
A Parallel Algorithm for Finding 
Maximal Independent Sets in Planar Graphst 

N.Dadoun 
D.G. Kirkpatrick 

Technical Report 87-15 
June 1987 

Abstract 

The problem of constructing parallel algorithms for finding Maximal Independent 

Sets in graphs has received considerable attention. In the case that the given graph is 

planar, the simple efficient parallel algorithm described here may be employed. The 

method relies on an efficient parallel algorithm for constructing large independent sets in 

bounded degree graphs. This is accomplished by a simple reduction to the same problem 

for lists. 

Using a linear number of EREW processors, the algorithm identifies a maximal 

independent set in an arbitrary planar graph in O(log n log*n) parallel time. A 

randomiz.ed version of the algorithm runs in O(log n) expected parallel time. 

f A preliminary version of some of the results in this report was presented in [DaKl]. 



I Introduction 

A set I of vertices in a graph G = (V, E) is independent if no pair of vertices in I is 

connected by an edge. An independent set is maximal if it is not a proper subset of any other 

independent set (equivalently every vertex in V - I is incident with at least one vertex in I). 

The Maximal Independent Set Problem MISP(n) is defined as the problem of identifying, for an 

arbitrary input graph with n vertices, a maximal independent set of vertices. 

This paper presents a method for solving the MISP(n) for planar graphs using a parallel 

processing model of computation. Note that by Euler's theorem the size of the edge set of a 

planar graph is linear in the size of the vertex set and hence the single parameter n is a true 

reflection of the size of the entire graph. Our algorithm assumes as input a graph G 

represented as an array of vertices V along with an array of edges E. Each vertex v in V has a 

pointer to a ring of edges incident with v. 

Our algorithms are described for a Single Instruction/Multiple Data (SIMD) shared 

memory PRAM using an exclusive read/exclusive write (EREW) memory model. We are 

interested in the case that the number of processors is linear in the input size n; so, without loss 

of generality, we assume that each vertex and edge has associated with it a dedicated processor. 

Each processor has a distinct identifier which can be used to make local decisions. The 

processor identifier of a processor assigned to a vertex (respectively edge) will also be referred 

to as the vertex (respectively edge) number. 

We say that a problem of size n has parallel complexity f(n) if it can be solved in O(f(n)) 

parallel time using O(n) processors as described above. Our interest lies primarily in 

understanding the asymptotic complexity of the maximal independent set problem; no attempt is 

made here to optimize the constants involved. 

Finding a maximal independent set (MIS) of vertices in an arbitrary graph is a problem 

which has a simple and efficient sequential solution but which has not yielded easily to parallel 

solutions. Karp and Wigderson [KW] were the first to provide a polylogarithmic parallel 



solution. Their O(log4n) parallel time algorithm uses O(n3/log3(n)) exclusive read/exclusive 

write (BREW) processors. Luby [L] improved this result to show that a MIS can be found in 

O(log2 n) parallel time using O(n3) BREW processors. Although planarity of the underlying 

graph does not seem to be something which is easily exploited in the sequential setting, it turns 

out to lead to both simpler and more efficient solutions in the parallel case. 

Our algorithm is based on the following variant of the planar MISP. Informally, the 

Fractional Independent Set Problem FISP(n) is defined as the problem of identifying for an 

arbitrary planar graph G with n vertices an independent set I of "low-degree" vertices in G 

whose size I I I is some fixed fraction of n. 

Section II, through a series of reductions, describes a solution for the fractional 

independent set problem which runs in O(log*n) (respectively 0(1) expected) parallel time 

using a deterministic (respectively randomized) algorithm. 

Section III gives a reduction of the planar MISP to O(log n) instances of the fractional 

independent set problem. This combined with the results of section II produces an O(log n 

log* n) (respectively O(log n) expected) parallel time deterministic (respectively randomized) 

algorithm for the Maximal Independent Set problem for planar graphs. 

