
A SIMPLE OPTIMAL RANDOMIZED PARALLEL LIST
RANKING ALGORITHM

Karl Abrahamson
David Kirkpatrick

by
Norm Dadoun
Teresa Przytycka

Technical Report 87-14

May, 1987

A Simple Optimal Randomized Parallel List Ranking Algorithm•

Karl Abrahamson
David Kirkpatrick

Norm Dadoun
Teresa Przytycka

Department of Computer Science
University of British Columbia

Vancouver, B.C., Canada

Abstract

We describe a randomized parallel algorithm to solve list ranking in
O(log n) expected time using n/ log n processors, where n is the length
of the list. The algorithm requires considerably less load rebalancing
than previous algorithms.

Keywords: Parallel algorithms, list ranking, randomization.

1 Introduction

This paper is concerned with a parallel algorithm for the parallel random
access machine (PRAM) model. Several versions of such machines are de
scribed in the literature, the major difference between them being whether
they permit concurrent reading or concurrent writing (or both) of a mem
ory cell by two or more processors. The version presumed here is the most
restrictive one, the exclusive-read, exclusive-write (EREW) PRAM.

The list ranking problem is stated as follows. The input is a linear
linked list of n cells contained in an array of n cells. The list cells can be in
any order in the array. The problem is to assign to each list cell its distance
from the end of the list, measured along the linked list.

List ranking is encountered in parallel algorithms for a number of prob
lems. It is a fundamental part of the Euler tour technique which has been
used to compute biconnected components [7) and strong orientation of a
graph [8], and to evaluate expressions [1,2].

The "standard" parallel list ranking algorithm employs the fundamen
tal recursive doubling technique. Each list node is assigned a processor.
Each node v also has a variable d(v) which is initially set to 1, and which
represents the distance ahead in the list that its link l(v) currently points.
The last node in the list points to itself, and its distance is 0. The basic step

•This research was supported in part by the Natural Sciences and Engineering Research
Council of Canada

1

is for each node v, synchronously in parallel, to set d(v) .- d(v) + d(l (v))
and l(v) .- l(l(v)). That step is repeated until the link of each node points
to the end of the list. Since each distance is doubled at each step (until the
link points to the end of the list), this algorithm takes O(logn) time using
O(n) processors.

The standard algorithm is suboptimal in the sense that the product of
the number of processors and the time is O (n log n), although the problem is
solvable sequentially in linear time. The challenge is to find a fast algorithm
which achieves optimal speedup, i.e. a linear number of total operations. An
ideal algorithm would take O (log n) time using only n / log n processors.

A step in that direction is taken by Kruskal, Rudolf and Snir [5], who
show how to solve list ranking in O(n() time using n 1-, processors, for any
E > 0, thus achieving optimal speedup.

Vishkin [9] suggests viewing list rii.nking as a parallel prefix computation
problem. Each node has a value of 1, and each prefix sum in the reversal of
the list is to be computed. There is a well known parallel prefix algorithm
which takes O(logn) time using n/ logn processors (see [9]). Unfortunately,
that algorithm requires that the numbers to be summed be consecutive in
an array. But when the list nodes are in the same order in the array as in
the list, the list ranking problem is trivial.

So, when the list nodes are not consecutive in the array, the paral
lel prefix algorithm cannot be applied directly. Nevertheless, Vishkin [9]
describes randomized list ranking algorithms similar in spirit to the paral
lel prefix algorithm, including one which achieves O(log n log• n) time using
n/(Iog n log• n) processors. A crucial feature of this and subsequent efficient
list ranking atgorithms that distinguish them from parallel prefix algorithms
is the necessity of spending time balancing the work load among the proces
sors. Indeed, if it were not for the need for rebalancing, Vishkin's algorithm
would be considerably simpler and would achieve O(log n) time with n/ log n
processors.

Cole and Vishkin [4] achieve the same time and processor bounds for
list ranking as Vishkin [9], using a deterministic algorithm. Again, load re
balancing is the costliest part of the algorithm. Miller and Reif [6] describe
a randomized algorithm which solves list ranking in O(log n) time using
n/ log n processors, involving a substantial and difficult rebalancing opera•
tion. Finally, Cole and Vishkin 13] describe a deterministic algorithm which
achieves O(log n) time using n/ log n processors. This algorithm is based
heavily on a general load balancing scheme, which is sufficiently costly that
Cole and Vishkin admit that this algorithm, although good for very large n,
is probably not practical.

