
JUSTIFICATIONS and APPLICATIONS

of the

SET CONCEPTUAL MODEL

Paul C. Gilmore

Technical Report 87-9
April 1987

Abstract: In an earlier paper, the SET conceptual model was described, along with the domain
graph method of table design. 1n this paper a justification for the method is provided, and a simple
condition shown to be sufficient for the satisfaction of the degree constraints of a set schema. The
basis for the consistency of the model is also de cribed. Applications of the SET model to the foll
range of data processing are suggested as well a to the problems raised by incomplete
information.

The research reponed on in this p, per bas been supported by grants of the Natural Sciences and
Engineering Research Council of Canada

1. Introduction
In the paper [Gil87b] it was argued that the conceptual orientation of the entity-relationship

(ER) model [Chen76,77] permits it to avoid both the excessive implementation concerns of the
hierarchicaJ and network models, and the restrictive presentation concerns of the relational model.
The weakness of the ER model, on the other hand, is its lack of a sound foundation upon which a
management system might be based. The primary motivation for the development of the purely
set-based data and conceptual model SET and its specification/query language DEFINE described
in [GiJ87b] was to provide such a foundation. Five reasons were offered as to why this is
necessary:

1. For the unified view of data proposed in [Chen76] to be fully achieved, a database
is needed that is capable of recording a high level conceptual model of an enterprise
and at the sam time of providing the tables for a relational database schema as a
defined user view in its specification/query language.

2. The ER modelling process requires a greater discipline than is now possible.
3. A provably sound foundation is needed for databases that can reference and describe

themselves.
4. A fully unified model of an enterprise is needed that at the same time can give a

conceptual view of the enterprise1 a user's view of data as it is presented, a data
administrator's view of data as it is stored, and a programmer's view of the
processing of the data.

5. Sound foundations are needed for knowledge base systems capable of dealing with
incomplete information.

The domain graph method of table design described in [Gil87b] translates the set schema
obtained from the modelling of an enterprise using SET, into a table schema in which each table is a
defined user view declared as a set in DEFINE. But for one initial step, the method is fully
automated. A theorem stated in the paper asserts that the method will always result in correct
tables; that is, tables that are free from any anomalies. But no proof was provided f'i r the theorem.
The first purpose of this paper is to remedy tha1 deficiency, so that (1) can be offered as an
advantage of the SET model. That proof is provided in section 2.

A tentative beginning was mad in [Gil87b] in providing a basis for some of the decisions that
must be made while modelling, so that (2) can be offered as an advantage of the SET model as
well. Another purpose of this paper is to demonstrate that DEFINE can be used as a query
language for the SET model, and that the model also satisfies the demands (3)-(5). While doing
this applications and extensions of the SET model will be described in section 3. The final
purpo e of this paper, accomplished in section 4. is to sketch the basis for the consistency of the
model and its integrity onstraints.

Familiarity with the paper [Gil87] is presumed.

2

2. Correctness of the Domain Graph Method of Table Design
The domain graph method of table design described in [Gi.187b] translates the set schema

obtained from the modelling of an enterprise using SET into a table s hema in which each table is a
defined user view declared as. a set in DEFINE. The method was described in terms of operation
on the augmented domain graph of the set schema. The steps of the method are:

1. Each edge of the augmented domain graph of the set cbema is labelled with the
1ower and upper degree that have been declared or calculated for it.

2. 1-c nnected subgrapru of the augmented domain graph are determined by selecting
only edges that have been labelled with the lower degree 1. The resulting subgraph
are simplified by elimmating all nodes labelled with undeclared sets, and by
replacing directed paths through such nodes with a single edge connecting nodes
labelled with declared sets.

3. Each undirected cycle of a subgraph determined in 2 is broken by removing an edge
with tail a bottom node of the cycle. The result of this step is a forest of trees.

4. Each tree obtained in 3 is extended with new nodes and edges to form its identifier
extension.

5. From the identifier extension of each tree obtained in 4, a declaration of a table as a
defined et is constructed.

The construction in (4) of the identifier extension of a tree needed in (3) was described in 3.4
of LGi187]. The following lemma expresses a fundamental property of identifier extensions:

Lemma 1: Let Tdg be any tree btained in step 3, and let Tr be its identifier extensi n obtained
in step 4. Let ndo, nd1, ... , ndP1 be an undirected path of Tr for which nd0 is a node of Tdg.

Let the edg from ndi• to ndi+t have lower degree 0. Then the edge has head ndi and tail ndi+J ·
Proof of letnma 1: An edge of lower de.gree O is not an edge of Tdg, but has been added · n ma.king
a node aricy predecessor complete or in adding a pair of nodes labelled with an identifier for a
primitive base set and with a value set for the identifier. The former must point towards t,he node
that is arity predecessor incomplet without it , while the latter must point t wards the node labelled
with the identifier.
End of proof of lemma 1

Consider now any set schema Sch. Let S be a set declared in Sch of interest to a user. S labels
exactly one node of the domain graph of Sch, and therefore exactly one nod nde of the augmented
domain graph. Let Tdg be the single tree obtained in step 3 of which nde is a node. Let Tr be dte
identifier extension of Tdg obtained in step 4, and let T(Tr) be the table obtained in step 5. If the
domain graph method is correct, then it should be possible for a user to determine the membership
of S from the table T(Tr) .

The bottom node of Tr are labelled with value sets or primitiv base sets only, while alJ other
nodes are labelled with nonprimitive sets. The declaration of T(Tr) makes use of an assignment of
variables to the bottom nodes f Tr, with a distin ·t variable assigned to each node. Every other
node ad of Tr is then assigned a nested tuple tp of the variables assigned to the bottom nodes~ tp is
a tuple of the tuples assigned to the nodes that are immediate predecessors of nd. Associated with
ea h node of Tr is therefore an assertion tp:SS, called the assertion of Ute node, where tp is the
variable or tuple assigned to the node. and SS is the set that label the node. Join(Tr) is an
assertion of DEFINE consisting of the conjunction of all such assertions for nodes that ar not
bottom nodes of Tr. The declaration of T(Tr) is then:

T(Tr)= { v1:V1 . .. , vn:Vn I [For some bv1:BS1' ... , bvm:BSm] Join(Tr) I}.

Here V 1, ... , V n are all the value sets that label bottom nodes of Tr in some order with repititions if
necessary, and v 1, ... , v

0
are the variables assigned to those nodes; BS1, •.. , BSm are all the

primitive ba e sets that label bottom nodes of Tr in some order with repititions if necessary, and
bv1, bvm are the variables assigned to those nodes.

