
Time-Space Tradeoffs For Branching Programs
Contrasted With Those For Straight-Line Programs*

by

Karl Abrahamson

Technical Report 87-19

June 1987

* A preliminary version of this paper appeared in the 27th Annual Symposium on
Foundations of Computer Science.

1

Abstract
This paper establishes time-space tradeoffs for some algebraic prob­

lems in the branching program model, including convolution of vectors,
matrix multiplication, matrix inversion, computing the product of three
matrices and computing PAQ where P and Qare permutation matrices.
While some of the results agree well with known results for straight­
line programs, one of them (for matrix multiplication) surprisingly is
stronger, and one (for computing PAQ) is necessarily weaker. Some of
the tradeoffs are proved for expected time and space, where all inputs
are equally likely.

1 Introduction

Straight-line programs, and the related pebble game, have been used exten­
sively in demonstrating time-space tradeoffs. Results are known for problems
including sorting [13], convolution and discrete Fourier transform [13], binary
integer multiplication [12], and matrix multiplication and inversion [7,9,11].

An alternative approach, based on branching programs, has been de­
veloped by Borodin et al. [6] and Borodin and Cook [3], and is applied
to sorting in both cases. Yesha [16] uses branching programs to establish
time-space tradeoffs for matrix multiplication and discrete Fourier trans­
form. Other papers using branching programs as the model of computation
include [1,4,5,15].

Unlike straight-line programs, which model oblivious algorithms, branch­
ing programs model algorithms which make decisions .on the fly. Lower
bounds for branching programs apply to a general sequential model of com­
putation. Consequently, results for branching programs are preferred, when
they can be had, over comparable results for straight-line programs. The
preference is strongest for problems who.ae algorithms could benefit, even
only apparently, from non-oblivious behavior. An example is matrix mul­
tiplication over Z2 , where one could conceivably (although not in reality)
avoid effort by exploiting zeros.

This paper demonstrates that the branching program model is capable
of supporting strong results for algebraic problems. The results are summa­
rized in the next section. Features of the results are

1. Our results for convolution and matrix inversion are as strong as known
results for straight-line programs.

2. In the case of matrix multiplication, our lower bound is stronger than
the previously known lower bound for the more restrictive straight-line
programs, when all of the results are restricted to matrices over a field.

2

3. For the problem of computing PAQ, where P and Q are permutation
matrices, the ability to make decisions on the fly does help. Our bounds
for branching programs are closer to the actual cost for random access
machines than results for straight-line programs for this problem.

4. Our results for matrix multiplication, convolution and for computing
the product of three matrices are tight to within a constant factor
within the branching program model, for a wide range of time and space
values. Consequently, any stronger results must rely on features of real
algorithms not modeled by branching programs.

5. Some of our lower bounds (those which are proved directly) apply to
expected time and space. Results proved by reduction are for the worst
case.

2 Summary and Related Results

The results concern multiple input, multiple output functions over a field.
Throughout, 1 is any field, [) = {d1 , ••• , d5} is a finite subset of 1, and
o = IDI ~ 2. The functions accept n inputs in[), and produce m outputs in
1, for some n and m. For this summary, Sand T represent space and time,
respectively, required to solve the given problem. Although the same symbols
S and T are used for both the straight-line and the branching program
models, space and time are somewhat different in the two models. The
major difference is that, in the straight-line model, space is measured in
words, where each word can hold one member of 1, while in the branching
program model, space is measured at the bit level. As a result, there is a
factor of log 6 in the results for branching programs which does not appear in
results for straight-line programs. Details of the branching program model
can be found in section 3.

For straight-line programs, only worst case complexity makes sense. For
branching programs, there is an obvious notion of expected time complexity,
and a less obvious but meaningful notion of expected space. Some of our
lower bounds for branching programs apply to expected space and time.
Symbols S and T represent expected space and time, respectively, where all
inputs are equally likely.

The first two results concern convolution and the related problem of
binary integer multiplication. Both are known to require ST = O(n2

) in
the straight-line model [12,13]. Our results are that ST = O(n2 log 6) for
convolution of n component vectors over [), and ST = O(n2 / log2 n) for
multiplication of two n bit binary integers, in the branching program model.

3

The constant implicit in the 0, as in all to follow, is independent of n, 1 and
[). Yesha [16] has shown that the related problem of computing the discrete
Fourier transform of an n = p-1 component vector over GF(p), for p prime,
requires ST = O(n2

). We strengthen Yesha's result to expected space and
time.

The next problems are the related problems of computing the product
ABC of three n x n matrices over [), and of inverting an upper triangular
matrix. For computing ABC, we can show ST = 0 (n • log 6). That bound
is tight to within a constant factor. For inversion, a worst case bound of
ST = O(n" log 6) is shown. That agrees well with Ja' Ja's result [9] of
ST= O(n") for matrix inversion over a field in the straight-line model.

The next function is n x n matrix multiplication, restricted to input
matrices over [). In the straight-line model, Grigoryev [7] and Ja' Ja' [9]
have shown that ST = O(n8

). Ja' Ja's result holds for any ring. In the
branching program model, Yesha [16] has shown that, for every n, there is
a finite field ! , of size 0(n), such that n X n matrix multiplication over !
requires ST= O(n8). Both of the above results are strengthened here, when
restricted to a field. For any field 1 and any finite subset [) ~ 1 of size
6 ~ 2, n x n matrix multiplication over/) requires ST

2 = O(n6 logc) in the
branching program model. The bound can be achieved to within a constant
factor within the model, assuming[) = 1, for any log(6n) ~ S ~ n2 log c.

The next result concerns computation of the matrix product PAQ,
where P and Q are n x n permutation matrices, and A is a fixed n x n
matrix, all of whose elements are distinct. It follows from results of Savage
[11] and Vuillemin [14] that any straight-line program to compute FAQ re­
quires ST= O(n4). But there is a random access program which computes
PAQ in ST = O(n8 log2 n), for a wide range of Sand T. A lower bound of
ST= O(n8) is shown to hold for branching programs, and ST = O(n3 log n)
is achievable in that model.

3 Branching Programs

This section describes branching programs, and contains a key lemma, based
on the ideas of Borodin and Cook, for establishing time-space tradeoffs.

