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Abstract 

This paper shows how to integrate constraint satisfaction techniques with schema­

based representations for visual knowledge. This integration is discussed in a progres­

sion of three sketch map interpretation programs: Mapsee-1, Mapsee-2, and Mapsee-

3. The programs are evaluated by the criteria of descriptive and procedural adequacy. 

The evaluation indicates that a schema-based representation used in combination with 

a hierarchical arc consistency algorithm constitutes a modular, efficient, and effective 

approach to the structured representation of visual knowledge. The schemata used 

in this representation are embedded in composition and specialization hierarchies. 

Specialization hierarchies are further expanded into discrimination graphs. 





1 Introduction 

This paper is concerned with the use of constraint satisfaction techniques in model­

based computational vision. Particular attention is paid to the integration of con­

straint satisfaction techniques with schema-based representations. This methodology 

is examined under two criteria: descriptive adequacy, the ability of a representational 

formalism to capture essential visual properties of objects and relationships in the 

visual world, and procedural adequacy, the capability of the representation to support 

efficient processes of recognition, generation, knowledge acquisition, and search [27]. 

Imagine a "general-purpose" vision system which takes as input a digitized picture 

of a natural scene and which produces as output a meaningful description of such a 

scene. Knowledge of a wide variety of domains would be represented in such a sys­

tem. The system would be able to interpret virtually any image without specific prior 

expectations of the domain of interpretation. The system would be capable of de­

scribing each image and scene at different levels of detail and abstraction ( descriptive 

adequacy). As well, it would be able to transform a description of the image in terms 

of significant features into a domain-specific scene description correctly, quickly, and 

flexibly (procedural adequacy). 

The prospect of such a "general-purpose" system remains a vision of the not 

so near future. The main dilemma is that computational vision is inherently an 

underconstrained task. The image formation process confounds information about 

the objects and their spatial relationships, the image projection process, the surface 

reflectance properties of scene objects, the occlusion of surfaces, the viewing position 

of the observer, and the like. To overcome this dilemma, computational vision systems 

must use additional sources of knowledge to provide the necessary constraints to the 

recognition process. These constraints can range from general knowledge assumed 

valid for all scenes (Early Vision) to specific knowledge about scene objects and their 

legitimate configurations (Model-bastd Vision) [23]. 

1 



Research in computational vision has successfully exploited assumptions about sur­

face descriptions [28], scene illumination and surface continuity [14], viewing position 

[9,1], lighting position [48], surface reflectance [42], motion [45,18], surface topol­

ogy in scene analysis [36,15,6,46], and surface orientation [19,16]. Unfortunately, 

these constraints, while apparently necessary for producing scene descriptions in a 

particular application, are not valid for all scene domains. General knowledge is 

frequently embedded in the particular theory being implemented and not explicitly 

represented. Furthermore, many scene level constraints are only valid for particular 

objects and particular scene configurations. Computational vision requires explicit 

object-oriented representations of visual knowledge. The schema-based methodology 

discussed in this paper provides such a representation. 

Research directed towards characterizing effective representations for visual knowl­

edge forms one part of efforts to establish a coherent theory for visual perception. 

The coordination among different knowledge sources through constraints forms an­

other part. Most model-based vision systems obtain access to the knowledge base of 

a particular domain after a segmentation process has scanned the image in search of 

particular features. The description of these features imposes constraints on the in­

terpretations possible. Features, constraints, and interpretations can be represented 

as a graph (or hypergraph) with the features as variables, each with an associated 

domain of possible interpretations, and the constraints as relations. Suppose there 

are n variables each with domain size a and there are e relations among the vari­

ables to be satisfied. The problem of finding globally consistent interpretations for 

the image then becomes the problem of finding all possible n-tuples, such that each 

n-tuple is an instantiation of the n variables satisfying the relations. This problem 

is the Constraint Satisfaction Problem (CSP}[20]. Since, in its full generality, CSP 

is NP-hard the existence of algorithms that solve this problem in less than exponen­

tial time is unlikely. Depth-first backtracking, for instance, is of O(ea") in its worst 

case performance [24]. Such performance causes major difficulty in a general-purpose 
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vision system in which we can expect domain sizes to be very large. 

A variety of approaches have been taken to solving CSP's [26]. In particular, since 

the vision CSP is NP-hard various polynomial constraint satisfaction approximation 

algorithms that use constraint propagation techniques are attractive. In the next 

section we briefly discuss this approach. 

This paper focusses on the integration of constraint propagation techniques with 

schema-based representations. We discuss this interaction in a progression of three 

sketch map interpretation progams. In these programs a scene interpretation takes 

the form of a scene constraint graph. Schema-based representations are involved in 

the construction of this graph, whereas network consistency algorithms control the 

propagation of constraints through the graph. 

Sketch maps provide a profitable domain for studying visual knowledge in relative 

isolation while not ignoring the problems of segmenting and interpreting real imagery. 

Sketch maps capture in a simple form fundamental problems of representing and 

applying knowledge. Furthermore, techniques for understanding sketch maps have 

application in interpreting real imagery [8,43]. All three programs, Mapsee-1, 2, and 

3 are evaluated using the evaluation criteria of descriptive and procedural adequacy. 

A schema-based representation is introduced in Mapsee-2. 

2 Constraint Propagation 

In a graph that contains n variables, a constraint satisfaction algorithm has to test all 

possible explicit and implicit k-ary constraints ( k :5 n). The term constraint propaga­

tion is often used as an umbrella for a group of algorithms which propagate constraints 

over a graph but which do not always solve the constraint satisfaction problem. They 

are. approximation algorithms in that they enforce necessary but not always sufficient 

conditions for the existence of a solution. Constraint propagation algorithms evolved 

from research in the polyhedral domain [46,20], but have a much wider applicability 
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[26]. Most of these algorithms a.re characterized by the fact that they test constraints 

in a local neighbourhood only. Node consistency [20], for example, tests for unary 

constraints only, arc consistency [20,24] tests unary and binary constraints, whereas 

k-consistency [7] tests up to k-ary constraints (k :5 n). 

In order to find all n-tuple variable instantiations that satisfy the constraints, con­

straint satisfaction algorithms have to test all possible combinations between values 

in the variable's domain. Algorithms like depth-first backtracking keep an explicit 

record of consistent value combinations. Image features have many possible local in­

terpretations. However, when more global constraints are imposed most of the local 

interpretations are invalidated. One pa.rticula.r weakness of depth-first backtracking is 

that it keeps track of many interpretation combinations which will eventually be elim­

inated. The advantage of constraint propagation algorithms such a.s arc consistency 

is that it does not keep track of all interpretation combinations. Arc consistency tests 

and eliminates domain values that a.re inconsistent with all values in the domains of 

adjacent variables. 

The algorithm AC-9 [20] illustrates this operation which is characteristic for con­

straint propagation algorithms. Various derivatives of this algorithm were used in the 

Mapsee programs to be described later. A C-9 tests for unary and binary constraints. 