Considel' now how au er detennines the membership of S from T(Tr) . Firsr the columns of
T(Tr) that identify members of S must be known to the us r. The e columns are determined as
follows : Let tup be the tuple assigned to the node nde lhat S labels. The variables occurring in tup
ar amon_g the variables v 1' ... v n and bv 1 . .. , bv m' since thes are all the variable assigned lo

3

bottom nodes of Tr. By reordering the columns of T(Tr) it can be assumed that v 1, .•• , vj are the
variables among v 1' .•. , v n that occur in tup. Without loss of generality it may be assumed that
bvi, ... , bvb are those variables among bvl' ... , bvm that occur in tup. Join(Tr) necessarily
includes a conjunction

bv1:IBS1:vbv1 and ... and bvm:IBSm:vbvm,
where IBSl' ... , IBSm are identifiers for BSl' ... , BSm, and vbvl' ... ,vbvm are among the

variables vl' ... , vn. None of the variables vbvl' ... , vbvb occur among vl' ... , vj since Tr is a

tree. Therefore by a futher reordering of the columns they may be assumed to be vj+l, ... , vj+b·
The columns of T(Tr) that are used to identify members of S are therefore those for the variables
vl' ... vj, vj+l' ... , vj+b·

With knowledge of the columns ofT(Tr) that identify members of S, a user determines the
members of S as follows: From a selected row of T(Tr), a user can determine a member of V 1 x ...

x Yj+b· From knowledge of the identifiers IBS1, msb a user can therefore determine aj+b
tuple that is a member of V1x ... x VjxBS1x ... xBSb. This j+b tuple is a flattened version of a
member of a S, provided that the table T(Tr) is correct. No matter whether T(Tr) is correct or not,
it is a flattened version of a member of a set SU that will be declared after one more definition is
given to make more precise what is meant by 0 flanened''.

The bottom domain of a set labelling a node of Tr is defined recursively as follows: The
bottom domain of the value set or primitive base set that labels a bottom node of Tr is the set itself.
Let SS label a node nd that is not a bottom node, and let SS1x ... xSSk be the domain of the arity
domain of SS. Necessarily there are exactly k nodes that are tails of edges with head nd and these
nodes are labelled with SSl' ... , SSk. Let BDSSi, ... , BDSSk be the bottom domains of SS1, ,..

, SSk, respectively. Then the bottom domain of SS is BDSS1x ... xBDSSk.
Let BDS be the bottom domain of S. Then the set SU, called the user form of S, is declared:
SU={ tup:BDS I [For some vj+l :Vj+l' ... , vn:V n1 (<vl' ... , vn>:T(Tr) and
<bv1,vJ+l>:IBS1 and ... and <bvb,vj-t-b>:IBSb) I }.
The following theorem justifies the domain graph method of table design.
Theorem: Assume that· all declared and defined degree constraints labelling edges of an
augmented domain graph are satisfied by the membership of the declared sets. Let S be a
declared set labelling a ncxle of a I-connected, not necessarily maximal, subtree of the domain
graph, and let SU be the u er form of S declared for the table obtained from the subtree. Then
Sand SU have the same extension.

Proof of theorem: Let Sch, S, nde, Tdg, Tr, and, T(Tr), be as described. To avoid clashes of
bound variables, the variables bvl' ... , bvb in the declaration ofT(Tr) will be replaced below by

the distinct variables bv\, ... , bv'b that are distinct from any variables assigned to nodes of Tr.
Join(Tr) is the join assertion for Tr for the given variable assignment. Join'(Tr) results from
Join(Tr) by replacing occurrences of bv1, ... , bvb by bv\, ... , bv'b respectively.

To prove the theorem it is sufficient to prove that the assertions
1. [For all s:SU] s:S, and
2. [For all s:S] s:SU,
are assigned true whenever all declared and defined degree constraints labelling edges of the
augmented domain graph are satisfied by the membership of the declared sets.

By a variable binding BVar is meant a binding of some or all of the variables vl' ... , vn, bvl'

... , bv m• and bv\, ... , bv'b to members, or internal surrogates of members, of the sets that label

the bottom nodes of Tr. A variable vi is bound to a member of Vi, and a variable bvi or bv/, is
bound to an internal surrogate of a member of BSi. A variable binding BVar' is an extension of
BVar if the variables bound by BVar are all bound to the same entities in BVar'.

Consider assertion (1). Should the ncxle nde that S labels be a bottom node, then that (1) is

4

Lets be bound to the internal surrogate of a member of SU. Necessarily that internal surrogate
takes the form of rup with its variables bound by a variable binding BVar, for which the assertion
3. tup:SU
is assigned true. It is sufficient to show that the assertion
4. tup:S
is also assigned true under BVar.

From (3) and the declaration of SU it follows that the assertion
5. tap:BDS and [For some vj+1:Vj+l• vn:V0]

(<v1, ... , v
0
>:T(Tr} and <bvl'vj+1>:IBS1 and ... and <bvb,Vj+b>:IBSb)

is also assigned true under BVar. Therefore the following assertion is also assigned true:
6. [For some vj+1:Vj+l' ... , vn:Vn]

(<vi, ... , vn>:T(Tr) and <bvpvj+i>:IBS1 and ... and <bvb,vj+b>:IBSb)
Necessarily there is an extension BVar' of BVar, in which the variables vj+l' ... , vn are bound to
members of Vj+ 1, ... , V n• under which the following assertion is also assigned true:

vj+l :Vj+1and ... and vn:V n and
<v1, ... , vn>:T(Tr) and <bvl'vJ+l>:lBS1 and ... and <bvb vj+b>:lBSb.

From the declaration of T(fr) the following assertion must also be assigned true:
vj+1:VJ+land ... and vn:Vn and
[For some bv\:BS1, ... , bv'b:BSb, bvb+1:BSb+l• ... , bvm:BSml Join'(Tr) and
<bvl'vj+l>:IBS1 and ... and <bvb,vj+b>:lBSb.

Therefore there is an extension BVar" of BVar', in which the variables bv\, ... , bv'b• bvb+l' ... ,
bvm are assigned to internal surrogates of members of BSi, ... , BSb, BSb+l• ... , BSm, under
which the following assertion is assigned true.

vj+t:Vj+land ... and vn:V0 and
bv\:BS1and ... and bv'b:BSband bvb+1:BSb+1and ... and bvm:BSm and
Join'(Tr) and <bv 1, j+1>:IBS 1 and ... and <bvb,vj+b>:IBSb.

Since the assertion Join'(Tr) includes a conjunction
<bv\,vJ+1>:IBS 1 and ... and <bv'b)vj+b>:IBSb,

and since the degree constraints are assumed to be satisfied, the internal surrogates to which bv\,
... , bv'b have been bound are the same as the internal surrogates to which bv l' ... , bvb are
bound. This follows from the fact that each of IBS 1, ... ,IBSb has upper degree 1 on its value set.
Necessarily, therefore, the assertion
7. vj+I:Vj+Iand ... and vn:Vn and

bv1:BS1and ... and bvb:BSband bvb+1:BSb+1and ... and bvm:BSm and
Join(Tr) and <bvl'vj+l>:IBS 1 and ... and <bvb,vj+b>:IBSb

is also assigned true under BVar". Since Join(Tr) includes (4) as one of its conjuncts, (4) is also
assigned true under BVar", and therefore under BVar as well.