II The Fractional Independent Set Problem 

It follows from Euler's theorem that the average degree of vertices in a planar graph is less 

than 6 and so less than half of the vertices have degree exceeding 11 (cf. [K]). A vertex is said 

to be low degree if it has degree bounded by some constant b. By the argument above, every 

planar graph has a subgraph of low degree vertices which forms a fixed fraction (based on b) of 

the graph [LM] [K] [EKA]. 

The Fractional Independent Set Problem FISP(n) is defined as the problem of identifying 

for an arbitrary planar graph G with n vertices an independent set I of low degree vertices such 
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that I I I > n I c for some fixed constant c. Special cases of this problem, BD-FISP(n) and 

L-FISP(n), concern the restriction to bounded degree graphs (graphs composed entirely of low 

degree vertices), and chains or list graphs (digraphs whose vertices have in-degree and out

degree bounded by 1) respectively. We also use the notation MISP(n) and FISP(n) to refer to 

the parallel complexity of solving these respective problems. 

It is possible to relate the parallel complexities of variants of the FISP by means of some 

straightforward reductions: 

Lemma 1: FISP(n) S 0(1) + FISP-BD(n) 

Proof: Since the low degree vertices form a fixed fraction of the vertices of a planar 

graph, it suffices to identify a subgraph of the input graph such that all vertices have degree at 

most b. In the following description, the edge 'near end' and 'far end' locations are used to 

avoid read/write conflicts. 

Each vertex processor marks its vertex high degree (as a default). It then counts its 

incident edges up to a maximum of b + 1. Any processor which counted up to b + 1 edges sits 

out and the others mark themselves low-degree. Each low-degree vertex marks the 'far end' of 

its incident edges High Degree. It then marks the 'near end' of its incident edges Low Degree. 

If then reads the 'far end' of its incident edges and removes from its edge list the ones which are 

marked High Degree. In this way, all low degree vertices identify themselves, their low degree 

neighbours and the resulting induced graph in 0(1) parallel time. 

The following pseudo-code procedure, which is executed in parallel by each of the vertex 

processors, describes in more detail the procedure to identify the graph induced on the low 

degree vertices. 
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procedure LowDegreeSubgraph; 

begin 
Mark vertex hi&h-deiuee; 
degree :=0; 
test_edge := first_edge; 
counted_all := false; 

(* Count edges to identify low-degree vertices. *) 

for k := 1 to (b + 1) do 
if (not counted_all) then 

begin 
degree := degree + 1; 
test_edge := test_edge.next; 
counted_all := (test_edge = first_edge) 

end; 

(* Remove edges which are incident on high-degree vertices. *) 

if degree S b then 
begin 

Mark vertex low-dems;: 
for j := 1 to b do if (edge j <> null) then Mark 'far end' of edge j hi&h-deeree: 
for j := 1 to b do if (edge j <> null) then Mark 'near end' of edge j low-de me; 
for j := 1 to b do if (edge j <> null) then 

end 

if 'far end' of edge j is marked hi~h-deeree 
then remove edge j from edge list 

end.. • 

Lemma 2: BD-FISP(n) S O(J) + c L-FISP(n) 

Proof: Assume we are given as input a graph G each of whose vertices has degree at 

most b. Each vertex is assigned a processor. We first show how the edge set E of the graph G 

can be decomposed, in constant time, into a constant number t < 2b of sets Ej (1 Si St) where 

each set Ei defines a list graph. 

The sets Ei (1 Si St) will be formed int rounds. A set of chains is identified in parallel 

by allowing each vertex to determine at most one incoming edge and at most one outgoing edge 

from its remaining incident edges. As an edge is chosen, it is marked as belonging to chain i 

and is removed from consideration. Each round is divided into b subrounds. In a subround, a 

vertex which has not yet had a proposal accepted proposes to a new neighbour (if one is 
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available). If a vertex receives any proposals, it will accept exactly one and ignore all others. A 

vertex has all of its proposals ignored in a round only if all of its neighbours have accepted 

other proposals in this round Hence after 2b rounds, all of a vertex's neighbours must have 

accepted its proposal. 