The branching program model is a generalization of the decision tree
model. It has been described and justified elsewhere [1,3,6,15,16], so the
description here will be short.

Let /: [)n ~ 1m, where [) = { d1, ... ,d6 }. A branching program P
which computes y = f(x) is a directed acyclic graph with a single source (a
node with in-degree zero), and possibly many sinks (nodes with out-degree

4

zero). Each non-sink has out-degree 6, and is labeled by a query of the form
"xi?", for some 1 $ i $ n. Each arc is labeled by a response to a query. If
nonsink u is labeled by query "xi?", then the 6 arcs exiting u are labeled
with the 6 possible responses "xi = d1", ••• , "xi = ds".

Each node is also labeled by a possibly empty set of outputs, each of
the form "Y; = a", where a E 7 and 1 $ j $ m.

Each input vector x defines a eomputation in P, namely the unique
directed path from the source to a sink whose responses are consistent with
x. The outputs are just those which appear along the computation.

The worst case time complexity T of P is the length of the longest
computation. When a probability distribution is assigned to the inputs, the
expected time complexity T is defined in the obvious way.

Suppose P has k nodes. The (worst case) space complexity S of P is
defined as log2 k. (All logarithms in this paper are to base 2.) The expected
space complexity Sis defined as follows. A numbering of P is a 1-1 function
assigning one of the integers O, ... , k - 1 to each of the nodes of P. Relative
to a particular numbering, the space used by Pon input xis the logarithm of
the largest number of a node on the computation for input x. The expected
space complexity is defined as the minimum, over all numberings, of the
expected space used on a random input (relative to the numbering and to a
given probability distribution).

With two restrictions, lower bounds for branching programs apply, to
within a constant factor, to general sequential models of computation, in­
cluding multi-tape Turing machines and logarithmic cost random access ma­
chines. The first restriction is that space is assumed to be at least logarith­
mic. The second is that each output component must be produced as a unit.
For example, if numbers are represented in binary, then it is not permissible
to produce one bit of y1, followed by one bit of 112, then a second bit of y1.

It is important to note that the definition of space complexity of Turing
machines and random access machines counts only temporary space. The
input is assumed to be given in a random access read-only input memory,
and the output is placed in a random access write-only output memory, and
neither input nor output space is counted. Such a definition is a natural
one, and permits sublinear space algorithms. For more detail, see [8,10].
To within a constant factor, lower bounds for branching programs apply
even to Turing machines and logarithmic cost random access machines where
only temporary space is counted. Discussions of the relationship between
branching programs and other models for worst case complexity can be found
in [1,3,16]. Proofs for average case complexity are nearly identical to those
for the worst case.

5

Say that branching program P is in normal form if its nodes are or­
ganized into levels, where for each arc (u, v), u is in level i and v is in level
i + I, for some i. As pointed out in [3,6,16], we can assume that branch­
ing programs are in normal form. The reason is simply that any branching
program can be put into normal form by replicating all of the nodes at each
level, in the obvious way, at a cost of adding log T to the space complexity
of a time T program. Since it is clear that S ~ log T, and we are only inter­
ested in complexity results to within a constant factor, there is no real loss
in converting to normal form.

The Borodin-Cook technique is essentially probabilistic. For each func­
tion, a probability distribution is assigned to the input vectors. Typically,
but not necessarily, all inputs are considered equally likely. All probability
calculations for a given function are understood to be relative to its associ­
ated input distribution.

The key lemma relates properties of branching programs for a given
function to properties of the more tractable tree programs. A tree program
is just a branching program with a tree structure. A tree program is non-red­
undant if no computation contains two nodes with the same query. Following
two definitions, the lemma is stated in two forms, one for worst case, the other
for expected case. Since the proof for worst case appears in [3,6,16], and is
similar to that for expected case, only the version for expected case is proved
here.

Definition 3.1: A computation ,r k-solves vector x (w.r.t. function
I) iff ,r produces at least k outputs, aU of the query responses on 1r are
consistent with x, and all of the outputs are correct (w.r.t. /) for input i.
A tree program r k-solves z iff the computation of r on i k-solves x.

Definition 3.2: Let /: [)" -+ T"" be a function, and J be an input
probability distribution for/. Let a and {J be positive integers. For any non­
redundant tree program r, define c1,1(r,{J) as the probability that r /J-solves
a random input z (w.r.t. I). C1,r(r,{J) provides a measure of the portion of
the entire solution of / covered by r. Define C 1,1(a, {J) as the maximum, over
all depth a non-redundant tree programs r, of C1,1(r,{J). In what follows,
the input distribution J will be left implicit, and we will refer to C 1(a, {3).

Lemma 3.3: Let /: [)" --+ T"", and let a and /3 be positive integers.
Let P be a normal form branching program computing /.

i) If P has worst case time T and space S, with a < n < T and
{J -5; r ;'; l, then s '?:. - log CJ (a, {J).

6

ii) If P has expected time T and expected space S, with a: :::; n :::; T
and /3:::; r~l, then S ~ -logC,(o::,,B) -4.

Proof: We prove part (ii) only. Suppose that the nodes of P have
been numbe;red in such a way as to minimize the expected space complexity,
relative to the given numbering. Truncate P at depth t = 2T, and call
the truncated program P'. With probability at least ½, P' completes the
solution of a random input. Break P' into s = r(t + 1)/(o: + 1)1 :::; 2t/a
disjoint stages, where, for i = 1, ... , s, stage i consists of levels (i - 1)(a + 1)
to i(a + 1) - 1. Each stage is a branching program of depth a, except that
it may have many sources. In the obvious way, unwind the program within
each stage, duplicating shared nodes, so that each stage becomes a collection
of disjoint trees.

Now some operations are performed on the tree programs comprising
the modified stages. In a tree program, it can't hurt to insist that outputs
be given only at the leaves. Push all of the outputs down to the leaves,
preserving the input/output behavior of the trees. Also, in a tree program it
cannot help to make redundant queries. Eliminate redundant queries from
the trees, preserving their input/output behavior, and pad the trees to a
uniform depth of a by adding superfluous but non-redundant queries as
needed. Call the resulting program P".

