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Abstract 

Let R be a unidirectional asynchronous ring of n processors each 
with a single input bit. Let / be any cyclic non-constant function of 
n boolean variables. Moran and Warmuth [8] prove that any deter­
ministic algorithm for R that evaluates / has communication complex­
ity O(n log n) bits. They also construct a cyclic non-constant boolean 
function that can be evaluated in O(n log n) bits by a deterministic 
algorithm. 

This contrasts with the following new results: 

1. There exists a cyclic non-constant boolean function which can be 
evaluated with expected complexity O(nvlog n) bits by a ran­
domized algorithm for R. 

2. Any nondeterministic algorithm for R which evaluates any cyclic 
non-constant function has communication complexity O(nJ log n) 
bits. 

1 Introduction 

An asynchronous unidirectional ring is one of the simplest network topolo­
gies. Because it exhibits some phenomena that could be considered typical 
of more elaborate networks, it provides a good starting point for the study of 
distributed computation. Hence many fundamental problems on rings have 
been widely studied under various additional assumptions about the ring. 

Function evaluation is one typical problem. A ring of n processors, 71'1, 

••• , 71'n, each with a single input value (say i1 , •·•,in respectively), must co­
operate to compute /(ii,•··, in) for some n-variable function/. The general 
question of the minimum communication complexity required to compute 
any non-trivial function on a ring was first addressed by Moran and War­
muth in [8]. They focus on the complexity of non-constant functions because 
any constant function can be evaluated without any communication. Since 
computation is on a ring of identical processors, the function/ is assumed to 
be cyclic, that is /(i1, ···,in) = f(i;, ···,in, i1, · · •, i;-1) for any 1 ~ j ~ n. 
They prove that: 

1. If g is any non-constant cyclic function of n variables, then the com­
plexity of evaluating g on a ring of n identical deterministic processors 
is O(nlogn) bits of communication and 

2. There is a is non-constant cyclic boolean function /, such that / can 
be evaluated in O(n log n) bits of communication on a ring of n deter­
ministic processors. 
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It has become increasingly apparent that randomization can be a pow­
erful tool in distributed and parallel computing, particularly when used as 
an aid to breaking symmetry. The question therefore arises whether the 
bounds described above remain true if the processors are not deterministic 
but rather have access to independent random number generators. This pa­
per answers this question. We exhibit a non-constant cyclic boolean function 
/ and a randomized distributed algorithm which evaluates / on a ring of n 
processors using expected complexity O(nJlogn) bits for any input. We 

also prove that O(nJlogn) bits are required to evaluate any non-constant 
cyclic function on a ring. 

The lower bound actually holds for a more powerful model of compu­
tation than that used to achieve the upper bound. This model is described 
in the next section. Section 3 provides the proof of the lower bound. Section 
4 presents a function with minimum complexity, and section 5 reviews some 
remaining open problems. 

2 Model 

Our objective is to study the inherent bit complexity of randomized dis­
tributed algorithms that evaluate functions on asynchronous rings. A dis­
tributed algorithm can be viewed as an assignment of processes to processors. 
So it suffices to model computations induced by cyclic sequences of processes. 
In order to describe a computation, we first define a process and state some 
useful properties of rings of processes. The relationship between distributed 
algorithms and rings of processes is then made precise on order to highlight 
the generality of the lower bounds that follow. 

2.1 Processes 

The following description of a process incorporates two non-restrictive as­
sumptions [10], namely, that messages are self-delimiting, and that commu­
nication is message driven with at most one message sent in response to 
receipt of a message. 

A message is an element of M = {O, 1}• · □. The symbol □ is called 
the end-of-message marker. A history is a sequence of messages. If h is 
a history, then lhl denotes the number of messages in h, and \lh\l denotes 
the length of the binary encoding of h using some fixed encoding scheme to 
encode each symbol in { O, 1, □ }. Note that any history has a unique parse 
into a sequence of messages. 

