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1. Introduction 
In the paper [Gil87b] it was argued that the conceptual orientation of the entity-relationship 

(ER) model [Chen76,77] permits it to avoid both the excessive implementation concerns of the 
hierarchicaJ and network models, and the restrictive presentation concerns of the relational model. 
The weakness of the ER model, on the other hand, is its lack of a sound foundation upon which a 
management system might be based. The primary motivation for the development of the purely 
set-based data and conceptual model SET and its specification/query language DEFINE described 
in [GiJ87b] was to provide such a foundation. Five reasons were offered as to why this is 
necessary: 

1. For the unified view of data proposed in [Chen76] to be fully achieved, a database 
is needed that is capable of recording a high level conceptual model of an enterprise 
and at the sam time of providing the tables for a relational database schema as a 
defined user view in its specification/query language. 

2. The ER modelling process requires a greater discipline than is now possible. 
3. A provably sound foundation is needed for databases that can reference and describe 

themselves. 
4. A fully unified model of an enterprise is needed that at the same time can give a 

conceptual view of the enterprise1 a user's view of data as it is presented, a data 
administrator's view of data as it is stored, and a programmer's view of the 
processing of the data. 

5. Sound foundations are needed for knowledge base systems capable of dealing with 
incomplete information. 

The domain graph method of table design described in [Gil87b] translates the set schema 
obtained from the modelling of an enterprise using SET, into a table schema in which each table is a 
defined user view declared as a set in DEFINE. But for one initial step, the method is fully 
automated. A theorem stated in the paper asserts that the method will always result in correct 
tables; that is, tables that are free from any anomalies. But no proof was provided f'i r the theorem. 
The first purpose of this paper is to remedy tha1 deficiency, so that (1) can be offered as an 
advantage of the SET model. That proof is provided in section 2. 

A tentative beginning was mad in [Gil87b] in providing a basis for some of the decisions that 
must be made while modelling, so that (2) can be offered as an advantage of the SET model as 
well. Another purpose of this paper is to demonstrate that DEFINE can be used as a query 
language for the SET model, and that the model also satisfies the demands (3)-(5). While doing 
this applications and extensions of the SET model will be described in section 3. The final 
purpo e of this paper, accomplished in section 4. is to sketch the basis for the consistency of the 
model and its integrity onstraints. 

Familiarity with the paper [Gil87] is presumed. 
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2. Correctness of the Domain Graph Method of Table Design 
The domain graph method of table design described in [Gi.187b] translates the set schema 

obtained from the modelling of an enterprise using SET into a table s hema in which each table is a 
defined user view declared as. a set in DEFINE. The method was described in terms of operation 
on the augmented domain graph of the set schema. The steps of the method are: 

1. Each edge of the augmented domain graph of the set cbema is labelled with the 
1ower and upper degree that have been declared or calculated for it. 

2. 1-c nnected subgrapru of the augmented domain graph are determined by selecting 
only edges that have been labelled with the lower degree 1. The resulting subgraph 
are simplified by elimmating all nodes labelled with undeclared sets, and by 
replacing directed paths through such nodes with a single edge connecting nodes 
labelled with declared sets. 

3. Each undirected cycle of a subgraph determined in 2 is broken by removing an edge 
with tail a bottom node of the cycle. The result of this step is a forest of trees. 

4. Each tree obtained in 3 is extended with new nodes and edges to form its identifier 
extension. 

5. From the identifier extension of each tree obtained in 4, a declaration of a table as a 
defined et is constructed. 

The construction in (4) of the identifier extension of a tree needed in (3) was described in 3.4 
of LGi187]. The following lemma expresses a fundamental property of identifier extensions: 

Lemma 1: Let Tdg be any tree btained in step 3, and let Tr be its identifier extensi n obtained 
in step 4. Let ndo, nd1, ... , ndP1 be an undirected path of Tr for which nd0 is a node of Tdg. 

Let the edg from ndi• to ndi+t have lower degree 0. Then the edge has head ndi and tail ndi+J · 
Proof of letnma 1: An edge of lower de.gree O is not an edge of Tdg, but has been added · n ma.king 
a node aricy predecessor complete or in adding a pair of nodes labelled with an identifier for a 
primitive base set and with a value set for the identifier. The former must point towards t,he node 
that is arity predecessor incomplet without it , while the latter must point t wards the node labelled 
with the identifier. 
End of proof of lemma 1 

Consider now any set schema Sch. Let S be a set declared in Sch of interest to a user. S labels 
exactly one node of the domain graph of Sch, and therefore exactly one nod nde of the augmented 
domain graph. Let Tdg be the single tree obtained in step 3 of which nde is a node. Let Tr be dte 
identifier extension of Tdg obtained in step 4, and let T(Tr) be the table obtained in step 5. If the 
domain graph method is correct, then it should be possible for a user to determine the membership 
of S from the table T(Tr) . 

The bottom node of Tr are labelled with value sets or primitiv base sets only, while alJ other 
nodes are labelled with nonprimitive sets. The declaration of T(Tr) makes use of an assignment of 
variables to the bottom nodes f Tr, with a distin ·t variable assigned to each node. Every other 
node ad of Tr is then assigned a nested tuple tp of the variables assigned to the bottom nodes~ tp is 
a tuple of the tuples assigned to the nodes that are immediate predecessors of nd. Associated with 
ea h node of Tr is therefore an assertion tp:SS, called the assertion of Ute node, where tp is the 
variable or tuple assigned to the node. and SS is the set that label the node. Join(Tr) is an 
assertion of DEFINE consisting of the conjunction of all such assertions for nodes that ar not 
bottom nodes of Tr. The declaration of T(Tr) is then: 

T(Tr)= { v1:V1 . .. , vn:Vn I [For some bv1:BS1' ... , bvm:BSm] Join(Tr) I}. 

Here V 1, ... , V n are all the value sets that label bottom nodes of Tr in some order with repititions if 
necessary, and v 1, ... , v

0 
are the variables assigned to those nodes; BS1, •.. , BSm are all the 

primitive ba e sets that label bottom nodes of Tr in some order with repititions if necessary, and 
bv1, .... bvm are the variables assigned to those nodes. 