Note that in this half of the proof the only use made of the assumption on the satisfiability of
the degree constraints concerned the upper degrees oflBSl' ... ,TBSb on their value sets. That
these are all I are the only degree assumptions necessary to show that (1) is assigned true.

Now consider the assertion (2). Let s be bound to the internal surrogate of a member of S.
Again that internal swrogate takes the fonn of tup with it variables bound by a variable binding
BVar. Under BVar the assertion (4) is assigned true. lt is sufficient to prove that (3) i assigned
true also. The following lemma is required for the proof.

Lemma 2: There is an extension BVar'' ofBVar for which (7) i assigned true.
Proof of lemma 2: R all that the assertion of a node nd f Tr is the assertion rp:SS) where SS
labeJ ~ nd and tp is assigned to nd. A node of Tr will be aid to be true for a bindiJlg of variables. i
the as enion of the node i assigned true for the binding. Each conjunct of (7) is the assenion of ,1

5

such paths that there is an extension BVar" of BVar for which the end node of any path beginning
at nde is true. Since the node nde is true for BVar, the result is true for paths of length 0.

Consider now a path nde, ... , nd1, nd, where nd1 may be nde. Assume that there is an
extension BVar' of BVar for which all of the nodes nde, ... , nd1 are true. It is sufficient to show
that there is an extension BVar" of BVar' for which nd is also true.

Let tp:SS be the assertion of nd, and tp1 :SS1 the assertion of nd1• The latter is assigned true
under the variable assignment BVar' since nd1 is true by the induction assumption. The edge of the
path connecting nd1 and nd may have head nd1 or head nd The two possibilities are illustrated in
figure 2.1.

(i)

true

true ~

t

'
• •

I
• •

~ tpl:SSI

B tp:SS

FIGURE2.1

<lup 1, ... ,tupk>:S (ii) true I ~1 <tupl, ... ,tupk>:S

tp:SS

Consider (i) first. In this case SS is an immediate predecessor of SS1, or of the arity domain of

SS 1. Therefore tp1 must either be tp, or of the form< ... , tp, ... >. Since tp1 :SS 1 is assigned true,
tp1 must be in the domain of SS 1, so that tp:SS is assigned true also.

Now consider (ii). By lemma 1, the edge <ndei,nd> necessarily has lower degree 1. Let ndl'

... , ndd, d ~1, be the nodes of Tr for which <ndi, nd> is an edge of Tr, and let tpi:SSi be the
assertion of ndi. Therefore tp is tp1 if d=l, and is otherwise <tpi, ... , tpd>. The situation is
illustrated in figure 2.2 for d=2.

FIGURE2.2

true [~ <tupl , ... ,tupk>:S

<tpl,tp2>:SS . -.

tp2:SS2 tpl:SSI

Since the edge <ndl' nd> has lower degree 1, SS has lower degree 1 on SS1. The theorem being
proved assumes that all degree constrain cs are satisfied by the memberships of the declared sets.
Therefore there must be an extension BVar"of BVar' binding all the variables occurring in tp,
under which the assertion of nd is assigned true.
End of proof of lemma 2

In the first part of the proof of Lhe theorem an argument wa given that concluded that if (3) is
assigned true under a variable binding BVar then there exists an extension BVar" under which (7)
is assigned true also. In this second part, the lemma establishes that if (4) is assigned true under a
variable bjnding BVar then there is an extension BVar" of BVar under which the assertion (7) is
assigned true. Now consider the reverse of the argument used in the first part of the theorem. It is
elementary to establish that 6) is nece sari ly assigned true under BVar", and therefore under

6

End of proof of theorem.
In the first half of the proof of the theorem, the only degrees that were required to be satisfied

are the upper degrees of I of IBSp ... , IBSb on their value sets. It is possible, therefore to relax
the definition of identifier by requiring it to have only the degrees <1,*> on the set it identifies,
rather than <l l>. But efficiency considerations often dictate that there should be a single
identifying string for each member of a primitive base set.

The more interesting conclusion from this observation is. however that SU is a subset of S,
no matter what node S labels, or no matter from what subtree of the domain graph Tr was
constructed. The worst that can happen is that SU loses members of S. The theorem establishes
sufficient conditions that SU does not lose members. Therefore, rather than saying T(Tr) is correct
for S when SU has the same extension as S, the tradition of the relational model could be followed
and T(Tr) could be said to be lossless for S.

The assumption of the theorem concerning the satisfiability of the degree constraints will be
discussed in 5, 1.

7

3. Extensions and Applications
In this section applications of the SET model and DEFINE will be described. To accomplish

some of the applications, the model and the language must be extended from the simple fonn
described in [Gil87]. 1n 3.1 DEFINE will be presented as a query language. In 3.2 a kernel
schema is sketched that is intended to meet the demand (3) of section 1. In 3.3 DEFINE is
extended to admit re ursively defined sets. In 3.4 a beginning is made on showing that the SET
model can satisfy the demand (4) of section 1, and to that end object oriented programrnin.g is
briefly discussed. 1n 3.5 it is argued that the purposes of the universal relation model are better
served by the SET model. In 3.6 a beginning is made on showing that the SET model may also
satisfy the demand (5) of section 1.

~1. DEFINE as a Query Language
DEFINE as a specification language for a set schema based on the SET model has been amply

demonstrated. But clearly it can also be use.d as a query language provided that the management
system supporting the language and based on the model can respond to a request for listing the
members of a set. A command J.ist S resuhs in the system listing the identifiers of members of S,
no matter whether S has been declared as base or defi.ne.d. For example, should S be E, the system
respond by listing che employee numbers of E1 while should S be TE the system responds by
listing the tuples that are its members.

Some sets will, of course, just be declared for the purposes of a single query and declarations
of them should not be construed as additions to the set schema of an enterprise. In this case S need
not be the name of a declared set but can take the form { domain assertions I intension } of the
domain and intension declaration of a defined set. For example. a listing of the courses t.aught by
managers of academic departments results from the following query:
list (w:C I j'For some <x,y>:MA] x:ICT:w }
At the same time additional temporary declarations of sets can be made in a where clause for the list
command. For example, a listing of members of academic departments who are not instructors
results from the query:
list (x:E I [For some y:AD] (x:ED:y and not x:I) } where AD={ y:D I [For some w:VC#]
<y w>:C I}, l={ x:E I [For som w:CJ x:ICC:w }.