Each edge in the constraint graph is replaced by two directed arcs. First, AC-9 tests 

the unary constraints in the graph. Node i, which consists of vertex i, its associated 

domain (Di}, and the unary constraint Pi, is node consistent iff 

('v'x){(x E Di) :) Pi(x)} 

This consistency can be obtained by applying the domain restriction operation: 

Di +- Din (xlP(x)) 

Next, we test binary constraints. Arc ( i, i) is arc consistent iff 

('v'x){(x E Di) :::> (3y)[(y ED;) I\ Pi;(x, y)]} 
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That is, for every element in D, there exists at lea.st one element in D, such that the 

binary constraint P,, is satisfied. The corresponding domain restriction operation 

ensures that all elements in Di which are not arc consistent are removed from Di: 

With the set of operations given above, A C-9 has the following structure: 
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procedure NC((i)) 
1. begin 
2. D, - D; n (xlP;(x)) 
3. end 

procedure REVISE ( ( i, j)) 
1. begin 
2. DELETE - false 
3. for ea.ch (x E D.-) do 
4. if there is no, (y ED,) such that Pi,(x,y) then 
5. begin 
6. delete :r from D; 
7. DELETE -- true 
8. end 
9. return DELETE 
10. end 

procedure AC-3 
1. begin 
2. for i - 1 until n do NC((i)) 
3. Q - {(i,j)l(i,j) E arc.s(G),i # j} 
.C. while Q not empty d0i 
5. begin 
6. select a.nd delete any a.re (k, m) from Q 
7. lf REVISE ((k,m)) then Q +- Qu {(i,k)l(i,,) E arca(G) 

i ~ k} 
8. end 
9. end 
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The operation described in line 7 of AC-S ensures that upon deletion of an element 

m the domain of vertex k arcs incoming to k are added to Q. A C-S does not maintain 

an explicit record of value compatibility. REVISE discontinues the search at the first 

y in D; for which Pi; ( x, y) . 

AC-Sis a polynomial time algorithm which is a major advantage. Based on the 

number of predicate evaluations, AC-Sis of O(eas) in the worst case and of O(ea2
) 

in the best case [24]. This is a major improvement over exponential depth-first 

backtracking. 

The price, of course, is that AC-S is not guaranteed to solve the constraint satis­

faction problem. The strength of algorithms like A C-S is that they can be used as a 

pre-processor for a constraint satisfaction algorithm such as backtracking or recursive 

a.re consistency with domain subdivision. AC-S removes all elements that a.re locally 

inconsistent. This has the net effect of reducing the domain size of each variable. 

Thus, backtracking can operate with a relatively small domain size. Experience with 

the Mapsee programs has taught us that AC-Soften reduces the domain size of each 

variable to one. In this case, this corresponds to a solution. Under this circum­

stance AC-S provides a linear time algorithm for finding the one solution satisfying 

all constraints. 

The complexity properties make constraint propagation algorithms a.n attractive 

tool to uae in image interpretation. Az. mentioned before, general-purpose vision 

systems will have to cope with large domain sizes. Efficient constraint satisfaction 

algorithms are therefore necessary. Efficient constraint propagation, however, is not 

the only problem model-based vision systems have to overcome. The construction of a 

comtraint graph over which the constraints are propagated is a problem by itself. We 

will aee that combining a schema-based representation with constraint propagation 

techniques can provide a modular and efficient integration of graph construction a.nd 

constraint propagation. Additionally, this methodology will be seen to provide a high 

level of both descriptive and procedural adequacy in a vision system. 
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All programs discussed in the next three sections are part of the Mapsee project, a 

project that studies different schemes for representing, and evaluating visual knowl­

edge. Different knowledge representation schemes have been implemented as sketch 

map interpretation programs. We will describe three such programs: Mapsee-1, 2, 

and 3. None of these programs, however, will be described in detail. A description of 

Ma.psee-1 appeared in [21]. No implementation-level description of Mapsee-2 exists, 

other than the one provided here. Some of Mapsee-2's design principles have been 

reported before [11,12]. Some aspects of the Mapsee-3 program have been reported 

elsewhere [31,32,33,34]. 

3 Mapsee-1 

Sketch maps are man made images whose semantics are rich and clean, and they can 

be codified and exploited. Sketch maps can be freehand sketches, or, as is the case in 

Fig. 1, they can be created by tracing an aerial photograph or cartographic map. The 

semantics of sketch maps are partially natural (e.g. the shape of rivers, roads and 

coastlines) and partially conventional ( e.g. bridges and mountains). An important 

property shared with real imagery is that image features are highly ambiguous when 

it comes to interpretation. Line segments, for instance, can be roads, rivers, shores, 

bridges, town, and mountains, whereas the "empty" areas in between can be land or 

water. 

3.1 Segmentation 

All Mapsee programs go through a more or less uniform segmentation stage first. We 

therefore discuss this stage as a common basis for all three programs. The sketches 

are encoded as a series of "goto" and "plot" commands. Both commands specify a 

mave between two coordinates in an x-y frame while the pen is up or down. 

The objective of segmentation is the construction of primitives and features. The 
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Figure 1· Lo . wer Mainl d an of British Col . umb1a 
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primitives are the elements of the image. They are considered to represent a scene 

object or parts of it. The features, on the other hand, are the image properties that 

constrain the possible interpretations for the primitives of which they are a part. 

Features also serve as cues for interpretation. Regions and line segments ( called 

chains) are the primitives in Mapsee. Figure 2 shows the different junction types 

used as features in Mapsee-1. Figure 3 shows the possible interpretations for each of 

them. Each feature constrains the interpretations for each of the adjacent chains and 

regions. For instance, the stem of a Tee junction can be a river, the bar a shore, one 

of its regions (RA) sea, and the other two land. Another possibility is a mountain 

interpretation for both the stem and bars, in which case all regions must be land. 