Considel' now how au er detennines the membership of S from T(Tr) . Firsr the columns of 
T(Tr) that identify members of S must be known to the us r. The e columns are determined as 
follows : Let tup be the tuple assigned to the node nde lhat S labels. The variables occurring in tup 
ar amon_g the variables v 1' ... v n and bv 1 . .. , bv m' since thes are all the variable assigned lo 
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bottom nodes of Tr. By reordering the columns of T(Tr) it can be assumed that v 1, .•• , vj are the 
variables among v 1' .•. , v n that occur in tup. Without loss of generality it may be assumed that 
bvi, ... , bvb are those variables among bvl' ... , bvm that occur in tup. Join(Tr) necessarily 
includes a conjunction 

bv1:IBS1:vbv1 and ... and bvm:IBSm:vbvm, 
where IBSl' ... , IBSm are identifiers for BSl' ... , BSm, and vbvl' ... ,vbvm are among the 

variables vl' ... , vn. None of the variables vbvl' ... , vbvb occur among vl' ... , vj since Tr is a 

tree. Therefore by a futher reordering of the columns they may be assumed to be vj+l, ... , vj+b· 
The columns of T(Tr) that are used to identify members of S are therefore those for the variables 
vl' ... vj, vj+l' ... , vj+b· 

With knowledge of the columns ofT(Tr) that identify members of S, a user determines the 
members of S as follows: From a selected row of T(Tr), a user can determine a member of V 1 x ... 

x Yj+b· From knowledge of the identifiers IBS1, .... msb a user can therefore determine aj+b 
tuple that is a member of V1x ... x VjxBS1x ... xBSb. This j+b tuple is a flattened version of a 
member of a S, provided that the table T(Tr) is correct. No matter whether T(Tr) is correct or not, 
it is a flattened version of a member of a set SU that will be declared after one more definition is 
given to make more precise what is meant by 0 flanened''. 

The bottom domain of a set labelling a node of Tr is defined recursively as follows: The 
bottom domain of the value set or primitive base set that labels a bottom node of Tr is the set itself. 
Let SS label a node nd that is not a bottom node, and let SS1x ... xSSk be the domain of the arity 
domain of SS. Necessarily there are exactly k nodes that are tails of edges with head nd and these 
nodes are labelled with SSl' ... , SSk. Let BDSSi, ... , BDSSk be the bottom domains of SS1, ,.. 

, SSk, respectively. Then the bottom domain of SS is BDSS1x ... xBDSSk. 
Let BDS be the bottom domain of S. Then the set SU, called the user form of S, is declared: 
SU={ tup:BDS I [For some vj+l :Vj+l' ... , vn:V n1 (<vl' ... , vn>:T(Tr) and 
<bv1,vJ+l>:IBS1 and ... and <bvb,vj-t-b>:IBSb) I }. 
The following theorem justifies the domain graph method of table design. 
Theorem: Assume that· all declared and defined degree constraints labelling edges of an 
augmented domain graph are satisfied by the membership of the declared sets. Let S be a 
declared set labelling a ncxle of a I-connected, not necessarily maximal, subtree of the domain 
graph, and let SU be the u er form of S declared for the table obtained from the subtree. Then 
Sand SU have the same extension. 

Proof of theorem: Let Sch, S, nde, Tdg, Tr, and, T(Tr), be as described. To avoid clashes of 
bound variables, the variables bvl' ... , bvb in the declaration ofT(Tr) will be replaced below by 

the distinct variables bv\, ... , bv'b that are distinct from any variables assigned to nodes of Tr. 
Join(Tr) is the join assertion for Tr for the given variable assignment. Join'(Tr) results from 
Join(Tr) by replacing occurrences of bv1, ... , bvb by bv\, ... , bv'b respectively. 

To prove the theorem it is sufficient to prove that the assertions 
1. [For all s:SU] s:S, and 
2. [For all s:S] s:SU, 
are assigned true whenever all declared and defined degree constraints labelling edges of the 
augmented domain graph are satisfied by the membership of the declared sets. 

By a variable binding BVar is meant a binding of some or all of the variables vl' ... , vn, bvl' 

... , bv m• and bv\, ... , bv'b to members, or internal surrogates of members, of the sets that label 

the bottom nodes of Tr. A variable vi is bound to a member of Vi, and a variable bvi or bv/, is 
bound to an internal surrogate of a member of BSi. A variable binding BVar' is an extension of 
BVar if the variables bound by BVar are all bound to the same entities in BVar'. 

Consider assertion (1). Should the ncxle nde that S labels be a bottom node, then that (1) is 
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Lets be bound to the internal surrogate of a member of SU. Necessarily that internal surrogate 
takes the form of rup with its variables bound by a variable binding BVar, for which the assertion 
3. tup:SU 
is assigned true. It is sufficient to show that the assertion 
4. tup:S 
is also assigned true under BVar. 

From (3) and the declaration of SU it follows that the assertion 
5. tap:BDS and [For some vj+1:Vj+l• .... vn:V0] 

( <v1, ... , v
0
>:T(Tr} and <bvl'vj+1>:IBS1 and ... and <bvb,Vj+b>:IBSb) 

is also assigned true under BVar. Therefore the following assertion is also assigned true: 
6. [For some vj+1:Vj+l' ... , vn:Vn] 

(<vi, ... , vn>:T(Tr) and <bvpvj+i>:IBS1 and ... and <bvb,vj+b>:IBSb) 
Necessarily there is an extension BVar' of BVar, in which the variables vj+l' ... , vn are bound to 
members of Vj+ 1, ... , V n• under which the following assertion is also assigned true: 

vj+l :Vj+1and ... and vn:V n and 
<v1, ... , vn>:T(Tr) and <bvl'vJ+l>:lBS1 and ... and <bvb vj+b>:lBSb. 