A process 1r is modelled as a pair of mappings which describe the next 
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output message (possibly null) and the next state of 7r as a function of its 
current state and current input message. A process' state encodes its entire 
history so far, and consequently the state set is not bounded. Process 1r is 
an initiator if it produces an output message from its initial state, (that is, 
before the arrival of the first message). Otherwise it is a non-initiator. 

Let 1r1 , ••• , 7r n he a sequence of processes. We use 1r1,n to abbreviate ?ri, 

••• , 7r n• There is a sequence of histories, C = h1 , • • ·, hn, called a computation 
associated with 1r1,n in the natural way. Each history hi is composed of 
a sequence of messages mi1 ··•mi, . . If 1ri is an initiator, then mi1 is the 

I 

message produced by 1ri from its initial state. The computation is then 
determined inductively by applying the mappings defined by 1r1 through ?rn 

and letting successive output messages of 1r, be successive input messages 
of 'lfi+l· (Indices are reduced in the obvious way.) The complexity of a 
computation C = h1, · · ·, hn is Ei=l llhill-

We distinguish a subset M 0 ~ M called accepting messages, and a 
subset Mr ~ M called re;"ecting messages. A history is an accepting history 
(respectively, rejecting history) if and only if its last message is an accepting 
message (respectively, rejecting message). An accepting or rejecting history 
is a decisive history. A computation h1 , • • • , hn of 1r1 , •.• , 1r n is accepting if 
every h, is an accepting history, and is re;"ecting if every h, is a rejecting 
history. 

We are interested in distributive termination for function evaluation, 
that is, processes must reach irreversible conclusions. This is modelled by 
insisting that processes never output another message after sending a decisive 
message. Non-distributive termination permits a process to reach a tentative 
decision which it may revoke upon receipt of another message. This weaker 
form of termination is of little interest in the context of function evaluation, 
since this termination cannot be detected. In any case the reader will readily 
construct a non-distributively terminating deterministic algorithm for AND 
which requires only O(n) bits. 

A number of properties and lemmas follow immediately from these 
definitions. They allow us to manipulate computations, building new ones 
from old ones. 

Lemma 2.1: If C = h1 , ···,ht is a computation with complexity less 
than b, and all hi are distinct, then k < 1;; b. 

Proof: At least (k log k)/2 bits are required to encode k distinct 
strings. Hence (k log k)/2 < b implying k < 1;:b. ■ 
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Property 2.2: If C = hi,•",hn is a computation of 71"1, ••• , 7l'n 

with hi = h; for some i < j, and ,r1 is the only initiator, then C' = 
h1 , ···,hi, h;+1, · · ·, hn is a computation of 71"1, • • ·, 71";, 71";+1, • • ·, ,r n· 

Property 2.3: If C = h1 , • • ·, hn is a computation of ,r1,n = ,r1 , ••• , 

?rn then er= (hi,•••, hnt is a computation of (7r1,nY = (,ri, • • •, 71"nY where 
(xY has the usual interpretation: the concatenation of r copies of sequence 
x. 

2.2 Algorithms 

The processes just described are deterministic. In order to explore function 
evaluation by randomized algorithms, we need to incorporate input values 
and random choices into the model. Both of these features are achieved 
simultaneously by relaxing the way in which processes are assigned to pro­
cessors, rather than by generalizing the notion of a process. 

In the natural description of a randomized distributed algorithm, a pro­
cess' next state and output message are determined by its current state, its 
last input message and the result of a random experiment. Random choices 
occur throughout the run of the algorithm. But these random choices can 
be simulated as a single random choice by each processor at the beginning of 
the algorithm. A processor randomly chooses a function from internal state, 
input message pairs to internal state, output message pairs. (Essentially, the 
processor pre.-selects all its random coin tosses.) 

Inputs are incorporated into initial states of processes. If a processor 
has a given input i, then its must randomly select a process ,r whose initial 
state is consistent with input i. We then say that ,r has input i. 