In 2.3 of [Gil87J , a functional notation wa introduced that can be conveniently use.d at times in
querie . For example, a listing of the members of the English department is obtained from the
following query:
list (x:E I x:ED:(:DN:'ENGLlSH') }.
The functional notation (:DN:'ENGUSH'} stands for the et with member the set ON associated
with 'ENGLISH'. 1n the fonn { ;NM:v} it is a function which for a value of v in VN will return
the empty set if v is not the name of a deparo.nentt and will other wise return the singleton set
containing the department. The notation can also be used without arguments as in the following
query:
list (x:Elx:ED:{·AD) J

where AD={ y:D I [For some w:VC#] <y w>:C I}
that lists the members of academic departments.

The functional notation provides a substitute for the GROUP BY and the GROUP BY with
HAVING features of the SQL language.[Date82] It has the benefits of tlie functional notation of
[Ship81. LyKt86] but provides a simpler notation for the two functions that can be defined from
any binary association; for example, (:ED:y} is the set of employees assigned to the depanment y
while (x:ED:) is the set of departments to which the employee x has been assigned. The semantics
for the notation is provided in the manner of the functional notation of [Gil77].

An essential variation of th concept of set is that of ordered set. The distinction between a set
and an ordered set is that the former has members that are all distinct, while the latter can have
elements that are the sam~ since associate.d with an element is its position in the set. The tuples
that have been used extensively are examples of ordered sets with elements that have been st.ated by
enumeration. However just a it is possible to declare a define.d set with an intension that is a
condition for membership of the s t. o must it be p ssible to declare ordered s ts in a similar
fashion. For example < x :E I true > i a tuple consisting of the members of E without an order
pecified. The notation can be simple extended to permit the specification of an order if that is

8

desired.
With a notation for ordered sets available, it is possible to introduc associations with tuples as

one of their immediate domain predecessors. For example. a count a sociation on tuples that gives
th number of elements in a tuple is needed. The notation used in the following query is commonly
used for this as. ociation:
list (n:INT I < x:E I true >:COUNT:n }
The set declared in the query has a single member consisting of the integer that is the number of

embers of the set E.
The functional notation introduced can be used with ordered sets as well. For example, the

query
Ii l { y:D, n:INT I ~ED:y>:COUNT:n)
results in a listing of the pairs <y,n> for which y is a department and n is the number of employees
assigned to the department. The functional notation <:ED:y> used in this context denotes, for each
department y, the tuple of employees ED associated with the department The notation can be
nested as in the following query:
list (y:AD, n:INT I <{:M:y):ICT:>:COUNT:o}

where AD={ y:D I [For some w:VC#] <y,w>:C I }
that provides a list of those pair <y ,n> for which n is the number of courses being currently taught
by the manager of the academic department y.

Another essential µ e of ordered sets arises in querie concerning totals . For example, assume
that an association SAL with domain ExlNT bas been declared that as ociates a unique salary with
ea b employee. Then a query as to che total salaries of employees by department can be expressed:
list (x:D, n:INT I <{:ED:x}:SAL:>:SUM:n),
where SUM is an a ociation between tuples of integer and a single integer, the latter being the
sum ofth elements of th former. Thus n is the sum of the integers appearing in the tuple
<l :ED:x} :SAL:> for a given deparanent x.

The substantial computations that can sometimes be required for the processing of queries, an
be reduced through methods of query optimization [Ull80]. The methods described there for
relational algebra queries can be translated into methods for DEFINE [Krey87].

Another issue raised in [Ull80] is that of safe queries; these are queries that request the listing
of uch a number of tuples as it is reasonable to expect a management system to process. A query
requesting a listing of lNT or STR, for example, would not be a safe query. Because of the
necessity of declaring the range of all variables, it is less likely that a user will inadvertently pose an
unsafe query in DEFINE than in the relational calculus, although of course, one can be posed.
Since the detection of safe queries is undecidable fVaTo87], sufficient conditions for saf queries
must be sought to assist in protecting the management y tern from the error and
misunderstandings of its user .

As a query language DEANE does satisy the dual demands of precision and completeness.
Whether it is sufficiently transparent for general purpose querying raises issues that cannot bed ale
with here. Queries posed in a language that is intended to be comprehensible to unsophisticated
users could be translated into DEFINE, if that is desired. Such queries may even be abbreviated,
with the management system using the domain graph to disambiguate when necessary. However
as stressed in [LuKl86] it must be recognized that the responsibility for posing queries that involve
essentially complicated definitions cannot be removed from the user, the user can only be as jsted.

3.2. A Kernel Schema
The S T model can provide a provably sound foundation for databases that can reference and

describe them elves. Such a base will be sketched here while the basis for its justification as
"provably sound" will be sketched in 4.1.

ln figure 2.9 of [Gil871 a summary of the de larations of all the sets of the schema for Simple
University was given in a table. That table should be defined from a set schema, called a kernel
schema, in the same manner that the tables for Simple University were defined from its el schema.
The kernel schema can be thought of as the cbema that will suppon the enterprise of s t schema
design. It must be capable, therefore, of storing the information contained in any et chema
including it elf. The design of such a kernel schema as tt set chema that is at the ame time a
schema for its own "data di tlonary" . was one f the orginal motivations for developing the SET

9

model. An incomplete kernel schema has been found to be useful in the teaching of tl1e
entiiy-relationship approach in W1dergraduate and graduate courses in database design Since 1979
[Gil86b]. The eqwvalent of such a schema for relations is descr.ibed in [Mark85J.

The rudiments of a kernel schema are evident from figure 2.9 of [Gil87]. First the set of
declared sets must be declared:
DSET=(D ET II all declared sets J.
DSET is a primitive base set that has as its members all declared sets. Since DSET is itself a
declared set, it will be a member of itself. The first four sets declared for Simple University,
namely STR, INT, L, and 5, are also in the kernel schema, and are members of DSET.

The identifier for DSET is the declaration attribute DEC that associates the declaration of a set
with the set. The declaration of the value set VDEC for the attribute requires the definition of the
full syntax of assertions of DEFINE as well as of declarations, and is beyond the scope of this
paper Assuming the declaration of YDEC, however. the declaration of DEC can be given:
DEC={ DSET, VDEC I <1,1>, <0,1> I the declaration attribute}.

Although the declaration of a set is its ultimate identifier, some abbreviation of the declaration i ·
necessary for a reasonable syntaxt and the name of a set, which is part of its declaration, is so
used. In the set schema for SU, each set has a unique name so 'that the name attribute of sets could
be used as an identifier in that model. But for practical modelling it is essential that sotne
duplication of names be pemtitted. For example, there are likely to be several attributes on different
sets all with the same value set VN, and it should be _possible to call them all NAME.