Imagine running P" on a random input x. With probability at least ½,
m outputs are produced. Since there are at most 2t/ a stages, with proba­
bility at least ½ some stage must produce at least r ma/2tl ~ /3 outputs on
input x. So

Pr(some tree in some stage /3-solves x) ~ ~- (3.1)

The root of each tree in each stage of P" corresponds to a node in
P. Let Ti be the tree in P" whose root is numbered i, for each i, if such
a tree exists. Let Pi be the probability that, for a random input x, (a) the
computation of P" on i passes through the root of Ti, and (b) Ti /3-solves i.
Then Pi :::; C1(a, /J). Let K be a random variable denoting the largest node
number on the computation in P of a random input x. Then E(K) = 28 ,

and by Markov's inequality Pr{K ~ 28+2
) :::; ¼· So

Pr(some tree in some stage /3-solves i) < L Pi
i

< 28+20,(a, /3) + ¼ (3.2)

Combining inequalities (3.1) and (3.2) yields the desired result. ■

7

4 Matrix-Vector Products

A number of different problems can be expressed as matrix vector products.
As a result, bounds on the complexity of matrix-vector products can go a
long way. Tompa [13], for example, using a result of Valiant on matrix
vector products, is able to establish time-space tradeoffs for convolution and
discrete Fourier transform in the straight-line model.

This section contains a lower bound on the complexity of computing
matrix-vector products. Before getting to the lower bound, though, some
technical definitions and results on matrices are required.

Throughout this and subsequent sections, 1 is any field, and [) = { d1 ,

... , d6 } is any finite subset of 1 of size o ~ 2. The following three lemmas
are proved in the appendix.

Lemma 4.1: Suppose S ~[)"is contained in an affine subspace A of
1" of dimension at most r. Then ISi $ o'.

Definition 4.2: Let O < c < ½· Let A be an m x n matrix with
m $ n. Say that A is c-nice iff every p x q submatrix of A has rank p, for
p $ r cml and q ~ l(l - c)nJ. Say that A is c-ok iff every such submatrix of
A has rank at least cp.

Lemma 4.3: There is a constant 1, where O < 1 < 1/2, such that at
least a fraction 1 - 0-1 (i) 1 " of then x n matrices over [) are 1-nice.

Definition 4.4: Matrix A is Toeplitz iff Ai,i is a function of;' - i, for
each i and j. That is, each diagonal is constant.

Lemma 4.5: There is a constant 1, 0 < 1 < 1/2, such that at least
a fraction 1 - 0-1 (1)1" of then x n Toeplitz matrices over [) are 1-nice.

The following theorem is the basis for time-space tradeoffs for matrix­
vector products. The input distribution is presumed to be uniform over all
n-component vectors x over [).

Theorem 4.6: Let O < c $ 1/2, let A = [ai,;] be an m x n c-ok
matrix, and let f: [)" --+ 1"" be the function f(i) = Ax. Suppose a and /3
are positive integers, with a$ r cnl and /3 $ r cml, Then c,(a,/3) $ s -c/J,

Proof: Let ,,. be a depth a non-redundant tree program which partially
computes y = Ai, in the sense that it computes some of the components of

8

y, and let 1r be an arbitrary computation in r. Suppose 1r makes at least f3
outputs, and select just f3 of them. For the remainder of this proof, queries,
responses and outputs are those of computation 11".

Suppose 7r {3-solves input x. Each output "111c = v" induces an equation
v = E, a1c,,x,, which x must satisfy. Together the f3 selected outputs induce
a system of equations Bx= v, where B consists of f3 distinct rows of A and
v is a vector of the f3 selected output values.

Similarly, the a queries and their associated responses induce a system
of equations Qx = r, where matrix Q consists of a distinct rows of then x n
identity matrix, and r is a vector of the a responses. Together, the jueries
and outputs induce the system Ox= w, where C = (~) and iii = (;;. We
show that C has rank at least a+ cf3.

Say that a column of C is unqueried if its first a components are zero.
Let C' be the submatrix of C consisting of the last f3 rows and the n - a
unqueried columns. Then C' is a f3 x (n - a) submatrix of A. Since a ::;
r en l and f3 ::; r cm l, and A is c-ok, C' has rank at least cf3. Any r cf3l
linearly independent columns of C', together with the a queried columns,
form Q + r cf3l linearly independent columns of C.

The solutions x in 1"' to Cx = w form an affine space of dimension
at most n - a - cf3. By lemma 4.1, there are at most on-a-cfJ solutions in
[)"'. The probability that 1r {3-solves a random input is thus at most s-a-cfJ.

Since r has just 6°' distinct computations, the probability that r {3-solves a
random input is at most s-c/J. ■

Corollary 4.7: Let A be an m x n c-nice matrix, where m ~ n and
O < c::; ½ and cm~ 1. Let P be a branching program which computes Ax
for z E [)"'. Suppose P has expected time T ~ n, and expected space S,
where all vectors over [) are equally likely. Then S T = n (nm log 6).

Proof: Choose a = fen 1 and {J = r ma/ 4T7, and combine lemma 3.3
and theorem 4.6. ■

5 Convolution and Integer Multiplication

The result for matrix-vector products leads readily to other results. As an
example, consider the discrete Fourier transform (DFT), which is naturally
expressed as a matrix vector product. Specifically, let x be an n component
vector, and suppose that field 1 contains a primitive n th root of unity w.
Then the DFT of xis just the function f(x) = Ax, where A is the n x n

9

matrix given by ai,i = wii. (The rows and columns of A are numbered 0,
... , n - 1. The same convention will be used for other matrices as well.) A
consequence of a result observed by Yesha [16] is the following.

Theorem 5.1 (Yesha): The DFT matrix is ¼-ok.

An immediate consequence of Corollary 4. 7 and Theorem 5.1 is a strength­
ening of Yesha's result for the DFT.

Corollary 5.2: Suppose that the field 1 has a primitive n th root of
unity. Let P be a branching program which computes the DFT of an n
component vector over [) in expected time T and expected space S. Then
S T = 0 (n 2 log 6).