Hence a randomized distributed algorithm for function evaluation can 
be modelled as a random assignment of deterministic processes to processors 
where the random distribution for each assignment is determined by each 
processor's input value. We generalize this still further by permitting an 
arbitrary assignment of processes to processors. Let A be the set of all 
processes. A distributed algorithm a is a mapping from input values in 
a domain D to nonempty subsets of A. The set a( i) is the collection of 
processes available to processors with input i. A sequence ,r1,n = 71"1, ••• , 71"n 

corresponds to an assignments of processes to processors on rings of size n. 
The assignment is constrained only in that processor j with input i; must 
be assigned a process in a(i;). 

This generalization from random to arbitrary assignments gives algo­
rithms a nondeterministic attribute. Like conventional nondeterministic al­
gorithms, an algorithm is said to evaluate /(/) for IE Dn efficiently if for 
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some choice of process assignments consistent with I, the resulting compu­
tation has low complexity. Therefore lower bounds on the complexity of 
evaluating /(J) address the complexity of the best case. 

2.3 Function Evaluation 

Let / be a cyclic function from D" to { O, 1}. Then / is the characteristic 
function of some L ~ D". Let I= i1, ···,in E D". Let 1r1,n = 7ri, ••• , 7rn 

be a process sequence where 1r; E a(i;), and let C be the computation of 
1r1,n. Then 1r1,n evaluates f on input I if C is an accepting computation when 
J EL and is a rejecting computation when I¢ L. 

An algorithm a evaluates f on input I if for every 1r1,n with at least 
one initiator, where 1r; E a(i;), 71"1,n evaluates / on input I. An algorithm a 
evaluates f if it evaluates / on input I for every I E D". 

The complexity of an algorithm a is at least M if there exists an input 
I = ii, • • • , in E D" such that for every 11'"1,n = 71"1, ••• , 71" n with 7r; E a( i;), 
the complexity of the computation associated with 1r1,n is at least M. 

3 Lower Bound for Function Evaluation 

Let / be any non-constant cyclic function of n variables, and let a be any 
distributed algorithm which evaluates/ on a ring of size n where n is large. 
In this section we prove that there exists some input string J for which a 
requires O ( nJ log n) bits of communication to compute / ( I) even in the best 

case. Thus we conclude that the complexity of a is O(nJlogn) bits. 
The proof proceeds in two steps. Let a be an algorithm which evaluates 

/. The first step is to show that the claimed complexity applies whenever a 
is restricted to single initiator computations. The second step is a reduction 
which proves that any algorithm for function evaluation can be converted to 
an algorithm that works for any preassigned non-empty subset of initiators 
without entailing any significant additional complexity. 

Theorem 3.1: Let/: Dn--+{0, 1} be any non-constant cyclic decision 
function of n variables. Let a be any distributed algorithm which evaluates 
/ on a ring of size n for any non-empty set P of initiators. Then there is 
some input IE D" for which a requires O(nJlogn) bits of communication 
to evaluate /(J) when the size of P is 1. 

Proof: The proof has two parts. We first show how to build a new 
computation of a from a given one that has low complexity and a single 
initiator. 
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Let I = i1, ···,in E nn and let C = h1, · · ·, hn be a computation 
of 1r1, ••• , 7rn where 1r; E a(i;) and 1r1, ••• , 7rn has exactly one initiator, 