From the declaration of T(fr) the following assertion must also be assigned true: 
vj+1:VJ+land ... and vn:Vn and 
[For some bv\:BS1, ... , bv'b:BSb, bvb+1:BSb+l• ... , bvm:BSml Join'(Tr) and 
<bvl'vj+l>:IBS1 and ... and <bvb,vj+b>:lBSb. 

Therefore there is an extension BVar" of BVar', in which the variables bv\, ... , bv'b• bvb+l' ... , 
bvm are assigned to internal surrogates of members of BSi, ... , BSb, BSb+l• ... , BSm, under 
which the following assertion is assigned true. 

vj+t:Vj+land ... and vn:V0 and 
bv\:BS1and ... and bv'b:BSband bvb+1:BSb+1and ... and bvm:BSm and 
Join'(Tr) and <bv 1, j+1>:IBS 1 and ... and <bvb,vj+b>:IBSb. 

Since the assertion Join'(Tr) includes a conjunction 
<bv\,vJ+1>:IBS 1 and ... and <bv'b)vj+b>:IBSb, 

and since the degree constraints are assumed to be satisfied, the internal surrogates to which bv\, 
... , bv'b have been bound are the same as the internal surrogates to which bv l' ... , bvb are 
bound. This follows from the fact that each of IBS 1, ... ,IBSb has upper degree 1 on its value set. 
Necessarily, therefore, the assertion 
7. vj+I:Vj+Iand ... and vn:Vn and 

bv1:BS1and ... and bvb:BSband bvb+1:BSb+1and ... and bvm:BSm and 
Join(Tr) and <bvl'vj+l>:IBS 1 and ... and <bvb,vj+b>:IBSb 

is also assigned true under BVar". Since Join(Tr) includes (4) as one of its conjuncts, (4) is also 
assigned true under BVar", and therefore under BVar as well. 

Note that in this half of the proof the only use made of the assumption on the satisfiability of 
the degree constraints concerned the upper degrees oflBSl' ... ,TBSb on their value sets. That 
these are all I are the only degree assumptions necessary to show that (1) is assigned true. 

Now consider the assertion (2). Let s be bound to the internal surrogate of a member of S. 
Again that internal swrogate takes the fonn of tup with it variables bound by a variable binding 
BVar. Under BVar the assertion (4) is assigned true. lt is sufficient to prove that (3) i assigned 
true also. The following lemma is required for the proof. 

Lemma 2: There is an extension BVar'' ofBVar for which (7) i assigned true. 
Proof of lemma 2: R all that the assertion of a node nd f Tr is the assertion rp:SS) where SS 
labeJ ~ nd and tp is assigned to nd. A node of Tr will be aid to be true for a bindiJlg of variables. i 
the as enion of the node i assigned true for the binding. Each conjunct of (7) is the assenion of ,1 
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such paths that there is an extension BVar" of BVar for which the end node of any path beginning 
at nde is true. Since the node nde is true for BVar, the result is true for paths of length 0. 

Consider now a path nde, ... , nd1, nd, where nd1 may be nde. Assume that there is an 
extension BVar' of BVar for which all of the nodes nde, ... , nd1 are true. It is sufficient to show 
that there is an extension BVar" of BVar' for which nd is also true. 

Let tp:SS be the assertion of nd, and tp1 :SS1 the assertion of nd1• The latter is assigned true 
under the variable assignment BVar' since nd1 is true by the induction assumption. The edge of the 
path connecting nd1 and nd may have head nd1 or head nd The two possibilities are illustrated in 
figure 2.1. 

(i) 

true 

true ~ 

t 

' 
• • 

I 
• • 

~ tpl:SSI 

B tp:SS 

FIGURE2.1 

<lup 1, ... ,tupk>:S (ii) true I ~1 <tupl, ... ,tupk>:S 

tp:SS 

Consider (i) first. In this case SS is an immediate predecessor of SS1, or of the arity domain of 

SS 1. Therefore tp1 must either be tp, or of the form< ... , tp, ... >. Since tp1 :SS 1 is assigned true, 
tp1 must be in the domain of SS 1, so that tp:SS is assigned true also. 

Now consider (ii). By lemma 1, the edge <ndei,nd> necessarily has lower degree 1. Let ndl' 

... , ndd, d ~1, be the nodes of Tr for which <ndi, nd> is an edge of Tr, and let tpi:SSi be the 
assertion of ndi. Therefore tp is tp1 if d=l, and is otherwise <tpi, ... , tpd>. The situation is 
illustrated in figure 2.2 for d=2. 

FIGURE2.2 

true [ ~ <tupl , ... ,tupk>:S 

<tpl,tp2>:SS . -. 

tp2:SS2 tpl:SSI 

Since the edge <ndl' nd> has lower degree 1, SS has lower degree 1 on SS1. The theorem being 
proved assumes that all degree constrain cs are satisfied by the memberships of the declared sets. 
Therefore there must be an extension BVar"of BVar' binding all the variables occurring in tp, 
under which the assertion of nd is assigned true. 
End of proof of lemma 2 

In the first part of the proof of Lhe theorem an argument wa given that concluded that if (3) is 
assigned true under a variable binding BVar then there exists an extension BVar" under which (7) 
is assigned true also. In this second part, the lemma establishes that if (4) is assigned true under a 
variable bjnding BVar then there is an extension BVar" of BVar under which the assertion (7) is 
assigned true. Now consider the reverse of the argument used in the first part of the theorem. It is 
elementary to establish that 6) is nece sari ly assigned true under BVar", and therefore under 
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End of proof of theorem. 
In the first half of the proof of the theorem, the only degrees that were required to be satisfied 

are the upper degrees of I of IBSp ... , IBSb on their value sets. It is possible, therefore to relax 
the definition of identifier by requiring it to have only the degrees <1,*> on the set it identifies, 
rather than <l l>. But efficiency considerations often dictate that there should be a single 
identifying string for each member of a primitive base set. 

The more interesting conclusion from this observation is. however that SU is a subset of S, 
no matter what node S labels, or no matter from what subtree of the domain graph Tr was 
constructed. The worst that can happen is that SU loses members of S. The theorem establishes 
sufficient conditions that SU does not lose members. Therefore, rather than saying T(Tr) is correct 
for S when SU has the same extension as S, the tradition of the relational model could be followed 
and T(Tr) could be said to be lossless for S. 