P.A bar-chem R- lerge R- large 

t::~l chefn / 
R _,,, R-~mell 

-chsi n 

TEE OBTUSE L ACUTE L 

Region-surround 

•---
CLUSTER 

C ............ 

chein ) 

LINK 

Figure 2: Mapsee-1 features 
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No search is necessary for the line segments a.s they are given in the input. The 

computation of features, on the other hand, requires some shape distinction. A hier­

archical line approximation of each chain provides such a distinction [31]. The points 

of each chain are also represented in a coarse array (32x32). Such a representation 

allG.ws for quick answers to adjacency questions. This representation also supports 

the region formation process. 
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TEE stem-chain bar-chain RA RB RC 

river shore sea land land 

river shore lake land land 

river river land land land 

road road land land land 

mountain mountain land land land 

river bridge land land land 

OBTUSE L chain R-large R-small 

shore lake, sea land 

shore land lake, sea 

road , bridge, river land land 

ACUTE L chain R-large R-small 

shore lake, sea land 

shore land lake, sea 

road, mountain, river land land 

FREE END chain Region-surround 

river land 

mountain, bridge land 

CLUSTER chain Region-surround 

road land 

LINK chain 

shore 

MULTI through-chain chain! chain2 RA RB RC 

river river river land land land 

road road road land land land 

Figure 3: Mapsee-1 cue interpretation catalogue 
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Figure 4: region formation 

Region formation uses a split-and-merge technique [35]. A recursive algorithm 

partitions the image into empty patches. Each non-empty patch is subdivided into 

fom sub-patches. The subdivision continues until a patch is empty or until a pre­

defined minimum patch size is reached. Each set of interconnected empty patches is 

merged to form a region. The patch formation process is conservatively biased. That 

is, abdivision stops well before any "leakage" through (non-intended) gaps between 

chains occur. Figure 4 shows an example of region formation. The minimum patch 

size is relatively large. The waterbody surrounding the island will therefore consist 

of two regions, one of which is shown. This problem is solved during interpretation. 
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Figure 5: The cycle of perception 

3.2 Interpretation 

The segmentation process cumulates in the formation of chains, regions, and cues. 

Mapsee-1 represents its scene models in the form of cue/model tables such as the one 

shown in figure 3. A constraint satisfaction algorithm, called network consistency 

(NC) closely interacts with this table. This interaction takes the form of a cycle of 

perception as shown in figure 5 [22]. The program goes through a sequence of stages 

during each pass: cue discovery, model invocation, model testing, and model elabo­

ration. The cycle is entered at cue discovery which is the equivalent of segmentation. 

Model invocation embodies the construction of a scene constraint graph in which the 

the primitives (chains and regions) are the "variables", each with a domain of possi­

ble interpretations, the arcs are instantiations of the cues found during segmentation. 

Model testing is the equivalent of node consistency described in the previous section, 

whereas model elaboration is an implementation of NC. 

Mapsee-1 closes the cycle. The results of model elaboration are used to resegment 

the image, if necessary. Thus, the two regions surrounding the island in Fig. 4 can be 

merged. The cycle of perception is a useful metaphor for describing and comparing 

control structures in computer vision programs [22]. 

NC is a generalization of AC-9. NC relaxes AC-S's binary constraints in that it 

can deal with arbitrary k-ary relations. Its manner of operation is similar to AC-9 

except that upon completion of the AC-9 part, NC will test whether each domain 
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contains one label only. If this is the case then it terminates. If one domain contains 

more than one label (say b) then NG returns b different scene constraint graphs. 

If more than one domain contains more than one label then one domain is split in 

approximately equal halves and NG is invoked recursively for the two newly generated 

subproblems. 

NG tests the full range of relationships and is therefore a complete constraint 

satisfaction algorithm. However, NG's operation may yield exponential complexity 

because of the recursive domain splitting. A surprising finding, however, was that 

for the sketches tested, the domain splitting operation did not need to be invoked. 

3.3 Discussion 

Mapsee-1 was successful as a demonstration of the applicability of constraint propa­

gation algorithms outside the domain of polyhedral scenes. As well, it is an existence 

proof that cues and descriptive models can also be used outside the polyhedral world. 

On the negative side, Mapsee-1 can be criticized both for descriptive and procedural 

inadequacies [11,12]. Some of these criticism are: 

Descriptive inadequacies. 

1. The cue/model structure has one level only. 

2. A scene interpretation is a label in the domain of a variable. These labels have 

no internal structure. 

3. Many real world scene domain constraints are represented poorly, if at all. 
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Procedural inadequacies. 

1. The interpretation process is essentially data-driven. 

2. The complete scene constraint graph has to be constructed before any model 

can constrain another. 

3. Local control of recognition is not possible. 

4. Alternative scene interpretations are not explicitly available to guide the pro­

gram. 

Mulder [30] has designed and implemented a program that interprets line sketches 

of houses. This program has a multi-level cue/model structure. As a result, more 

real world scene domain constraints can be represented. The multi-level cue/model 

structure allows for a distinction between edge types, surface orientations, surface 

interpretations, and objects. The perceptual cycle in this program is not closed. In­

terpretations at one level serve as cues for the next level up (Fig. 6). The program 

is an interesting illustration of how cue/model hierarchies can be implemented, but 

at the same time it continues to suffer from some of the Mapsee-1 maladies, in par­

ticular, the absence of a structure for describing the scene models and the possible 

relations between them. An altogether different approach for representing models 

was required. The result was Mapsee-2. 
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m el testing ~ 

model aboration • cu discovery 

m el testing ~-----.----- m el invocation 

model aboration ~ cu discovery 

m el testing ~----r-----rn el invocation 

model aboration ~ cu · discovery 

/ 
Figure 6: a multi-level cycle of perception 

4 Mapsee-2 

Mapsee-2 explores schemata [3] as a remedy for the descriptive and procedural inade­

quacies mentioned above. Schemata and related representations [4,10,17,29,37 ,38,39,40,41] 

are receiving considerable theoretical interest in Artificial Intelligence. Schema-based 

representations can be formalized. Havens [13] has proposed a schema labelling the-
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ory in which a schema represents a class by specifying its membership as a small 

number of subclasses that satisfy a set of constraints. The Mapsee-2 knowledge base 

is a partial reflection of this theory. 

Mapsee-2's knowledge base is a collection of schema models. Each model, usually 

called a class represents a set of semantically related scene objects, either concrete 

physical objects or abstract configurations of other objects. The class provides a 

generic description for each of its members by specifying the legitimate relationships 

of the class with the other schemata in the knowledge base. 

Each Mapsee-2 schema class has the following properties: 

• A unique class name which is globally known in the knowledge base. 

• A static label set for the class. Each label in the label set provides a symbolic name 

for a particular role that the schema can play in a global scene interpretation. 

The label set must be discrete, finite, and its labels known a priori for the class. 

• A set of other schema classes from the knowledge base which constitute compo­

nents and super-components for the class. 

• A set of constraints defined over these component classes. Each constraint is a 

k-ary relation over the label set of the class and the label set of some subset of 

its components. The constraints restrict the role of a class as a function of the 

possible roles of its components. 

• A set of procedures called methods. This property is an optional one. By means 

of a method a schema can assume local control of the search for a particular 

constraint among its component classes. Methods implement the concept of 

procedural attachment [47]. 

Figure 7 shows the properties of a geosystem, a generic interpretation for regions. 