1r1 . Suppose the complexity of C is less than (nJlogn)/3. Let r = jh1 j. 
Because there is one initiator, each history has either r or r - 1 messages. 
Each message requires at least one bit, therefore n ( r - 1) < ( nJ log n ) / 3 

implying r < J log n /2 for large enough n. 
C is now collapsed by repeatedly applying lemma 2.1 and property 2.2 

until all histories are distinct. Let C' = h131 , • • • , h13, be the resulting subse­
quence of C. Then by property 2.2, C' is a computation of 1r' = 1r 131 , • • • , 1r 13, 

with input J' = if31 , • • •, i/3,. By lemma 2.1, l < n/ J log n. By property 2.3, 
(C')' is a computation of (1r')' = 1rl • • • 1d ,r~ • • • 1r! · · · ,r~ • .. ,r~ ,-, 1 ! ! ,.,, ! ,-, 1 ! ! ,.,, ! ! ,-, 1 ! ! ,.,, 

with input (J')' of length rl < n/2. But each copy of 1r' in (1r')" has exactly 
one initiator, 1rt = ,r1 for 1 $ j $ r. Now imagine blocking all messages 
between ""P, and 1rt. Then 11"p

1 
still receives r - 1 messages and hence still 

has output history h131 = h1, 

Let 'Y = 11, ... '1n-rl be any element of nn-rl and T = T1 ... Tn-rl be 
any sequence with r; E a('Y;), Consider the sequence (1r')'r which has input 
(J')'1. Since any message generated by r cannot influence the history of 1rp

1 

in (1r')'r until after the rth message, 1rp
1 

must have the messages of h1 as its 
first r output messages. In particular, if h1 is decisive, h1 is the complete 
history of 1rp

1
• 

In summary, this construction of collapsing, replicating and splicing can 
be applied to any 1r1,n and its input J whenever the computation C of 1r1,n 

is decisive and has complexity less than n(Jlogn )/3. ·The result is a new 
sequence (I')' of length rl < n/2 such that for any 1 of length n - rl > n/2, 
there is a computation C" which has input (J')'1 and some decisive history 
hi occurs in both C and C". 

This construction is now used to find an input J E nn for which the 
assumption that the complexity of any single initiator computation of a with 
this input is less than (nJlogn )/3 leads to a contradiction. 

Let L C nn be the language recognized by /. Let d E D and without 
loss of generality, assume dn ft L. (Otherwise consider the language L.) Let 
w = d"p be an element of L such that k is maximum over all strings in L. 

Case 1: Suppose k ~ n/2. Then let I = w. Since w E L, C must be an 
accepting computation. Therefore there is some computation C" containing 
an accepting history hi for any 1· Let 1 = ~-,z. Then hi is an accepting 
history when the input string has more thank consecutive d's. Contradiction. 

Case 2: Suppose k > n/2. Then let I = dn. Since d" ft L, C must be a 
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rejecting computation. Therefore there is some computation C" containing a 
rejecting history hi for any 'Y· Let "I= dk-rlp. Then hi is a rejecting history 
when the input is w E L. Contradiction. ■ 

The second step to the final result is a reduction. 

Theorem 3.2: Let a be a distributed algorithm that evaluates some 
function/ on rings of size n. Let C(a; J) denote the bit complexity of a on 
input I. Then there exists an algorithm & that evaluates/ on rings of size n 
for any preassigned non-empty subset P of initiators, and maxP;,!0 C(&, J) s 
4C(a; 1) + O(n). 

Proof: Let P be some non-empty _collection of processors on the 
ring designated as initiators. The algorithm & proceeds as follows. Each 
processor p E P sends a package containing a "wake-up" message and the 
first message of a. Each processor q ft. P waits until it receives a "wake­
up" message together with all accumulated messages of a. It forwards as a 
package the wake-up message, its initial message of a if it has one, and all 
the appropriate responses of a to the package of messages received. When 
p E P receives its first package, it discards the "wake-up" message. For the 
remaining computation, every processor receives a package of messages of a 
and sends a corresponding package of the appropriate a responses until the 
algorithm terminates. 

