
Randomized Function Evaluation on a Ring**

by
Karl Abrahamson*

Andrew Adlert
Lisa Higham*

David Kirkpatrick*

Technical Report 87-20
May 1987

*Department of Computer Science
tDepartment of Mathematics

** This research was supported in part by the Natural Sciences and En­
gineering Research Council of Canada and the Killam Foundation.

;
I:

Abstract

Let R be a unidirectional asynchronous ring of n processors each
with a single input bit. Let / be any cyclic non-constant function of
n boolean variables. Moran and Warmuth [8] prove that any deter­
ministic algorithm for R that evaluates / has communication complex­
ity O(n log n) bits. They also construct a cyclic non-constant boolean
function that can be evaluated in O(n log n) bits by a deterministic
algorithm.

This contrasts with the following new results:

1. There exists a cyclic non-constant boolean function which can be
evaluated with expected complexity O(nvlog n) bits by a ran­
domized algorithm for R.

2. Any nondeterministic algorithm for R which evaluates any cyclic
non-constant function has communication complexity O(nJ log n)
bits.

1 Introduction

An asynchronous unidirectional ring is one of the simplest network topolo­
gies. Because it exhibits some phenomena that could be considered typical
of more elaborate networks, it provides a good starting point for the study of
distributed computation. Hence many fundamental problems on rings have
been widely studied under various additional assumptions about the ring.

Function evaluation is one typical problem. A ring of n processors, 71'1,

••• , 71'n, each with a single input value (say i1 , •·•,in respectively), must co­
operate to compute /(ii,•··, in) for some n-variable function/. The general
question of the minimum communication complexity required to compute
any non-trivial function on a ring was first addressed by Moran and War­
muth in [8]. They focus on the complexity of non-constant functions because
any constant function can be evaluated without any communication. Since
computation is on a ring of identical processors, the function/ is assumed to
be cyclic, that is /(i1, ···,in) = f(i;, ···,in, i1, · · •, i;-1) for any 1 ~ j ~ n.
They prove that:

1. If g is any non-constant cyclic function of n variables, then the com­
plexity of evaluating g on a ring of n identical deterministic processors
is O(nlogn) bits of communication and

2. There is a is non-constant cyclic boolean function /, such that / can
be evaluated in O(n log n) bits of communication on a ring of n deter­
ministic processors.

1

It has become increasingly apparent that randomization can be a pow­
erful tool in distributed and parallel computing, particularly when used as
an aid to breaking symmetry. The question therefore arises whether the
bounds described above remain true if the processors are not deterministic
but rather have access to independent random number generators. This pa­
per answers this question. We exhibit a non-constant cyclic boolean function
/ and a randomized distributed algorithm which evaluates / on a ring of n
processors using expected complexity O(nJlogn) bits for any input. We

also prove that O(nJlogn) bits are required to evaluate any non-constant
cyclic function on a ring.

The lower bound actually holds for a more powerful model of compu­
tation than that used to achieve the upper bound. This model is described
in the next section. Section 3 provides the proof of the lower bound. Section
4 presents a function with minimum complexity, and section 5 reviews some
remaining open problems.

2 Model

Our objective is to study the inherent bit complexity of randomized dis­
tributed algorithms that evaluate functions on asynchronous rings. A dis­
tributed algorithm can be viewed as an assignment of processes to processors.
So it suffices to model computations induced by cyclic sequences of processes.
In order to describe a computation, we first define a process and state some
useful properties of rings of processes. The relationship between distributed
algorithms and rings of processes is then made precise on order to highlight
the generality of the lower bounds that follow.

2.1 Processes

The following description of a process incorporates two non-restrictive as­
sumptions [10], namely, that messages are self-delimiting, and that commu­
nication is message driven with at most one message sent in response to
receipt of a message.

A message is an element of M = {O, 1}• · □. The symbol □ is called
the end-of-message marker. A history is a sequence of messages. If h is
a history, then lhl denotes the number of messages in h, and \lh\l denotes
the length of the binary encoding of h using some fixed encoding scheme to
encode each symbol in { O, 1, □ }. Note that any history has a unique parse
into a sequence of messages.

