity set with domain BIRD, 

3 



although a subset o! BIRD consisting o! those birds that fly can be defined 
in terms o! the FLIES attribute. An attribute is an association between an 
entity set and some set o! strings ca11ed the value set !or the attribute. For 
example, the value set VFLIES !or the FLIES attribute will be defined to be: 
(a) VFLIES !or {v:STRING I V•'F' v V-='NF' }. 
Here STRING is a primitive defined set, or type, admitted !or the database 
system, and ·.,· is identity !or the type. Sequences o! letters enclosed 
between single quotes are assumed to be names of members o! STRING 
recognized by the system. The value set VFLIES, like au value sets, is a 
defined set. From the machine interpretable intension of VFLIES the 
system can determine the membership o! VFLIES. 

The FLIES attribute is a base set with domain BIRDxVFLIES; that is, the 
members of FLIES are ordered pairs <X,V> chosen by users, with x taken 
from BIRD and v from VFLIES. FLIES is base rather than defined because 
only a user can determine Whether the entity represented by a member of 
BIRD is able to fly. However, not just any subset o! BIRDxVFLIES is 
acceptable as the extension o! FLIES; only one o! the strings 'F' and 'NF' can 
be assigned to a member o! BIRD. Therefore the following integrity 
condition must be satisfied: 
(b) [V<X,U>,<X,V>:FLIES] U=V. 
Here '[V <X,U>,<X,V>:FLIES]' is a generalized quantifier sanctioned in the 
language DEFINE introduced in [6). The integrity condition would be 
expressed in conventional quantifier notation as follows: 

[Vx][Vu,v]( <X,U>:FLIES /\ <X,V>:FLIES ::> U=V ). 
The advantage o! the generalized quantifier is that the narrowing o! the 
range o! the variables implicit in the antecedent o! the conditional is made 
explicit. 

It should be expected that a second integrity condition is also satisfied, 
since every bird either !lies or does not fly: 
(c) [Vx:BIRD][(B:v:VFLIES] <X,V>:FLIES. 
But i! a user is permitted to be silent on Whether a particular bird such as 
Tweetie !lies, then this condition clearly is not satisfied !or FLIES. The 
possibility o! databases in Which (c) is not satisfied is the advantage 
obtained from the additional complication o! treating FLIES as an attribute 
rather than as a subset o! BIRD. 

Although FLIES is a base set, a subset FLYING-BIRD o! BIRD can be 
defined in terms of it: 

FLYING....BIRD !or { x:BIRD I <X,'F'>:FLIES }. 
Just as the membership of VFLIES is determined by its machine 
interpretable intension, so also is the membership of FLYING....BIRD 
determined by its intension. But it is critical to note that a user cannot 

4 



update the membership of FLYING-BIRD directly, only the system can and 
does do that. But a user can update the membership of any base set, such 
as BIRD and FLIES, and so affect the membership of defined sets. 

4. Attribution by Default 
Assume that Tweetie has a representative Which is a member of BIRD, 

and that "Tweetie' is an individual constant Which denotes that 
representative. To add the pair <Tweetie,'F'> to FLIES is to attribute the 
ability to fly to Tweetie. To assert 

[Vx:B ]<X, 'F'>:FLIES 
is to attribute the ability to fly to every bird. If it is not true that every 
bird flies, then the assertion should not be made. If it is intended that a 
bird x should be assumed to be a member of FLYING-BIRD unless 
<X,'NF'>:FLIES is known to be true, then another definition of FL YING-BIRD 
is needed. 

Consider the attribute DFLIES of BIRD defined as follows: 
(d) DFLIES for { <X,V>:BIRDxVFLIES I <X,V>:FLIES V 

([Vu:VFLIES] -<X,U>:FLIES /\ V='F') } . 
Note that DFLIES satisfies (b) since FLIES does, and in contrast to FLIES, 
satisfies (c) as well, even When a user is silent on Whether a bird flies or 
not. For example, if a user has added neither <Tweetie,'F'> nor 
<Tweetie,'NF'> to the membership of FLIES, then the assertions 

<Tweetie,'F'>:FLIES and <Tweetie,'NF'>:FLIES 
are both false While the assertion 

[Vu:VFLIES) -<Tweetie,u>:FLIES /\ V•'F' 
is true When v is bound to 'F', since the assertion 

-<Tweetie, 'F'>:FLIES /\ -<Tweetie, 'NF'>:FLIES /\ 'F'='F' 
is true. Therefore <Tweetie,'F'> is a member of DFLIES, even though it is not 
a member of FLIES. If DFLIES replaces FLIES in the definition of 
FLYING-BIRD, 
(e) FLYING-BIRD for { x:BIRD I <X,'F'>:DFLIES } 
then Tweetie is a member of FLYING-BIRD. The database system will 
respond to a query as to the membership of FLYING-BIRD with a list that 
includes Tweetie. 

Should <Tweetie,'NF'> become a member of FLIES at some later time, 
either because a user explicitly adds it, or because it can be inferred from 
other assertions, then the definition of FLYING-BIRD assures that Tweetie 
is removed as a member. At that time the database system will respond to 
a query as to the membership of FLYING-BIRD with a list that does not 
include Tweetie. 

