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Abstract 
Matching upper and lower bounds for the bit complexity of a prob­

lem on asynchronous unidirectional rings are established, assuming that 
algorithms must reach a correct conclusion with probability 1 - i, for 
some £ > 0. Processors can have identities, but the identities are not 
necessarily distinct. The problem is that of a distinguished proces­
sor determining whether it is the only distinguished processor. The 
complexity depends on the processors' knowledge of the size n of the 
ring . When no upper bound is known, only nondistributive termi­
nation is possible, and 0(n log(¼)) bits are necessary and sufficient. 
When only an upper. bound N is known, distributive termination is 
possible, but the complexity of achieving distributive termination is 

0{nJlog(~) +nlog(¼)), When processors know that (½+p)N $ n $ 

N for p > 0, then the bound drops to 0(nloglog(¼) + nlog(¼)), for 
both distributive and nondistributive termination, for sufficiently large 
N. 

1 Introduction 

An asynchronous unidirectional ring of processors is one of the simplest of 
network topologies. Nonetheless, rings exhibit features which can be ex­
pected to show up in many topologies. Consequently, rings serve as a suitable 
test-bed for studies in distributed computing. 

Numerous studies in distributed computing have made it clear that, 
in general, the complexity, or indeed the solvability, of a distributed prob­
lem depends on features of the processors and on the nature of the desired 
solution. Features which are relevant to an asynchronous ring are: 

Knowledge. What does each processor know about the size of the 
ring? Do processors have identities? To what extent can an algorithm exploit 
identities? 

Type of algorithm. Is the desired algorithm deterministic, random­
ized (always correct) or probabilistic {correct with probability 1 - E)? 

Type of termination. Must the algorithm terminate distributively, 
or is nondistributive termination acceptable? An algorithm terminates dis­
tributively if each processor, upon reaching a conclusion, will not subse­
quently revoke its conclusion on receipt of further messages. (Nondistribu­
tively terminating algorithms are rarely admitted in the literature. Reasons 
for considering them here will become apparent.) 

This paper is one of a series of three papers (see [1,2]) addressing the 
question of how the above features affect the bit complexity, that is, the total 
number of bits transmitted, of a fundamental problem, solitude detection, on 
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asynchronous unidirectional rings. Taken together, the three papers give a 
fairly complete answer. The bit complexity of solitude detection exhibits 
a surprisingly rich dependence on features of the ring and the nature of 
algorithms, but not so rich that analysis is intractable. 

The solitude detection problem is as follows. A nonempty set of prer 
cessors, called contenders, are distinguished. Each processor must determine 
whether or not there is exactly one contender. 

In this paper, we are primarily concerned with vel"Sions of solitude 
detection which cannot be solved with certainty, but which can be solved 
probabilistically, with arbitrarily small positive probability of error. 

One of a few recognized fundamental problems on rings is that of elect­
ing a leader. It was pointed out in [5], and later expanded upon in [1], that 
leader election is composed of two more fundamental problems: attrition 
and solitude verification. The attrition problem is that of reducing a set of 
contenders to ju.st one contender. Solitude verification is a weak form of soli­
tude detection; a solitary contender must verify that it is the only contender. 
When there are two or more contenders, solitude verification requires only 
that no contender concludes that it is the only contender. 

Attrition, solitude verification and solitude detection all reduce to leader 
election in O(n) bits, where n is the size of the ring. Thus our lower bounds 
for solitude verification imply corresponding lower bounds for leader election. 

Deterministic [4,8,7] and randomized [1,5] solutions to leader election 
and solitude detection in unidirectional rings have been considered elsewhere. 
Pachl [6] shows that probabilistic algorithms are not significantly better than 
deterministic algorithms for the closely related problem of maximum finding 
when processors have distinct identities. 

However, for solitude verification, probabilistic algorithms can be more 
powerful than deterministic algorithms. We establish complementary upper 
and lower bounds on the bit complexity of probabilistic solitude detection in 
two situations where processors do not necessarily have distinct identities, 
and an error-free solution is impossible. The two situations are (1) each 
processor knows an upper bound on the size of the ring, and termination is 
distributive, and (2) each processor knows nothing about the size of the ring, 
and termination is nondistributive. 

In addition, we consider one situation where solution with certainty is 
possible, but admitting error can decrease the complexity significantly. That 
is the situation in which each processor knows a quantity N such that the 
ring size n lies in the range (1/2 + p)N ~ n ~ N, where p > 0. 

Section 2 summarizes the results of this paper. Results of the two com-
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panion papers are described in Section 7. Section 3 contains descriptions and 
correctness proofs of some solitude detection algorithms, assuming various 
properties of the ring. The corresponding lower bounds are proved in Section 
5, using a model described in Section 4. An additional section (section 6) 
compares two types of error tolerance in order to enhance the generality of 
the lower bounds. 

2 Overview of Results 

A solitude detection algorithm runs on a ring of processors of two kinds: 
contenders and non-contenders. There is guaranteed to be at least one con­
tender. The problem is to determine whether or not there is exactly one 
contender. It is presumed without loss of generality that only contenders 
may send a message without first receiving one. 

There are some important differences between the algorithms with 
which we establish upper bounds and the model of computation to which 
our lower bounds apply. 