A process 1r is modelled as a pair of mappings which describe the next

2

output message (possibly null) and the next state of 7r as a function of its
current state and current input message. A process' state encodes its entire
history so far, and consequently the state set is not bounded. Process 1r is
an initiator if it produces an output message from its initial state, (that is,
before the arrival of the first message). Otherwise it is a non-initiator.

Let 1r1 , ••• , 7r n he a sequence of processes. We use 1r1,n to abbreviate ?ri,

••• , 7r n• There is a sequence of histories, C = h1 , • • ·, hn, called a computation
associated with 1r1,n in the natural way. Each history hi is composed of
a sequence of messages mi1 ··•mi, . . If 1ri is an initiator, then mi1 is the

I

message produced by 1ri from its initial state. The computation is then
determined inductively by applying the mappings defined by 1r1 through ?rn

and letting successive output messages of 1r, be successive input messages
of 'lfi+l· (Indices are reduced in the obvious way.) The complexity of a
computation C = h1, · · ·, hn is Ei=l llhill-

We distinguish a subset M 0 ~ M called accepting messages, and a
subset Mr ~ M called re;"ecting messages. A history is an accepting history
(respectively, rejecting history) if and only if its last message is an accepting
message (respectively, rejecting message). An accepting or rejecting history
is a decisive history. A computation h1 , • • • , hn of 1r1 , •.• , 1r n is accepting if
every h, is an accepting history, and is re;"ecting if every h, is a rejecting
history.

We are interested in distributive termination for function evaluation,
that is, processes must reach irreversible conclusions. This is modelled by
insisting that processes never output another message after sending a decisive
message. Non-distributive termination permits a process to reach a tentative
decision which it may revoke upon receipt of another message. This weaker
form of termination is of little interest in the context of function evaluation,
since this termination cannot be detected. In any case the reader will readily
construct a non-distributively terminating deterministic algorithm for AND
which requires only O(n) bits.

A number of properties and lemmas follow immediately from these
definitions. They allow us to manipulate computations, building new ones
from old ones.

Lemma 2.1: If C = h1 , ···,ht is a computation with complexity less
than b, and all hi are distinct, then k < 1;; b.

Proof: At least (k log k)/2 bits are required to encode k distinct
strings. Hence (k log k)/2 < b implying k < 1;:b. ■

3

Property 2.2: If C = hi,•",hn is a computation of 71"1, ••• , 7l'n

with hi = h; for some i < j, and ,r1 is the only initiator, then C' =
h1 , ···,hi, h;+1, · · ·, hn is a computation of 71"1, • • ·, 71";, 71";+1, • • ·, ,r n·

Property 2.3: If C = h1 , • • ·, hn is a computation of ,r1,n = ,r1 , ••• ,

?rn then er= (hi,•••, hnt is a computation of (7r1,nY = (,ri, • • •, 71"nY where
(xY has the usual interpretation: the concatenation of r copies of sequence
x.

2.2 Algorithms

The processes just described are deterministic. In order to explore function
evaluation by randomized algorithms, we need to incorporate input values
and random choices into the model. Both of these features are achieved
simultaneously by relaxing the way in which processes are assigned to pro­
cessors, rather than by generalizing the notion of a process.

In the natural description of a randomized distributed algorithm, a pro­
cess' next state and output message are determined by its current state, its
last input message and the result of a random experiment. Random choices
occur throughout the run of the algorithm. But these random choices can
be simulated as a single random choice by each processor at the beginning of
the algorithm. A processor randomly chooses a function from internal state,
input message pairs to internal state, output message pairs. (Essentially, the
processor pre.-selects all its random coin tosses.)

Inputs are incorporated into initial states of processes. If a processor
has a given input i, then its must randomly select a process ,r whose initial
state is consistent with input i. We then say that ,r has input i.