The assumption of the theorem concerning the satisfiability of the degree constraints will be 
discussed in 5, 1. 
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3. Extensions and Applications 
In this section applications of the SET model and DEFINE will be described. To accomplish 

some of the applications, the model and the language must be extended from the simple fonn 
described in [Gil87]. 1n 3.1 DEFINE will be presented as a query language. In 3.2 a kernel 
schema is sketched that is intended to meet the demand (3) of section 1. In 3.3 DEFINE is 
extended to admit re ursively defined sets. In 3.4 a beginning is made on showing that the SET 
model can satisfy the demand (4) of section 1, and to that end object oriented programrnin.g is 
briefly discussed. 1n 3.5 it is argued that the purposes of the universal relation model are better 
served by the SET model. In 3.6 a beginning is made on showing that the SET model may also 
satisfy the demand (5) of section 1. 

~1. DEFINE as a Query Language 
DEFINE as a specification language for a set schema based on the SET model has been amply 

demonstrated. But clearly it can also be use.d as a query language provided that the management 
system supporting the language and based on the model can respond to a request for listing the 
members of a set. A command J.ist S resuhs in the system listing the identifiers of members of S, 
no matter whether S has been declared as base or defi.ne.d. For example, should S be E, the system 
respond by listing che employee numbers of E1 while should S be TE the system responds by 
listing the tuples that are its members. 

Some sets will, of course, just be declared for the purposes of a single query and declarations 
of them should not be construed as additions to the set schema of an enterprise. In this case S need 
not be the name of a declared set but can take the form { domain assertions I intension } of the 
domain and intension declaration of a defined set. For example. a listing of the courses t.aught by 
managers of academic departments results from the following query: 
list ( w:C I j'For some <x,y>:MA] x:ICT:w } 
At the same time additional temporary declarations of sets can be made in a where clause for the list 
command. For example, a listing of members of academic departments who are not instructors 
results from the query: 
list ( x:E I [For some y:AD] (x:ED:y and not x:I) } where AD={ y:D I [For some w:VC#] 
<y w>:C I}, l={ x:E I [For som w:CJ x:ICC:w }. 

In 2.3 of [Gil87J , a functional notation wa introduced that can be conveniently use.d at times in 
querie . For example, a listing of the members of the English department is obtained from the 
following query: 
list ( x:E I x:ED:(:DN:'ENGLlSH') }. 
The functional notation ( :DN:'ENGUSH'} stands for the et with member the set ON associated 
with 'ENGLISH'. 1n the fonn { ;NM:v} it is a function which for a value of v in VN will return 
the empty set if v is not the name of a deparo.nentt and will other wise return the singleton set 
containing the department. The notation can also be used without arguments as in the following 
query: 
list ( x:Elx:ED:{·AD) J 

where AD={ y:D I [For some w:VC#] <y w>:C I} 
that lists the members of academic departments. 

The functional notation provides a substitute for the GROUP BY and the GROUP BY with 
HAVING features of the SQL language.[Date82] It has the benefits of tlie functional notation of 
[Ship81. LyKt86] but provides a simpler notation for the two functions that can be defined from 
any binary association; for example, ( :ED:y} is the set of employees assigned to the depanment y 
while (x:ED:) is the set of departments to which the employee x has been assigned. The semantics 
for the notation is provided in the manner of the functional notation of [Gil77]. 

An essential variation of th concept of set is that of ordered set. The distinction between a set 
and an ordered set is that the former has members that are all distinct, while the latter can have 
elements that are the sam~ since associate.d with an element is its position in the set. The tuples 
that have been used extensively are examples of ordered sets with elements that have been st.ated by 
enumeration. However just a it is possible to declare a define.d set with an intension that is a 
condition for membership of the s t. o must it be p ssible to declare ordered s ts in a similar 
fashion. For example < x :E I true > i a tuple consisting of the members of E without an order 
pecified. The notation can be simple extended to permit the specification of an order if that is 
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desired. 
With a notation for ordered sets available, it is possible to introduc associations with tuples as 

one of their immediate domain predecessors. For example. a count a sociation on tuples that gives 
th number of elements in a tuple is needed. The notation used in the following query is commonly 
used for this as. ociation: 
list ( n:INT I < x:E I true >:COUNT:n } 
The set declared in the query has a single member consisting of the integer that is the number of 

embers of the set E. 
The functional notation introduced can be used with ordered sets as well. For example, the 

query 
Ii l { y:D, n:INT I ~ED:y>:COUNT:n ) 
results in a listing of the pairs <y,n> for which y is a department and n is the number of employees 
assigned to the department. The functional notation <:ED:y> used in this context denotes, for each 
department y, the tuple of employees ED associated with the department The notation can be 
nested as in the following query: 
list ( y:AD, n:INT I <{:M:y):ICT:>:COUNT:o} 

where AD={ y:D I [For some w:VC#] <y,w>:C I } 
that provides a list of those pair <y ,n> for which n is the number of courses being currently taught 
by the manager of the academic department y. 

Another essential µ e of ordered sets arises in querie concerning totals . For example, assume 
that an association SAL with domain ExlNT bas been declared that as ociates a unique salary with 
ea b employee. Then a query as to che total salaries of employees by department can be expressed: 
list ( x:D, n:INT I <{:ED:x}:SAL:>:SUM:n), 
where SUM is an a ociation between tuples of integer and a single integer, the latter being the 
sum ofth elements of th former. Thus n is the sum of the integers appearing in the tuple 
<l :ED:x} :SAL:> for a given deparanent x. 

The substantial computations that can sometimes be required for the processing of queries, an 
be reduced through methods of query optimization [Ull80]. The methods described there for 
relational algebra queries can be translated into methods for DEFINE [Krey87]. 