Our algorithms assume that processors of each kind (contenders and 
non-contenders) are indistinguishable from one another. Each processor of a 
given type runs the same probabilistic process. On the other hand, our lower 
bounds apply when processors can have arbitrary identities, or equivalently, 
when each processor might run a different probabilistic process. Algorithms 
may rely on identities for achieving efficiency. The crucial requirement is 
that identities are not guaranteed to be distinct. Specifically, algorithms 
must not rely on either the distinctness or the distribution of identities for 
their correc.tness. This generality in the lower bounds is a result of a nonde­
terministic attribute of the model for which the lower bounds hold. A more 
extensive discussion of the implications of the nondeterministic aspects of 
the model appears in the conclusions of a related paper, [2]. 

Our algorithms make errors on one side only. If there is only one 
contender, then with probability one, our algorithms cause that contender 
to reach the conclusion "alone". If there are two or more contenders, then 
with probability at least 1 - f every processor reaches the conclusion "not 
alone". Our lower bounds permit two-sided error of at most E on each side. 
Although the error tolerance is the same for both the "alone" and "not alone" 
cases, even this is not an essential restriction. The extension to tolerance of 
6 error when there is one contender, and tolerance off error when there are 
more than one contender, is presented in section 6. 

Our algorithms all solve solitude detection. In fact, when there are two 
or more contenders, the algorithms send only O(n) expected bits. But our 
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lower bounds apply to a weaker problem which we call weak solitude verifi­
cation. Specifically, the lower bounds apply to the expected bit complexity 
of an algorithm applied to any configuration where there is one contender, 
regardless of the complexity when there are two or more contenders, or of 
the complexity of other configurations with one contender. An algorithm can 
loop forever or deadlock for some rings of processors, and our lower bounds 
still apply. Thus the lower bounds preclude the existence of an algorithm 
which is very efficient on some ring with one contender in which processors 
are labelled in a particular way, while still tolerating error of at most f on 
all rings. 

(Examination of our algorithms gives some indication of why the lower 
bounds can be so strong. Essentially, a solitude detection algorithm runs 
until it has run "long enough" without detecting non-solitude. Moreover, 
non-solitude is usually detected with few bits, when there are two or more 
contenders. So it is pointless for an algorithm to fail to detect non-solitude, 
and it gives nothing away to permit such behaviour.) 

All complexity bounds stated below apply when there is one contender. 

Without distinct identities, no algorithm can distinguish with certainty 
between a ring of size n containing one contender and a ring of size 2n 
containing 2 contenders directly opposite each other. Consequently, no al­
gorithm can solve solitude verification with certainty, even if all processors 
know that N ~ n ~ 2N. Furthermore, for any possible communication 
history, h, of one processor on a ring R of size n with one contender, it is 
possible, by splicing together enough copies of R, to form a ring R' with sev­
eral contenders in which the probability that more than one processor has a 
history of which h is an initial segment is arbitrarily close to one. Therefore, 
without any knowledge about ring size, it is impossible for a processor to 
halt and declare its solitude with any degree of certainty. This implies that 
when processors have no knowledge of ring size, there can be no distribu­
tively terminating algorithm a for solitude detection even if a is allowed to 
give the wrong answer with arbitrarily high preassigned probability less than 
one. 

Solitude detection can be solved probabilistically with nondistribu­
tive termination even if nothing is known about the ring size. A simple 
nondistributively terminating probabilistic algorithm for solitude detection 
(cf. Theorem 3.1) achieves probability of correctness at least 1 - f by ex­
changing a total of O(nlog(¼)) bits. A matching lower bound (Theorem 
5.2) shows that O(n log(¼)) bits are required to solve solitude detection with 
probability 1 - f of correctness, with nondistributive termination. 

If processors know that ring size n is at most N, there is a distribu-
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tively terminating probabilistic solitude detection algorithm with expected 
bit complexity O(nJlog(~) +nlog(¼)) (Theorem 3.4). That algorithm uses 
as a subroutine another algorithm that solves solitude detection with prob­
ability at least 1 - £ of correctness using 0( nJ log C + n log(¼)) bits, where 
C is an upper bound on the number of contenders (Theorem 3.2). 

There is a matching lower bound (Theorems 5.1 and 5.2) of O(nJlog(~) + 
n log(¼)) when an upper bound N on ring size is known and n :::; N /2. The 
lower bound applies to expected case. 

The proof of the latter lower bound depends upon a doubling argument 
and therefore does not hold when n > N /2. In fact, there is a distributively 
terminating solitude detection algorithm which is correct, with probability at 
least 1 - £, for all rings of size n:::; N, and which sends only O(nlog log(¼)+ 
n log(;)) expected bits when n ~ (½+p)N, for any fixed p > 0 (Theorem 3.7). 
For sufficiently large N, a matching lower bound of O(n log log(¼)+ n log(})) 
is proved (Theorems 5.4 and 5.5), for algorithms which know that ( ½ + p)N :::; 
n :::; N, for fixed O < p < ½- The restriction to sufficiently large N is 
necessary, since, when n is known to lie between N/2+1 and N, it is possible 
to solve solitude detection with zero error probability in O(nlogn) bits [1], 
and for small N it is possible that n log n < n log log(¼) + n log(}). 

To summarize qualitatively, our results show that, although there can 
be no distributively terminating solution to solitude detection without some 
knowledge about the ring, even a large overestimate of ring size permits 
a distributively terminating solution. In addition, the complexity of the 
solution is very insensitive to the degree of overestimation. 