The bit communication of & is just the bits of a plus n "wake-up" mes­
sages plus the packaging costs. But package delimiters can at most increase 
the cost of the computation of a by a factor of four, and the "wake-up" 
messages add an additional O(n) bits. ■ 

Note that the reduction holds for any non-empty set P of processors, 
and processors need have no knowledge of the size of P. ( Of course the 
message complexity of & might be substantially less than the message com­
plexity of a, but the bit complexity remains comparable.) In particular, the 
reduction must hold for a set P of size one. But by theorem 3.1, there is no 
& that has complexity less than ( nJ log n) /3 when the initiating set has size 
one. 

Corollary 3.3: Let / be any non-constant cyclic decision function of 
n variables, and let a be any distributed algorithm which evaluates f on a 
ring of size n. Then the complexity of a is O(nJ log n) bits. 

Suppose f is any non-constant cyclic function with range S, and 8 1 E S 
is one possible value of f. Then the function /' defined by 

f'(x) = { 1 if f(x). 81 
0 otherwise 
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is a non-constant cyclic decision function which can be computed at least as 
cheaply as /. Therefore the lower bound above actually applies to general 
function evaluation on a ring. 

4 A Function that Achieves the Minimum Complexity 

This section presents a non-constant boolean function /, which can be eval­
uated by a randomized algorithm in O(nJlogn) expected bits on a ring of 
size n. 

Our algorithm for / relies on an algorithm for a simpler problem called 
Solitude Detection. Let a nonempty set of processors in a distributed system 
be distinguished. The problem of solitude detection is for every distinguished 
processor to determine whether there is one or more than one distinguished 
processor. In an algorithm for solitude detection, the initiators are precisely 
the distinguished processors. The complexity of solitude detection for a ring 
has been thoroughly studied in [2,3,4]. In particular, the following algorithm 
for solitude detection is a variation of a general algorithm that appears in 
[3]. 

Algorithm SD 

Let m be the smallest integer such that m 2:'.: J log n and m is relatively 
prime ton. It follows from the prime number theorem that m = O(logn) 
[9]. Messages are assumed to have two fields; message type and message 
value. For ease of description, five message types are used. However it is 
really only necessary to label alarms since other message types arrive in a 
fixed order and can thus be distinguished implicitly. The function random(x) 
is assumed to return an unbiased random coin toss of heads or tails and store 
the result in variable x. 

Initiators: 
send( coin-toss, random( my-toss)); 
round ~o; terminated ~false; 
while not terminated do 

receive message(type, value); 
case type of 

coin-toss: if value= my-toss then 
if round < log log n then 

send( coin-toss, random( my-toss)); 
round ~round+ 1 

else send(mod-count,1) 
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round +-0 
else more-than-one. 

mod-count: if value = n mod m then 
send(gap-count,1) 

else more-than-one. 
gap-count: if value= long then 

send ( okay,-) 
else more-than-one. 

okay: if round < J log n then 
send (okay,-); 
round +-round+ 1 

else alone +-terminated +-true. 
alarm: more-than-one. 

procedure more-than-one: 
send(alarm,-); alone +-false; terminated +-true. 

Non-initiators: 
repeat forever 

receive message(type, value); 
case type of 

coin-toss: forward message. 
okay: forward message. 
alarm: forward message. 
mod-count: send(mod-count, (value+ 1) mod m). 

gap-count: if value < n/ J log n then 
send(gap-count, value+l) 

else send(gap-count, long ) 

Algorithm SD solves the solitude detection problem on unidirectional rings 
with expected communication complexity 0( nJ log n) bits. The correctness 
and complexity proofs are only sketched here but can be found in detail in 
[3]. 
Correctness: When there is only one initiator,then it is readily confirmed that 
no alarms are generated and the algorithm terminates with alone assigned 
true for the sole initiator. 

When there are k 2:: 2 initiators, the "mod-count" messages ensure 
that an alarm is generated unless k 2:: m + 1. The "gap-count" messages 
then ensure that at least one alarm is generated within every sequence of 
J log n $ m initiators. Finally the "okay" messages ensure that alarms are 
forwarded to any initiators that have not already sent one, thus informing 
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all initiators of non-solitude. 