Another issue raised in [Ull80] is that of safe queries; these are queries that request the listing 
of uch a number of tuples as it is reasonable to expect a management system to process. A query 
requesting a listing of lNT or STR, for example, would not be a safe query. Because of the 
necessity of declaring the range of all variables, it is less likely that a user will inadvertently pose an 
unsafe query in DEFINE than in the relational calculus, although of course, one can be posed. 
Since the detection of safe queries is undecidable fVaTo87], sufficient conditions for saf queries 
must be sought to assist in protecting the management y tern from the error and 
misunderstandings of its user . 

As a query language DEANE does satisy the dual demands of precision and completeness. 
Whether it is sufficiently transparent for general purpose querying raises issues that cannot bed ale 
with here. Queries posed in a language that is intended to be comprehensible to unsophisticated 
users could be translated into DEFINE, if that is desired. Such queries may even be abbreviated, 
with the management system using the domain graph to disambiguate when necessary. However 
as stressed in [LuKl86] it must be recognized that the responsibility for posing queries that involve 
essentially complicated definitions cannot be removed from the user, the user can only be as jsted. 

3.2. A Kernel Schema 
The S T model can provide a provably sound foundation for databases that can reference and 

describe them elves. Such a base will be sketched here while the basis for its justification as 
"provably sound" will be sketched in 4.1. 

ln figure 2.9 of [Gil871 a summary of the de larations of all the sets of the schema for Simple 
University was given in a table. That table should be defined from a set schema, called a kernel 
schema, in the same manner that the tables for Simple University were defined from its el schema. 
The kernel schema can be thought of as the cbema that will suppon the enterprise of s t schema 
design. It must be capable, therefore, of storing the information contained in any et chema 
including it elf. The design of such a kernel schema as tt set chema that is at the ame time a 
schema for its own "data di tlonary" . was one f the orginal motivations for developing the SET 
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model. An incomplete kernel schema has been found to be useful in the teaching of tl1e 
entiiy-relationship approach in W1dergraduate and graduate courses in database design Since 1979 
[Gil86b]. The eqwvalent of such a schema for relations is descr.ibed in [Mark85J. 

The rudiments of a kernel schema are evident from figure 2.9 of [Gil87]. First the set of 
declared sets must be declared: 
DSET=( D ET II all declared sets J. 
DSET is a primitive base set that has as its members all declared sets. Since DSET is itself a 
declared set, it will be a member of itself. The first four sets declared for Simple University, 
namely STR, INT, L, and 5, are also in the kernel schema, and are members of DSET. 

The identifier for DSET is the declaration attribute DEC that associates the declaration of a set 
with the set. The declaration of the value set VDEC for the attribute requires the definition of the 
full syntax of assertions of DEFINE as well as of declarations, and is beyond the scope of this 
paper Assuming the declaration of YDEC, however. the declaration of DEC can be given: 
DEC={ DSET, VDEC I <1,1>, <0,1> I the declaration attribute}. 

Although the declaration of a set is its ultimate identifier, some abbreviation of the declaration i · 
necessary for a reasonable syntaxt and the name of a set, which is part of its declaration, is so 
used. In the set schema for SU, each set has a unique name so 'that the name attribute of sets could 
be used as an identifier in that model. But for practical modelling it is essential that sotne 
duplication of names be pemtitted. For example, there are likely to be several attributes on different 
sets all with the same value set VN, and it should be _possible to call them all NAME. 

When duplicate names are allowed, the name of a set appearing in isolation need not uniquely 
identify the set. In the context of an assertion of DEFINE, however, the name of a set should 
identify the set, or at least narrow its identification sufficiently to pennit the system to request 
clarification from the user or make intelligent guesses. The following rules for naming sets, using 
definitions given in 2.10 of [Gi187). appear to satisfy this requirement: 

1. Each primitive set must have a name distinct from the name of any other set. 
2, Sets of the ame arity, with a common arity predecessor that is not a value set, must have 

distinct names. 
The need for the first rule is transparent. The second rule reflects the fact that members of value 
sets are generally not entities about which info[1l)ation is recorded, but are used in human-machine 
communication to record and retrieve information about other sets. Thus a variety of attributes all 
with the same value set VN, but on different sets, may have the same name NAME. But different 
attributes of the same set, whether inherited from the arity domain of the set or not, must have 
different names. If in a kernel schema it is necessary to declare attributes on sets of strings, for 
example on the set VDEC, then distinct names can be given to the attn'butes although by rule 2 they 
are not required to be distinct. 

From the DEC attribute it is possible to declare the immediate domain predecessor, the 
immediate define predecessor, and the immediate predecessor a sociations as defined set with 
domain DSETxDSET. The names given to them are assumed to be IDMP, IDFP, and IP, 
respectively_. Tbe et of primitive sets can then be declared as a defined set: 
PSET={ x:DSET I nol [For some y:DSET]( x:IDMP:y or x:IDFP:y) I }. 
The need for the assertion x;IDFP:y will be apparent shortly. 

The ontology of sets, described in 2.7 of [Gil87] for a simple form of the SET model, admitted 
as primitive defined sets only the primitive value sets such as STR and INT. Other primitive 
defined sets, however, are needed for a kernel ~chema. They are not members of PSET because, 
although they do not have an immediate domain predecessor, they do have an immediate define 
predecessor. The most important of these L the set of entities that are members of members of 
PSET: 
UV={ x:UV I [For some y:PSET] x:y I}. 
UV is a defined set since its intension is stated in DEFINE, but it is a primitive set since there is not 
a previously declared set from which its extension can be drawn, since its members are drawn from 
the extensions of all Lhe primitive sets. The members of UV form the basic universe of the model 
for the enterpri e described in a set schema. All other entities are nested tuples of members of UV. 

One of the important wa,ys in which SET differs from the similarly motivated models of 
fLyKe86 BCP86l i that UV is a primitive defined set in SET, while in the other mod.el it is a 
primitive base set. It is possible to declare UY as a primitive base set in SET, although that would 

10 



offend the first principl of conceptual modelling tated in 2.14 of [Gil87], since an identifier for 
UV cannot be declared apart from the identifiers for the primitive set . 