Another problem which is fairly naturally expressed as a matrix-vector
product is convolution of vectors. Let it= (u0, ••• , Un-i) and iJ = (v0 , •.• ,

Vn-i) be vectors over [). Then the convolution w = (w0 , ••• , Wn- i) of u and
vis defined by w1; = Ef; l u,v1:-,, where subscripts are reduced modulo n.

Theorem 5.3: If Pis a branching program which computes the con­
volution of two n-component vectors over [) in expected time T ~ n and
expected space S, where all vectors are equally likely, then S T = 0 (n 2 log 6).

Proof: Convolution can be expressed as a matrix vector product.
Given a vector it= (u0 , ••• , Un-i), let U be the n x n matrix U,,; = u,-;,
where subscripts are reduced modulo n. Then the convolution of ii and vis
just Uv. Assume that n is even, and view U as a 2 x 2 matrix

of i x i blocks. In each of A and B, each diagonal contains a distinct element
of it. By lemma 4.5, there is a constant :'t. > 0 such that each of A and B is
1-nice with probability at least 1- 6- 1 (iJ "". Hence, for sufficiently large n,

A and B are simultaneously 1-nice with probability at least ½·
Since a constant fraction of the inputs it lead to both A and B being

1-nice, the input distribution can be restricted to such vectors u, without
increasing the computed expected time and space by more than a constant
factor.

But when A and B are both ')'-nice, so is [A BJ. The product [A B]x
is a subfunction of Ux in the sense that if y = Ux, then [A B].i is just (Y1,
... , Yn;2). Hence Corollary 4.7 applies. ■

10

Theorem 5.4: Suppose P is a branching program which multiplies
two n bit binary numbers in worst case time T and space S. Then ST =
O(n2

/ log2 n).

Proof: Savage [11] defines function f to be a subfunction of g if
f(x) = p(g(q(i)), where p only projects and permutes its input in a fixed way,
and q only pads and permutes its input, possibly duplicating components, in
a fixed way. It is well known that convolution of n component vectors over
Z2 is a subfunction of multiplication of two 2nflog n l bit binary numbers. To
avoid carry effects, simply pad each digit with flog n l - 1 zeros. To achieve
the wrap-around of the definition of convolution, concatenate each vector
with itself to form the binary numbers to be multiplied. ■

Suppose that 1 is a finite field, and assume that D = 1, so that in­
termediate results can be stored in O(log 6) space. Then the lower bound
for convolution can be met, to within a constant factor, for the entire range
of relevant time and space values within the branching program model. At
one extreme is the "table lookup" algorithm, which is a tree of time O(n)
and space O(nlog6). At the other extreme is the naive algorithm, which
requires time O(n2) and space O(logn + logcS). Hybrid algorithms can be
constructed which perform block matrix multiplication on the matrix-vector
product representation of convolution, using the tree algorithm to multiply
blocks, and the naive algorithm to combine the blocks. Such algorithms fill
in the middle range of the tradeoff. In fact, for 6 < n, the correct extreme
for low space is achieved by a slightly hybridized naive algorithm, which uses
k x k blocks, where k = log n/ log 6, and which takes time O(n2 log 6 / log n)
and space O(log n), and thus matches the lower bound to within a constant
factor.

On a more realistic model of computation, one would use the fast
Fourier transform algorithm [2], resulting in a polylogarithmic loss in space­
time product complexity, and requiring that the appropriate roots of unity
exist.

The binary integer multiplication lower bound can be met to within a
factor of O(log2 n) within the branching program model, for a wide range of
time and space values, and to within a polylogarithmic factor in more realistic
models by use of the Schonhage-Strassen integer multiplication algorithm [2].
See [10] for a low space algorithm for integer multiplication.

11

6 The Product of Three Matrices and Matrix Inver-
sion

The next result concerns the problem of computing the product ABC, where
A, B and Caren x n matrices over D. The goal is to express that problem
as a matrix-vector product.

Definition 6.1: The Kronecker product A® B of n x n matrices A
and Bis defined to be the n2 x n2 matrix obtained by replacing each element
a;,; of A by the matrix a;,;B.

The following lemma is proved in the a·ppendix.

Lemma 6.2: Let O < c < ½, If A and Bare both c-nice, then A® B
is c2-ok.

For an n x n matrix B, let .B be the n 2-component column vector
obtained by concatenating the transposes of the rows of B, in their natural
order.

Lemma 6.3: Let A, B, C and D be n x n matrices over a commu­
tative ring. The following two equations are equivalent.

i) D = ABC.

ii) D =(A® CT).B.

Proof: Let D = ABC and E =(A® CT).B. Let B1c be the kth row of
B, and Ci be the Ph column of C. Rows and columns are numbered starting
at zero. Using lower case letters to denote components of corresponding
upper case vectors or matrices, and I to denote inner product,

n

fnH; = I: I (ai,lec;' B1c)
le=l

n n

- LL a;,1ec1,;b1e,,
le=ll=l

- d;,;

■

12

Theorem 6.4: Let P be a branching program which computes the
product ABC, where A, B and C are n x n matrices over D. If P uses
expected time T and expected space S, where all matrices over D are equally
likely, then ST = 0 (n 4 log 6).

Proof: Since most matrices are 1-nice, we can restrict the input
distribution to inputs where both A and C are 1-nice, without affecting the
expected cost by more than a constant factor. But then Lemmas 6.2 and 6.3
imply that, for each possible choice of A and C, computing ABC (where B
is the input) is equivalent to an n2 x n2 matrix-vector product, where the
matrix is 1 2-ok. Theorem 6.4 follows from Corollary 4. 7. ■

The next result concerns the problem of inverting a unit upper triangu­
lar matrix. The standard solution solves n systems of equations, employing
back substitution for each, and uses O(n) words of space and O(n3) arith­
metic operations.

Theorem 6.5: Let P be a branching program which computes A-1 ,

given input A, a unit upper triangular n x n matrix over D. If P has worst
case time T and space S, then ST = 0 (n 4 log 6).

Proof: The fact that ABC is a subfunction of A-1 follows from the
following well known equation relating 4n x 4n matrices.