Hence a randomized distributed algorithm for function evaluation can
be modelled as a random assignment of deterministic processes to processors
where the random distribution for each assignment is determined by each
processor's input value. We generalize this still further by permitting an
arbitrary assignment of processes to processors. Let A be the set of all
processes. A distributed algorithm a is a mapping from input values in
a domain D to nonempty subsets of A. The set a(i) is the collection of
processes available to processors with input i. A sequence ,r1,n = 71"1, ••• , 71"n

corresponds to an assignments of processes to processors on rings of size n.
The assignment is constrained only in that processor j with input i; must
be assigned a process in a(i;).

This generalization from random to arbitrary assignments gives algo­
rithms a nondeterministic attribute. Like conventional nondeterministic al­
gorithms, an algorithm is said to evaluate /(/) for IE Dn efficiently if for

4

some choice of process assignments consistent with I, the resulting compu­
tation has low complexity. Therefore lower bounds on the complexity of
evaluating /(J) address the complexity of the best case.

2.3 Function Evaluation

Let / be a cyclic function from D" to { O, 1}. Then / is the characteristic
function of some L ~ D". Let I= i1, ···,in E D". Let 1r1,n = 7ri, ••• , 7rn

be a process sequence where 1r; E a(i;), and let C be the computation of
1r1,n. Then 1r1,n evaluates f on input I if C is an accepting computation when
J EL and is a rejecting computation when I¢ L.

An algorithm a evaluates f on input I if for every 1r1,n with at least
one initiator, where 1r; E a(i;), 71"1,n evaluates / on input I. An algorithm a
evaluates f if it evaluates / on input I for every I E D".

The complexity of an algorithm a is at least M if there exists an input
I = ii, • • • , in E D" such that for every 11'"1,n = 71"1, ••• , 71" n with 7r; E a(i;),
the complexity of the computation associated with 1r1,n is at least M.

3 Lower Bound for Function Evaluation

Let / be any non-constant cyclic function of n variables, and let a be any
distributed algorithm which evaluates/ on a ring of size n where n is large.
In this section we prove that there exists some input string J for which a
requires O (nJ log n) bits of communication to compute / (I) even in the best

case. Thus we conclude that the complexity of a is O(nJlogn) bits.
The proof proceeds in two steps. Let a be an algorithm which evaluates

/. The first step is to show that the claimed complexity applies whenever a
is restricted to single initiator computations. The second step is a reduction
which proves that any algorithm for function evaluation can be converted to
an algorithm that works for any preassigned non-empty subset of initiators
without entailing any significant additional complexity.

Theorem 3.1: Let/: Dn--+{0, 1} be any non-constant cyclic decision
function of n variables. Let a be any distributed algorithm which evaluates
/ on a ring of size n for any non-empty set P of initiators. Then there is
some input IE D" for which a requires O(nJlogn) bits of communication
to evaluate /(J) when the size of P is 1.

Proof: The proof has two parts. We first show how to build a new
computation of a from a given one that has low complexity and a single
initiator.

5

Let I = i1, ···,in E nn and let C = h1, · · ·, hn be a computation
of 1r1, ••• , 7rn where 1r; E a(i;) and 1r1, ••• , 7rn has exactly one initiator,

1r1 . Suppose the complexity of C is less than (nJlogn)/3. Let r = jh1 j.
Because there is one initiator, each history has either r or r - 1 messages.
Each message requires at least one bit, therefore n (r - 1) < (nJ log n) / 3

implying r < J log n /2 for large enough n.
C is now collapsed by repeatedly applying lemma 2.1 and property 2.2

until all histories are distinct. Let C' = h131 , • • • , h13, be the resulting subse­
quence of C. Then by property 2.2, C' is a computation of 1r' = 1r 131 , • • • , 1r 13,

with input J' = if31 , • • •, i/3,. By lemma 2.1, l < n/ J log n. By property 2.3,
(C')' is a computation of (1r')' = 1rl • • • 1d ,r~ • • • 1r! · · · ,r~ • .. ,r~ ,-, 1 ! ! ,.,, ! ,-, 1 ! ! ,.,, ! ! ,-, 1 ! ! ,.,,

with input (J')' of length rl < n/2. But each copy of 1r' in (1r')" has exactly
one initiator, 1rt = ,r1 for 1 $ j $ r. Now imagine blocking all messages
between ""P, and 1rt. Then 11"p