3 Solitude Detection Algorithms 

In the proofs of the following four theorems, algorithms are described which 
solve four different versions of probabilistic solitude detection. In all cases, 
the size of the ring, denoted by n, is not known exactly by the individual 
processors. Each algorithm uses O(n) expected bits when there are two or 
more contenders. 

Messages travel counter-clockwise around the ring. Say that a processor 
receives messages from its left, and sends them to the right. 

The simplest case is presented in Theorem 3.1 which assumes only 
a unidirectional ring of identical processors with no additional knowledge 
about the ring. Specifically, processors cannot assume any upper bound 
on the size of the ring. As pointed out in section 2, only nondistributive 
termination is possible in this case. In Theorem 3.2, processors are given an 

5 



upper bound on the number of contenders. Because of this upper bound, 
distributive termination can be achieved. For Theorem 3.4, processors are 
given an upper bound, N, on the size of the ring. Theorem 3. 7 applies when 
processors know that (½ + p)N ~ n ~ N for some p > 0. 

Theorem 3.1: There is a nondistributively terminating probabilis­
tic solitude detection algorithm that communicates O(nlog(f)) bits in the 
worst case, (O(n) bits in the expected case when there are two or more con­
tenders) verifies solitude with certainty, and erroneously asserts solitude with 
probability at most L 

Proof: In the basic algorithm, each contender flips an unbiased coin 
t = r log(¼ )l times , and sends the sequence of t coin tosses to its neighbour. 
Non-contenders forward the packages of coin tosses to the next contender. A 
contender which receives a sequence different from the one it sent concludes 
that it is not alone, and sends an alarm. A contender which receives a 
sequence of t flips identical to what it sent concludes that it is alone, but 
is willing to change its mind on receipt of an alarm. Alarms are forwarded 
until received by a processor which has already sent an alarm. 

Clearly, if there is only one contender then after exactly nt bits have 
been transmitted the algorithm terminates correctly, though termination 
cannot be detected by the processors. Suppose there are two or more con­
tenders. If any contender discovers that it is not alone, then it will send an 
alarm and eventually all contenders will be alerted. The algorithm reaches 
the wrong conclusion only if all contenders send and receive the same se­
quence of coin tosses. Thus Pr(error) ~ 2-t ~ E. 

This algorithm always sends nt bits. A simple modification reduces the 
expected cost to O(n) bits when there are two or more contenders. Rather 
than sending the coin tosses as a package, alternately send and receive them, 
one at a time. As soon as an inconsistency is detected, or an alarm arrives, 
send an alarm and abort the algorithm. Then each processor sends 0(1) 
expected bits when there are two or more contenders. ■ 

Now suppose processors are given an upper bound Con the number of 
contenders c. 

Theorem 3.2: There is a distributively terminating probabilistic soli­
tude detection algorithm that communicates 0( nJ log C + n log(¼)) bits in 
the worst case, ( 0 ( n) bi ts in the expected case when there are two or more 
contenders) verifies solitude with certainty, and erroneously asserts solitude 
with probability at most f.. 
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Proof: As in the proof of Theorem 3.1, contenders exchange coin 
tosses, alternately sending and receiving one bit at a time. Any contender 
which receives a message different from that most recently sent sends an 
alarm in place of its next coin toss. This continues until a maximum of 
t = r ✓ 2 log C + log ( ¼) l coin tosses have been sent by each con tender. Con­
tenders which received a sequence oft flips that matched those transmitted 
conclude that they are alone. In contrast to the previous algorithm, the 
conclusion is irrevocable here. 

As before, if there is only one contender then after exactly nt messages 
have been transmitted the algorithm terminates correctly. Suppose that the 
number of contenders i is at least two. Then, as before, the expected bit 
complexity is O(n). We must show that the probability of error is at most l. 

A contender is said to be fooled for k flips if its first k outputs match 
its first k inputs. Let Q0 , Q1, ... , Qe-l denote the contenders in sequence 
around the ring. The algorithm terminates incorrectly if any one of the 
contenders is fooled for t flips. 

If any one processor, say Q;, is fooled fort flips then it must be the case 
that processor Q;-1e is fooled fort - k flips, for 1 ~ k ~ t-1. (Subscripts are 
implicitly reduced modulo c). If c ~ t then all of these flips are independent 
and hence 

Pr(Q; is fooled fort flips)< 2-t
2

/
2

• 

On the other hand, if c < t then at least ct/2 of these flips are independent 
and hence 

Pr( Q; is fooled for t flips) < 2-ct/2 • 

In either case, it follows that if t ~ J 2 log C + log ( ¼) then 

Pr(Q; is fooled fort flips) < e/c 

and hence, 
Pr(some processor is fooled for t flips) < e. 

• 
Theorem 3.2 at once gives an O(nJlogN +nlog(¼)) upper bound for 

solitude detec tion when an upper bound N on the ring size is known by all 
processors . This upper bound can be sharpened to O(nJlog(~) +nlog(¼)) 
by using the following idea. Each contender Q; forms an estimate 9; of the 
size of the gap separating Q; from the nearest contender to the left. Then 
N/ g,- can be used as an estimated upper bound on the number of contenders. 
(Here, each contender makes the bold assumption that all gaps are equal. It 
is remarkable that the a lgorithm performs well when the gaps are not at all 

7 



equal.) This upper bound is then used in an algorithm essentially the same 
as the one described in the proof of Theorem 3.2. 