The effect on the language DEFINE of admitting sets such as UV is profound. In the simp1 
form of the model each entity that was a member of a et could be uniquely "typed'' as a member of 
the arity domain of the set, The language DEFINE is monomorphic without such sets, and 
polymorphic with them, since a member of UV is also a member of som other primitive set 
[CaWe85, Ing86]. 

A second related effect concerns the arity of sets. Each set that can be declared in the simple 
fonn of the SET model has as members only tuples of length the arity of the set. That is no longer 
the case in the extended model. For example, the union of any two sets of clifferent arity can be 
declared as a primitive defined set. By definition the set will have arity 1, although its members are 
not tuples of length 1, or even tuples all of the same length. 

3.3. Recursively Defined Sets 
It is necessary to declare as sets of the kernel schema some of the associations that were 

defined informally in section 2 of [Oil87]. For ex.ample, domain predecessor, the transitive closure 
of immediate domain predecessor, must be declared as a recursively defined set: 
DMP=( DSET, DSET I [For all x:IDMPJ x:DMP and 
[For all u,v w:DSETJ if (<u,v>:DMP and <v,w>:DMP) then <u,w>:DMP I 
the domain predecessor association } . 

Although DMP is a defined set, its domain declaration does not declare variables, The 
declaration can be recognized as recursive from the fact that the machine readable portion of it 
betweert the two vertical bars is not a degree declaration, but rather an assertion of DEFINE. 

The declaration appears to offend the requirement that the predecessor association be acycli , 
sine DMP is used · n it. wn declaration. But when the declaration is properly interpreted, this is 
not so. The meaning of uch a definition is that DMP is the smallest transitively closed subset of 
DSETxDSET that includes IDMP. A fonnal expression of this meaning requires a second order set 
theory of the kind introduced in !Gil86a]. Fore ample, using second order variables DMP can be 
declared: 

DMP={ z:DSETxDSET I [For all Xs;DSETxDSET] 
if ( [For all y:IDMP] y;X and 

[For all u,v,w:DSET] if (<u,v>:X and <v,w>:X) then <u,w>:X) 
then z:X I}. 

Note the quantifier for X range over subsets ofDSETxDSET. The fact that this range is not a 
previ usly declared set, bu1 rather all possible subsets of a previously declared set, makes it a 
second order var-fable that cannot be replaced by a first order variable without explicitly declaring 
every possible subset. 

The fonn of the DMP declaration is one that has been widely used in logic for defining 
recursive sets. The assertions u ed in the if .... then clau es take the fom1 of pure Hom clauses, 
that now fom.1 the basis for the programming language PROLOG. Restricting the intension of 
recursively defined sets to the use of pure Hom clauses avoids the complications that are necessary 
when PROLOO is extended to include nonHom clauses [ABW86]. Given the ability to use any 
assertion of DEFINE in the intensions of nonrecu.rsively defined sets, no los of expressive power 
result . 

The set TlJP of all tuples of members of the et UV can be defined recursively in the usual 
way. With that set available, COUNT can also be defined recursively with domain TUPxINT, as 
can also SUM. 

3.4. Updates and Data Processing 
Once a set schema has been declared, a user must be able to add members to any declared set, 

and a command must be av~lable for doing this. The form of a suitable command is: 
Add tup to S where as ert 
where the variables occurring in rup occur unbound in the assertion assert; the latter provides an 
appropriate descrip ·on of the entity to be added to the declared set . A companion command 
remove an entity from a set: 
Drop tup from S where assen. 
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1n the most elementary form of the Add and Drop commands,. S must be restricted to being 
base, and the meaning of the commands when S is defined must be reduced to the elementary fonn. 
For humans are responsible only for the membership of ba')e sets, while the system is responsible 
only for the membership of defined sets. A command to add or chop a member of a defined set 
must, therefore, be interpretable as one or more commands to alter the membership of base sets. 
But how such commands are to be interpreted requires more research; the equivalent problem for 
the relational model is the updating of virtual re1ations, or views [Date83, Kell85] . 

1n a kernel schema, the declaration of a set is equivalent to adding the set to the primitive base 
set DSET. The sets declared in the kernel schema itself are assumed predeclared and therefore 
have members determined by the schema. But when a member is added to DSET by a user, the 
declaration attribute DEC must be updated During such a transaction, the system must ensure that 
cycles are not introduced into the immediate predecessor association; it is sufficient for the system 
to ensme that the immediate predecessors of a set are declared before the set can be declared. 

In 1.1 of [Gil87] it was argued that a fully unified model of an enterprise is needed that at the 
same time can give a conceptual view of the enterprise, a user's view of data as it is presented, a 
data administrator's view of data as it is stored, and a programmer•s view of the processing of the 
data. A commonly encountered perception of the latter is that the dynamic nature of data processing 
prevents the representation of a programmer's view in a "static" model such as SET. 

In as much as the commands Add and Drop are extensions to DEF.INE, the perception is 
soundly based. For example, iris not possible to represent the addition of a new employee to the 
primitive bas set E as an association in the same sense that the assignment of an employee to a 
department is represented by ED: First, the new employee, before being added to the set E, i not a 
member of any et, so that a domain for Add is not available· and second, the effect of adding the 
employee to E is not to change its intension, but only its extension. When an entity that is a 
member of the domain of a nonprimitive base set is added to the set, a change of extension is the 
result . Such an application of Add can be regarded as an association between two states of the 
extensions of the declared sets . But that requires treating the extensions of all the declared sets as a 
tuple of tuples something theoretically possible bur often impractical. 

A recognition of the need for Add and Drop, and the form of them given above, is one of the 
contributions of [Morr]. 

On the other hand. each defined set can be regarded as a "program" that determines the 
membership of the set from the membership of its immediate predecessors. In thjs sense, 
therefore, the perception of th SET model as only supporting static descriptions is not soundly 
based. Typical data processing requires in part the use of the Add and Drop commands, sometimes 
imbedded in assertion , but also a substantial number of defined sets. 