1
still receives r - 1 messages and hence still

has output history h131 = h1,

Let 'Y = 11, ... '1n-rl be any element of nn-rl and T = T1 ... Tn-rl be
any sequence with r; E a('Y;), Consider the sequence (1r')'r which has input
(J')'1. Since any message generated by r cannot influence the history of 1rp

1

in (1r')'r until after the rth message, 1rp
1

must have the messages of h1 as its
first r output messages. In particular, if h1 is decisive, h1 is the complete
history of 1rp

1
•

In summary, this construction of collapsing, replicating and splicing can
be applied to any 1r1,n and its input J whenever the computation C of 1r1,n

is decisive and has complexity less than n(Jlogn)/3. ·The result is a new
sequence (I')' of length rl < n/2 such that for any 1 of length n - rl > n/2,
there is a computation C" which has input (J')'1 and some decisive history
hi occurs in both C and C".

This construction is now used to find an input J E nn for which the
assumption that the complexity of any single initiator computation of a with
this input is less than (nJlogn)/3 leads to a contradiction.

Let L C nn be the language recognized by /. Let d E D and without
loss of generality, assume dn ft L. (Otherwise consider the language L.) Let
w = d"p be an element of L such that k is maximum over all strings in L.

Case 1: Suppose k ~ n/2. Then let I = w. Since w E L, C must be an
accepting computation. Therefore there is some computation C" containing
an accepting history hi for any 1· Let 1 = ~-,z. Then hi is an accepting
history when the input string has more thank consecutive d's. Contradiction.

Case 2: Suppose k > n/2. Then let I = dn. Since d" ft L, C must be a

6

rejecting computation. Therefore there is some computation C" containing a
rejecting history hi for any 'Y· Let "I= dk-rlp. Then hi is a rejecting history
when the input is w E L. Contradiction. ■

The second step to the final result is a reduction.

Theorem 3.2: Let a be a distributed algorithm that evaluates some
function/ on rings of size n. Let C(a; J) denote the bit complexity of a on
input I. Then there exists an algorithm & that evaluates/ on rings of size n
for any preassigned non-empty subset P of initiators, and maxP;,!0 C(&, J) s
4C(a; 1) + O(n).

Proof: Let P be some non-empty _collection of processors on the
ring designated as initiators. The algorithm & proceeds as follows. Each
processor p E P sends a package containing a "wake-up" message and the
first message of a. Each processor q ft. P waits until it receives a "wake­
up" message together with all accumulated messages of a. It forwards as a
package the wake-up message, its initial message of a if it has one, and all
the appropriate responses of a to the package of messages received. When
p E P receives its first package, it discards the "wake-up" message. For the
remaining computation, every processor receives a package of messages of a
and sends a corresponding package of the appropriate a responses until the
algorithm terminates.

The bit communication of & is just the bits of a plus n "wake-up" mes­
sages plus the packaging costs. But package delimiters can at most increase
the cost of the computation of a by a factor of four, and the "wake-up"
messages add an additional O(n) bits. ■

Note that the reduction holds for any non-empty set P of processors,
and processors need have no knowledge of the size of P. (Of course the
message complexity of & might be substantially less than the message com­
plexity of a, but the bit complexity remains comparable.) In particular, the
reduction must hold for a set P of size one. But by theorem 3.1, there is no
& that has complexity less than (nJ log n) /3 when the initiating set has size
one.

Corollary 3.3: Let / be any non-constant cyclic decision function of
n variables, and let a be any distributed algorithm which evaluates f on a
ring of size n. Then the complexity of a is O(nJ log n) bits.

Suppose f is any non-constant cyclic function with range S, and 8 1 E S
is one possible value of f. Then the function /' defined by

f'(x) = { 1 if f(x). 81
0 otherwise

7

is a non-constant cyclic decision function which can be computed at least as
cheaply as /. Therefore the lower bound above actually applies to general
function evaluation on a ring.

4 A Function that Achieves the Minimum Complexity

This section presents a non-constant boolean function /, which can be eval­
uated by a randomized algorithm in O(nJlogn) expected bits on a ring of
size n.