-A
I
0
0

0
- B

I
0

~ i-• -(~ -C O
I 0

A AB
I B
O I
0 0

ABC) BC
C
I

■

Ja' Ja' [9] shows that the problem of solving an n X n system of linear
equations over a field requires ST = O(n8) in the straight-line model. His
proof applies equally well here.

Corollary 6.6: Any branching program which solves an n x n system
of linear equations over D in worst case time T and space S requires ST=
O(n8 log 6).

Proof: Immediate from the fact that it is possible to invert an n x n
matrix by solving n systems of n linear equations. ■

For the purpose of discussing upper bounds, suppose D = 1. Theorem
6.4 is tight to within a constant factor, over the entire range of relevant time

13

and space values, within the branching program model. The tree algorithm
achieves O(n2) time and O(n2 logc5) space. The standard algorithm can be
implemented in O (n3) time and 0(n log 6) space, since only one row of AB
needs to be stored at any given time, to compute its inner product with
each of the columns of C. Ja' Ja' and Simon [10] describe an algorithm
which computes ABC in O(logn+logc5) space and O(n4) time. It computes
the product as (AB)C, but each time an element of AB is needed, it is
recomputed. The tree and standard algorithms, as well as the standard and
low space algorithms, are easily hybridized to fill in the tradeoff. As was the
case for convolution, the correct low space extreme for o < n is actually met
by a slightly hybridized version of Ja' Ja' and Simon's algorithm, requiring
0 (log n) space and O (n log c5 / log n) time.

The lower bound for inversion of a unit upper triangular matrix is tight
for n 2 ~ T ~ n3• Algorithms which match the bound are the tree algorithm
and the back substitution algorithm, and hybrids of those. For T > n8,
Theorem 6.5 does not appear to be tight. O(log2 n) space algorithms are
known [10], but they require super-polynomial time.

7 Matrix Multiplication

This section deals with the problem of computing the product of two n x n
matrices A and B over I). The proof is similar to the preceding ones, but
exhibits one new feature. Suppose that we are interested only in worst case
bounds. Then the lower bound proof for convolution, for example, only
requires that a 1-nice matrix exist. So the probabilistic nature of lemma
4.3 is unimportant. The following proof, on the other hand, exploits the
probabilistic nature of lemma 4.3 in an essential way, even when it is used
only for worst case bounds. There is more on that after the proof.

Let 1 be the constant of lemma 4.3. For the purposes of the following
theorem, the input distribution is uniform over 1-nice matrices for A and
BT.

Theorem 7.1: Let/: 1)2"
2

-+ 1"2
be n xn matrix multiplication over

!). Let a and /3 be positive integers, and suppose 1n 2::: 1 and (..,an)2 ~ /3/2.
Then c1(a, /3) ~ 02-..,n•.

Proof: The proof is similar to that for theorem 4.6, but is more
involved. Suppose we have a depth a non-redundant tree program r which
partially computes C = AB, and let ,r be an arbitrary computation in r.
For the remainder of this proof, queries, responses and outputs are those on
path 7r.

14

Suppose ,r makes at least {J outputs. Select just {J of them. Say that
row i of matrix C = AB is heavy if at least 1n queries concern row i of
A. Similarly, say that column j of C is heavy if at least ,n queries concern
column i of B. There are at most o./1n heavy rows or columns in C. A row
or column is light if it is not heavy.

It must be the case that either at least /3/4 selected outputs fall in light
rows of C, or at least /3 / 4 selected outputs fall in light columns of O. For
suppose the former is false. Then at least 3/J / 4 selected outputs fall in at

most o./1n rows. Of those outputs, at most (;")2 can fall in heavy columns.

Hence, a total of at most (;")2 + /3 / 4 :5; 3 {J / 4 selected outputs fall in heavy
columns.

Without loss of generality, assume that at least {J / 4 selected outputs
fall in light columns of C. (Otherwise, consider the equivalent problem CT=
BT AT, and rename matrices. In what follows, only the left hand matrix in
the product has to be ,-nice.) Call those {J /4 outputs light outputs. Express
equation AB= C as

(7.1)

where Bj (C;) is the J°'h column of B (C). Let B and a be the vector
representations of B and O appearing in equation (7.1). Suppose ,r makes
o.1 queries about A and o.2 about B, where a = a 1 + o.2 , and suppose ,r

/J-solves input (A, B). There are at most 6"
2
-a1 possible values for A, since

A must be consistent with the o.1 distinct query responses on ,r. In order for
the light outputs to be correct, B must satisfy ~ /3 / 4 equations from system
(7 .1). In fact, for any particular matrix A, matrix B must satisfy a system
of equations (1,) .B = (;), where Q consists of a 2 distinct rows of the n2 x n2

identity matrix (corresponding to the queries about B), r is a vector of a 2

responses, A' consists of {J / 4 rows of the block diagonal matrix of equation
(7.1), and c consists of /3/4 rows of C.

Matrix H = (1,) must have rank at least o.2 + 1/3/4. To see that,
say that a column of H is unqueried if its first o.2 entries are zero. Because
only light outputs were used, if any row of a given copy of A in the block
diagonal matrix is included in H, then at least (1-,)n of that copy's columns
are unqueried in H. Since A is ,-nice, if k rows of a given copy of A are
included in H' then that copy contributes min(k, r ,n l) linearly independent
unqueried columns to H. There can be no dependencies between columns
which intersect different copies of A in the block diagonal matrix. Thus, at

15

least 1/3 / 4 unqueried columns of Hare linearly independent. The a 2 queried
columns bring the total number of linearly independent columns to at least
0:2 + ,/3/4.

By lemma 4.1, at most 6"
2
-ar..,P/'- matrices B can be paired with a

given 1-nice matrix A, and still be consistent with path 71". Since only on2
-a1

values of A are consistent with 71", the total number of 1-nice matrix pairs
which can be (3-solved by 71" is at most 62"

2 -a-..,P/'-. Since there are at least
(1 - c5-1)8"1

1-nice n X n matrices, the probability that 'If' /3-solves the

pair (A, B) is at most (6~
1
)2 o-a-..,.B/-'. There are just c5a computations in

r, so the probability that any of them /3-solves a random input is at most

(_6_)2 8-,.,PJ• < c52-..,.B/'-. •
6-1 -

Now suppose that all matrices over D are equally likely as inputs.

