
Parallel Construction of 
Subdivision Hierarchiest 

N.Dadoun 
D.G. Kirkpatrick 

Technical Report 87-13 
May 1987 

Abstract 

A direct, simple and general parallel algorithm is described for the preprocessing of a 

planar subdivision for fast (sequential) search. In essence, the hierarchical subdivision 

search structure described by Kirkpatrick [K] is constructed in parallel. The method 

relies on an efficient parallel algorithm for constructing large independent sets in planar 

graphs. This is accomplished by a simple reduction to the same problem for lists. 

Applications to the manipulation of convex polyhedra are described including an 

O(log2n log*n) parallel time algorithm for constructing the convex hull of n points in R3 

and an O(log n log*n) parallel time algorithm for detecting the separation of convex 

polyhedra. 

f A preliminary version of some of the results in this report was presented in [DaKl]. 





I Introduction 

The study of parallelism in computational geometry has been largely confined to individual 

case studies and isolated results with the exception of the recent comprehensive papers of 

Aggarwal et al [ACGOYl] [ACXiOY2]. Aggarwal et al present a number of techniques and 

tools which lay the foundation for the study of parallelism in computational geometry. Among 

their results are parallel solutions to such familiar geometric problems as convex hull 

construction (in 2 and 3-d), Voronoi diagram construction (in 2-d) and closest point search, and 

segment intersection. More recently, Atallah and Goodrich [AG] elaborate on one technique -

parallel plane sweep - which was proposed by Aggarwal et al . 

A major - in many cases dominant - component of a number of geometric algorithms is a 

(possibly constrained) subdivision search problem. A (planar) subdivision is a partition of the 

plane into regions bounded by straight edges. A bounded subdivision is implicitly given by an 

embedded planar graph describing the face boundaries. (Even unbounded subdivisions can be 

described this way by including a point at infinity.) Subdivision search involves identifying the 

face of a given subdivision occupied by a given point. 

In this paper, we focus on parallelism and subdivision search. We provide a direct, 

simple and general parallel solution to the problem of preprocessing a subdivision for fast 

sequential search. This is achieved by giving a parallel construction of the general hierarchical 

subdivision search structure presented by Kirkpatrick [K]. This approach was proposed by 

Aggarwal et al but abandoned in favour of a less general solution. 

Subdivision hierarchies [K] are constructed by identifying and removing large 

independent sets of low-degree vertices to produce a sequence of progressively simpler 

subdivisions. Thus, much of our attention in this paper is devoted to parallel algorithms for the 

identification of large independent sets in certain restricted graphs. 



We deal exclusively with graphs (including planar graphs) whose edge set is linear in the 

size of the vertex set. Thus we refer to the size of a graph by the single parameter n, the 

number of its vertices. Each of our algorithms assumes as input a graph G represented as an 

array of vertices V along with an array of edges E. Each vertex v in V has a pointer to a ring of 

edges incident with v. When the graph G is presented as a planar embedding, each edge ring 

will be ordered clockwise about its incident vertex. 

For ease of exposition, we assume a Single Instruction/Multiple Data (SWD) shared 

memory PRAM for our algorithms. Like Aggarwal et al, we assume a concurrent read/exclusive 

write (CREW) memory model for most of our parallel algorithms. The CREW model seems 

natural for our geometric applications in which many processors cooperate to construct a data 

structure and then access that data structure individually. In some cases, an exclusive 

read/exclusive write (EREW) memory model suffices to implement our algorithms. 

Again like Aggarwal et al, we assume the availability of a number of processors linear in 

the input size n and make no attempt to optimize the utilization of processors. So, without loss 

of generality, we assume that each vertex and edge has associated with it a dedicated processor. 

Each processor has a distinct identifier which can be used to make local decisions. The 

processor identifier of a processor assigned to a vertex (respectively edge) may also be 

referred to as the vertex (respectively edge) number. 

We will say that a problem of size n has parallel complexity f(n) if it can be solved in 

O(f(n)) parallel time using O(n) processors as described above. Our interest lies in 

understanding the asymptotic complexity of problems; we make no attempt here to optimize the 

constants involved. 

Section II is concerned with the Subdivision Hierarchy Construction problem. Through a 

series of problem reductions, we examine the relative complexities of different instantiations of 

2 



the Subdivision Hierarchy Construction problem and relate it to the problem of identifying a 

Fractional Independent Set within a planar graph. 