Our algorithm for / relies on an algorithm for a simpler problem called
Solitude Detection. Let a nonempty set of processors in a distributed system
be distinguished. The problem of solitude detection is for every distinguished
processor to determine whether there is one or more than one distinguished
processor. In an algorithm for solitude detection, the initiators are precisely
the distinguished processors. The complexity of solitude detection for a ring
has been thoroughly studied in [2,3,4]. In particular, the following algorithm
for solitude detection is a variation of a general algorithm that appears in
[3].

Algorithm SD

Let m be the smallest integer such that m 2:'.: J log n and m is relatively
prime ton. It follows from the prime number theorem that m = O(logn)
[9]. Messages are assumed to have two fields; message type and message
value. For ease of description, five message types are used. However it is
really only necessary to label alarms since other message types arrive in a
fixed order and can thus be distinguished implicitly. The function random(x)
is assumed to return an unbiased random coin toss of heads or tails and store
the result in variable x.

Initiators:
send(coin-toss, random(my-toss));
round ~o; terminated ~false;
while not terminated do

receive message(type, value);
case type of

coin-toss: if value= my-toss then
if round < log log n then

send(coin-toss, random(my-toss));
round ~round+ 1

else send(mod-count,1)

8

round +-0
else more-than-one.

mod-count: if value = n mod m then
send(gap-count,1)

else more-than-one.
gap-count: if value= long then

send (okay,-)
else more-than-one.

okay: if round < J log n then
send (okay,-);
round +-round+ 1

else alone +-terminated +-true.
alarm: more-than-one.

procedure more-than-one:
send(alarm,-); alone +-false; terminated +-true.

Non-initiators:
repeat forever

receive message(type, value);
case type of

coin-toss: forward message.
okay: forward message.
alarm: forward message.
mod-count: send(mod-count, (value+ 1) mod m).

gap-count: if value < n/ J log n then
send(gap-count, value+l)

else send(gap-count, long)

Algorithm SD solves the solitude detection problem on unidirectional rings
with expected communication complexity 0(nJ log n) bits. The correctness
and complexity proofs are only sketched here but can be found in detail in
[3].
Correctness: When there is only one initiator,then it is readily confirmed that
no alarms are generated and the algorithm terminates with alone assigned
true for the sole initiator.

When there are k 2:: 2 initiators, the "mod-count" messages ensure
that an alarm is generated unless k 2:: m + 1. The "gap-count" messages
then ensure that at least one alarm is generated within every sequence of
J log n $ m initiators. Finally the "okay" messages ensure that alarms are
forwarded to any initiators that have not already sent one, thus informing

9

all initiators of non-solitude.

Complexity: When there is one initiator, the coin tosses never produce

an alarm so they account for O(nJ log n) bits. Counting mod m requires

O(nlogm) = O(nloglogn) bits. A further O (J~,n logn) = O(nJlogn)

bits are used by the gap counter. Finally the okay messages require
O(nJ log n) bits. Thus the complexity when there is one initiator is

O(nJlogn) bits.

When there are two or more initiators, the probability is (1 - 10; n)
that a given initiator will send an alarm before successfully sending and
receiving log log n pairs of matching coin tosses. Therefore the total ex­
pected bit complexity of "mod-count", "gap-count", and "okay" messages
is O (i

0
;n (log m + log n + J log n)) = O(n). The expected cost of the coin

tosses is O(n) bits since each initiator sends 0(1) expected bits before send­
ing an alarm. Alarms cost O(n) bits always. So the total cost is O(n)
expected bits, when there are two or more initiators.

S [) distinguishes between one and more than one initiator. Since
nothing is computed if there are no initiators, S [) cannot be trivially con­
verted to a boolean function over all strings in {0, l}n. We now construct
a boolean function which, after a small amount of communication (at most
O(n log log n) bits), always leaves at least one processor in a distinguished
state, and for some nonempty subset W of inputs, leaves exactly one proces­
sor in a distinguished state. The distinguished processors can then determine
whether there is one or more than one distinguished processor by running
S [). Hence the processors determine whether or not the input string is in
w.