In a similar fashion a don't know null value 'D/K' can be provided for 

5 



attributes Whose values should be, but are not known. Let A be a base 
attribute on a set E with value set V. Assume also that 'D/K' is not a 
member of V and that V+ is V enlarged to include it. Let the set DA be 
defined: 

DA tor {<X,V>Ex:V+ I <X,V>:A v ([Vu:V] -<x,u>:A & v='D/K' )}. 
Then Whenever a value for A has not been given for a member e of E, 
<e,'D/K'> is a member of DA. I! a relation displaying the attributes of E is 
defined in terms of DA, rather than A, then 'D/K' would be recorded in the 
appropriate row and column as the value of DA. 

The examples of default attribution described by Reiter in [2] and by 
Etherington in (31 can be dealt with in a similar fashion. Whether the full 
power of the default logic introduced by Reiter in [2], and the wider 
purposes of circumscription described by McCarthy in [41, can be realized 
remains to be seen. 

5. A Formal Theory 
A formal logic can be defined for those Who favour this method of 

providing semantics for complex theories. The basis ror the logic is the 
natural deduction based set theory NaDSet presented in [71, and the 
language DEFINE of the SET conceptual model described in [6] and [a] and 
motivated in [a] and [91. The rules for first order quantification in NaDSet 
must be modified to accomodate the gel).eralized quantifiers allowed in 
DEFINE. 

In its second order form, the set INTEGER of integers can be defined 
within NaDSet. The members of INTEGER are available as representatives 
for entities; they be chosen to be the names satisfying the unique name 
axioms described by Reiter in [ 1 O]. In particular they may be chosen to 
represent the members of the set STRING. Alternatively, the first order 
form of NaDSet may be used and the unique name axioms added as 
additional true ground assertions. Ordered pairs can be defined in NaDSet, 
if desired, or for simplicitiy's sake may be assumed primitive. 

By instructing the system to add members to base sets, users ensure 
that representatives of members are added to the sets. However, from the 
point of view of the system, the base sets, for any given state of the 
database, can be regarded as defined sets of representatives. For example, 
let b 1, ... , bk be the distinct representatives that have been chosen to be 

members of BIRD. Then the extension of BIRD, as far as the system is 
concerned, is determined by the definition: 

BIRD for {u:INTI U•b 1v ... v U•bk}. 

From this definition the ground atomic facts and the completion axiom for 

6 



the predicate BIRD described by Reiter in [ 1 OJ are derivable in NaDSet 
using the set abstraction rules o! the set theory. 

A definition o! VFLIES has already been given !rom which its ground 
atomic !acts and completion axiom can be derived. The base set FLIES has 
its membership o! pairs <b,V> determined by a definition similar to that of 
BIRD. Again the corresponding ground atomic !acts and completion axiom 
are derivable. Further i! the membership o! FLIES has been chosen to 
satisfy the integrity constraint (b), then (b) is derivable in the theory. 

Finally the memberships o! the defined sets DFLIES and FLYING-8IRD 
are determined in NaDSet !rom their definitions (d) and (e) and their 
ground atomic tacts and completion axioms are derivable. 

Thus, i! desired, a fully formal logic o! attribution by default can be 
provided Within a classical set theory. But because the base sets are 
restricted to being finite, the theory is unlikely to provide much help for 
computation, since quantification over such sets must be reduced to 
conjunctions and disjunctions of ground atomic facts. The theory does, 
however, provide some assurance that the ideas are sound, even though it 
is not a part o! the implementation described by Morrison in [ 11 ]. 

Acknowtedgment 
Beneficial conversations with Roderick Morrison and George Tskinis are 

gratefully acknowledged as is the support of the Natural Science and 
Engineering Research Council o! Canada . 

. Bibliography 
1. Minsky, M., A framework for representing knowledge, P. Winslow 

(ed.), The psycholo~y of computer Vision. McGraw-Hill New York 
( 1975). 

2. Reiter, R., A logic tor default reasoning, Arti!. In tell. 13 ( 1960) 61-132. 
3. Etherington, D., Formalizing nonmonotonic reasoning systems, Artif. 

Intell. 31 0967) 41-65. 
4. McCarthy, J., Applications of circumscription to formalizing 

common-sense knowledge, Artif. Intel!. 26 (1966) 69-116. 
s. Date, C.J .. An Introduction to Database systems. Addison-Wesley, New 

York, Cl 961 ). 
6. Gilmore, Paul C., The SET conceptual model and the domain graph 

method of table design, Dept. of Computer Science, University of B.C. 
Technical Report 67-7 (March 1967). 

7. Gilmore, Paul C., Natural deduction based set theories: a new resolution 
of the old paradoxes, J. of Symbolic Logic 51 ( 1966) .393-411. 

6. Gilmore, Paul C., Justifications and applications o! the SET conceptual 

7 



model, Dept. of Computer Science, University of B.C. Technical Report 
a7-9 (April 19a7). 

9. Gilmore, Paul C., A foundation for the entity-relationship model: Why 
and how? Dept. of Computer Science, University of B.C. Technical Report 
a 7-11 (April 19a 7). To appear in the proceedings of the 6th 
Entity-Relationship conference (November 19a 7). 

1 O.Reiter, Raymond, Towards a logical reconstruction of relational 
database theory, Michael L. Brodie, John Mylopoulos, Joachim W. 
Schmidt (eds) on Conceptual Modellin~. Springer-Verlag Berlin ( 1984) 
191-23a. 

11. Morrison, Roderick, Implementation considerations for a set based data 
model and its data definition/manipulation language. PhD thesis, Dept 
of Computer Science, University of British Columbia. In progress. 

8 