Theorem 7.2: Let P is a branching program which multiplies two
n x n matrices over D. If P has expected time T ~ n 2 and expected space
S, where all matrices over Dare equally likely, then ST 2

= O(n6 log8).

Proof: As in preceding proofs, restrict attention to inputs where A and
BT are 1-nice. Doing so will only affect the complexity by a constant factor.
Choosea= b 2n'-/8TJ and/3= fn2a/4Tj =0(n6/T

2
). Thentheconditions

of Theorem 7.1 are met. Lemma 3.3 implies that S ~ (1/3/4- 2) logo -4 =
O(n6 log6/T

2
). ■

An alternative to the above proof is to fix one of A and B, and let the
other be the input. Then the proof becomes somewhat simpler. Moreover,
the fixed matrix can be chosen to be ,-nice, so it suffices for a ,-nice matrix
to exist. Unfortunately, the bound is weakened to ST = O(n8 log 6). No
better bound can be proved when A is fixed, since then there is a branching
program which computes AB, for input B, in O(n2) time and O(nlog6)
space. Having read and stored a column of B, the program has enough
information to output a column of AB. Matrix A can be stored in the
program, at no cost in space as it is defined for branching programs.

It is important for both A and B to be input to the algorithm. But it
is also important to the proof that A and B be ,-nice most of the time. So
the proof really depends on the probabilistic nature of lemma 4.3.

Assuming that !) = 1, the lower bound of Corollary 7 .2 can be achieved
for a broad range of time and space values, within the branching program
model. At one end of the tradeoff is a tree of space O(n2 log 8) and time
O(n2). At the opposite end is the standard algorithm, which requires space
O(log n + log 8) and time O(n8). A hybrid algorithm partitions the matrices

16

into k x k blocks, and executes the standard algorithm on the blocked ma­
trices, using the tree algorithm for multiplication of blocks. That algorithm
uses time O(n8 /k) and space O{k2 log6 + logn). In fact, for 6 < n, the
low space end of the tradeoff is achieved by a time O (n 8 Jlog 6 / log n), space
O(log n) hybrid algorithm.

8 The PAQ Function

The problem is to compute the product PAQ, where A is a fixed n x n matrix
of distinct elements (which for definiteness can be assumed to be { O, ... ,
n 2

- 1 }), and P and Q are input n x n permutation matrices. As input
distribution, choose the uniform one over pairs of permutation matrices.

One algorithm for computing C = P AQ finds, for each i,i = 1, ... , n,
the column k of the sole 1 in row i of P, and the row l of the sole 1 in
column j of Q, producing output C,,; = A.,,. That algorithm uses space
0 (log n) and time O (n 3 log n) on a logarithmic cost random access machine.
By storing the position of the sole 1 in each row of P and column of Q,
at a factor of n increase in space, redundant scanning of P and Q can be
eliminated, and a factor of n in time is saved. Hybrid algorithms fill in a
tradeoff of ST= O(n3 log2 n). The complexity drops to ST= O(n8 log n) in
the branching program model.

Theorem 8.1: Let n ~ 40, and let/: { O, 1 }2"3
--+ { O, ... , n2 - 1 }"

3

be the PAQ function. Let a and {J be positive integers, and let w = r1sa/n l­
Suppose w 2 < {J ~ n 2 / 4. Then C 1(a, {J) < 22

-
111

•

Proof: Let r be a depth a non-redundant binary tree program. The
weight of a computation in r is the number of responses in that computation
of the form z, = 1. A computation is light if its weight is less than w.
Otherwise it is heavy. The contributions of light computations and heavy
computations are analyzed separately.

First consider heavy computations. Let p be the probability that a
random pair of permutation matrices (all pairs equally likely) follow a com­
putation in r of weight at least w. We show that p ~ 3 • 2-111

•

Let r, be the maximum, over all computations ,r of weight k, of the
probability that a random pair of permutation matrices P and Q are con­
sistent with the responses on computation ,r. Each time ,r finds a 1 in a
permutation matrix, it learns a little bit about the positions of the remain­
ing 1 's in that matrix. The maximum of r• is realized for a computation
,r which looks for up to n l's in P, after which it looks for l's in Q. So

17

r1: :5 1/nt fork :5 n, and rA: :5 1/(n! nk-n) fork> n, where nt = n!/(n - k)!
is the descending power of n. Then

< '°' (Q) 1 '°' (Q) 1 p - LJ :I + .l..J I k-n ·
w~k~n k n n<A:~2n k n.n-

(8.1)

The first sum of inequality (8.1) is easil7. bounded by using nt ~
exp (J:_kln(x)dx) ~ nke-11:. The terms of EA: l:)ekn- k fork~ w a.re ge­
ometrically decreasing at a ratio of at most ae/wn < e/15, so the first sum
is less than 2(:)ewn- w < 2(e2a/wn) 111 < 2-2- 111

• The second sum of inequality

(8.1) can be similarly bounded. The terms of Et (:)e1-nnn-k for k ~ n are
geometrically decreasing at a ratio of less than ae/n2 < 1/2, so the second
sum is less than ¼r(~) < (e2a/n2)" < 2- n. But w :$ n, sop< 3 • 2- w.

Now consider the contribution of light computations. There are E::::-J (:) <

(:) computations of weight less than w in r. Suppose a given one of them)
71", ,8-solves input (P, Q). Since the elements of A are distinct, each output
can have come from only one place in A, so each output forces the contents
of a row of P and a column of Q to particular vectors. The number of rows
and columns forced can be minimized, and hence the probability of ,8-solving
a random input maximized, if the ,8 outputs occur in a vTJ x vTJ block. In
that case vTJ rows of P and columns of Q are forced. Since v7J :$ n/2, the
dependencies between rows and columns are weak, and the probability that
a random permutation matrix has given vectors in vTJ given rows or columns

is at most (¾)Ji. So the contribution of light computations to c,(a,,B) is

at most (:) (¾)2y1 :$ (:)
111 (!)2"' < 2-111

•

So the probability that any computation in r ,8-solves a random input
is at most 3 • 2- 111 + 2- 111

, and theorem 8.1 is established. ■

Theorem 8.2: Let P be a branching program which computes PAQ,
for n x n matrices, in expected time T ~ n2 and space S, where all permu­
tation matrices are equally likely. Then ST= O(n5

).