We then find a Fractional Independent set in E1 and mark them as survivors. Among the 

set of survivors in Ei we find a Fractional Independent set in Ei+ 1 · The set of survivors in Et 

will form a fixed fraction of the vertices of G. Therefore a constant number of iterations of the 

Fractional Independent Set Problem for list graphs suffices to solve the Fractional Independent 

Set Problem for bounded degree graphs. 

The following pseudo-code procedure, which is executed in parallel by each of the vertex 

processors, describes in more detail the procedure to decompose a degree bounded graph into a 

set of list graphs. 
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procedure DecomposelntoChains; 
begin 

(* Each iteration identifies 1 outgoing edge and 1 incoming edge. *) 

for i := 1 to t do 
begin 

end 
end. • 

in_mated := false; 
out_mated := false; 

for j := 1 to b do 
begin 

(* Propose to a neighbour *) 

if (not out_mated) and (edge j <> null) then 
Mark 'Far End' of edge j propose; 

(* Check proposals from neighbours *) 

fork:= 1 to b do 
if(not in_mated) and(edge k <> null) and 

('near end' of edge k is marked propose) then 
begin 

Mark 'near end' of edge k accept: 
in_mated := true; 
in_edge :=k 

end; 

(* See if proposal was accepted *) 

if(not out_mated) and (edge j <> null) and 
('far end' of edge j is marked acc~pt) then 
begin 

end; 

out_mated := true; 
out_edge := j 

end 

(* Record incident edges for chain i *) 

if in_mated then 
begin 

Mark 'near end' of edge in_edge in-chain m: 
Remove edge in_edge from current edge ring 

end; 

if out_mated then 
begin 

Mark 'near end' of edge out_edge out-chain (i}; 
Remove edge out_edge from current edge ring 

end; 
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Note that the Fractional Independent Set Problem for n vertex list graphs can be solved by 

standard list ranking in 0(/og n) parallel time using O(n) EREW processors [W]. However, 

full list ranking is unnecessary. 

Lemma 3: L-FISP(n) can be solved in O(/og*n) parallel time using a deterministic 

algorithm. 

Proof: Cole and Vishkin [CV] define an r - ruling set on a list graph Lonn vertices to 

be a subset U of the vertices of L such that: i) No two vertices of U are adjacent; and ii) For 

each vertex v in L there is a directed path from v to some vertex in U whose edge length is at 

most r. Cole and Vishkin show how to find a 2-ruling set in O(/og*n) time using a technique 

which they call deterministic coin tossing. Note that a 2-ruling set is a fractional independent 

set for its list. • 

It is straightforward to modify Cole and Vishkin's algorithm to find a fractional 

independent set among any subset of the vertices of a list. 

Lemma 4: L-FISP(n) can be solved with probability 1 - O(c"), for some c < 1, in 0(1) 

parallel time using a randomized algorithm. 

Proof: Assign a processor to each vertex of the list. Each processor flips a O or a 1 with 

equal probability. A vertex is chosen if its processor flips a 1 and either it has no successor or 

its successor flips a 0. With probability at least 1/4 an arbitrary vertex is chosen. However, 

these probabilities are not independent Nevertheless, every second list element is chosen 

independently with a probability of at least 1/4. Thus applying the Chernoff bound (cf. [PB, p. 

464]), we find that the probability that fewer than 1/8 of the even positioned list elements are 

chosen is at most c0 , where c < 0.98. • 
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III Maximal Independent Sets in Planar Graphs 

The algorithm to find a MIS in a planar graph is based on the fact that a fractional 

independent set can be found in a low-degree graph quickly. A (somewhat idealized) 

conceptual description of the algorithm follows: 

For planar graph G = (V, E): 

begin 
H f- V; 

I f-0; 

while IHI :#- 0 do 
begin 

[a] Identify a Fractional Independent Set M of H; 

[b] I f- I u M; 

[c] Hf- H - (Mu rH(M)); 
end; 

end. 

rH(M) is the neighbourhood of M in H, the set of vertices in H which are adjacent to a 

vertex of M and all of their incident edges. Since each iteration of the while loop reduces the 

size of the set H by a fixed fraction, there are O(log n) iterations. Note that this exploits the fact 

that any subgraph of a planar graph is still a planar graph. 