The basic gap estimation algorithm proceeds as follows. Let the con­
tenders be Q0 , ••• , Qc-i, counter-clockwise around the ring. Let g; be the 
number of processors in the interval [Q,_1, Q; ). Gap estimation proceeds 
in rounds, starting with round 0. In round t, each passive processor tosses 
a coin with success probability min(2t

2 
/ N, 1). Each contender Q;- i sends 

a message across the gap to its right, informing Q; whether there were any 
successes in the gap. If there were no successes, then Q; proceeds to the 
next round. If there was a success in the gap to its left in round t, then Q; 
sets its estimate 9; = N 2-(t+l)

2
, sends a message indicating the end of the 

gap estimation phase, and waits to receive such a message. Such messages 
end gap estimation for any processor receiving them, and are forwarded until 
they reach a processor which started one. Not all contenders Q; will produce 
an estimate §;, but at least one must do so. Any contender which does not 
produce an estimate can be sure that it is not alone, so we can ignore such 
processors. 

Lemma 3.3: 

(a) E(§;) :S g,-. 

(b) If c = 1 then E(Jlog(N/g0 )) = O(Jlog(~) ). 

(c) If c = 1, the expected number of bits communicated during the 

estimation of g0 is O(nJlog(~) ). 

Proof: (a) Pr(§; = N 2-(t+1)
2

) is easy to bound crudely. If g; coins are 
tossed with probability of head 2t

2 
/ N, then the probability of at least one 

head is at most g; 212 
/ N, so 

Therefore 
00 

E(g;) :SL g, 2-(2t+1) < 9;• 
t=O 

(b) When there is a single con tender, T = ,j log ( N / g0) rounds are used 
for gap estimation. We bound E(T), the expected stopping time. Suppose 
that N 2-k

2 < n < N 2-(k- 1)
2

• The stopping times less than k + 3 give 
contribution less than k + 2 to the expectation. It remains to show that the 
later stopping times make only a small contribution. But Pr(T = k + 2 + 
j) :S Pr(no successes at stage k + 1 + i). This is zero if z(Hi)

2 
~ N, and 
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otherwise it is (1 - 2(H;)
2 /N)n. But n > N2-"2, so Pr(T = k + 2 + j) < 

exp(-221:;+;
2
). So from k + 3 to the end, the contribution to E(T) is at most 

I;~ 1 (k + 2 + j) exp(- 221:;+;
2
), which is 0(1). 

(c) This follows easily from the fact that E(T) = O(Jlog(~) ). ■ 

Theorem 3.4:: If an upper bound N on ring size is known by all 
processors, there is a probabilistic solitude detection algorithm that com­
municates a mean of O(nJlog(~) + nlog(¼)) bits when there is a single 
contender (O(n) bits for two or more contenders), terminates distributively, 
verifies solitude with certainty, and erroneously ~serts solitude with proba­
bility at most e. 

Proof: Contenders execute the gap estimation algorithm, with a 
small modification. Alternating with gap estimation rounds are coin tossing 
rounds. In each coin tossing round, each contender sends and receives a coin 
toss. If the coin toss received is different from that sent, then the contender 
aborts the algorithm, sends an alarm as before, and concludes that it is not 
alone. The purpose of the modification is to reduce the complexity when 
there are two or more contenders. 

If contender Qi obtains gap estimate 9i, it executes the algorithm of 
Theorem 3.2, with the number of coin flips t = log(2/e) + K;, where K; = 
J2 log(N/fh). 

When there is a single contender, on the average O(nJlog( ~) +n log(¼)) 

bits are communicated, since by lemma 3.3(c), O(nJlog(~)) bits on the av­
erage are communicated in the gap estimation phase, and by lemma 3.3(b), 

E(Ko) = 0( J log(~)). When there are two or more contenders, each pro­
cessor sends 0(1) bits in the gap estimation phase and 0(1) bits in later 
phases. It remains to show that the algorithm erroneously asserts solitude 
with probability at most e. This part of the analysis is a more elaborate 
version of the analysis in Theorem 3.2. 

Let c be the actual number of contenders. For any particular run of 
the gap estimation algorithm, let S1 = { j : K; ~ c} and S2 = { j: K; < c }. 

Let F; be the probability that the contender Q; is fooled, given that the gap 
estimation algorithm has produced particular estimates. 

Claim 3.5: If j E S1 , then F; ~ (e/4)c- 1 . 

Proof: Since K; ~ c, in order for Q; to be fooled K; + log{2/e) 
times, every contender must be fooled at least 1 + log(2/e) times. Hence 
F; ~ 2-(c-l)log(4/,) = (e/4)c-1. ■ 

9 



Claim 3.6: If;" E S2 , then F; ::; Eg; /2N, where g; is the gap estimate 
produced in that run. 

Proof: In order for Q; to be fooled, the K; distinct processors Q;, 
Q;-1 , .•• , Q;-K;+l must be fooled a total of 

K; 

E(Iog(2/E) + k) ~ log(2/E) + K;/2 
t=l 

times. Hence 

■ 

If Q; does not produce a gap estimate, then Q; is not fooled. Sup­
pose Q; produces an estimate. The probability that Q; is fooled is at most 
(E/4)c-l + (E/2N)E(g; I g; < c). But the conditional expectation of g; is 
clearly at most E(g;), which by Lemma 3.3(a) is at most g;. So the proba­
bility that Q; is fooled is at most (E/4y-1 + E9;/2N. 