Complexity: When there is one initiator, the coin tosses never produce 

an alarm so they account for O(nJ log n) bits. Counting mod m requires 

O(nlogm) = O(nloglogn) bits. A further O (J~,n logn) = O(nJlogn) 

bits are used by the gap counter. Finally the okay messages require 
O(nJ log n) bits. Thus the complexity when there is one initiator is 

O(nJlogn) bits. 

When there are two or more initiators, the probability is ( 1 - 10; n) 
that a given initiator will send an alarm before successfully sending and 
receiving log log n pairs of matching coin tosses. Therefore the total ex­
pected bit complexity of "mod-count", "gap-count", and "okay" messages 
is O (i

0
;n (log m + log n + J log n)) = O(n). The expected cost of the coin 

tosses is O(n) bits since each initiator sends 0(1) expected bits before send­
ing an alarm. Alarms cost O(n) bits always. So the total cost is O(n) 
expected bits, when there are two or more initiators. 

S [) distinguishes between one and more than one initiator. Since 
nothing is computed if there are no initiators, S [) cannot be trivially con­
verted to a boolean function over all strings in {0, l}n. We now construct 
a boolean function which, after a small amount of communication (at most 
O(n log log n) bits), always leaves at least one processor in a distinguished 
state, and for some nonempty subset W of inputs, leaves exactly one proces­
sor in a distinguished state. The distinguished processors can then determine 
whether there is one or more than one distinguished processor by running 
S [). Hence the processors determine whether or not the input string is in 
w. 

Let v(n) be the smallest positive nondivisor of n. Note that v(n) = 
O(logn). Lett= flogv(n)l and T = 2t + 2. Assume T < v(n). (Otherwise 
v(n) :5 10 and a simpler approach results in a function that reduces to 
solitude detection in n · v(n) = O(n) bits.) Let r = n/T. Note that r is an 
integer. 

A configuration of bits on a ring of size n is well-formed if it has 
the form ( 1 • 1 · ( 0 · { 0, 1}) ty. Note that a well-formed configuration has 
a unique parse into r blocks of T bits of the form 1 • 1 • (0 • {O, 1} )t. A block 
1 · 1 · 0 • bt-l · 0 · b,_2 • 0 ... 0 · b0 encodes the integer whose binary representa­
tion is b,_1bc-2 ... bo, A well-formed configuration is sequential if successive 
blocks, (including block r followed by block 1), encode successive integers 
mod v(n). A well-formed configuration is almost sequential if all but one 
pair of successive blocks encode a pair of successive integers mod v( n). Since 
v(n) does not divide n, sequential configurations do not exist. However, 
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almost sequential configurations are easily constructed. 
Let / be the boolean function defined on strings w E {O, l}n by: 

f(w) = { 1 if w is ~lmost sequential 
0 otherwise 

Theorem 4.1: Evaluation of / on a distributed ring reduces to 
solitude detection in O(nlogv(n)) bits. 

Proof: We describe an algorithm which evaluates / assuming that 
there is a subroutine that solves solitude detection. 

1. Each processor starts by sending its own input bit and forwarding 
2T - 2 more bits to its successor. 

2. Each processor determines whether its sequence of 2T known bits is 
consistent with the configuration being well-formed. If this is so, it is 
locally well-formed. Each processor whose 2T known bits have the form 
(1 · l • (0 • {O, l}t) 2, determines if the configuration is locally sequential, 
that is, whether the consecutive blocks encode successive integers mod 
v(n). 

3. A processor is distinguished if either 1) it has determined that the 
configuration is not locally well-formed or 2) it has determined that 
the configuration is not locally sequential. 

4. Distinguished processors initiate the solitude detection algorithm. 

5. Upon termination of solitude detection, distinguished processors for­
ward "function value is 1" to the next distinguished processor if solitude 
is confirmed and "function value is O" otherwise. 