When duplicate names are allowed, the name of a set appearing in isolation need not uniquely
identify the set. In the context of an assertion of DEFINE, however, the name of a set should
identify the set, or at least narrow its identification sufficiently to pennit the system to request
clarification from the user or make intelligent guesses. The following rules for naming sets, using
definitions given in 2.10 of [Gi187). appear to satisfy this requirement:

1. Each primitive set must have a name distinct from the name of any other set.
2, Sets of the ame arity, with a common arity predecessor that is not a value set, must have

distinct names.
The need for the first rule is transparent. The second rule reflects the fact that members of value
sets are generally not entities about which info[1l)ation is recorded, but are used in human-machine
communication to record and retrieve information about other sets. Thus a variety of attributes all
with the same value set VN, but on different sets, may have the same name NAME. But different
attributes of the same set, whether inherited from the arity domain of the set or not, must have
different names. If in a kernel schema it is necessary to declare attributes on sets of strings, for
example on the set VDEC, then distinct names can be given to the attn'butes although by rule 2 they
are not required to be distinct.

From the DEC attribute it is possible to declare the immediate domain predecessor, the
immediate define predecessor, and the immediate predecessor a sociations as defined set with
domain DSETxDSET. The names given to them are assumed to be IDMP, IDFP, and IP,
respectively_. Tbe et of primitive sets can then be declared as a defined set:
PSET={ x:DSET I nol [For some y:DSET](x:IDMP:y or x:IDFP:y) I }.
The need for the assertion x;IDFP:y will be apparent shortly.

The ontology of sets, described in 2.7 of [Gil87] for a simple form of the SET model, admitted
as primitive defined sets only the primitive value sets such as STR and INT. Other primitive
defined sets, however, are needed for a kernel ~chema. They are not members of PSET because,
although they do not have an immediate domain predecessor, they do have an immediate define
predecessor. The most important of these L the set of entities that are members of members of
PSET:
UV={ x:UV I [For some y:PSET] x:y I}.
UV is a defined set since its intension is stated in DEFINE, but it is a primitive set since there is not
a previously declared set from which its extension can be drawn, since its members are drawn from
the extensions of all Lhe primitive sets. The members of UV form the basic universe of the model
for the enterpri e described in a set schema. All other entities are nested tuples of members of UV.

One of the important wa,ys in which SET differs from the similarly motivated models of
fLyKe86 BCP86l i that UV is a primitive defined set in SET, while in the other mod.el it is a
primitive base set. It is possible to declare UY as a primitive base set in SET, although that would

10

offend the first principl of conceptual modelling tated in 2.14 of [Gil87], since an identifier for
UV cannot be declared apart from the identifiers for the primitive set .

The effect on the language DEFINE of admitting sets such as UV is profound. In the simp1
form of the model each entity that was a member of a et could be uniquely "typed'' as a member of
the arity domain of the set, The language DEFINE is monomorphic without such sets, and
polymorphic with them, since a member of UV is also a member of som other primitive set
[CaWe85, Ing86].

A second related effect concerns the arity of sets. Each set that can be declared in the simple
fonn of the SET model has as members only tuples of length the arity of the set. That is no longer
the case in the extended model. For example, the union of any two sets of clifferent arity can be
declared as a primitive defined set. By definition the set will have arity 1, although its members are
not tuples of length 1, or even tuples all of the same length.

3.3. Recursively Defined Sets
It is necessary to declare as sets of the kernel schema some of the associations that were

defined informally in section 2 of [Oil87]. For ex.ample, domain predecessor, the transitive closure
of immediate domain predecessor, must be declared as a recursively defined set:
DMP=(DSET, DSET I [For all x:IDMPJ x:DMP and
[For all u,v w:DSETJ if (<u,v>:DMP and <v,w>:DMP) then <u,w>:DMP I
the domain predecessor association } .

Although DMP is a defined set, its domain declaration does not declare variables, The
declaration can be recognized as recursive from the fact that the machine readable portion of it
betweert the two vertical bars is not a degree declaration, but rather an assertion of DEFINE.

The declaration appears to offend the requirement that the predecessor association be acycli ,
sine DMP is used · n it. wn declaration. But when the declaration is properly interpreted, this is
not so. The meaning of uch a definition is that DMP is the smallest transitively closed subset of
DSETxDSET that includes IDMP. A fonnal expression of this meaning requires a second order set
theory of the kind introduced in !Gil86a]. Fore ample, using second order variables DMP can be
declared:

DMP={ z:DSETxDSET I [For all Xs;DSETxDSET]
if ([For all y:IDMP] y;X and

[For all u,v,w:DSET] if (<u,v>:X and <v,w>:X) then <u,w>:X)
then z:X I}.

Note the quantifier for X range over subsets ofDSETxDSET. The fact that this range is not a
previ usly declared set, bu1 rather all possible subsets of a previously declared set, makes it a
second order var-fable that cannot be replaced by a first order variable without explicitly declaring
every possible subset.

The fonn of the DMP declaration is one that has been widely used in logic for defining
recursive sets. The assertions u ed in the if then clau es take the fom1 of pure Hom clauses,
that now fom.1 the basis for the programming language PROLOG. Restricting the intension of
recursively defined sets to the use of pure Hom clauses avoids the complications that are necessary
when PROLOO is extended to include nonHom clauses [ABW86]. Given the ability to use any
assertion of DEFINE in the intensions of nonrecu.rsively defined sets, no los of expressive power
result .

The set TlJP of all tuples of members of the et UV can be defined recursively in the usual
way. With that set available, COUNT can also be defined recursively with domain TUPxINT, as
can also SUM.

3.4. Updates and Data Processing
Once a set schema has been declared, a user must be able to add members to any declared set,

and a command must be av~lable for doing this. The form of a suitable command is:
Add tup to S where as ert
where the variables occurring in rup occur unbound in the assertion assert; the latter provides an
appropriate descrip ·on of the entity to be added to the declared set . A companion command
remove an entity from a set:
Drop tup from S where assen.

l l

1n the most elementary form of the Add and Drop commands,. S must be restricted to being
base, and the meaning of the commands when S is defined must be reduced to the elementary fonn.
For humans are responsible only for the membership of ba')e sets, while the system is responsible
only for the membership of defined sets. A command to add or chop a member of a defined set
must, therefore, be interpretable as one or more commands to alter the membership of base sets.
But how such commands are to be interpreted requires more research; the equivalent problem for
the relational model is the updating of virtual re1ations, or views [Date83, Kell85] .

1n a kernel schema, the declaration of a set is equivalent to adding the set to the primitive base
set DSET. The sets declared in the kernel schema itself are assumed predeclared and therefore
have members determined by the schema. But when a member is added to DSET by a user, the
declaration attribute DEC must be updated During such a transaction, the system must ensure that
cycles are not introduced into the immediate predecessor association; it is sufficient for the system
to ensme that the immediate predecessors of a set are declared before the set can be declared.