Proof: Let c = 1/(5 • 182
). We can assume that T :5 3cn3 and n ~ 40.

Choose a = r en" /Tl and ,8 = r n 2 a/ 4T7. Then the conditions of theorem
8.1 are met. By lemma 3.3, S ~ w - 6 ~ 15a/n - 6, so ST= O(n3

). ■

18

Acknowledgement

Thanks to David Kirkpatrick for introducing me to Borodin and Cook's
technique, and to Nicholas Pippenger for pointing out Yesha's work. This
research was supported in part by the National Sciences and Engineering
Research Council of Canada.

References

[1] K. R. Abrahamson, Generalized string matching, to appear in SIAM
J. on Computing.

[2] A. V. Aho, J.E. Hopcroft, and J. D. Ullman, "The Design and Analysis
of Computer Algorithms," Addison-Wesley, Reading, Mass., 1974.

[3] A. Borodin and S. Cook, A time-space tradeoff for sorting on a general
sequential model of computation, in "12th Annual ACM Symposium
on Theory of Computing, 1980," pp. 294-301.

[4] A. Borodin, D. Dolev, F. Fich, and W. Paul, Bounds for width two
branching programs, SIAM J. on Computing 15,2 (1986) 549-560.

[5] A. Borodin, F. Fich, F. Meyer auf der Heide, E. Upfal, and A. Wigder­
son, A time-space tradeoff for element distinctness, in "3rd An­
nual Symposium on Theoretical Aspects of Computer Science, 1986,"
pp. 353-358.

[6] A. Borodin, M. J. Fischer, D. G. Kirkpatrick, N. A. Lynch, and
M. Tompa, A time-space tradeoff for sorting on non-oblivious machines,
J. Comput. Sys. Sci. 22,3 (1981} 351-364.

[7] D. Yu. Grigoryev, An application of separability and independence
notions for proving lower bounds on circuit complexity, (in Russian),
Notes Scientific Seminar Steklov Mathematical Institute 60 (1976) 35-
48.

[8] J. E. Hopcroft and J. D. Ullman, "Introduction to Automata Theory,
Languages and Computation," Addison-Wesley, Reading, Mass., 1979.

[9] J. Ja' Ja', Time-space trade-offs for some algebraic problems, J. Assoc.
Comput. Mach. 30,3 (1983) 657-667.

19

[10] J. Ja' Ja' and J. Simon, Some space efficient algorithms, in "17th Aller­
ton Conference on Communication, Control and Computing, 1979," pp.
677-684.

[11] J. E. Savage, Space-time trade-offs for banded matrix problems, J.
Assoc. Comput. Mach., 31,4 422-437.

(12} J. E. Savage and S. Swamy, Space-time tradeoffs for oblivious integer
multiplication, in H. A. Maurer, editor, Lecture Notes in Computer
Science 71, pp. 240-251, Springer-Verlag, New York, 1979.

[13] M. Tompa, Time-space tradeoffs for computing functions, using con­
nectivity properties of their circuits, J. Comput. Sys. Sci. 20 (1980)
118-132.

[14] J. Vuillemin, A combinatorial limit to the computing power of VLSI
circuits, in "21st Annual IEEE Symposium on Foundations of Computer
Science," pp. 294-300, 1980.

(15] I. Wegener, Time-space tradeoffs for branching programs, J. Comput.
Sys. Sci. 32 (1986) 91-96.

(16] Y. Yesha, Time-space tradeoffs for matrix multiplication and the dis­
crete Fourier transform on any general sequential random-access com­
puter, J. Comput. Sys. Sci. 29 (1984) 183-197.

20

Appendix

Lemma 4.1: Suppose S ~ pn is contained in an affine subspace A of
7n of dimension at most r. Then IS I ~ 6r.

Proof: The proof is elementary linear algebra. Let A be the solution
space of Ax= b, where A is an n x n matrix of rank n - r. Partition A as

where Bis (n- r) x (n- r) and Eis r x r. Presume that the system Ax= b
has been permuted so that Bis nonsingular. Let fl consist of the first n - r

components of the indeterminate vector x, and let i be the last r components
~ ~ ~

of x. Let d consist of the first n - r components of b. Then Ax = b implies
that Bf}= d- Cz. So the first n- r components of x are determined by the
last r components. There are 6r possible values for i. ■

Lemma 4.3: There is a constant "Y, where O < 1 < ½, such that at

least a fraction 1 - 6-1 (ifn of then x n matrices over D are 1-nice. The
constant 1 is independent of n and D.

Proof: Given two indices i and j and a matrix A, let Ai,; be the
(i,j)fh entry of A. If J and J are index sets, let A'} denote the submatrix of
A indexed by rows I and columns J.

The constant 1 will be selected below. For now, suppose we have "Y·
Let p = f"Ynl and q = l(l - 1)nJ. Presume that 1n > 1, since otherwise
the lemma is trivial. We must look at all p x q submatrices, so start by
considering an arbitrary one. Let I= { i1 , ••• , ip} and J = { ji, ... , j 9 } be
its index sets.

Imagine generating a random n x n matrix A over D. Start at the lower
left hand comer, and generate elements independently by diagonals, moving
toward the upper right hand corner. During the process, maintain indices
i = i, E J and j = j. E J, where element At,J has not yet been chosen. Also
maintain index sets R = { i,+1, ... , ip} and C ~ {j1 , ••• , j,_1 }, such that
A~ is a nonsingular (p - t) x (p - t) submatrix of A. Initially, it suffices to
choose i = ip and j = Ji, assuming that a Ox O matrix is defined to have
determinant 1. Each time element Ai,1 is generated, s is incremented, and
sometimes t is decremented.

Now imagine we have generated part of A, we have indices i = i, and
J = J~, and we are about to generate element A,,,. Let R' = RU { i} and

21

C' =CU { j }. Notice that all of the elements of A~:, excluding A,,;, are on
lower diagonals than Ai,5, and so have already been generated. Let x = A,,5
and B = A~:. Suppose det B = 0. Expanding det B by its first row, and
setting the result to zero, gives a linear equation in z, with the coefficient of
z being ± det A~ =;f 0. Hence, at most one choice of z can cause det B = O,
and with probability at least 1 - 0-1, det B =;f 0.