Hence the probability that some contender is fooled is at most c(E/4)c- 1+ 
(E/2N) E; 9;• Since c(E/4)c-l ::; E/2 and E; 9; = n =:; N, the probability that 
some contender is fooled is at most E. ■ 

When n is known to lie between (½ + p)N and N, where p > 0, it is 
possible to improve further on the bit complexity of solitude detection; there 
is a solitude detection algorithm of expected bit complexity O(n log log(~)+ 
n log(})) expected bits when there is one contender. 

Theorem 3.7: Suppose each processor knows that the ring size n 
satisfies (½ + p)N::; n::; N where p > 0. Then there is a solitude detection 
algorithm which terminates distributively, has one-sided error probability at 
most f and sends O(nloglog(¼) + nlog(})) expected bits when there is a 
single contender (O(n) bits when there are two or more contenders). 

Proof: We begin by producing an algorithm with two-sided error, and 
then show how to eliminate the error on one side. 

Let 9; be the distance from the (i - 1)-' to the i'h contender counter­
clockwise around the ring. An obvious algorithm has the J°'h contender obtain 
counts c1 = g; and c2 = 9;-1, concluding that it is alone iff c1 = c2 > 
N /2. Implemented deterministically, that algorithm uses O ( n log n) bits. 
The complexity can be reduced by obtaining estimates of the counts. Each 
contender starts a counter, which propagates to the next contender. Each 
non-contender increments the counter with probability >-../ N, where ).. is a 
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chosen constant. Let c1 be the count obtained. Each contender sends c1 to 
the next contender, and receives c2 • It concludes that it is alone iff c1 = c2 ~ 

s.X, where s = 1~e. 
We can presume that p is small. Then an appropriate choice of A 

is .A = ¼ r fr ln :pl· Since each counter has an expected value less than .A, 
the expected bit complexity is O(nlog.X) = O(nloglog(¼) +nlog(})). The 
complexity can be reduced to O(n) when there are two or more contenders 
by starting the algorithm with a sequence of log log(} log(¼)) coin tosses, 
with the usual provisions for alarms. It remains only to bound the error 
probabilities. 

Claim 3.8: Let p1 be the probability that a sole contender erroneously 
concludes that it is not alone. Then p1 ~ f. 

Proof: Let r = ½ + p. The quantity s.A is an integer, and we can 
presume without loss of generality that r N is also an integer. 

A sole contender is fooled if it gets an estimate less than s.A. The 
probability of that occurring is maximum for n = rN, so 

,>. (rN) ( .A )le ( .A )rN-k P1<L - 1--
- k=O k N N 

The ratio between consecutive terms in the sum is at least r / s = 1
1~

2
/. 

So the entire sum is at most 1
~

2e < ¾ times its largest term. Using the 

approximations (;) ~ nkekk-k and ( 1 - ;; rN-lc ~ e-r>. (iv->.r gives 

We can presume that N > !f;-, since otherwise an O(n log n) bit algorithm 

has the desired complexity, with zero error probability. So (NN_>.)' < ,.(_>. < 
1 + e:... But e•-r = 1 - e. + e:... - · • • and ! = 1 + f. - e:... + · • · So 2 2 ( )' 2 

8' 2 8 , 2 8 • 

Pi < m (1 - ~ + · · -f 
< f 

for sufficiently small p. ■ 

Claim 3.9: Let p2 be the probability that some contender erroneously 
concludes that it is alone. Then p2 ~ L 

11 



Proof: Say that a contender is almost fooled if c1 + c2 ~ 2s>.. A 
contender erroneously concludes that it is alone only if it is almost fooled, 
so it suffices to bound the probability that some contender is almost fooled. 
That probability is maximized when there are just two contenders, since 
changing any one of k ~ 3 contenders to a non-contender can only increase 
the probability that some contender is almost fooled. In the case of two 
contenders, c1 +c2 is just the total number of non-contenders which increment 
a counter. It suffices to consider the case n = N. Then 

Now the approximations ,!_>. ~ 1 + e;., e2•-1 = 1 + p + e;.. + • • • and 

(
1+ 2/g )l+p 2 1:P = 1 - p + T + • • • gives 

P2 < 

< E 

for sufficiently small p. ■ 

The algorithm given has two-sided error. Errors when there actually is 
a single contender can be eliminated as follows. Run the above algorithm. If 
the outcome is "alone", then conclude alone. Otherwise, run the algorithm of 
Theorem 3.4, and adopt its conclusion. The modified algorithm does not err 
when there is one contender, and has error probability at most 2f when there 
are two or more contenders. Moreover, the modified algorithm is correct for 
all n ~ N. When n ~ (½+ p)N, and there is in fact one contender, it runs in 
O(nloglog(¼) + fnlog(¼)) expected bits. But flog(¼)~½ for E ~ 1/4. The 
results of section 5 imply that the modified algorithm is optimal, to within 
a constant factor, for n ::s; N/2 and n ~ (½ + p)N, for sufficiently large N. ■ 

4 A Model for Solitude Detection Algorithms 

Our objective is to study the inherent bit complexity of distributed proba­
bilistic algorithms that verify solitude with a high probability of correctness 
on unidirectional rings. A distributed algorithm can be viewed as an assign­
ment of processes to processors. So it suffices to model computations as a 
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ring of processes. In order to describe such a computation we first state some 
relevant attributes of a process, and deduce useful properties of sequences of 
processes. The relationship between algorithms and sequences of processes 
is then made precise in order to highlight the generality of the lower bounds 
which follow. 