A geosystem can be either a landmass, waterbody, lake, ocean, mainland, island, or 
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it can have itself as label if none of the others are appropriate. Any geosystem with 

a mountain-range, road-system, or river-system as a component is constrained to be 

a landmass, mainland, or island. On the other hand, a geosystem with a coastline or 

lakeshore as component will take on different interpretations, depending on whether 

the coastline or lakeshore surrounds the geosystem (outer-shore), or forms a closed 

chain inside (inner-shore). No methods a.re shown for this schema class. 

name: geosystem 

labelset: { geosystem, landmass, waterbody, island, mainland, lake, ocean } 

components: { road-system, river-system, mountain-range, shore } 

super-components: { world } 

constraints components inner-shore outer-shore 

mountain-range 

road-system 

river-system 

shore 

coastline 

lakeshore 

landmass, mainland, island 

landmass, mainland, island 

landmass, mainland, island 

geosystem geosystem 

waterbody, lake, ocean island 

landmass, mainland, island lake 

Figure 7: properties of the schema class geosystem 

4.1 Composition 

Schema representations exploit composition to represent complex objects and their 

configurations. Primitive objects (chains and regions) depict low-level schema-classes. 

Complex scene objects are represented as compositions of simpler schemata. The 

resulting hierarchical structure forms a composition hierarchy. The recognition of 

a complex scene object is achieved by recursively recognizing its component parts 
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so that the internal constraints of its schema remain satisfied. Figure 8 shows the 

Mapsee-2 composition hierarchy and the depiction relations which form the link be­

tween image and scene objects. Note, that a shore is always part of two different 

ge<X!iystems, the one it surrounds, and the one it is surrounded by. 

world 

geosystem 

bridge river ~: ~/ 
¥.am 

= composition 
-- -- = depiction 

mountain-range 

mountain 

Figure 8: Mapsee-2 composition hierarchy 
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4.2 Specialization 

For a.ny schema label set that has more than one label there is a strict hierarchical 

organization which is used by a hierarchical constraint propagation algorithm to be 

discussed later. A label in such a hierarchy intensionally represents the labels that 

descend from it. Two schemata have non-trivial label hierarchies: geosystem and 

shore. Figure 9 illustrates these hierarchies. Hence, the shore label implicitly repre­

sents the fact that the current interpretation is either a coastline or lakeshore. 

island lake ocean 

---- = epecia.lization 

Figure 9: Mapsee-2 specialization hierarchies 

The motivation for a hierarchical label organization is to curb the size of the label 

set of each schema. For instance, the label geosystem can represent the complete set 

of labels that descend from it. 
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class: { geosystem} 

name: { geosystem-2 } 

label set: { island } 

super-components: { world-1 } 

components: { mountain-range-I, shore-1 } 

Figure 10 : a geosystem instance 

4.3 Instantiation 

When a schema is used to represent a particular scene object which is known or hy­

pothesized to exist in the scene, then the class is used to generate a schema instance. 

For example, figure 10 shows an instance of the class geosystem. The instance, named 

geosystem-e, represents the island part of the Gambier Island sketch {Fig. 11). This 

island is an enlargement of one of the islands in Howe Sound {Fig. 1). Upon creation, 

a schema instance inherits the attributes of its parent class. Like their parent classes, 

schema instances are embedded in a composition hierarchy as well, with depiction 

relations to the image primitives that depict them. Figure 14 shows the network for 

the schema instances created for the Gambier Island sketch. This network consti­

tutes the scene constraint graph for the particular image. The variables (nodes) are 

the schema instances, the label set of the instance constitutes the domain {shown in 

brackets in figure 14), and the edges represent the binary composition constraints. 

4.4 Hypothesis trees 

Figure 14 shows the final scene constraint graph (SCG). Each instance has one label 

only, and thus one interpretation. At the start of the interpretation process, however, 

the situation is quite different. Because of the ambiguity in many image cues, different 

schemata compete with each other in interpreting a particular primitive. Hence, 
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RtQ1on- 1 

Reqfon-2 

Chain-7\ /\\hain-5 

Chain- 1 

Figure 11: Gambier Island 

instantiations of competing schemata have to be maintained as hypotheses. At any 

time, one has to be able to answer the question about competition between different 

hypotheses. At the same time higher level schemata are faced with the problem that 

some of their instances a.re hypothetical and some a.re not. Each schema instance is 

therefore organized as a h~pothesis tree. 

Each node in this tree represents the schema instance under different constraints. 

The root node represents the instance under its non-hypothetical constraints. Each 

of ita descendants represents the instance under additional hypothetical constraints. 

The hypothesis tree is an explicit representation of the competition between different 

components. Each path from the root to a leaf in the tree represents a set of incre­

mental and compatible constraints on the instance. Every time a schema instance 

. obtains a new component (i.e. constraint), a successor node is created in the tree for 

each node in the hypothesis tree which is not in competition with the new component. 

If the new component is non-hypothetical then it is linked directi'y to the source node. 
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Any hypothetical components that are competing with a non-hypothetical component 

are subsequently removed from the tree. 

Examples of hypothesis trees for the Gambier Island sketch are shown in figure 12 

and 13. The situation in figure 12 exists after chain-1 has been interpreted. Chain-1 

is a closed line segment interpretable as a shore only. This interpretation is ambigu­

ous but not hypothetical. (That is, it must be a shoreline but the water could be 

inside or outside while the land is either outside or inside). The instance shore-1 

is therefore constrained at the root node only. At a higher level chain-1 is repre­

sented by geosystem-1 and -2 representing the outer and inner region respectively. In 

accordance with the Mapsee-2 composition hierarchy (Fig. 8) both geosystems are 

part of the world. Chain-2 is a mountain shaped chain. Such a feature allows for 

several hypothetical interpretations, two of which (mountain and road) are shown in 

figure 13. Hypothetical interpretations cannot be represented at the root node of an 

instance. Both road-1 and mountain-1 therefore create a new node (1-1) which repre­

sents the hypothetical constraint. These interpretations are represented in a similar 

way at the next level up by a road-system and mountain-range instance. Both hy­

pothetical interpretations are a component of the geosystem which represents the 

inner-region. The two interpretations are incompatible. Geosystem-2 must therefore 

absorb these constraints in two different branches, because every path from root to 

leaf must contain compatible constraints. 

The SCG at this point is an exact representation of compatible interpretations. 

There are two global interpretations represented as world-1-1 and -1-e. One global 

interpretation contains a shore and a road, the other a shore and a mountain. 