In 1.1 of [Gil87] it was argued that a fully unified model of an enterprise is needed that at the
same time can give a conceptual view of the enterprise, a user's view of data as it is presented, a
data administrator's view of data as it is stored, and a programmer•s view of the processing of the
data. A commonly encountered perception of the latter is that the dynamic nature of data processing
prevents the representation of a programmer's view in a "static" model such as SET.

In as much as the commands Add and Drop are extensions to DEF.INE, the perception is
soundly based. For example, iris not possible to represent the addition of a new employee to the
primitive bas set E as an association in the same sense that the assignment of an employee to a
department is represented by ED: First, the new employee, before being added to the set E, i not a
member of any et, so that a domain for Add is not available· and second, the effect of adding the
employee to E is not to change its intension, but only its extension. When an entity that is a
member of the domain of a nonprimitive base set is added to the set, a change of extension is the
result . Such an application of Add can be regarded as an association between two states of the
extensions of the declared sets . But that requires treating the extensions of all the declared sets as a
tuple of tuples something theoretically possible bur often impractical.

A recognition of the need for Add and Drop, and the form of them given above, is one of the
contributions of [Morr].

On the other hand. each defined set can be regarded as a "program" that determines the
membership of the set from the membership of its immediate predecessors. In thjs sense,
therefore, the perception of th SET model as only supporting static descriptions is not soundly
based. Typical data processing requires in part the use of the Add and Drop commands, sometimes
imbedded in assertion , but also a substantial number of defined sets.

The two comerston s of object-oriented programming encapsulation and inheritence [Cox86].
are central features of the SET model. These are the features also of the object-oriented data
modelling methodology for information sy. terns dese,Tibed in [LyKe86]. The objects of the SET
model are the members of declared sets. The list, Add, and Drop commands provide the
procedural element, as the comparable commands do in [LyKe86]. In the LORE approach to object
oriented programming[BCP86], the procedural element is introduced through message passing
traditionally a pan of object-oriented programming.

3.5. The Universal Relation Model
The SET model may shed some light on a contr versy involving the universal relation model

[Knt8 l, Ull82. Ull83, Knt83] . A universal relation for a relational schema is a user view that is
intended as an assistance to users in the fonnation of queries in a relational model. as a tool for a
database managment system for the resolution of ambiguous queries, and as a foundation for
relational dependency theory. A question naturally raised by the model is whether universal
relations can be constructed for an arbitrary relational schema

The domain graph method of tab)e design will construct one table for all the declared sets that
label node of a I-connected subtree of a domain graph for a set schema. If it were possible to
have every set of interest label nodes of a single such subtree1 then the method would result in a
sjngle "universal" relation. So the trick needed to produce a universal relation for a set schema is a
way of converting lower degree · of O into lower degrees of l . The introduction of pseudo entities
into some of the primitive base sets and of special ·triflgs into some of the value sets i such a trick.

12

Consider, for example. the selected <1,1>-connected subtrees illu ·trated in figure 3.4 (i).
Re toring the edge from D t ED and the edges connecting C to EDC.C to ICC appearing in figure
2.5, results in three !-connected subgraph . An edge from D to C can be restored if every
department is made responsible for at least one course. Such a course can be invented for every
nonacademlc department y reserving a special number for it. Every member of a nonacademic
department can be assumed to be competent to teach the fictious course of the department. With th
edge from D to C restored, the number of subtrees is reduced to two. That number can be reduced
to one by inventing for each depanment, an empl yee competent to teach all the courses of the
department and currently teaching any course not being taught by real members of the department.

Therefore a universal relation for Simple University is possible. Although the universal
relation need only exist in a user's mind, the necessity of having to invent a number of fictious
entities raises questions about its value. Furthermore, the three purposes for the wiiversal relation
model may be better SCJVed by the ET model.

Query formation in the SET model enjoys the advantage of depending upon a conceptual
schema modelling an enterprise, rather than upon a relational schema modelling a presentation of
data. The domain graph of a set schema can be used in place of the hypergraph of the universal
relation model to assist in the disambiguation of queries which use ambiguous names of sets.
Finally a dependency theory for tables based on the SET model takes a particularly simple form
since it can make use of the trees from which the tables are defined, and sine there is a unique
undire.cted path from any node of a tree to any other node. Dep ndencies are determined from the
degrees labelling the edges of the trees.

3.6. lnoomplete Information and DefauJts
A et schema specifies what data should be available. Null values provide a means for

recording that data is not available. Il is necessary how ver, to distinguish between two kinds of
null values, the nOL-applicable null value N/ A and the don't-know null value D/K. For the ormer
is used to record that a value cannot be. known; for example, the fictitous entities introduced in 3.5
can be regarded as not-applicable null values. The don't know nuU values, on the other hand, ar
used to indicate that a value should be known, but is not; it can be regarded as a default value that
the system provides in the absence of a user-specified value.

Default have been the subject of numerous papers, with proposal for treatment that are not
encouraging of confidence [McC80). TI1e thesis [Ethn86] provides a good ummary. Their
treatment in a model uch a SET that recognizes the distinction between defined and base sets, on
th other han~ is quit simple and captures exactly the semantics described in the previous
paragraph.

Let the primhive defined set D be declared
D+=(x:D+ I x:D or x=D/K I} .
Let DED1 "defined ED'\ be declared:
DED=l x:E, y:D+ I x:ED:y or (y=D/K and not [For some w:D] x:ED:w I) .
If DED is used in place of ED in the declaration of TE, for example, then a row of TE for a given
employee will display D/K if a user has not specified a department for that employee. When the ED
association is updated by a user to assign that employee to a department. the default value D/K will
automatically be replaced by the department' name, since both OED and TE are defined set with
membership maintained by the system.

TI1e simplicity of this solution for defaults suggests that the use of the SET model o deal with
other problems of incomplete information may be wonh exploring. For example, a proper treatment
of identity allows for the introduction of distinct internal surrogates for which insufficient
informati n is available to permit their identification. An insufficiently specified update of the
following kind '
Add <x,y> to ED where x:E#-:1234 and (y:DN: 'ENOLISH or y:DN:'PHYSICS')
can then be accepted as stating limiting conditions on the internal surrogate imroduced for y. A full
treatment f this proposal t be provided el ewbere requires a careful treatment of identity
[KhCo86J.

13

4. Consistency and Integrity
In the last section a sketch was given of a kernel schema that can reference and describe itself.

lt remains to be shown however that such a schema is a provably sound foundation for databases.
A basis for a proof of this is given in 4.1. In the satisfaction and maintenance of the integrity
constraints of SET are discussed.