4.1 Processes 

The following description of a process incorporates two non-restrictive as­
sumptions, namely, that messages are self-delimiting, and that communica­
tion is message driven, with only one message sent in response to receipt of 
a message. What follows is a collection of definitions concerning processes 
and sequences of processes, then a statement of the relationship between a 
line of processes and the same sequence considered as a ring, and finally a 
number of tools that allow us to manipulate sequences of processes. 

A message is an element of M = {O, 1}• · □. The symbol □ is called the 
end of message marker. If mis a message we denote by llmll the length of the 
binary encoding of m, including the end marker, using an encoding scheme 
in which each symbol { 0, 1, □ } is encoded with two bits. A communication 
event is an element of MU {L}. The null event L denotes the absence of 
an input or an output message and should be distinguished from the empty 
message ' □ '. 

Any even length sequence of communication events, C = ( ei, e2 , ••• , e2t) 
describes a (possible) computation. The subsequence {e1 , e8 , ... f2t-i) is called 
the input history of C and subsequence (e2 , e•, ... , e2t) is called the output 
history. Computation C is said to be reduced if C does not begin or end 
with a pair of null events. The null events are used to ensure that every 
input event has an associated output event and vice versa. Since we have 
restricted our attention to message driven processes, we can assume that 
input histories are elements of L • M"'. 

If h E ( M U { L}) • is any history we denote by I hi the length of h and 
11h11 the cost of h, that is, the sum of the lengths of all encoded messages in 
h. Note that the last two bits of the encoded form of h must encode a □. 
Hence, the last two bits are redundant, and there are at most 2•- 1 histories 
of cost at most i. 

A (probabilistic) process, 1r, is modelled by an assignment of probabil­
ities to reduced computations. Specifically, for each element x E M*, the 
set of all reduced computations with input history L tx, for t ~ 0, form a 
probability space. We denote by h { 1r} h' the event that process 7r produces 
a computation with output history h', given that it has input history h. 
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On occasion we need to deal with unreduced computations. The no­
tation is extended, by assigning identical probabilities to each of the events 
h { 11-} h', 6h { 7r} 6h' and h.6 { 1r} h' 6, since those events are indistinguish­
able. 

If his a history let h(i) denote the length i prefix of h. By the sequential 
nature of communication, we have, 

Property 4.1: For all histories hand h' and all i ~ I, Pr(h {1r} h') s 
Pr(h(i) {,r} h(i))· 

We say that process ,r is at-initiator fort~ I if EheW Pr(.6' {,r} h) > 
0. All other processes are non-initiators. An initiator (i.e. a t-initiator for 
some t ~ 1) is just a process which has nonzero probability of sending at 
least one message before it receives one. If 7r is a I-initiator and ,r is not 
a t-initiator for any t ~ 2 then ,r is a single initiator. We assume that the 
contenders in any ring are just single initiators and all other processes are 
non-initiators. 

If 1r1 and ,r2 are processes then their composition, denoted 1r1 1r2 , is the 
process 1r satisfying 

Pr(h{1r}h') = I::Pr(h{7r1}h") • Pr(h11 {1r2}h'). 
h" 

Thus, 11"1 1r2 is obtained by identifying the output of 1r1 with the input of 1r2 • 

If exactly one of ,r1 and 11"2 are single initiators then so is ,r, The statement 
1r1 ,r2 contains exactly one initiator is used informally to mean that 1r1 1r2 is 
a single initiator. 

If 1r1 , .•• , 1rt is a sequence of processes, let 1ri,; denote the composition 
1ri · · · 1r;, for 1 S i S ;· s t. It is convenient to view a sequences of processes 
1r1 , •.. , 1rt as a single process, namely the composition 1r1,t, By abuse of 
notation, a sequence is frequently identified with its composition. The real 
difference between the two is that, although 1r1,t is a single process, with 
communication cost assigned only to its input and its output, the sequence 
1r1 , ..• , 'll't has communication cost assigned to each link from '1ri to '1ri+i, for 
1 Si< t. 

The notion of a computation can be extended to sequences of processes. 
A sequence h0 , ••• , h, of histories describes a computation of the process 
line 1r1,, which is equivalent to the conjunction of the independent events 
hi {,rH1} hi+l, for OS i -< t, in the appropriate product space. The cost of 
such a computation is given by E!=i llhill- Note that ho does not contribute 
to the cost. If 1r1, ••• , 1rt are processes (or sequences of processes), let 
h 0 {1r1} h1 · · · {1ri}h1 denote the event described by sequence ho, ... , ht, 
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We distinguish a subset M 0 ~ M called accepting messages, and a sub­
set M,. ~ M called rejecting messages. A history is an accepting history 
(respectively, rejecting history) if and only if its last message is an accept­
ing message (respectively, rejecting message). A computation h0 , ••• , ht of 
1r1 , ... , 11"t asserts solitude if any history h1 where 7r1 is an initiator, is an 
accepting history, and asserts non-solitude if each of the h1 is a rejecting 
history. A process ,r is said to terminate distributively if 1r never outputs an­
other message after having output an accepting message. The obvious bias 
in these definitions reflects the fact that we are addressing the complexity of 
an algorithm when there is one initiator. The definitions given here lead to 
slightly stronger results than the obvious unbiased ones would. 