The hypothesis trees collapse when chain-Sis interpreted. The Mapsee-2 semantics 

state that two adjacent mountain shaped chains can be mountains only. This causes 

the mountain-1 constraint to become non-hypothetical. Accordingly it moves up to 

the root node of the instance. The same happens at its super-components mountain­

range-1, geosystem-2, and world-1. This structural change causes a disturbance in the 
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integrity constraints of the trees with the result, that world-1-1 and, recursively, all 

of its components a.re removed. This leads to the final situation illustrated in figure 14. 

world - 1 (world) 

geoayatem -

( 

I 

L.gion-1 

ahore - 1 l•"ore) 

l choin-1 • chain- 2 

~ 
• chain - 3 l r,gion - 2 

= c:omposition 
= depiction 

Figure 12: Gambier Island scene constraint 11,raph~after 

interpretation of chain-1. The current label of a schema 

instance is shown in parentheses. 
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world - 1(world) 

road - 1 
l-2(cocu~ 

I 1 _ f co,utline) 

l r,gion- 1~ ,hain - I 
= composition 

-- -- = hypothesis tree 
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1 _ 1 (mountain-range) 

1 _ 1(mountain ) 

I 

l ...... - 2 

Figure 13: Gambier Island scene constraint graph after interpretation 

of chain-I and chain-2 
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Figure 14: final scene constraint graph for Gambier Island 

4.5 Hierarchical Constraint propagation 

Mapsee-2 differs from Mapsee-1 in that the domain of each variable in the SCG has a 

hierarchical organization. All labels are embedded in a specialization hierarchy (Fig. 

9). AC-9 cannot handle such an ·organization. A new algorithm, hierarchical arc 

consistency {HAO} was therefore designed [25]. 
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The essential difference between AG-Sand HAG is that instead of the predicate 

P.; used by AG-S, HAG uses two different predicates, Pan~; and Pori;• For any arc 

(i,j) and a label pair (k, m) (k E Di, m ED;) Pan~; is true iff all of k's successors in 

the specialization hierarchy are compatible with at lea.st one of m's successors. Porii, 

on the other hand, is true iff at lea.st one of k's successors is compatible with at lea.st 

one of m's successors. 

The HAG procedure is similar to the AG-S procedure except that REVISE is 

replaced by a new procedure: REVISE-HAC. The new procedure is used in both 

Mapsee-2 and Mapsee-3, and is shown below. 
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procedure REVISE-HAC ((i,j)) 
1. begin 
2. DELETE - false 
3. Q1 +-- Di 
4. N Di - empty 
5. while Q1 not empty do 
6. begin 
7. select and delete any element x from Q 1 

8. Q2 -D,-
9. FOUND - false 
10. while Q 2 not empty and not FOUND do 
11. begin 
12. select and delete any element y from Q 2 

13. if Pand., (x, y) then 
14. begin 
15. append x to ND, 
16. FOUND - true 
17. end 
18. end 
19. if not FOUND then 
20. begin 
21. DELETE - true 
22. Q2 +-- Di 
23. while Q2 not empty and not FOUND do 
24. begin 
25. Select and delete any element y from Q 2 

26. if Pori1(x, y) then 
27. begin 
28. append all successors of :r to Q 1 

29. FOUND+-- true 
30. end 
31. end 
32. end 
33. end 
34. Di..._ ND, 
35. return DELETE 
36. end 
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REVISE-HAC first tests Pandi;(k, m). Htrue then k is preserved and inserted into 

~'s revised domain N Di. H the test returns false then Por,;(k, m) is tested. If this 

test returns false as well then we know that none of k's successors is consistent with 

any of m's successors. Thus, we have to remove k from Di• However, if Pori,(k, m) 

is true then we replace k by its immediate successors and we iteratively repeat the 

Pand and Por tests until for some descendant l of k Pandi,(l, m) is true. 

Pandi;(k, m) must be provided for the leaves of the specialization hierarchy. From 

these predicates we can compile the Pand and Por predicates for each of the other 

nodes in the hierarchy [25]. 

HAG is still O(ea3
). Better behavior, however, can be expected because the hier­

archical domain organization causes the domain size of each variable to shrink. As 

well, if the label hierarchy forms a binary tree and if we assume that the domain size 

of each variable is always one than HAG is O((e + 3n/2)loga) [25]. 

An example of the operation of HAG can also be found in the Gambier Island 

example in figure 12 - 14. Upon creation each schema instance inherits the label 

set of its parent class. Thus, in figure 12 shore-1 inherits the shore label (shown in 

parentheses), whereas both geosystem instances inherit the geosystem label. Very 

little can be concluded after interpreting chain-1. From the geosystem constraints in 

figure 15 one can infer that a geosystem with label set geosystem and an inner or 

outer-shore with label shore is constrained to be a geosystem. This situation changes 

after considering chain-f. In Mapsee-2, a geosystem with label set geosystem and 

a road-system, or mountain-range as a component must be a landmass. However, if 

the same geosystem instance (now with label set landmass) is also surrounded by a 

shore, then it must be an island. For this reason geosystem-t-1 and -e-e have island 

as label after interpreting chain-£. Once all incorrect hypotheses have been rejected 

during the interpretation of chain-9, geosystem-e also receives the island label (Fig. 

14). For geosystems surrounding a shore the following constraints hold. H the shore is 

a coastline then the geosystem becomes a water body. H the shore is a lakeshore then 
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the geosystem is constrained to be a landmass. On the other hand, a shore whose 

inner-geosystem is a landmass, or island, or whose outer-geosystem is a waterbody, 

lake, or ocean, is constrained to be a coastline (Fig. 16). If the inner-geosystem is a 

waterbody or lake, or the outer-geosystem a landmass, mainland, or island, then the 

shore is constrained to be a lakeshore. 

4.6 Constructing a scene constraint graph 

HA C propagates constraints over the scene constraint graph, but the algorithm does 

not construct this graph. The graph is constructed by the processes of completion 

and assembly, which operate according to the control scheme illustrated in figure 17. 

As is the case in Mapsee-1, Mapsee-2 uses primitive cues. These cues are simple 

shape features of the input chains such as free-ends, acute angles, closed chains and 

blobs. These features are used to create instances of schema classes which are leaves 

of the composition hierarchy (Fig. 8). Blobs, for instance, form a unique cue for a 

town, whereas a mountain-shaped chain can be either a road or mountain (Fig. 13). 

The composition hierarchy represents mandatory relationships between schemata. 

Thus, a.ny instance of a mountain schema must also be a component of a mountain­

ra.nge instance, every river instance must be part of a river-system instance and so 

forth. It is the task of the completion process to ensure that these constraints are 

satisfied, thereby constructing a SCG. If the mountain instance, for example, has not 

yet been completed to a mountain-range instance, then the completion process will 

search for a suitable one. If one or more instances already exist, then the mountain 

will be completed to the instance that contains a mountain with which it forms a 

T-junction. If no such a mountain-range can be found, then the completion process 

will create a new mountain-range instance to which the mountain is connected. 

Although completion searches for a suitable super-component, it will not actually 
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label set : {geosystem} 

constraints components inner-shore outer-shore 

mountain-range landmass 

road-system landmass 

river-system landmass 

shore geosystem geosystem 

coastline water body island 

lakeshore landmass lake 

label set: {landmass} 

constraints components inner-shore outer-shore 

mountain-range landmass 

road-system landmass 

river-system landmass 

shore landmass island 

coastline incompatible island 

lakeshore landmass incompatible 

label set: {island} 

constraints components inner-shore outer-shore 

mountain-range island 

road-system island 

river-system island 

shore island island 

coastline incompatible island 

lakeshore island incompatible 

Figure 15: geosystem constraints 
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label set: { waterbody} 

constraints components inner-shore outer-shore 

mountain-range incompatible 

road-system incompatible 

river-system incompatible 

shore water body lake 

coastline waterbody incompatible 

lakeshore incompatible lake 

Figure 15 (continued): geosystem constraints 

esta.blish links between the completing component and a potential super-component. 