After generating At,J, increment s, and if det B =;f O then decrement
t and set C '4- C', recording that a larger nonsingular submatrix has been
found.

For each column index in J there will be an opportunity to decrement
t, at least until t = 0. Each opportunity yields a success with probability
at least 1 - 6-1 , independently of previous results. So the probability of
failing to find a nonsingular p x p submatrix of A'j is at most the probability
of getting fewer than p successes in q independent Bernoulli trials, where
each trial has success probability 1 - 0-1 • The following lemma bounds that
probability.

Sublemma A.1: Let Pn,lc be the probability offewer thank successes
in n independent Bernoulli trials, where each trial has success probability
> l -6-1 , where 6 ~ 2. Then Pn,1c ~ g-no1c-i, where g = 62/(26-1).

Proof: By induction on n.

n - 0: P0 ,0 = 0 ::; 6-1 and P0,1c = 1 ::; 61c-l for k ~ 1.

n > 0:

Pn,1: 0-l Pn-1,A: + (1 - c5-1
)Pn-1,l:-1

< c5-191-no"A:-l + (1 _ c5-l)gl-nc51c-2

_ 9-n01:-lg6-1(2 _ c5-1)

_ g-ntli;-1

■

So, for the selected index sets I and J, the probability that Af fails to
have maximal rank, for a random matrix A, is at most g-9oP-1• But q = n-p,

so there are (;)2 pairs of index sets I and J, and the probability
2
that any

p x q submatrix of A fails to have maximal rank is at most Q = (;) g-9c5P- 1 •

A crude Stirling approximation suffices to bound Q. Applying (;) < nPePp-P

and g::; 26/3 gives Q < (ne/p) 2PgP-nop-l::; (ne6/p)2'(t)' g-ns-1 • To estab­

lish lemma 4.3, we need to show that Q ::; 0-1 (J)'. It suffices to show

22

that (ne6 /p) 2P/n $ g. But n/p ~ 1/(2'Y), and limz-oo x2/z = 1, so a suffi­
ciently small choice of 'Y brings (n/p) 2P/n below 1.1. Also, 2p/n $ 4"(, so a
sufficiently small "'(guarantees that (e6) 2P/n $ max(l.1, 6/3). Then for any
6 > 2, (neo /p) 2p/n < 62 /(26 - 1) = g. ■

Lemma 4.5: There is a constant 'Y, 0 < 'Y < 1/2, such that at least
a fraction 1 - 6'-1 (¾fn of then x n Toeplitz matrices over [) are 1-nice.

Proof: Inspection of the proof of lemma 4.3 shows that it applies
equally well to Toeplitz matrices, since it makes no assumption that elements
on a common diagonal are generated independently. ■

Lemma 6.2: Let O < c < ½· If A and Bare both c-nice, then A® B
is c2-ok.

Proof: Let E = A® B. Rows and columns of A, B and E are
numbered starting from zero. Let E, be the ith row of E.

Select an arbitrary p x q submatrix S of E, given by index sets I and
J, where III= p $ r c2n 2l and IJI = q ~ l{l- c2)n2J. It must be shown that
S has rank at least c2p. Presume that en~ 1, since otherwise the lemma is
trivial.

A block row of Eis that part of E corresponding to a row of A. The
i th block row of E consists of rows ni, ... , ni + n - 1. Let Ai = J n { ni,
... , ni + n - 1} be the rows of S which fall in the i th block row. Choose
a set f c { o, ... , n - 1} of size fen l so as to maximize E,er IA,I, Then
E,er I A, I ~ cp, since any imbalance in the distribution of the rows of S among
the block rows of E can only increase the number of rows of S occurring in
the most populous r en l block rows. For each i E r' let r i = A; if I A; I $ r en l,
and let r i consist of the smallest r en l members of I:!..; otherwise. Call the
rows U,er ri blue rows. There must be a total of at least c2p blue rows. It
suffices to show that the blue rows are linearly independent.

Suppose, to the contrary, the the blue rows are linearly dependent. Let
(ei,;: i E f ,j E ri) be constants, not all zero, such that

L L ei,;En,+; = 0. (A.I)
ier ;er;

Choose r and s so that Cr,, =/ 0.
Say that column i of B is good if that column is associated with at

least l(l - c)nJ columns of S, that is if I{ i: ni + i E J}I ~ l(l - c)nJ.
There are at least (1- e)n good columns. (Otherwise more than en columns

23

of B are associated with at most (1- c)n - 1 columns of S, and S has fewer
than (cn)((l - c)n - 1) + (1 - c)n2 < l(l - c2)n2J columns.) Let g, be the
projection of the i th row of B onto the good columns. Since Bis c-nice, any
set of up to r en l of the vectors g, are linearly independent. In particular'
it must be the case that Eier, Cr,iii -/: 0. So it is possible to choose a good
column t such that

L Cr,ibi,t =/ 0
,er.

(A.2)

Let ~ = { i : ni + t E J} be the columns of S which are associated
with column t of B. Since column tis good, l~I 2'.: l(l - c)nl,

Let it, be the projection of E; onto columns { ni + t : i E ~ }. Let vi
be the projection of the ith row of A onto the columns of ~. Then, from the
definition of E =A® B, Uni+i = b;,tVi. Taking a projection of equation A.I,

0 = LL Ci,jUni+j
,er ;er;

- L (L c.,;b;,t) v,.
ier ;er;

(A.3)

But 1r1 = r en l and ,~, ~ l(l - c)n J. So the vectors v. for i E r are
the rows of a p' X q' submatrix of A, where r/ = rcnl and q' > l(l - c)nJ.
Since A is c-nice, vectors v. for i E r are linearly independent. Hence, the
only way to satisfy equation A.3 is to have E;er; c.,;b;,t = 0 for every i E r.
But r E r, so equation A.2 must be violated. The supposition that the blue
vectors are linearly dependent has lead to a contradiction. ■

24