The preceding definitions allow us to study the behaviour of a sequence 
of processes on a line as a function of the behaviours of the individual pro­
cesses. Our objective, however, is to study the behaviour of processes on 
a ring. Informally, process 1r is on a ring if its output is fed back into its 
input. Fortunately, the essential properties of process rings are reflected by 
properties of associated process lines. The mapping from lines back to rings 
is characterized by two properties - one for distributively terminating and 
one for nondistributively terminating sequences. Let h [1r] * denote the event 
that given input h the computation of 1r asserts solitude. The event h [1r] h' 
denotes the conjunction of the events h { 1r} h' and h [1r] *· 

Property 4.2: Let 1r be any process. If Pr(.6'h [1r] h.6') = p for some 
t 2:'.: 1, then with probability at least p, computations of 1r on a ring assert 
solitude. 

Property 4.3: Let 1r and 1r' be any distributively terminating pro­
cesses. If Pr(.61 [1r] *) = p then, with probability at least p computations of 
1r' 1r on a ring assert solitude. 

The placement of nulls in Property 4.2 is important. For example, it is 
quite possible that, when given input history h, process 1r produces output 
history h with positive probability, that is, Pr(h{1r}h) > 0. But when 1r's 

output is fed back into its input, ,r produces no messages; 11' is deadlocked, 
waiting for itself. 

Property 4.2 is used to draw conclusions about nondistributively ter­
minating processes on a ring. History h appears in both the input and the 
output of 1r but shifted by t messages. This allows the individual messages 
of h to be fed back into ,r as input as soon as they are produced as output. 
Therefore none of the processes in 7r can distinguish between computations 
on a line with input 6 'h which produce output ht:::,t and computations on 
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a ring in which each process makes the corresponding probabilistic choices. 
Property 4.3 is used for conclusions that require the assumption of distribu­
tive termination. Suppose sequence ,r asserts solitude with probability p 

without any input. Then, when ,r is a segment of a ring, with probability 
at least p there is some initiator in ,r with an accepting message in its out­
put history. The distributive termination assumption then ensures that the 
entire ring asserts solitude. 

The next property serves a complementary role to the previous two 
properties. It produces computations on lines from computations on rings. 

Property 4,4: Let ,r = 7ri, ••• , ?rt be a single initiator process se­
quence. Suppose that with probability p computations of ,r on a ring as­
sert solitude and some fixed process ,ri has a fixed output history h. Then 
Pr(6h [1ri+l,h 1r1,i] h6) = p. 

A sequence 1r1 ,c of processes is said to assert solitude (respectively, non­
solitude) on a ring with probability p if computations of 1r1,t on a ring assert 
solitude (respectively, non-solitude) with probability p. 

Let x be a number (which will be given a specific value whenever neces­
sary) called the cheapness threshold. A computation of an arbitrary sequence 
of processes is said to be cheap if it has total cost at most X· Let h (1r1 ,c) * 
denote the event h [1r 1 ,c] * & A, where A is the event that the computation of 
processor sequence 1r1,t with input history his cheap. Leth (1r1 ,c) h' denote the 
conjunction of the events h (1r1,c) * and h {1r} h'. Similarly, h0 (1r1) h1 • • • (1rc) ht 
denotes the event ho (1r1,c) * & ho {1r1} h1 · · · {1rc} ht. 

The following lemma shows that if the expected cost of computations 
of a single initiator sequence 1r1,c on a ring is bounded, then inexpensive com­
putations of the form 6h {Pi,t} h6 occur with reasonably high probability, 
where Pi,t is some cyclic permutation of 1r1,t and h is some fixed element of 
M". 

Lemma 4.5: Let 1r1, ••• , 7rc be any single initiator process sequence. 
Suppose that 1r1,t asserts solitude on a ring with probability at least 1 -
£. Suppose also that the expected cost of computations of 1r1,t that assert 
solitude is at most µ,t bits. Then there exists an integer i, where 1 $ i $ t, 
and a history h with 11h11 $ 4µ, such that 

Pr(6h (1rH1,t 1r1,i) h6) ~ (1 - e)2-(4
µ+1) 

where the cheapness threshold x has the value 2µt. 
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Proof: Since the expected cost of accepting computations is at most 
µt, the probability that an arbitrary computation of 1r1,, asserts solitude and 
communicates fewer than 2µt bits is at least (1- £)/2. 

Let ei denote the expected number of bits in the output history of 
process 11"i, over all accepting computations of ,r1,t with costs at most 2µt 
bits. For some i, e, :$ 2µ, and hence with probability at least (1- £) / 4, 1r, has 
an output history with no more than 4µ bits and the entire computation has 
cost at most 2µt and the computation asserts solitude. But there are fewer 
than 2•µ-l distinct histories with at most 4µ bits and hence, with probability 
at least (1- £)2-(•µ+1), 1r, outputs some fixed history h, where 11h11 :$ 4µ and 
the entire accepting computation has cost at most 2µt. Thus, using Property 
4.4 and conditioning over cheap computations, Pr(6.h (1rH1,, 1r1,i) h6.) ~ (l­
£)2-(•µ+1) where x = 2µt. ■ 

A process sequence 1r can be replicated to form the new sequence 1rk 

consisting of the concatenation of k copies of 1r. The following two lemmas 
express the probability that 1rk asserts solitude as a function of the proba­
bility that 1r does. The proofs of both lemmas follow from applications of 
elementary probability theory, and are therefore omitted. 