First, a label compatibility test is required between the label of the component and 

the labels of the super-component. HAG is used here. It will test label compatibility 

and, if necessary, specialize the labels of the component. Once label compatibility is 

established, then the instances are linked by means of a component and part-of link. 

This is done by the assembly process. 

If two schema instances are consistent over a part-of relation, then they are also 

consistent over the (reverse) composition relation. During the first pass HAG tests 

consistency over the part-of relation only. If this test fails, then Mapsee-2 halts 

without affecting the labels of the super-components. The super-component's labels 

are adjusted during the second invocation of HAG which ta.kes place after assembly 

(Fig. 17). After this, the interpreter moves to another instance and starts completion 

again. 

The interpretation process is cyclic. Each cycle consists of the completion of a 

single schema instance to an instance of its super-class in the composition hierarchy. 

Essentially we are using the composition hierarchy as a cue/model hierarchy. 

Another effect of the cycle is an incremental construction of the SCG. Every time 
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label set: {shore} 

constraints inner-geosys tern outer-geosystem 

geosystem 1hore 1hore 

landmass coastline lakeshore 

mainland coastline lakeshore 

island coastline lakeshore 

water body lake shore coastline 

lake lakeshore coastline 

ocean incompatible coastline 

label set: {coastline} 

constraints inner-geosystem outer-geosystem 

geosystem coastline coastline 

landmass coastline incompatible 

mainland coastline incompatible 

ialand coastline incompatible 

water body incompatible coastline 

lake incompatible coastline 

ocean incompatible coastline 

label set: {lakeshore} 

constraints inner-geosystem outer-geosystem 

geosystem lakeshore lakeshore 

landmass incompatible lakeshore 

mainland incompatible lakeshore 

island incompatible lakeshore 

waterbody lakeshore incompatible 

lake lakeshore in compatible 

ocean lakeshore incompatible 

Figure 16: shore constraints 
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j 
Completion - HAC AHembly - HAC 

] 
L__ 

failure 

success 

Figure 17: control cycle for Mapsee-2 and Mapsee-3 

a new instance (node) is added to the graph, its labels are made consistent with 

the existing structure. In this way we allow modular interaction between the schema­

based construction process and the HA C-based constraint propagation. Construction 

composes a scene interpretation while propagation specializes the interpretation. 

Mapsee-2 operates in both a data-driven and model-driven manner. It takes one 

chain at a time and completes its interpretation all the way up to the world level (Fig. 

8) before starting on the next chain. Once more, taking Fig. 11 as an example, we 

first interpret chain-1 which is ambiguously interpreted as a shore. Because it is the 

only interpretation possible, it is non-hypothetical. The shore becomes a component 

of two geosystems (regions 1 and 2), both of which are part-of the world. Next, 

chain-e is pursued, causing the creation of two hypothetical interpretations (Fig. 

13). These interpretations remain hypothetical until chain-9 is interpreted, at which 

point the road interpretation is eliminated, leaving only one interpretation for each 

primitive (Fig. 14). 

The model-driven aspect of the program resides in a schema's methods. These 
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schema owned procedures are invoked during completion. Each method searches for 

particular constraints among its components. The mountain-range schema, for in­

stance, can investigate whether a completing (hypothetical) mountain instance makes 

a Tee junction with another previously found mountain. As mentioned before, if this 

method succeeds then the mountain interpretation becomes non-hypothetical and all 

hypothesis trees involved are collapsed (Fig. 14). 

4. '1 Discussion 

Mapsee-2 has successfully interpreted eleven sketch maps. Seven out of eleven exam­

ples represent real maps (e.g. the Lower Mainland of B.C. in Fig. 1), the others were 

made up. Mapsee-2 overcomes the inadequacies of Mapsee-1. 

Descriptive adequacy: 

1. The cue/model structure has many levels. The composition hierarchy serves as 

cue/model hierarchy. In this way we overcome the problem of relying on low 

level image features to invoke high-level object models directly [2]. 

2. Scene interpretations are represented as schema instances with internal structure 

and their own procedures for guiding the recognition process. For propagation 

purposes, on the other hand, each instance can still be treated as a label. 

3. Real world scene domain constraints are improved. Scene constraints are dis­

tributed over schemata represented at multiple levels of composition and spe­

cialization. 
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Procedural adequacy: 

1. The interpretation process combines a data-driven with a model-driven ap­

proach. 

2. The SCG is constructed incrementally. Upon each addition of a new instance 

the graph is made consistent. 

3. The schema's methods provide local control. 

4. Alternative scene interpretations are maintained by means of hypothesis trees. 

Despite these improvements Mapsee-2 has introduced new forms of descriptive and 

procedural inadequacy. 

1. Scene objects are represented in a non-uniform way. Scene objects embedded in 

a composition hierarchy are all represented as schemata. However, most objects 

in a specialization hierarchy are not. Only the objects at the roots of the spe­

cialization hierarchy are schemata. All other nodes occur as labels in the schema 

at the root of the hierarchy. As one result HA C had to be implemented in a 

procedural form, because the constraints of labels in the specialization hierarchy 

are not explicitly represented in the composition hierarchy. What is desirable is 

to represent all scene objects as schemata. 

2. Spatial relationships are not represented in the SCG. Methods search for spatial 

relations, and affect the completion process. The particular composition struc­

ture represented in the SCG is partially the result .~ the. discovery of spatial 

relations. 

3. Although hypothesis trees are a good way of representing hypothetical inter­

pretations and competitiveness, their size can grow explosively. In an under­

SB 
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constrained situation, the addition of a single hypothetical component to the 

hypothesis tree of a super-component can double the tree size of the latter. 

Thus, the number of nodes in the SCG is exponential in the number of primi­

tives in the worst case. What is needed is a representation by means of which 

we can control the explosive effect of hypothetical interpretations. 

All of these problems can be remedied. A solution is provided in the Mapsee-3 

system. 

5 Mapsee-3 

The inadequacies of Mapsee-2 can be overcome. Like Mapsee-2, Mapsee-3 is a schema­

based program, but there a.re two essential differences between Mapsee-2 and Mapsee-

3. 

1. All scene objects are represented as schemata in Mapsee-3. In addition, all 

relations between scene objects a.re represented as schemata. 

2. Mapsee-3 uses discrimination graphs instead of hypothesis trees. In combination 

with HA C discrimination graphs allow us to represent hypotheses as alternate 

labels in the domain of a variable, thereby eliminating the need for a separate 

representation for hypotheses. 