Let v(n) be the smallest positive nondivisor of n. Note that v(n) =
O(logn). Lett= flogv(n)l and T = 2t + 2. Assume T < v(n). (Otherwise
v(n) :5 10 and a simpler approach results in a function that reduces to
solitude detection in n · v(n) = O(n) bits.) Let r = n/T. Note that r is an
integer.

A configuration of bits on a ring of size n is well-formed if it has
the form (1 • 1 · (0 · { 0, 1}) ty. Note that a well-formed configuration has
a unique parse into r blocks of T bits of the form 1 • 1 • (0 • {O, 1})t. A block
1 · 1 · 0 • bt-l · 0 · b,_2 • 0 ... 0 · b0 encodes the integer whose binary representa­
tion is b,_1bc-2 ... bo, A well-formed configuration is sequential if successive
blocks, (including block r followed by block 1), encode successive integers
mod v(n). A well-formed configuration is almost sequential if all but one
pair of successive blocks encode a pair of successive integers mod v(n). Since
v(n) does not divide n, sequential configurations do not exist. However,

10

almost sequential configurations are easily constructed.
Let / be the boolean function defined on strings w E {O, l}n by:

f(w) = { 1 if w is ~lmost sequential
0 otherwise

Theorem 4.1: Evaluation of / on a distributed ring reduces to
solitude detection in O(nlogv(n)) bits.

Proof: We describe an algorithm which evaluates / assuming that
there is a subroutine that solves solitude detection.

1. Each processor starts by sending its own input bit and forwarding
2T - 2 more bits to its successor.

2. Each processor determines whether its sequence of 2T known bits is
consistent with the configuration being well-formed. If this is so, it is
locally well-formed. Each processor whose 2T known bits have the form
(1 · l • (0 • {O, l}t) 2, determines if the configuration is locally sequential,
that is, whether the consecutive blocks encode successive integers mod
v(n).

3. A processor is distinguished if either 1) it has determined that the
configuration is not locally well-formed or 2) it has determined that
the configuration is not locally sequential.

4. Distinguished processors initiate the solitude detection algorithm.

5. Upon termination of solitude detection, distinguished processors for­
ward "function value is 1" to the next distinguished processor if solitude
is confirmed and "function value is O" otherwise.

It is easy to see that a configuration is well-formed if and only if it is
everywhere locally well-formed. If a configuration is not well formed, it must
be not locally well-formed in more than one place. Therefore there is one
distinguished processor if and only if the configuration is almost sequential,
and there is always at least one distinguished processor.

The first step requires the transmission of n(2T - 1) = O(nlogv(n))
bits. The last step requires O(n) bits. Since the only other communication is
due to the solitude detection algorithm, the reduction requires O(n log v(n))
bits. ■

Corollary 4.2: The non-constant cyclic boolean function / can be
computed by a randomized distributed algorithm in expected complexity
O(n log v(n)) + O(nJlog n) = O(nJlog n) bits on a ring of size n.

11

5 Related Problems

The O (nJ log n) lower bound for randomized function evaluation was proven

tight by presenting a function that can be computed in O (nJ log n) expected
bits. Similarly, [8] constructs a function that can be evaluated determinis­
tically in O(n log n) bits. However both these examples of low complexity
functions are somewhat contrived. The inherent complexity of more famil­
iar boolean functions such as AND or OR is not addressed in this paper.
When restricted to deterministic computation, such functions can be easily
computed in O(n2) bits, and this is known to be optimal [5]. But AND and
OR can be reduced to leader election in O(n) bits. (In fact, for any regular
set L, the function that recognizes L can be reduced to leader election in
O(n) bits of communication [7].) Since a leader can be elected on a ring of
known size n in O(nlogn) expected bits by a randomized algorithm [1], we
conclude that these functions can be evaluated in O(nlogn) expected bits
using randomization as opposed to O(n2) deterministically.