4.1. Consistency
The meaning given to ''consistency" in chapter 2 of [Date83] is at variance with the meaning

given here. ''Consistency" is used here in the sense employed in logic and mathematics: A theory is
consistent if it is not possible to conclude that both a sentence and its negation are true for the
theory. The meaning given in [Date83] is included in the meaning of "integrity" used here.

In a consistenl database in which all integrity constraints have been satisfied, it is not possible
to conclude that a sentence and its negation are both ·true. But a con~uence of the high level of
abstraction tolerated in kernel schemas, is that such schemas might sansfy very strong integrity
constraints but neverthless not be consistent, unless care is exercised in its implementation.
Consider. for example, the following declared set:
R={ x:DSET I not x:x I);
the members of R are those declared sets that are not members of themselves. The set E for
example, is a member of R. while the set DSET is not.

There is nothing inherently wrong with the declaration of R, and it is even conceivable that it
might prove useful for some purpo es, but the set has a notorious past: It is the basis for the
Russell paradox that shook the foW1dations of mathematics at the turn of the century. The paradox
arises when one asks whether Risa member of itself. Using naive reasoning it can be concluded
that R js a member of itself, and that it is also not a member of itself. Thus a database system that
permits the declaration of R, or some similar sel, and that permits naive reasoning will be
inconsistent, even though it enforces very strong integrity constraints. This is what [Blac85J
demonstrated for the semantic networks described in [Sowa84J.

Since the discovery of the Russell and other paradoxes, a number of set theories have been
invented that maintain consistency by restricting the dec1aration of sets in a variety of ad hoc
fashions. In Gil86a] it is argued that it is the reliance on naive reasoning, rather than the definition
of R, that i the ource of the paradoxes.

An assumption employed in naive reasoning is that every sentence is either true or false. A
careful examination of this assumption shows, however, that it can only be made for atomic
sentences, or what is called in theorem proving, ground sentences. The truth value for a complex
entence must be reduced to the truth values of simpler sentences, and be ultimately expressed in

terms of the truth values of atomic sentences. If it is not possible to ground a truth value for a
complex semence in atomic sentences, then the sentence receives no truth value. It is this provably
ound resolution of the paradoxes that is used to maintain the consistency of the SET model.

This simple resolution of the paradoxes bas an important consequence. Some sentences, such
as R:R, cannot be grounded in atomic sentences and therefore have no troth value assigned to them.
On the basis of the semantics, the correct answer is "no' to a query as to whether R is a member of
itself, since R:R is not true· it is also the correct answer to a query as to whether R is not a member
of itself, since R:R is noi false. Negation cannot therefore be understood in the sense of "negation
as failure" as suggested in [Clar78] and criticized in [Flan86]; the negation of an assertion is
assigned a truth value if and only if the assertion has been assigned a truth val.ue, and it then
receives the opposite truth value, In this sense a negated assertion derives its meaning from the
assertion that can be obtained from it by driving negations down to the Jevel of assertions of
membership in base sets. All assertions expressing membership in defined sets must be replaced
with their intensions, with membership in recursive sets requiring "recursive" treatment. Once a
query has been grounded in this sense, a truth value can be determined for it, but not before.
Therefore a management system can respond to a query as to whether R is a member of itself, with
a report off ailure to ground the query.

4.2. Integrity in the SET Model
Two kind of integrity onstraints are expressed in the domain and degree declarations. The

maintenance of these c nstraints, pr sents different problems to a management systen1.
14

The maintenance of domain constraints is a relatively simple matter. There are no constraints
on adding new members to primitive base sets such as E or D. Domain constraints affect users
actions only when a new member is to be added to a nonprimitive base set such as ED; then the
new member must be selected from the domain of the seL

The degree constraints on base sets present problems of a different character. There is fuse the
question as to whether the degree constraints can be satisfied at all. Consider, for example, a base
association R with domain PxQ and degrees <1,1> and <1,1>, where
P={ x:INT I x=l) , and Q={ x=INT I x= 1 or x=2 I) .
Clearly the degrees can never be satisfied since they require that P and Q have the same number of
members. The satisfaction problem for degree constraints is unsolvable when a sufficiently rich
form of DEFINE is available for defining sets; for example, the halting problem for a Turing
machine can be expressed as the problem of determining whether two defined sets have the same
number of members. But degree constraints satisfying one simple condition can always be
satisfied.

A membership specifying path in a domain graph is a directed path in which tbe first node is
labelled with a primitive defined value set, and every edge <ndel. nde2> for which nde2 is labelled
with a base set bas lower degree 1. For example, the nodes labelled with INT, P, and R form a
membership specifying path, as do the nodes labelled with INT, Q. and R.

Theorem: Consider a set schema for which no base set labels a node of a membership
specifying path. Then the degrees of the set schema are satisfied if every set that does not label
a node of a membership specifying path is empty.

Proof: By induction on the maximum length of directed paths in the domain graph. If that length is
0, then every set that does not label a node of a membership specifying path is necessarily primitive
base and can therefore be empty. Consider now a schema in which the maximum length of directed
paths is greater than I, and let S be a nonprimitive set labelling a node that is nor in a membership
specifying path. Should S be defined, then each immediate domain pre.decessor of S may be
assumed to be empty, so that Smay be assumed to be empty also. Should S be base, then each
immediate domain predecessor of S that does label a node on a memberships specifying path, may
be assumed to be empty. The lower degree of any edge from a node labelled with an immediate
domain predecessor of S to the node labelled with S is necessarily O if the immediate domain
predecessor labels a node of a membership specifying path. Therefore S may in this case also be
assumed to be empty.
End of proof

Assuming that the degree constraints of a set schema can be satisfied, they nevenheless present
special problems to a management system that must maintain them. The lower degree constraints
are the most difficult since lower degrees of 1 may require that new members be added to an
association such as ED in response to the addition of a new member to E or a new member to D.
Combined with upper degree constraints, lower degree constraints may even compel the addition of
a new member to a primitive base set. For example, adding a new member to D will compel at the
very least a changing of the membership of ED, and could compel the adding of a member to E.
Since tnere is no limit on the size of I-connected subgraphs, there is no limit on the number of Add
and Drop commands that must be executed in a transaction that transforms a database state in which
all degree constraints are satisfied, to another such state. However, the existence of these
subgraphs pemlits transactions to be checked for degree preservation before being committed. The
provision of assistance to users in the management of degree preserving transactions is an
interesting research problem. Aspects of the problem are addressed in f ApPu87].

15

S. Conclusions
The SET model described in [Gi187] when extended in the fashion described in this paper is
suitable for modelling all aspects of data processing as welJ as for handling the complexities of
incomplete information. It is an advance over similarly motivated models in as much as the
consistency of the model can be demonstrated.