In Section ill, we apply the concept of Subdivision Hierarchies to the construction of 

hierarchical representations of polyhedra. This, in turn, is applied to certain geometric 

intersection and separation problems. Among the results is an O(log2n log*n) parallel ti.met 

algorithm for the construction of 3-dimensional convex hulls. 

II Subdivision Hierarchies and Fractional Independent Sets 

Suppose S is a planar subdivision. We denote by Gs the associated embedded planar 

graph. A subdivision hierarchy representation of S is a sequence of increasingly coarse 

descriptions of S. The first element of the sequence, Si, is a triangulation of S. Each 

subsequent element of the sequence, Si, is a triangulated subdivision whose size is some fixed 

fraction less than the size of its predecessor Si-I and each of whose regions intersects at most a 

constant number of regions of its predecessor Si-I· The last element of the sequence, Sk, is a 

subdivision with at most some fixed number of vertices. Note that since the sizes of successive 

subdivisions form a geometrically decreasing sequence, the number of elements in the sequence 

is logarithmic in the size of the original graph. 

More formally, the sequence of triangulated subdivisions H(S) = S 1 , ... ,Sk is said to be a 

subdivision hierarchy of S if there are positive constants c and d such that 

i) S 1 = S or some triangular refinement of S; 

iii) ISi+ 1 I S (1 - 1/c) ISil; and 

t All logarithms in this paper are base 2. log"n is defined to be the number of applications of the log function 

required to reduce n t_o a constant value. 

3 



iv) each region R of Si+ 1 has associated with it at most d regions of Si whose union 

includes R. 

We first review the sequential algorithm for constructing a subdivision hierarchy from a 

given n-vertex subdivision presented by Kirkpatrick [K]. The original subdivision Sis fully 

triangulated (in O(n log n) time) to produce the first element of the sequence, S1. Each 

subsequent element Si is derived from its predecessor Si-1 by identifying, and removing a set 

of low-degree independent vertices and retriangulating the resulting subdivision. This 

continues until a subdivision Sk with three vertices has been produced. 

It follows from Euler's theorem that every planar subdivision has an average degree of 

less than 6 which implies that less than half the vertices have degree exceeding 11. From the 

set of vertices V of degree at most 11, an independent set of size at least IVI / 12 ~ n / 24 can be 

identified quickly. Using this, it is shown in [K] that every subdivision has an associated 

subdivision hierarchy with d = 11 and c = 24 which can be constructed in linear time exclusive 

of the initial triangulation. In another context, Lipton and Miller [LM] (and subsequently 

Edahiro et al [EKA]) showed that large independent sets of vertices of degree at most 6 can be 

easily identified. Accordingly, we say that a vertex has low-degree if it has degree less than or 

equal to 6. 

4 

Given a query point q and a subdivision hierarchy H(S) of a subdivision Son n vertices, 

the subdivision search algorithm is straightforward. Since Sk is of constant size, the region of 

Sk containing q is identified in constant time. For each face f of Si+ 1 either f is a face of Si or 

f was produced when a low-degree vertex of Si was removed. Thus given the face of Si+ 1 

containing q, the face of Si containing q can be determined in constant time. In this way the 

face of S1 (hence S) containing q can be determined in O(log n) time. 

For completeness, we include some implementation details relevant for both the sequential 

and parallel implementations. The data structure we use to represent a subdivision is the 



5 

Doubly Connected Edge List (DCEL) of Muller and Preparata [MP]. Within the DCEL, there 

are data elements for each vertex, edge, and face of the subdivision. Each vertex has an ordered 

ring of its incident edges. Each face has an ordered ring of its delimiting edges. Each edge has 

pointers to its two end vertices and its two incident faces. 

This is augmented slightly to represent the subdivision hierarchy. Each face fin Si+l has 

a pointer to the (low-degree) vertex v in Si (if one exists) whose removal caused the formation 

off. In the construction, when a vertex v is removed its neighbourhood is retriangulated and 

each of the resulting faces points to v. An edge (v, w) has its corresponding pointer in w's 

edge ring removed. In the search, if f is the face of Si+ 1 containing a query point q, there are 

only a constant number of (triangular) faces to search in order to locate q in Si. 