2

This paper shows that the extensive global rebalancing inherent in the
algorithms above is not really needed for list ranking, at least for randomized
algorithms. An algorithm is described which achieves O(log n) expected time
using n/ log n processors, but performs only one global rebalancing, and
many simple, local rebalancing operations. The algorithm is conceptually
simpler than previous list ranking algorithms with competitive time and
processor bounds.

2 The Algorithm

The basic idea, like that employed in previous algorithms, is to reduce list
ranking to a smaller instance of the same problem.. Imagine, for the mo
ment, that each list node has a dedicated processor. A round consists of the
following operation. Each node tosses an unbiased coin. Any node v which
tosses tails, and whose successor in the list tosses heads, is a non-survivor.
All other nodes are survivors. The last node in the list is always a survivor.

Notice that no two consecutive list nodes can be survivors. Each sur
vivor v checks whether its successor is a survivor. If not, then v executes a
bypass operation: v sets d(v) - d(v) + d(l(v)) and l(v) - l(l(v)), effectively
deleting the non-survivor from the list. Now the reduced list is ranked re
cursively. When the reduced list is completely ranked, non-survivor u can
set d(u) - d(l(u)) + 1.

This reduction strategy is carried out for enough rounds until the sizes
of the reduced list has an expected value well below n/ log n. The reduced list
is collapsed into an array of size s (thereby facilitating global rebalancing).
If the reduced list has more than n/ log n nodes (a highly improbable event)
then more rounds are employed to reduce the size to at most n/ log n. At
this point the standard algorithm is invoked on the reduced list.

If there are actually only n/ log n processors available for the above
algorithm, then each processor must be responsible for about (N/n) logn
nodes, where N is the current size of the list. It is crucial that the load
be fairly well balanced among the n/ log n processors. Our basic strategy
is to maintain that balance locally as follows. The original array (of size
n) is divided into blocks of size m = r 2 log2 n 1, each block consisting of m
contiguous locations in the array. Approximately h = {log n)/2 processors
are assigned to each block. The processors assigned to each block remain the
same as the algorithm progresses.

There is no redistribution of processors between blocks. But the pro
cessors within each block carefully share the load of that block among them
selves. It will be convenient to collect the rounds into groups of 10, and to

3

call each such group of rounds a phase. After each phase the kz survivors
within block x are compacted into the first kz locations of the block, and
the h processors associated with block x are assigned to equal chunks of the
compacted block. Compaction is easily achieved as follows. Using a parallel
prefix algorithm, number the survivors from left to right. Number the non
survivors from left to right, starting with the largest survivor number plus
one. Compute the new address of each node, using the computed numbers as
offsets from the start of the block. This will be done in all blocks in parallel.
Then it is easy to update the links, and move each node to its new address.

When the reduction part of the algorithm is finished, all of the survivors
in the entire array are compacted to the beginning of the array, and the
standard algorithm is run.

The above description is summarized in the pseudo-code below. It is
important to maintain synchrony in the algorithm. Some steps take less
time for some processors than for others, because the load is not exactly
balanced. But each processor knows the maximum length of time that any
other processor can take to complete a given step. The notation "[instruc
tions]" means to execute the given instructions, and then to wait until the
maximum time for those instructions has expired. The program is easily
implemented on a single-instruction, multiple data machine, and it may be
helpful to imagine such an implementation.

It is important that the blocks decrease in size, so that the time to
process a block decreases exponentially with the number of phases exe
cuted. With low but positive probability, a given block does not decrease fast
enough, and the processors in that block will not have enough time to deal
with all of the survivors. In that case, some of the survivors become passive;
they retain their current coin toss values and they continue to survive. In
short, they a.re ignored. Initially, all survivors are active.

For brevity, the backup part of the algorithm, in which non-survivors
are assigned ranks as the recursion backs up, is omitted from the following
description.
List Ranking Algorithm

m +- f 2 log2 n 1 {block size}
b +- f n/m 1 {number of blocks}
h +- Ln/(blogn)J {processors per block}
1: n +- number of survivors. (All survivors are active.)
for each block in parallel do (using h processors)

for</>+- 1 to floglognl do
for r +- 1 to 10 do

(Assign a coin toss to each active survivor in the block.]

4

od

od
od

[Mark each active survivor which tossed tails, and whose
successor tossed heads, as a non-survivor.]

[Bypass each non-survivor.]

[Compact the first m2-, survivors to the front of the block.]
(Remaining survivors become passive.)

Compact the survivors in the entire array to the front.
if> n/ log n survivors then goto 1.
Run the standard algorithm on the remaining survivors.

3 Analysis

We do a quite crude but simple analysis. A round is one iteration of the
r-loop. A phase is one iteration of the cp-loop.