16

BIBLIOGRAPHY
[ABW86] APT, K .• BLAIR, H., AND WALKER, A . Towards a Theory f Declarative

Knowledge. Proc . Workshop on Foundations of Deductive Databases and Logic
Programming. Wa. hington D.C. 546-629. 1986.

[ApPu87] APT KRYSZTOF 9. AND PUGIN,JEAN-MARC. Maintenance of Stratified
Databases Viewed as a Belief Revision System. Proc. Sixth ACM
STGACT-SIGMOD-SJGART Symposiwn on Principles of Database Systems.
136-145. March 1987.

[BCP86] BENOIT, CHRISTOPHE, CASEAU, YVES1 AND PHERIVONG, CHANf AL. The
LORE Approach to Object Oriented Programming Paradigms. Memo C29.0,
Laboratoires de Marcoussis, Centre de Recherches de la C.G.E. April 15, 1986.

[Blac85] BLAC~ MICHAEL JULIAN. Naive Semantic Networks. Final Paper. Directed
STudy in Computer Science. Dept of Comp. Sci., Univ. of B.C. Jan 22, 1985.

[CaWe85] CARDELLI, LUCA, AND WEGNER, PETER. On understanding types, data
abstraction, and polymorphism. ACM Comp. Surveys 17, 4 (Dec. 1985), 471-522.

[Chen76] CHEN. PETER PIN-SHAN. The Entity-Relationship model- toward a unified view
of data. ACM Trans. Data Base Sysr .• 1, 1 (March 1976). 9-36.

[Chen77] CHEN, PETER PIN-SHAN. The Entity-Relationship model - A basis for the
enterprise view of data. AFIPS onference Proceedings, Vol. 46, 1977 NCC.

[Clar78] CLARK, K.L. Negation as Failw- . H. Gallaire and J. Minker (eds.), Logic and Data
Bases, Plenum, New York, 1978.

[Cox86] COX, BRAD J. Object-Oriented Programming. Addi on-We ley, 1986.
[Date81] DATE, C.J. An Introduction to Database Systems, Vol.I, 3rd ed. Addison-Wesley,

1981.
[Date83] DATE, C.J. An Introduction to Database Systems Vol.I]. Addison-Wesley, 1983.
[DKM86] DE TROYER, 0. KEUSTERMANS, J. , AND 11:EERSMAN, R. How Helpful is an

Object-Oriented Database Model?. fDiDa86) . 124-132.
[DiDa86] DITIRJCH, KLAUS, AND DAY AL, UMESHW AR. (Eds) Proc. International

Workshop on Object-Oriented Database Systems. ACM and IEEE. Sept 23-26, 198
[Ethn86] ETHERJNGTON, DAVID WILLIAM. Reasoning with Incomplete Information:

Investigations of Non-Monotonic Rea oning. PhD Thesis, Dept. Comp. Sci., Univ.
of B.C. April 1986.

[Flan86] FLANNAGAN TIM. The Consistency of Negation as Failure. Journal of Logic
Programming, 2 (1986), 93-114.

[Gil77] GILMORE, PAUL C. Defining and computing many-valued function .. Parallel
C mputers - Parallel Mathematics. FEIL.MEIER, M. (ed .), North-Holland (1977),
18-23.

[Gil86a] GILMORE, PA UL C. Natural deduction based set theories: a new resolution of the
old paradoxes. J. Symb. Logic, 51 2 (June J 986), 393-411.

[Gi186b] GILMORE, PA UL C. Class notes for CPSC 404. Dept of Computer Science, Un. of
B.C. August 11, 1986.

[Gi187] GILMORE, PAUL C. The SET Conceptual Model and the Domain Graph Method of
Tabl Design. Dept f Computer Science Tech. Report 87-7 Un. of B.C. March
1987.

[Kell85] KELLER, ARTHUR M. Updating Relational Databases Through Views. Stanford
Computer Science Department Tech. Repon STAN-CS-85-1040. Feb 1985.

[Knt81] KENT, WILLIAM. Consequences of Assuming a Universal Relation. ACM Trans.
Database Sysr., 6, 4 (Dec 1981) 539-556.

[Knt83] KENT WILLIAM The Universal Relation Revisited. ACM Trans. Database Syst., 8,
4 (Dec 1983), 644-648.

[KhCo86] KHOSHAFIAN, SETRAG N. AND COPELAND, GEORGE P. Object Identity.
[Meyr86]. 406-416.

[Krey87] KREYKENBOHM, MlCHAEL. Optimizing DEFINE Queries. Tenn Project, Dept of
Computer Sci nee, Un of B.C. March 1987 .

[LuK186] LUK W.S . AND KLOSTER, STEVE. BLFS: English Language for SQL. ACM
Trans . Dawbase Sysr., 11 , 4 (De 1986), 447-472.

17

rLyK t861 L YNGBACK, PETER, AND KENT, Wil..LlAM. A Data Modelling Methodology for

[Mark85]

[McC80]

the Design and lrnplementation of Information Systems. [DiDa86]. 6-17.
MARK1 LEO. Self-describing database system -formalization and realization.
Technical Repon - #1484. Dept. Comp. Sci. Un. Maryland. April, 1985.
Circumscription - A Form of Non-monotonic Reasoning. Artificial Intelligence 13,
295-323. 1980.

[Meyr86] MEYROwrtz, NORMAN. (ed.) Proc. Object-Oriented Programming Systems,

[Morr]
Language and Applications. ACM Sigplan Notices, 21, 11 (Nov 86).
MORRISON RODERICK. lmplementating a Set Based Data Model and its Data
Definition/Manipulation Language. PhD thesis, Department of Computer Science,
Un. British Co]umbia. lnprogress .

[Ship81] SHIPMAN, DAVID W. The functional data model and the data language DAPLEX.
ACM Trans. Database Syst., 6, 1 (March 1981), 140-173.

[Sowa84] SOWA, J.F. Conceptual Structures: Wormation Processing in Mind and Machine.
Addison-Wesley. 1984.

[frLo87] TRYON, D.C.; AND LOYD, D.G. Information Resource Depository: History,
Current Issues, and Future Directions. Pacific Bell, A Pacific Telesis Company.
Presentation to Canadian Information Processing Society, Vancouver. Canada

[Ull80]

[Ull82]

[Ull83]

February 1987.
ULLMAN, JEFFREY D. Principles of Database Systems. Computer Science Press,
1980.
ULLMAN, J.D. The U.R. Strikes Back. Proc. ACM Symp. Principles of Databse
Systems. 1982, 10-23.
ULLMAN J.D. On Kent's "Consequences of Assuming a Universal Relation. ACM
Traris. Database Syst., 8, 4 (Dec 1983), 637-643.

[VaTo87] VAN GELDER, ALLEN AND TOPOR RODNEY W. Safety and Correct
Translation of Relational Calculus Formulas. Proc. Sixth ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems.
313-327. March 1987.

18