We define the Subdivision Hierarchy Construction Problem SHCP(n) as the problem of 

constructing a subdivision hierarchy for an arbitrary subdivision on n vertices. We will also 

use SHCP(n) to refer to the parallel complexity of solving the Subdivision Hierarchy 

Construction Problem. The special cases when Sis a Convex Subdivision (it is bounded by a 

convex polygon and each of its interior faces is convex) - which we denote C-SHCP(n) - or 

when S is a Triangular Subdivision (it is bounded by a triangle and each of its interior faces is a 

triangle) - which we denote T-SHCP(n) - are of independent interest 

As we have seen, it suffices at each stage to identify and remove a set of low-degree 

independent vertices which constitutes a fixed fraction of the entire vertex set. Therefore, we 

define the Fractional Independent Set Problem FISP(n) as the problem of identifying for an 

arbitrary planar graph G with n vertices an independent set I of low-degree vertices in G such 

that I I I> n I c for some fixed constant c. Special cases of this problem, BD-FISP(n) and L­

FISP(n), concern the restriction to bounded degree graphs, and list graphs (digraphs whose 

vertices have in-degree and out-degree bounded by 1) respectively. 



It is possible to relate the parallel complexities of variants of the SHCP and FISP by 

means of some straightforward reductions: 

Lemma I: 

(i) SHCP(n) S O(log2n) + T-SHCP(n) 

(ii) C-SHCP(n) s O(log n) + T-SHCP(n) 

(iii) T-SHCP(n) S O(log n) FISP(n) 

(iv) FISP(n) S 0(1) + BD-FISP(n) 

Proof: 

(i) This involves embedding the given planar subdivision within a triangular subdivision. 

A bounding rectangle can be determined for the given subdivision in O(log n) time by finding 

the minimum and maximum x and y values among the vertices of the subdivision. From the 

bounding rectangle, a bounding triangle can be determined in constant time. The techniques of 

[ACGOY2] or [AG] can then be used to triangulate the interior polygons in O(log2n) parallel 

time using n processors. 

(ii) This involves embedding the given convex subdivision within a triangular 

sulxlivision. First, a containing triangle is determined in O(log n) time as in (i) above. 

Next, the vertices on the boundary of the convex polygon containing the subdivision must 

be connected to the vertices of the containing triangle such that the region between the bounding 

polygon and the containing triangle is triangulated. In general this can be done in any of several 

different ways. The ring of edges defining the bounding polygon will be available in the 

DCEL; it is the edge ring corresponding to the external face. Using this ring, a vertex on the 

boundary can determine in constant time which (and how many) of the containing triangle 

6 



vertices are visible by using its incident edges. Hereafter, it is straightforward to construct the 

desired triangulation using only local information. 

Finally, the interior convex regions must be triangulated. Within a convex polygon, each 

vertex is visible from every other vertex (by the definition of convexity). Thus, the only 

problem to be solved in triangulating a convex polygon in parallel is making sure the inserted 

edges don't cross. With a processor for each edge, each edge can learn its rank (relative to a 

lowest numbered edge) in both of its incident faces by standard list ranking techniques [W]. 

Since this also ranks the vertices, it is straightforward to form a triangulation by repeatedly 

connecting alternate vertices. Each convex region bounded by t edges can be triangulated in 

O(log t) time using t processors. 

(iii) This can be demonstrated by simply mimicking the sequential algorithm. For each 

element Si in the sequence, construct Si+ 1 by identifying a fractional independent set of Si, 

removing this low degree independent set and retriangulating in constant time. The triangulation 

guarantees that any two consecutive edges incident on a given vertex v are two sides of a 

triangle, hence the three vertices involved are not independent. Therefore, although some 

vertex w incident to v may be high-degree, no consecutive edges in w's edge ring will be 

removed in any particular iteration (ie. all updates are local and can be performed in constant 

time). The dominant cost of each of the O(log n) iterations is the identification of the fractional 

independent set. 

(iv) Again we mimic the sequential algorithm. Since the low degree vertices form a fixed 

fraction of the vertices of a planar graph, it suffices to identify a subgraph of the input graph 

such that all vertices have degree at most b. In the following description, the edge 'near end' 

and 'far end' locations are used to avoid read/write conflicts. 