The naive way of implementing the algorithm would be to logically complete an iteration -

remove entirely the identified fractional independent set along with its neighbourhood - before 

proceeding with the next iteration. However, some of the neighbourhood vertices may be high

degree and hence on an EREW model of computation it may require logarithmic time to notify 

all of an eliminated vertex's neighbours that it has been removed. Each round would then take 

O(log n) parallel time resulting in an O(log2n) parallel time MIS algorithm. 

A more efficient algorithm, which conforms to the EREW model, uses the following more 

sophisticated strategy for an iteration. (Note that for simplicity, we consider the identification 

of a fractional independent set to be an indivisible operation.) 
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A vertex is labelled or unlabelled: if it is labelled then it is labelled chosen or unchosen 

and hence its membership in the independent set has been determined; if it is unlabelled then it 

is still under consideration for being a member of the independent set. Initially, all vertices are 

unlabelled. 

An edge is unmarked or marked: if it is unmarked then both its incident vertices remain 

unlabelled; if it is marked then at least one of its incident vertices is labelled. A marked edge is 

satisfied or forbidden: if it is satisfied then one of its incident vertices has been labelled 

unchosen (a neighbourhood vertex) hence the constraint this edge represents has been satisfied; 

if it is forbidden then one of its incident vertices has a vertex neighbour which been labelled 

chosen (a member of the independent set) hence the remaining unlabelled vertex is to be labelled 

unchosen. This latter case of an edge being marked forbidden may occur as a result of a vertex 

being labelled chosen or as a result of an edge ring compression in the cleanup operation 

described below. 

An iteration proceeds as follows: A fractional independent set of vertices M is identified 

from H. Each vertex v in M is low degree, hence in constant time v can examine and/or mark 

all its incident edges (without read/write conflicts since Mis an independent set). If any of v's 

incident edges are marked as being incident on a chosen vertex (ie. v is a neighbourhood vertex 

from a previous selection) then v labels itself unchosen, removes itself from H and marks its 

incident edges satisfied (ie. their associated independence constraint is "satisfied" and adjacent 

vertices can remove them without consequence). If none ofv's incident edges are marked as 

being incident on a chosen vertex then v labels itself chosen, removes itself from H and marks 

its incident edges forbidden (ie. its adjacent vertices are neighbourhood vertices and their future 

choice for membership in the independent set is "forbidden"). At this point, each vertex in H 

has within its edge ring a number of marked edges and a number of unmarked edges. The 

marked edges are those scheduled for removal. A vertex is selected as a low degree vertex only 

when its edge ring (including marked edges) falls below a certain size. Thus the final operation 
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within an iteration is to remove at least half of the remaining marked edges so that there will be 

some low degree candidate vertices for the FIS operation of the next iteration. 

The algorithm incorporating the iteration strategy outlined above follows: 

For planar graph G = (V, E): 

begin 
H +-V; 
I +-0; 
while IHI ::J:. 0 do 
begin 

[a] Identify a Fractional Independent Set M of H; 
[b] Label eligible vertices in M "chosen", remove them from H, 

and mark their incident edges "forbidden"; 
[c] Label ineligible vertices in M "unchosen", remove them from H, 

and mark their incident edges "satisfied"; 
[d] Cleanup by removing at least half the remaining marked edges; 

end; 
end. 

The steps [a], [b], and [c] are sufficiently described above. The step [d] cleanup operation 

requires elaboration. Each unlabelled vertex has a list of incident edge pointers; some of these 

edges may be marked "forbidden", some of these edges may be marked "satisfied" and the rest 

are unmarked. There may be many consecutive marked edges. We wish to remove at least half 

of the marked edges without increasing the cost of an iteration while conforming to the EREW 

restriction. 