The two comerston s of object-oriented programming encapsulation and inheritence [Cox86]. 
are central features of the SET model. These are the features also of the object-oriented data 
modelling methodology for information sy. terns dese,Tibed in [LyKe86]. The objects of the SET 
model are the members of declared sets. The list, Add, and Drop commands provide the 
procedural element, as the comparable commands do in [LyKe86]. In the LORE approach to object 
oriented programming[BCP86], the procedural element is introduced through message passing 
traditionally a pan of object-oriented programming. 

3.5. The Universal Relation Model 
The SET model may shed some light on a contr versy involving the universal relation model 

[Knt8 l, Ull82. Ull83, Knt83] . A universal relation for a relational schema is a user view that is 
intended as an assistance to users in the fonnation of queries in a relational model. as a tool for a 
database managment system for the resolution of ambiguous queries, and as a foundation for 
relational dependency theory. A question naturally raised by the model is whether universal 
relations can be constructed for an arbitrary relational schema 

The domain graph method of tab)e design will construct one table for all the declared sets that 
label node of a I-connected subtree of a domain graph for a set schema. If it were possible to 
have every set of interest label nodes of a single such subtree1 then the method would result in a 
sjngle "universal" relation. So the trick needed to produce a universal relation for a set schema is a 
way of converting lower degree · of O into lower degrees of l . The introduction of pseudo entities 
into some of the primitive base sets and of special ·triflgs into some of the value sets i such a trick. 
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Consider, for example. the selected <1,1>-connected subtrees illu ·trated in figure 3.4 (i). 
Re toring the edge from D t ED and the edges connecting C to EDC.C to ICC appearing in figure 
2.5, results in three !-connected subgraph . An edge from D to C can be restored if every 
department is made responsible for at least one course. Such a course can be invented for every 
nonacademlc department y reserving a special number for it. Every member of a nonacademic 
department can be assumed to be competent to teach the fictious course of the department. With th 
edge from D to C restored, the number of subtrees is reduced to two. That number can be reduced 
to one by inventing for each depanment, an empl yee competent to teach all the courses of the 
department and currently teaching any course not being taught by real members of the department. 

Therefore a universal relation for Simple University is possible. Although the universal 
relation need only exist in a user's mind, the necessity of having to invent a number of fictious 
entities raises questions about its value. Furthermore, the three purposes for the wiiversal relation 
model may be better SCJVed by the ET model. 

Query formation in the SET model enjoys the advantage of depending upon a conceptual 
schema modelling an enterprise, rather than upon a relational schema modelling a presentation of 
data. The domain graph of a set schema can be used in place of the hypergraph of the universal 
relation model to assist in the disambiguation of queries which use ambiguous names of sets. 
Finally a dependency theory for tables based on the SET model takes a particularly simple form 
since it can make use of the trees from which the tables are defined, and sine there is a unique 
undire.cted path from any node of a tree to any other node. Dep ndencies are determined from the 
degrees labelling the edges of the trees. 

3.6. lnoomplete Information and DefauJts 
A et schema specifies what data should be available. Null values provide a means for 

recording that data is not available. Il is necessary how ver, to distinguish between two kinds of 
null values, the nOL-applicable null value N/ A and the don't-know null value D/K. For the ormer 
is used to record that a value cannot be. known; for example, the fictitous entities introduced in 3.5 
can be regarded as not-applicable null values. The don't know nuU values, on the other hand, ar 
used to indicate that a value should be known, but is not; it can be regarded as a default value that 
the system provides in the absence of a user-specified value. 

Default have been the subject of numerous papers, with proposal for treatment that are not 
encouraging of confidence [McC80). TI1e thesis [Ethn86] provides a good ummary. Their 
treatment in a model uch a SET that recognizes the distinction between defined and base sets, on 
th other han~ is quit simple and captures exactly the semantics described in the previous 
paragraph. 

Let the primhive defined set D be declared 
D+=( x:D+ I x:D or x=D/K I} . 
Let DED1 "defined ED'\ be declared: 
DED=l x:E, y:D+ I x:ED:y or (y=D/K and not [For some w:D] x:ED:w I ) . 
If DED is used in place of ED in the declaration of TE, for example, then a row of TE for a given 
employee will display D/K if a user has not specified a department for that employee. When the ED 
association is updated by a user to assign that employee to a department. the default value D/K will 
automatically be replaced by the department' name, since both OED and TE are defined set with 
membership maintained by the system. 

TI1e simplicity of this solution for defaults suggests that the use of the SET model o deal with 
other problems of incomplete information may be wonh exploring. For example, a proper treatment 
of identity allows for the introduction of distinct internal surrogates for which insufficient 
informati n is available to permit their identification. An insufficiently specified update of the 
following kind ' 
Add <x,y> to ED where x:E#-:1234 and ( y:DN: 'ENOLISH or y:DN:'PHYSICS') 
can then be accepted as stating limiting conditions on the internal surrogate imroduced for y. A full 
treatment f this proposal t be provided el ewbere requires a careful treatment of identity 
[KhCo86J. 
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4. Consistency and Integrity 
In the last section a sketch was given of a kernel schema that can reference and describe itself. 

lt remains to be shown however that such a schema is a provably sound foundation for databases. 
A basis for a proof of this is given in 4.1. In the satisfaction and maintenance of the integrity 
constraints of SET are discussed. 

4.1. Consistency 
The meaning given to ''consistency" in chapter 2 of [Date83] is at variance with the meaning 

given here. ''Consistency" is used here in the sense employed in logic and mathematics: A theory is 
consistent if it is not possible to conclude that both a sentence and its negation are true for the 
theory. The meaning given in [Date83] is included in the meaning of "integrity" used here. 

In a consistenl database in which all integrity constraints have been satisfied, it is not possible 
to conclude that a sentence and its negation are both ·true. But a con~uence of the high level of 
abstraction tolerated in kernel schemas, is that such schemas might sansfy very strong integrity 
constraints but neverthless not be consistent, unless care is exercised in its implementation. 
Consider. for example, the following declared set: 
R={ x:DSET I not x:x I); 
the members of R are those declared sets that are not members of themselves. The set E for 
example, is a member of R. while the set DSET is not. 