Each vertex processor marks its vertex high degree (as a default). It then counts its 

incident edges up to a maximum of b + 1. Any processor which counted up to b + I edges sits 

7 



out and the others mark themselves low-degree. Each low-degree vertex marks the 'far end' of 

its incident edges High Degree. It then marks the 'near end' of its incident edges Low Degree. 

If then reads the 'far end' of its incident edges and removes from its edge list the ones which are 

marked High Degree. In this way, all low degree vertices identify themselves, their low degree 

neighbours and the resulting induced graph in 0(1) parallel time. 

The following pseudo-ccxle procedure, which is executed in parallel by each of the vertex 

processors, describes in more detail the procedure to identify the graph induced on the low 

degree vertices. 

procedure LowDegreeSubgraph; 

begin 
Mark vertex high-degree; 
degree :=0; 
test_edge := first_edge; 
counted_all := false; 

(* Count edges to identify low-degree vertices. *) 

fork:= 1 to (b + 1) do 
if (not counted_all) then 

begin 
degree := degree + 1; 
test_edge := test_edge.next; 
counted_all := (test_edge = first_edge) 

end; 

(* Remove edges which are incident on high-degree vertices. *) 

if degree s; b then 
begin 

Mark vertex low-dewee: 
for j := 1 to b do if (edge j <> null) then Mark 'far end' of edge j high-degree; 
for j := 1 to b do if (edge j <> null) then Mark 'near end' of edge j low-degree; 
for j := 1 to b do if (edge j <> null) then 

end 

if 'far end' of edge j is marked high-degree 
then remove edge j from edge list 

end. • 

8 



9 

Lemma 2: BD-FISP(n) S 0(1) + c L-FISP(n) 

Proof: Assume we are given as input a graph G each of whose vertices has degree at most 

b. Each vertex is assigned a processor. We first show how the edge set E of the graph G can 

be decomposed, in constant time, into a constant number t < 2b of sets Ei (1 ~ i ~ t) where each 

set Ei defines a list graph. 

The sets Ei (1 ~ i ~ t) will be formed in t rounds. A set of chains is identified in parallel 

by allowing each vertex to determine at most one incoming edge and at most one outgoing edge 

from its remaining incident edges. As an edge is chosen, it is marked as belonging to chain i 

and is removed from consideration. Each round is divided into b subrounds. In a subround, a 

vertex which has not yet had a proposal accepted proposes to a new neighbour (if one is 

available). If a vertex receives any proposals, it will accept exactly one and ignore all others. A 

vertex has all of its proposals ignored in a round only if all of its neighbours have accepted 

other proposals in this round. Hence after 2b rounds, all of a vertex's neighbours must have 

accepted its proposal. 

We then find a Fractional Independent set in E1 and mark them as survivors. Among the 

set of survivors in Ei we find a Fractional Independent set in Ei+ 1 · The set of survivors in Et 

will form a fixed fraction of the vertices of G. Therefore a constant number of iterations of the 

Fractional Independent Set Problem for list graphs suffices to solve the Fractional Independent 

Set Problem for bounded degree graphs. 

The following pseudo-code procedure, which is executed in parallel by each of the vertex 

processors, describes in more detail the procedure to decompose a degree bounded graph into a 

set of list graphs. 



procedure DecomposelntoChains; 
begin 

(* Each iteration identifies 1 outgoing edge and 1 incoming edge. *) 

for i := 1 to t do 
begin 

end 
end. • 

in_mated := false; 
out_mated := false; 

for j := 1 to b do 
begin 

(* Propose to a neighbour *) 

if (not out_mated) and (edge j <> null) then 
Mark 'Far End' of edge j propose: 

(* Check proposals from neighbours *) 

for k:= 1 to b do 
if(not in_mated) and(edge k <> null) and 

('near end' of edge k is marked propose) then 
begin 

Mark 'near end' of edge k acce,pt: 
in_mated := true; 
in_edge :=k 

end; 

(* See if proposal was accepted *) 

if(not out_mated) and (edge j <> null) and 
('far end' of edge j is marked-accept) then 
begin 

end; 

out_mated := true; 
out_edge := j 

end 

(* Record incident edges for chain i *) 

if in_mated then 
begin 

Mark 'near end' of edge in_edge in-chajn 0): 
Remove edge in_edge from current edge ring 

end; 

if out_mated then 
begin 

Mark 'near end' of edge out_edge out-chain G}; 
Remove edge out_edge from current edge ring 

end; 

10 



11 

Note that the Fractional Independent Set Problem for n vertex list graphs can be solved by 

standard list ranking in O(/og n) parallel time using O(n) EREW processors [W]. However, 

full list ranking is unnecessary. 