We conjecture that O(n log n) expected bits is also optimal for AND
and OR. However, any proof of this conjecture necessarily requires stronger
techniques than those presented here, since there is a nondeterministic algo­
rithm for AND that has complexity O(nJlogn) bits. This nondeterministic
algorithm is achieved by first electing a leader, and then allowing the leader
to circulate a single final message to compute the function value. Leader
election takes advantage of exact knowledge of the ring size to run quickly in
the best case. Each processor Pi first chooses a number li E [O,v(n) -1] and
sends it to its successor (where, again, 11(n) is the smallest nondivisor of n).
If Ii = li-l + 1 then Pi drops out of contention for leadership. The remaining
contenders run solitude detection. If solitude is confirmed then there is a
leader. If it is not confirmed then the remaining contenders run any leader
election algorithm. Since v(n) does not divide n, there must remain at least
one contender after the first exchange of messages. In the best case there
will remain exactly one contender and it will be elected in O(n log v(n)) bits
for the elimination of contenders plus O(nJ log n) bits to confirm solitude.

Thus a leader can be elected nondeterministically in O(nJ log n) bits.
Randomized function evaluation permits coin tosses only to decrease

expected complexity. It is still required that the function be correctly evalu­
ated upon termination and that termination occur with probability one for
all possible inputs. These requirements could be weakened to probabilistic
function evaluation - function evaluation that permits error with probabil­
ity at most f. The complexity of probabilistic solitude detection is known to
be 0(nmin(logv(n) + Jtoglog(l/E}, Jlogn, loglog(l/E))) bits on rings of

12

known size n [3). The function described in section 4 can be evaluated prob­
abilistically using the same reduction as presented in this paper, followed by
a probabilistic version of solitude detection. Hence the complexity of evalu­
ating this function with confidence 1-£ is O(n min(log v(n) + Jlog log(l/e),

y log n)) . A lower bound of O(n min(J log log(l/e), ylog n)) is provided
by a more elaborate version of the proof in this paper which incorporates
error tolerance [6] . These bounds match to within a constant factor only
if log v(n) = 0(J log log(l/e)). The complexity of probabilistic function
evaluation remains an open question when this condition is not met.

References

[1] K. Abrahamson, A. Adler, R. Gelbart, L. Higham, and D. Kirkpatrick.
The Bit Complexity of Randomized Leader Election on a Ring. Technical
Report 86-3, University of British Columbia, Vancouver B.C., 1986.
submitted for publication.

[2] K. Abrahamson, A. Adler, L. Higham, and D. Kirkpatrick. Probabilis­
tic Solitude Detection I: Rings Ss'ze Known Approximately. Technical
Report 87-8, University of British Columbia, 1987. submitted for pub­
lication.

[3] K. Abrahamson, A. Adler, L. Higham, and D. Kirkpatrick. Probabilistic
Solitude detection II: Rings Size. Known Exactly. Technical Report 86-
26, University of British Columbia, 1986. submitted for publication.

[4] K. Abrahamson, A. Adler, L. Higham, and D. Kirkpatrick. Probabilistic
solitude verification on a ring. In Proc. 5th Annual ACM Symp. on
Principles of Distributed Computing, pages 161-173, 1986.

[5] C. Attiya, M. Snir, and M. Warmuth. Computing on an anonymous
ring. In Proc. ,4th Annual A CM Symp. on Principles of Distributed
Computing, pages 196-203, 1985.

[6] L. Higham. Ph.d. thesis. in preparation.

[7] Y. Mansour and S. Zaks. On the bit complexity of distributed compu­
tations with a leader. In Proc. 5th Annual A CM Symp. on Principles
of Distributed Computing, pages 151-160, 1986.

[8] S. Moran and M. Warmuth. Gap theorems for distributed computation.
In Proc. 5th Annual ACM Symp. on Principles of Distributed Comput­
ing, pages 131-140, 1986.

13

[9] T. Na.gell. Introduction to Number Theory. John Wiley and Sons Inc.,
New York, 1951.

(10] J. Pa.chi and D. Rotem. Notes on distributed algorithms in unidirec­
tional rings. In Proc. 1st International Workshop on Distributed Algo­
rithms, pages 115-122, 1985.

14