There is nothing inherently wrong with the declaration of R, and it is even conceivable that it 
might prove useful for some purpo es, but the set has a notorious past: It is the basis for the 
Russell paradox that shook the foW1dations of mathematics at the turn of the century. The paradox 
arises when one asks whether Risa member of itself. Using naive reasoning it can be concluded 
that R js a member of itself, and that it is also not a member of itself. Thus a database system that 
permits the declaration of R, or some similar sel, and that permits naive reasoning will be 
inconsistent, even though it enforces very strong integrity constraints. This is what [Blac85J 
demonstrated for the semantic networks described in [Sowa84J. 

Since the discovery of the Russell and other paradoxes, a number of set theories have been 
invented that maintain consistency by restricting the dec1aration of sets in a variety of ad hoc 
fashions. In Gil86a] it is argued that it is the reliance on naive reasoning, rather than the definition 
of R, that i the ource of the paradoxes. 

An assumption employed in naive reasoning is that every sentence is either true or false. A 
careful examination of this assumption shows, however, that it can only be made for atomic 
sentences, or what is called in theorem proving, ground sentences. The truth value for a complex 
entence must be reduced to the truth values of simpler sentences, and be ultimately expressed in 

terms of the truth values of atomic sentences. If it is not possible to ground a truth value for a 
complex semence in atomic sentences, then the sentence receives no truth value. It is this provably 
ound resolution of the paradoxes that is used to maintain the consistency of the SET model. 

This simple resolution of the paradoxes bas an important consequence. Some sentences, such 
as R:R, cannot be grounded in atomic sentences and therefore have no troth value assigned to them. 
On the basis of the semantics, the correct answer is "no' to a query as to whether R is a member of 
itself, since R:R is not true· it is also the correct answer to a query as to whether R is not a member 
of itself, since R:R is noi false. Negation cannot therefore be understood in the sense of "negation 
as failure" as suggested in [Clar78] and criticized in [Flan86]; the negation of an assertion is 
assigned a truth value if and only if the assertion has been assigned a truth val.ue, and it then 
receives the opposite truth value, In this sense a negated assertion derives its meaning from the 
assertion that can be obtained from it by driving negations down to the Jevel of assertions of 
membership in base sets. All assertions expressing membership in defined sets must be replaced 
with their intensions, with membership in recursive sets requiring "recursive" treatment. Once a 
query has been grounded in this sense, a truth value can be determined for it, but not before. 
Therefore a management system can respond to a query as to whether R is a member of itself, with 
a report off ailure to ground the query. 

4.2. Integrity in the SET Model 
Two kind of integrity onstraints are expressed in the domain and degree declarations. The 

maintenance of these c nstraints, pr sents different problems to a management systen1. 
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The maintenance of domain constraints is a relatively simple matter. There are no constraints 
on adding new members to primitive base sets such as E or D. Domain constraints affect users 
actions only when a new member is to be added to a nonprimitive base set such as ED; then the 
new member must be selected from the domain of the seL 

The degree constraints on base sets present problems of a different character. There is fuse the 
question as to whether the degree constraints can be satisfied at all. Consider, for example, a base 
association R with domain PxQ and degrees <1,1> and <1,1>, where 
P={ x:INT I x=l ) , and Q={ x=INT I x= 1 or x=2 I ) . 
Clearly the degrees can never be satisfied since they require that P and Q have the same number of 
members. The satisfaction problem for degree constraints is unsolvable when a sufficiently rich 
form of DEFINE is available for defining sets; for example, the halting problem for a Turing 
machine can be expressed as the problem of determining whether two defined sets have the same 
number of members. But degree constraints satisfying one simple condition can always be 
satisfied. 

A membership specifying path in a domain graph is a directed path in which tbe first node is 
labelled with a primitive defined value set, and every edge <ndel. nde2> for which nde2 is labelled 
with a base set bas lower degree 1. For example, the nodes labelled with INT, P, and R form a 
membership specifying path, as do the nodes labelled with INT, Q. and R. 

Theorem: Consider a set schema for which no base set labels a node of a membership 
specifying path. Then the degrees of the set schema are satisfied if every set that does not label 
a node of a membership specifying path is empty. 

Proof: By induction on the maximum length of directed paths in the domain graph. If that length is 
0, then every set that does not label a node of a membership specifying path is necessarily primitive 
base and can therefore be empty. Consider now a schema in which the maximum length of directed 
paths is greater than I, and let S be a nonprimitive set labelling a node that is nor in a membership 
specifying path. Should S be defined, then each immediate domain pre.decessor of S may be 
assumed to be empty, so that Smay be assumed to be empty also. Should S be base, then each 
immediate domain predecessor of S that does label a node on a memberships specifying path, may 
be assumed to be empty. The lower degree of any edge from a node labelled with an immediate 
domain predecessor of S to the node labelled with S is necessarily O if the immediate domain 
predecessor labels a node of a membership specifying path. Therefore S may in this case also be 
assumed to be empty. 
End of proof 

Assuming that the degree constraints of a set schema can be satisfied, they nevenheless present 
special problems to a management system that must maintain them. The lower degree constraints 
are the most difficult since lower degrees of 1 may require that new members be added to an 
association such as ED in response to the addition of a new member to E or a new member to D. 
Combined with upper degree constraints, lower degree constraints may even compel the addition of 
a new member to a primitive base set. For example, adding a new member to D will compel at the 
very least a changing of the membership of ED, and could compel the adding of a member to E. 
Since tnere is no limit on the size of I-connected subgraphs, there is no limit on the number of Add 
and Drop commands that must be executed in a transaction that transforms a database state in which 
all degree constraints are satisfied, to another such state. However, the existence of these 
subgraphs pemlits transactions to be checked for degree preservation before being committed. The 
provision of assistance to users in the management of degree preserving transactions is an 
interesting research problem. Aspects of the problem are addressed in f ApPu87]. 
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S. Conclusions 
The SET model described in [Gi187] when extended in the fashion described in this paper is 
suitable for modelling all aspects of data processing as welJ as for handling the complexities of 
incomplete information. It is an advance over similarly motivated models in as much as the 
consistency of the model can be demonstrated. 
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