Lemma 3: L-FISP(n) can be solved in 0(/og*n) parallel time using a deterministic 

algorithm. 

Proof Cole and Vishkin [CV] define an r - ruling set on a list graph L on n vertices to be 

a subset U of the vertices of L such that: i) No two vertices of U are adjacent; and ii) For each 

vertex v in L there is a directed path from v to some vertex in U whose edge length is at most r. 

Cole and Vishkin show how to find a 2-ruling set in O(log*n) time using a technique which 

they call deterministic coin tossing. Note that a 2-ruling set is a fractional independent set for 

its list. • 

Lemma 4: L-FISP(n) can be solved with probability 1 - O(cn), for some c < 1, in 0(1) 

parallel time using a randomized algorithm. 

Proof: Assign a processor to each vertex of the list. Each processor flips a O or a 1 with 

equal probability. A vertex is chosen if its processor flips a 1 and either it has no successor or 

its successor flips a 0. With probability at least 1/4 an arbitrary vertex is chosen. However, 

these probabilities are not independent. Nevertheless, every second list element is chosen 

independently with a probability of at least 1/4. Thus applying the Chernoff bound (cf. [PB, p. 

464]), we find that the probability that fewer than 1/8 of the even positioned list elements are 

chosen is at most en, where c < 0.98. • 

Theorem 1: The Subdivision Hierarchy Construction Problem for a convex subdivision on 

n vertices can be solved in O(log n) expected parallel time using a randomized algorithm or 

O(/og n log*n) parallel time using a deterministic algorithm. 



12 

Proof: The deterministic result is immediate from Lemmas 1, 2 and 3. The randomized 

algorithm exploits Lemma 4 to find (and remove) low degree independent sets for O(log n) 

phases. At this point, the resulting subdivision has O(log n) vertices, with overwhelming 

probability, and O(log n) additional steps of the sequential algorithm suffice to complete the 

subdivision hierarchy. ff this is not the case then the entire computation can be restarted and the 

expected time remains O(log n). • 

Corollary 1: SHCP(n) ~ O(log2n) 

Once the subdivision hierarchy structure is constructed, the algorithm for subdivision 

search is identical to that presented in [K]. It is worth noting that Atallah and Goodrich [AG] 

use the parallel plane sweep technique to perform planar point location with O(log n log log n) 

parallel preprocessing, O(n log n) space and O(log n) sequential query time. The subdivision 

hierarchy technique uses O(log2 n) parallel preprocessing (O(log n log* n) for convex 

subdivisions), O(n) space and O(log n) sequential query time. Furthermore, as originally 

presented in [DKl], the subdivision hierarchy can be used for 3-dimensional applications which 

seem to be beyond the scope of the parallel plane sweep technique. We expand on this in the 

next section. 

III Applications 

As in [DKl] and [DK3], we exploit the fact that the surface of a convex polyhedron is 

topologically equivalent to a bounded planar subdivision and define an hierarchical 

representation for convex polytopes similar to the hierarchical representation for planar 

subdivisions: 

Let P be a convex polytope on n vertices with vertex set V(P). A sequence of 

polytopes H(P) = Pt , ... ,Pk is said to be a hierarchical representation of P if 

i) Pt= P; 



ii) IV(Pk)I is bounded by a constant; 

iii) VcPi+ 1) C V(Pi); and 

iv) the vertices of V<Pi+ 1) - V(Pi) form an independent set (i.e., are non-adjacent) in Pi. 

The Doubly Connected Edge List can be used to implement the hierarchical representation 

of convex polyhedra in the same way as for Subdivision Hierarchies. 

Corollary 2: Given a convex polyhedron on n vertices, a hierarchical representation with 

O(log n) elements can be constructed in O(/og n) expected parallel time using a randomized 

algorithm or O(/og n log*n) parallel time using a deterministic algorithm. 

Proof: This follows from Theorem 1 and the fact that the faces of a convex polyhedron 

can be triangulated in O(/og n) time. 

This hierarchical representation can be used to answer many different intersection and 

separation queries involving polyhedra. Convex polyhedron intersection and separation queries 

with points, lines and planes can be answered in O(/og n) sequential time [DKl, DK.2, DK3, 

DK4]. 