We can remove a fixed fraction of the marked edges by identifying a fractional 

independent set of the marked edges within each edge list. This can be done using either the 

deterministic algorithm of Lemma 3 (finding a 2-ruling set [CV]) or the randomiz.ed algorithm 

of Lemma 4 depending on which algorithm is used in step [a]. 

Each edge e checks its successor f for membership in the fractional independent set. If f is 

in the fractional independent set then e adjusts its pointer around f. If f is marked forbidden (ie. 

f s far vertex is labelled chosen and hence f s near vertex must be labelled unchosen) then e 

must retain this information by marking its (near) end forbidden. Since a fixed fraction of the 
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marked edges are removed in this fashion, repeating this operation some constant number of 

times will reduce the number of marked edges by one half. 

The dominant cost within each iteration is the fractional independent set operation used in 

steps [a] and [d]. It remains to show that we can guarantee that there will still be a total of 

O(/og n) rounds. 

Each round eliminates a fixed fraction of the remaining vertices. It is possible that an 

unlabelled vertex has a large number of neighbours eliminated within a given round. That is, a 

vertex which becomes low degree within a particular round may not discover that it has become 

low degree for several rounds. However, using the marking/removal strategy described above, 

it is a straightforward inductive exercise to show that there are O(/og n) rounds in total. 

Specifically, if Yi denotes the number of vertices remaining at the end of round i (vo = n) 

and ei (respectively fi) denotes the number of unmarked (respectively marked) edges remaining 

at the end of round i, then 

(1) ei < 3vi (since the unmarked edges form a planar graph on the active vertices) and, 

(2) fi+l :s;; ei + fi / 2 (since the newly marked edges number at most ei and the old marked edges 

are reduced in number by at least a factor of 1/2 in the cleanup operation). 

If we choose low degree to mean degree less than 25 and let a. = 49 / 50, then 

Lemma 5: For all i ~ 1, 

ii) ei :s;; 3a.i-l n and, 

iii) fi :s;; ( 6a.i-ln) / (2a. - 1) 

Proof (by induction on i): 

The basis of the induction is clear. Suppose the result is true for i < k. By observations 

(1) and (2) above, it suffices to show that vk+l :s;; a.kn. Suppose that vk > a.kn. (otherwise 
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the result is immediate). Since ek S 3a.k-l n and fk S ( 6a.k-ln) / (2a. - 1), it follows that the 

average degree of the vk active vertices at the end of round k is less than 12 / (2a. - 1 ). Hence, 

at least half of these vertices have degree less than 25. It follows that at least vk / 50 ~ a.kn / 

50 vertices are chosen in round k+ 1. Thus 

• 

Since each round is dominated by the cost of constructing a fractional independent set in a 

bounded degree graph, it follows that: 

Theorem 1: A maximal independent set of an n-vertex planar (planar or '?ounded 

degree) graph can be constructed in O(log n log*n) (respectively O(/og n) expected) parallel 

time using a deterministic (respectively randomized) algorithm on O(n) EREW processors. 

IV Discussion 

We have exploited simple properties of planar graphs to produce a simple and efficient 

parallel algorithm for finding a Maximal Independent Set in a planar graph. In particular, the 

reduction in the number of processors from that required for Luby's more general algorithm [L] 

may make this algorithm practical to implement and to use as a subroutine for other related 

tasks. It is not clear how to reduce the processor requirement further; the Cole and Vishkin 

O(log*n) parallel time 2-ruling set algorithm [CV] and the randomized L-FISP result both 

require O(n) processors. 

We have used techniques similar to those used here in a geomenic setting [DaK2]. The 

algorithm for finding Fractional Independent Sets can be applied to the parallel construction of 

Subdivision Hierarchies for fast sequential subdivision search and to the construction of 

Polyhedral Hierarchies for solving a number of spatial query problems and constructing three 

dimensional convex hulls. 
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Very recently we have become aware of the related work of Chrobak, Diles, and Hagerup 

[CDH]. Though their focus is on parallel algorithms for graph colouring, their techniques are 

very similar to those presented here and we expect that they could be applied equally 

successfully in our settings. 
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