In what follows we can afford to ignore the special case of the end of
the list, since there is only one such node. Also, we will presume that all of
the survivors in each block are active throughout the execution of the ¢-loop.
We will see that the probability of that failing to occur is negligibly small.

Consider a particular block B containing s survivors. Choose k arbi
trary survivors from B. Let R be the probability that those k nodes survive
one more round, and P be the probability that they survive one more phase.

The k given nodes are spread in some unknown fashion in the current
list. Considering the list to be a directed graph, the subgraph induced by
the k chosen nodes consists of a collection C1 , ••• , C, of chains. Let l, be the
length (number of nodes) of C,, for i = 1, ... , t.

Choose an arbitrary i, and let CJ be chain Ci with one node added
to the end. In order for every node in C, to survive one more round, the
sequence of coin tosses assigned to the nodes in Cf must be in H•T•, where
His heads and Tis tails. So the probability that all k chosen nodes survive
one more round is

n-t-2 (s)" (s)A: (s) 1o1: But F-FT' < i for n ~ 1, so R ~ i , and P ~ 4 .

Let Q be the probability that any f s/21 of the s survivors of block B

() ()
10(•/2) ()&a

survives one more phase. Then Q < r,i21 ! < 2' ¾ < 2-•.

5

As long as a block has at least 2 log n survivors, its size is cut by a factor
of ~ 1/2 in the next phase with probability > 1- ~- So the probability that
any block containing ~ 2 log n survivors fails to be cut by a factor of ~ 1/2
in any of the r1og log n l phases is less than r1og log n l /n, which is negligibly
small.

Hence, with high probability, every block has size ~ m2-1 at the end of
phase <J,. That justifies the presumption that all of the survivors are active.
The probability that there are more than n/ log n survivors at the end of the
cf>-loop is sufficiently small that the loop formed by the goto has negligible
contribution to the expected time.

The expected time required for phase cf> is 0(%~-:) = 0(2- ~ logn),
since the upper bound on the number of active sw:vivors in a given block in
phase <J, is m21-,, and there are 0(log n) processors· assigned to each block.
So the total expected time for the cf>-loop is O(E1: 2-1 logn) = O(logn), and
the total time is 0 (log n).

4 Conclusion

The fundamental difficulty in list ranking with few processors seems to be
keeping the load balanced among the processors. We have shown that a
modest amount of rebalancing suffices. In a sense, the load is balanced auto
matically. Note that if the blocks had been chosen smaller in our algorithm,
the load would not remain balanced, and some other form of rebalancing
would be necessary.

We believe that our algorithm compares favorably with other optimal
list ranking algorithms, both in terms of simplicity and efficiency. It is, how
ever, a randomized algorithm, and hence cannot be directly compared to
deterministic algorithms. Our approach appears to rely heavily on random
ization to keep the load approximately balanced. It seems that any optimal
deterministic algorithm must do extensive load rebalancing.

References

[1] K. Abrahamson, N. Dadoun, D. Kirkpatrick, and T. Przytycka. A Simple
Parallel Tree Contraction Algorithm. 1987. Manuscript, Department of
Computer Science, University of British Columbia.

[2] R. Cole and U. Vishkin. The Accelerated Centroid Decomposition Tech
nique for Optimal Parallel Tree Evaluation in Logarithmic Time. Com
puter Science Department Technical Report 242, Courant Institute, 1986.

6

(3) R. Cole and U. Vishkin. Approximate and exact parallel scheduling with
applications to list, tree and graph problems. In !!7th Annual Symposium
on Foundations of Computer Science, pages 478-491, 1986.

[4] R. Cole and U. Vishkin. Deterministic coin tossing and accelerating
cascades: micro and macro techniques for designing parallel algorithms.
In 18th Annual Symposium on Theory of Computing, pages 206-219,
1986.

(5) C. P. Kruskal, L. Rudolf, and M. Snir. Efficient parallel algorithms
for graph problems. In International Conference on Parallel Processing,
pages 18~185, 1985.

(6] G. L. Miller and J. H. Reif. Parallel tree contraction and its applica
tions. In 16th Annual Symposium on Foundations of Computer Science,
pages 478-489, 1985.

[7] R. E. Tarjan and U. Vishkin. An efficient parallel biconnectivity algo
rithm. SIAM J. on Comput., 14(4):862-864, 1985.

[8] U. Vishkin. On efficient parallel strong orientation. Inf. Process. Lett.,
20:235-240, 1985.

[9] U. Vishkin. Randomized speedups in parallel computation. In 16th An
nual Symposium on Theory of Computing, pages 23~239, 1984.

7