A line query, as defined by Aggarwal et al [ACGOYl], poses the following problem: 

Given a convex polyhedron P and a line L in 3-space, determine whether or not L intersects P 

and, if not, give the two planes through L tangent to P. 

Lemma 5: Given the hierarchical representation of a convex polyhedron H(P) and a line L 

in 3-space, a line query can be answered in O(/og n) sequential time. 

Proof: In [DKl, DK4] an O(/og n) sequential algorithm is described for detecting the 

intersection of a line L and an hierarchically described polyhedron P and for constructing the 

intersection when it is non-empty. By a straightforward modification of the same techniques, it 

is possible to construct the tangent planes through L when the intersection is empty.• 

13 



Corollary 3: Given the hierarchical representations of two separated convex polyhedra 

H(P) and H(Q), their convex union can be constructed in O(log n) parallel time using O(n) 

CREW processors. 

14 

Proof. By Lemma 5, given the subdivision hierarchy of a convex object with n vertices 

0 and a line L, the hierarchy can be used to answer a line query in O(log n) time with a single 

processor. Thus, to construct the convex union in logarithmic time a processor is assigned to 

each edge in both P and Q. The subdivision hierarchy is used to determine the two supporting 

planes of the opposite convex polyhedron through each edge. As a result each edge (and 

incident faces) can be classified as being in or out of the convex union. It remains to update the 

edge rings of all vertices to reflect adjacencies on the convex union. The details, which involve 

list ranking and merging, are described by [ACGOY2]. • 

Corollary 4: The 3-d Convex Hull of n vertices can be constructed in O(log2n) expected 

parallel time using a randomized algorithm or O(log2n log*n) parallel time using a deterministic 

algorithm. 

Proof. The algorithm proceeds in a manner similar to the divide and conquer algorithm of 

Preparata and Hong [PH] and Aggarwal et al [ACGOY2]. The vertex set is lexicographically 

sorted and is recursively divided into separable sets. The hull of each of the sets is found 

recursively and the Polyhedral Hierarchy is constructed for each. The separable Convex Union 

algorithm of Corollary 3 is used as the merge step. Constructing the subdivision hierarchy is 

the dominant cost of the recursive step. • 

The 3-d hull construction algorithm described in Aggarwal et al [ACGOYl] runs in 

O(log4n) parallel time. This was improved to O(log3n) parallel time in [ACGOY2]. The use of 

the hierarchical representation makes our approach significantly simpler as well as more 

efficient. 



Corollary 5: The 3-d Convex Polyhedron Separation problem (determining the separation 

of two convex objects in R3) can be solved in O(log n) expected parallel time using a 

randomized algorithm or O(log n log*n) parallel time using a deterministic algorithm. 

Proof: The separation of two convex polyhedra will be realized by a vertex-vertex pair, an 

edge-vertex pair or a edge-edge pair. Once the Polyhedral Hierarchy for both convex objects is 

constructed, a processor is assigned to each vertex and edge. Each will determine its 

separation from the opposite convex polyhedron in O(log n) time [DK3]. Then a minimum 

operation can be peifmmed to determine the polyhedral separation in O(log n) time. 

Constructing the polyhedral hierarchy is the dominant cost. • 

As another application of the fast parallel independent set technique, we note the 

following: 

Corollary 6: A planar graph can be 7-coloured in O(log n) expected parallel time using a 

randomized algorithm or O(/og n log*n) parallel time using a deterministic algorithm. 

Proof. This follows by a straightforward parallel implementation of the sequential 7-

colouring algorithm of Lipton and Miller [LM]. • 

This result has been substantially improved by the recent work of Chrobak et al [CDH] 

who demonstrate that the same complexity bounds hold for the problem of 5-colouring a planar 

graph. 

As a final observation, we note that the solution to the Fractional Independent Set Problem 

can be extended to find a Maximal Independent Set in an n-vertex planar graph in 

O(log n log*n) (respectively O(log n) expected) parallel time using a deterministic (respectively 

randomized) algorithm on O(n) EREW processors as described in [DaKl] and [DaK2]. 

15 



IV Discussion 

We have drawn together some of the fundamental techniques of parallel computation in 

linear data structures (notably [CV]) with the hierarchical approach to the representation and 

manipulation of planar subdivisions and polyhedra ([K], [DKl], [DK2], [DK3], and [DK4]) to 

produce simple and efficient parallel algorithms for a variety of problems in computational 

geometry. 