5.1 Uniform representation of objects and relations 

All scene objects and relations in Mapsee-3 a.re represented as schema.ta. This al­

lows us to use the internal structure of schemata if we are tracing the composition 

hierarchy. At the same time we can treat objects and relations as labels, if we 
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are propagating constraints. Apart from providing uniformity of representation, the 

knowledge base has become much more declarative compared to that in Mapsee-2. 

A composition hierarchy now not only exists for schemata at the root of a specializa­

tion hierarchy. All other nodes are embedded in such a hierarchy as well. Figure 18 

shows the Mapsee-3 composition hierarchy. We will call this the "natural" composi­

tion hierarchy for reasons to be clarified later. Figure 18 does not show any relation 

schemata. 

As in Mapsee-2, spatial relations are created by a schema's methods. The explicit 

presence of spatial relations in both the composition hierarchy of schema classes and 

the SCG provides more descriptive adequacy. Additionally, spatial relations have 

positive effects for implementation of HA C. In Mapsee-2, the absence of schemata for 

objects in the specialization hierarchy and schemata for spatial relations forced an ad 

hoc procedural implementation. With all objects and relations explicitly represented 

in the SCG, this is no longer necessary. The Mapsee-3 implementation is an exact 

implementation of the HAG algorithm as specified in section 2. 

5.2 Discrimination Graphs 

The problem of the potential explosion of hypothetical interpretations has largely 

been ignored in Computational Vision. Yet, the problem is a serious one, even in 

the domain of sketch maps. Specialization hierarchies can somewhat alleviate the 

problem, because they allow us to replace some elementary labels in the domain 

of a variable by a smaller number of abstract labels. In Mapsee-2, for instance, a 

region can be either a lake, ocean, island, or mainland (Fig. 9). The presence of 

the specialization hierarchy allows us to replace these labels by one abstract label: 

geosystem. Although we can somewhat reduce the label set in this manner it does not 

really solve the problem. In many "real world" situations there is no specialization 

hierarchy that can cover the complete label set. For instance, a set of green pixels 

could be farmland, a golf course, a roof, a forest, or even astroturf in a stadium. 
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There is no natural specialization hierarchy to cover these labels. Discrimination 

graphs offer a solution. 

Informally, discrimination graphs (DG's) can be understood as an extension of 

specialization hierarchies. Figure 19 shows an example. In Mapsee-3, a closed line 

segment depicts a road, coastline or lakeshore. Coastline and lakeshore can be nat­

urally combined to be a shore, but that is where the natural abstraction capabilities 

stop. By means of DG's we extend the abstraction capability to represent closed line 

segments by one label only: road/shore. If a line segment is not closed, it can, among 

other things, be a road or river. A second extension from road and river creates the 

road/river label. 

coastline lakeshore road river 

= discrimination 

Figure 19: an example of a discrimination graph 

More formally, the idea of DG's is based on the assumption that we can classify 

image features in one or more dimensions (e.g. shape, texture) the result of which is 

a. finite number of categories for each dimension. As well, we a.ssume that there a.re 

only a. finite number of scene objects whose image appearance falls in a particular 

category. DG's are based on a categorization of object classes that belong to a 

particular image feature category. A DG is a directed acyclic graph. A root node of 
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the graph is an abstract object class that intensionally represents all the elementary 

object classes that belong to a particular image feature category. The leaves of the 

graph are elementary object classes. Intermediate nodes represent subsets of the set 

represented by their ancestors. Elementary object classes can belong to more than one 

image feature category, as the road object in Fig. 19 illustrates. DG's can therefore 

become tangled hierarchies with multiple root nodes. Specialization hierarchies are 

strict trees but DG's are not. 

All chains in Mapsee-3 are classified with respect to shape. Table 1 illustrates the 

shape categories used and the interpretations possible. A chain which closes upon 

itself is visibly closed. It is potentially closed when it runs off the frame on both 

sides. A chain which does not fit any of the other shape categories is classified as 

residual. These shape categories are mutually exclusive. 

Mapsee-3 uses a composition hierarchy and different DG's. Each scene object is 

represented at five different levels of composition (Fig. 18). The DG's are constructed 

orthogonally to the composition hierarchy. Figure 20 shows the DG at the composi­

tion leaf level. At this level there is a unique (abstract) scene object for each shape 

category. For instance, the object road/shore intensionally represents all the objects 

depicted by the visible closure category. DG's such as the one shown in Fig. 20 can 

be automatically constructed [31,34]. 

With a unique classification for each chain we can represent this chain by means of 

the abstract object that uniquely represents this classification. Thus, at the start of 

the interpretation process each visibly closed chain will be interpreted as a road/shore, 

an. interpretation which is ambiguous, but not hypothetical. Like all of its natural 

descendants, abstract objects such as road/shore are also embedded in an abstract 

composition hierarchy. Thus each abstract object is also represented at each level of 

composition. At each level of composition a DG exists that connects the abstract 

object with its natural descendants. Abstract composition hierarchies can also be 
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1 2 

Road Road 

River River 

Mountain Coastline 

Coastline Lakeshore 

Lakeshore Bridge-side 

5 6 

Bridge-side Town 

Road 

River 

1 = potential closure and mountain shape 

2 = potential closure and bridge-side shape 

3 = visible closure 

4 = mountain shape 

5 = bridge-side shape 

6 = blob shape 

7 = residual 

8 = potential closure 

3 4 

Road Mountain 

Coastline Road 

Lakeshore River 

7 8 

Road Road 

River River 

Coastline 

La.keshore 

Table 1: shape classifications for line segments 
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Figure 20: discrimination graph at the composition leaf level 
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automatically constructed [31]. 

Both natural and abstract scene objects are represented as schemata. In the 

Ma.psee-3 SCG each variable continues to represent a schema instance. The current 

interpretation of the instance -is represented by means of one or more abstract labels 

in the variable's domain. The edges in the SCG now represent composition or spatial 

constraints. Returning to the road/shore example, each closed chain is depicted by 

an instance of the road/shore schema. Upon instantiation this instance obtains its 

own name as label. At any time this label can be replaced by one of its descendants 

in the DG. For instance, once the region surrounded by the chain is constrained to 

be a waterbody, then the road/shore label must be refined to be a lakeshore. This 

is the case because a road must have land on both sides and a coastline must have 

water on the outside. 

5.3 Constructing a Scene Constraint Graph 

DG's eliminate the need for hypothesis trees. Competing interpretations are now 

represented by one or more labels in the domain of a single variable. Other than that 

the interpretation process in Mapsee-3 is similar to that of Mapsee-2. The control 

cycle (Fig. 17) is the same. Its implementation, however, is simpler, more modular, 

and declarative. The composition process, for one thing, no longer needs to deal with 

hypothesis trees. This results in a much simpler SCG. For example, figure 21 shows 

the Mapsee-3 SCG for the same situation as the Mapsee-2 SCG for the Gambier 

island example (Fig. 13). 
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Figure 21: Mapsee-3 scene constraint graph after interpretation 

of chain-1 and chain-2 

mountain-rang<! 