It is easy to see that a configuration is well-formed if and only if it is 
everywhere locally well-formed. If a configuration is not well formed, it must 
be not locally well-formed in more than one place. Therefore there is one 
distinguished processor if and only if the configuration is almost sequential, 
and there is always at least one distinguished processor. 

The first step requires the transmission of n(2T - 1) = O(nlogv(n)) 
bits. The last step requires O(n) bits. Since the only other communication is 
due to the solitude detection algorithm, the reduction requires O(n log v(n)) 
bits. ■ 

Corollary 4.2: The non-constant cyclic boolean function / can be 
computed by a randomized distributed algorithm in expected complexity 
O(n log v(n)) + O(nJlog n) = O(nJlog n) bits on a ring of size n. 
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5 Related Problems 

The O ( nJ log n) lower bound for randomized function evaluation was proven 

tight by presenting a function that can be computed in O ( nJ log n) expected 
bits. Similarly, [8] constructs a function that can be evaluated determinis­
tically in O(n log n) bits. However both these examples of low complexity 
functions are somewhat contrived. The inherent complexity of more famil­
iar boolean functions such as AND or OR is not addressed in this paper. 
When restricted to deterministic computation, such functions can be easily 
computed in O(n2) bits, and this is known to be optimal [5]. But AND and 
OR can be reduced to leader election in O(n) bits. (In fact, for any regular 
set L, the function that recognizes L can be reduced to leader election in 
O(n) bits of communication [7].) Since a leader can be elected on a ring of 
known size n in O(nlogn) expected bits by a randomized algorithm [1], we 
conclude that these functions can be evaluated in O(nlogn) expected bits 
using randomization as opposed to O(n2) deterministically. 

We conjecture that O(n log n) expected bits is also optimal for AND 
and OR. However, any proof of this conjecture necessarily requires stronger 
techniques than those presented here, since there is a nondeterministic algo­
rithm for AND that has complexity O(nJlogn) bits. This nondeterministic 
algorithm is achieved by first electing a leader, and then allowing the leader 
to circulate a single final message to compute the function value. Leader 
election takes advantage of exact knowledge of the ring size to run quickly in 
the best case. Each processor Pi first chooses a number li E [O,v(n) -1] and 
sends it to its successor (where, again, 11(n) is the smallest nondivisor of n). 
If Ii = li-l + 1 then Pi drops out of contention for leadership. The remaining 
contenders run solitude detection. If solitude is confirmed then there is a 
leader. If it is not confirmed then the remaining contenders run any leader 
election algorithm. Since v(n) does not divide n, there must remain at least 
one contender after the first exchange of messages. In the best case there 
will remain exactly one contender and it will be elected in O(n log v(n)) bits 
for the elimination of contenders plus O(nJ log n) bits to confirm solitude. 

Thus a leader can be elected nondeterministically in O(nJ log n) bits. 
Randomized function evaluation permits coin tosses only to decrease 

expected complexity. It is still required that the function be correctly evalu­
ated upon termination and that termination occur with probability one for 
all possible inputs. These requirements could be weakened to probabilistic 
function evaluation - function evaluation that permits error with probabil­
ity at most f. The complexity of probabilistic solitude detection is known to 
be 0(nmin(logv(n) + Jtoglog(l/E}, Jlogn, loglog(l/E))) bits on rings of 
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known size n [3). The function described in section 4 can be evaluated prob­
abilistically using the same reduction as presented in this paper, followed by 
a probabilistic version of solitude detection. Hence the complexity of evalu­
ating this function with confidence 1-£ is O(n min(log v(n) + Jlog log(l/e), 

y log n )) . A lower bound of O(n min( J log log(l/e), ylog n )) is provided 
by a more elaborate version of the proof in this paper which incorporates 
error tolerance [6] . These bounds match to within a constant factor only 
if log v(n) = 0( J log log(l/e) ). The complexity of probabilistic function 
evaluation remains an open question when this condition is not met. 
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