Many of our results were inspired by the original work of Aggarwal et al ([ACGOYl], 

which was recently updated in [ACGOY2]).Very recently we have become aware of the related 

work of Chrobak, Diks, and Hagerup [CDH]. Though their focus is on parallel algorithms for 

graph colouring, their techniques are very similar to those presented here and we expect that 

they could be applied equally successfully in our setting. In fact, Chrobak et al pay more 

attention than do we to issues of processor utilization which is a natural direction to seek 

improvements of our results. 

Acknowledgement 

This work was supported in part by the National Sciences and Engineering Research 

Council of Canada, grant A3583. 

References 

[ACGOYl] Aggarwal, A., Chazelle, B., Guibas, L., O'Dunlaing, C., and Yap, C., "Parallel 

Computational Geometry (extended abstract)", Proc. of the 26th IEEE Symposium on 

Foundations of Computer Science (1985), pp. 468-477. 

[ACGOY2] Aggarwal, A., Chazelle, B., Guibas, L., O'Dunlaing, C., and Yap, C., "Parallel 

Computational Geometry", To Appear in Algorithmica (1987). 

16 



[AG] Atallah, M.J. and Goodrich, M.T., "Efficient Plane Sweeping in Parallel (Preliminary 

Version)", Proc. of the 2nd ACM Symposiwn on Computational Geometry (1986), pp. 216-

225. 

[CDH] Chrobak, M., Di.ks, K., and Hagerup, T., "Parallel 5-Colouring of Planar Graphs", 

Preprint (1987). 

[CV] Cole, R. and Vishkin, U., "Deterministic Coin Tossing and Accelerating Cascades: 

Micro and Macro Techniques for Designing Parallel Algorithms", Proc. of the 18th ACM 

Symposium on Theory of Computing (1986), pp. 206-219. 

[DaKl] Dadoun, N. and Kirkpatrick, D.G., "Parallel Processing for Efficient Subdivision 

Search", Proc. of the 3rd ACM Symposium on Computational Geometry (1987). 

[DaK2] Dadoun, N. and Kirkpatrick, D.G., "A Parallel Algorithm for Finding Maximal 

Independent Sets in Planar Graphs", In Preparation. 

[DKl] Dobkin, D.P. and Kirkpatrick, D.G., "Fast Detection of Polyhedral Intersections", 

Proc. International Colloquium on Automata, Languages and Programming (1982), pp. 154-

165. 

[DK2] Dobkin, D.P. and Kirkpatrick, D.G., "Fast Detection of Polyhedral Intersection", 

Theoretical Computer Science 27 (1983), pp. 241-253. 

[DK3] Dobkin, D.P. and Kirkpatrick, D.G., "A Linear Time Algorithm for Determining the 

Separation of Convex Polyhedra", Journal of Algorithms 6, 3 (1985), pp. 381-392. 

[DK4] Dobkin, D.P. and Kirkpatrick, D.G., "Fast Algorithms for Preprocessed Polyhedral 

Intersection Detection", In Preparation. 

17 



[EKA] Edahiro, M., Kokubo, I. and Asano, T., "A New Point-Location Algorithm and Its 

Practical Efficiency - Comparison with Existing Algorithms", ACM Transactions on Graphics 

3, 2 (1984), pp. 86-109. 

[K] Kirkpatrick, D.G., "Optimal Search In Planar Subdivisions" SIAM Journal of Computing 

12,1 (1983), pp. 28-35. 

[LM] Lipton, R.J., and Miller, R.E., "A Batching Method for Coloring Planar Graphs", 

Information Processing Letters 7,4 (1978), pp. 185-188. 

[PB] Purdom, P.W., and Brown, C.A., The Analysis of Algorithms, Holt, Rinehart and 

Winston, New York (1985). 

18 

[PH] Preparata, F., and Hong, S. J., "Convex Hulls of Finite Sets of Points in Two and Three 

Dimensions", Communications of the ACM 20 (1978), pp. 87-93. 

[W] Wylie, J.C., "The Complexity of Parallel Computation", Technical Report TR 79-387, 

Dept. of Computer Science, Cornell University, Ithaca, New York, 1979. 