Increasing modularity is achieved because completion and HAG each control their 

own dimension. Completion controls the incremental construction of the SCG, HAC, 

on the other hand, controls the propagation of labels in the domain of each variable. 

Thus, elimination of competing hypotheses has now become a .pure constraint prop­

agation process. The replacement and elimination of competing labels rarely affect 
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the structure of the SCG. In Mapsee-2 the structure of the SCG is always affected 

by changes in structure of hypothesis trees as a result of label propagation. 

The HAO implementation is also more declarative then it could ever be in Mapsee-

2. Most constraints (i.e. the predicate Pandi; in REVISE-RAC) are now explicitly 

represented in the combined abstract and natural composition hierarchy. The Pori; 

predicates can be compiled from the Pandi; predicate [25]. 

5.4 Discussion 

Mapsee-3 solves the problem of explosive growth of the hypothesis trees. Each chain is 

represented by one schema instance (variable) at the composition leaf level. The total 

number of variables created for each chain in the SCG has a fixed upper limit which 

largely depends on the local structure of the composition hierarchy. For example, 

a blob-shaped chain becomes a town instance at the composition leaf level. Town 

has a fixed number of super-components in its composition hierarchy (Fig. 18). The 

number of variables representing objects cannot exceed that limit. In addition, each 

scene object can be constrained by other objects through relations also represented 

in the SCG. However, two primitives in the image are generally tied together by at 

most one spatial relation. The number of nodes in the SCG is therefore linear in the 

number of image primitives [31]. 

Theoretically, the number of predicate tests in HAO is of O(ea5 ) in the worst case 

[25]. Experiments with Mapsee-3 show results better than that [31]. DG's tend to 

keep the domain size (a) of each variable very small. For this reason we can take a as 

a constant. Thus, HAG becomes linear in the number of edges. For planar graphs, 

HAC is also linear in the number of nodes in the graph [24]. For most cases the SCG 

in Mapsee-3 turns out to be planar. With an established linear relationship between 

image primitives and nodes in the SCG, it follows that there is also a linear (or, at 

worst quadratic) relationship between the number of predicate .tests in HA C and the 

number of image primitives. 
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The model which underlies the Mapsee-3 design interprets image primitives by 

means of schema classes whose interpretation is at first extremely generic and rel­

atively domain-independent. As more and more constraints are discovered in the 

image, this interpretation becomes more specific and domain-dependent. Because of 

this continuing process of interpretation refinement along a discrimination graph, this 

approach has been referred to as Discrimination Vision [31,33]. 

Mapsee-3 solves the inadequacies of Mapsee-2 identified earlier: 

1. All scene objects are represented as schemata. 

2. Spatial relations are also represented as schemata and accordingly appear as 

variables in the SCG. 

3. The number of nodes in the SCG is linear in the number of image primitives. In 

Mapsee-2 this relationship was exponential. 

6 Discussion 

The representation of knowledge continues to be a key to progress in computational 

vision (and artificial intelligence, in general). A schema-based knowledge represen­

tation allows us to structure the knowledge base along different dimensions such as 

composition and specialization. A general-purpose vision system needs the capability 

to describe an image at different levels of detail and specificity. Composition and spe­

cialization hierarchies provide this capability. In addition, a schema-based knowledge 

representation allows us to treat objects as an atomic entity. This is necessary for 

constraint propagation purposes. 

An expansion of specialization hierarchies into discrimination graphs, combined 

with a utilization of hierarchical arc consistency provides an approach to the represen­

tation and identification of visual knowledge which is modular, efficient, and effective. 

49 



Modularity exists in both representation and control. Discrimination graphs can be 

constructed orthogonally to the composition hierarchy. The completion process oper­

ates in the composition dimension only, whereas hierarchical arc consistency operates 

in the discrimination dimension. Similarly, completion and assembly construct the 

scene constraint graph, whereas hierarchical arc consistency propagates constraints 

over this graph. 

This approach is also efficient. The relationship between the number of image 

primitives and the number of nodes in the scene constraint graph is linear. HA C is 

cubic in the domain size for the worst case. However, experiments with the Mapsee-3 

program have shown much better results than predicted by the worst case analysis. 

Discrimination graphs in combination with hierarchical arc consistency provide a 

new approach to image interpretation. The discrimination vision approach embod­

ies an interpretation process in which the image is interpreted using local to global 

strategy, whereas image primitives depict interpretations which are at first abstract 

&nd unspecific. As interpretation progresses, these interpretations are gradually re­

fined until they are concrete and domain-specific. A general-purpose vision system 

must be capable of transforming an image description in terms of significant features 

into a domain-specific description correctly, quickly, and flexibly. The combination 

of discrimination graphs with hierarchical arc consistency provides such a capability. 

Discrimination graphs also offer some promise for bridging the gap between Early 

Vist"on and Modtl-basul Vision. In the root nodes, discrimination graphs ca.n rep­

resmt knowledge that is relatively domain-independent and valid for a wide variety 

of scenes. At the leaves, on the other hand, the graphs represent knowledge that is 

highly domain-dependent. 

No serious effort has been made in this paper to review related work in Compu­

tational Vision. This is not to say that such work does not exist. The Acronym 

system [5] uses a schema-based representation with composition and specialization 

hierarchies. Constraint propagation techniques are also utilized. The same holds 
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for the Alven system [44], a system for left ventricular performance assessment from 

X-ray images. Neither of these systems, however, use discrimination graphs. Alven's 

notion of similarity links is related to discrimination graphs, but they are used for a 

different purpose. 

Thus far the Mapsee project has focussed on the model-based aspect of visual 

knowledge representation, and has paid little attention to early vision. The segmen­

tation process in the Mapsee programs is simple. One category of image primitives, 

the line segments, are provided in the input, and they are assumed correct. The other 

category, the regions, can be found in a fairly straightforward manner, once the line 

segments are known. The interaction between early vision and model-based vision is 

a subject of ongoing research. In particular, the question of how to deal with images 

that are (potentially) incorrectly segmented remains an open issue. Nevertheless, the 

success in integrating a schema-based knowledge representation with constraint sat­

isfaction techniques has indicated its utility and the desirability of further exploring 

this method. 

7 Conclusion 

This paper has explored the utility of integrating a schema-based representation for 

visual knowledge with constraint satisfaction techniques. This integration has been 

studied in a progression of three sketch map interpretation programs. These programs 

have been evaluated by means of the criteria of descriptive and procedural adequacy. 

The evaluation indicates that a schema-based representation in combination with a 

hierarchical arc consistency algorithm constitutes a modular, efficient, and effective 

scheme for representing visual knowledge. 
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