Lemma 4.6: If Pr(6.h [1r] h6) = p then Pr(6.kh [1rk] h6.k) ~ pk. 

Lemma 4.7: If Pr(6t [1r] *) = p then Pr(6'k [1rk] *) ~ 1- (1- p)k. 

At the heart of our lower bound proofs is the observation that a se­
quence of histories of sufficiently small total cost must contain the same 
history twice. The following lemma refines that observation to a proba­
bilistic setting, and provides information about the separation between the 
repetitions. 

Lemma 4.8: Let 1r1,, be any single initiator sequence of processes. 
Let a and r be positive integers satisfying 

(a) r ~ 362 , 

(b) 24x < tlogr, and 

(c) t > ra. 

Let h be any element of M". Then there exist integers i and ;' where 1 < 
i < J0 

:$ t and a history h • such that 

i) a :$ ;' - i < ra and 
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Proof: Suppose without loss of generality that € = Pr(b.h (11"1,t) hb.) > 
0. For 1 ~ i < t, let ei be the expected cost of the output history of 
,ri, conditional on b.h (11"1,t) hi::::,.. That is, ei = (1/ €) Eh; II hill · Pr(b.h (1r1,i) 
hi (11"i+1,t) hb.). Let o = log r. 

If e, < o/8, say that link i is cheap. If 11h11 < o/4, say that history 
h is short. Suppose that link i is cheap and let h; be the short history 
which maximizes Pr(b.h (1r1,i) h; (1ri+1,t) hb.). Each history has either one 
!:::,. at its start or one !:::,. at its end, which is not included in its encoding. 
Therefore there are fewer than 26/ 4 = ,,-1/• short histories. It follows that 
Pr(b.h (11"1,,) h; (1r,+1,i) h6) ~ ~' since otherwise e, > (8/4)(1 - 2'";;;,) = 
6 /8, contradicting the cheapness of link i. 

For 1 ~ j < t - (r - l)u, let B; = {j + ku : 0 ~ k < r}. Choose a j 
such that at least 1/3 of the r members of B; are cheap links. Such a j must 
exist, since otherwise at least 2/3 of at least rul(t - 1)/ruJ ~ t/2 links are 
not cheap, contradicting the assumption that E:=1 e, ~ x < to /24. 

Again, because there are at most ,,- 1/ 4 short histories, at least w = 
f ,,.3/

4 /31 of the cheap members k of B, have identical h;. Let i1 , ••• , iw be 
w such members, and let h• denote the common history. Let D 6 denote the 
event 6h (1r1,,.-i) h• (1r,.,t) h6, for 1 ~ s ~ w. By the inclusion-exclusion 
principle, 

L Pr(Dr & D,) ~ (I: Pr(n,)) - e. 
r<• • 

Since Pr(D,) ~ 2rb, there must exist r and s such that 

for T > 362
• 

Thus Pr(Dr & D,) ~ ,,.-1 Pr(6h (11"1,t) h.6). So it suffices to choose i = ir and 
J = i,. ■ 

Lemma 4.8 only locates repeated histories. The following property uses 
repeated histories to relate lines of different sizes. 

Property 4.9: Let 1r1, ... , 1ft be a single initiator sequence of pro­
cesses and let 1 < i < j ~ t. Let h and h • be histories. Let p = 
Pr(6h (1r1,i-1) h* (1r,,,-i) h* (1r,,t) h6). Then Pr(6h (7r1,,-1) h* (1r;,t) h.6) ~ p 

and Pr(h• {11\;-i} h*) ~ p. 
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Proof: Any computation satisfying 6.h {1r1,i-1} h• {1ri,;-1} h• {1r;,t} h6. 
includes disjoint subcomputations satisfying 6.h {1ri,i-1} h•, h• {1ri,;-i} h• 
and h • { 71" ;,,} h6.. Clearly if the total computation is cheap then each piece 
is. Furthermore, histories preceding an initiator must differ from those fol­
lowing an initiator because their first events differ. Therefore the initiator 
cannot be in the segment ,ri • • • 'lr;- 1 and the initiator's history remains the 
same accepting history. ■ 

4.2 Solitude Detection Algorithms 

Let A denote the set of all probabilistic processes. A distributed probabilistic 
algorithm is normally specified by assigning a fixed initiating process from 
A to all contenders and a fixed non-initiating process to all non-contenders. 
(Certainly all of the algorithms of Section 3 satisfy this property). It is 
convenient to generalize this notion of a distributed algorithm to permit 
assignments from an arbitrary set of processes. In fact, we define an algorithm 
to be just the set a ~ A available for assignment. 

This generalization gives algorithms both probabilistic and nondeter­
ministic attributes. Like conventional probabilistic algorithms, an algorithm 
is said to solve a problem with probability p if for all possible process as­
signments, the resulting computation reaches the desired conclusion with 
probability at least p. Like conventional nondeterministic algorithms, it is 
said to solve a problem efficiently if for some choice of process assignments 
the resulting computation has low expected cost. 

More formally, let [ a, b] denote an interval of positive integers and let 
R[a,bJ denote the class of all rings of size n where n E [a, b]. If a ~ A is an 
algorithm, we denote by an the set of sequences 7ri, ••• , 7r n where 7ri E o: 

for 1 :S i :S n. ala,bJ denotes Une[a,b] a". o:fa,b] corresponds to the set of all 
assignments of processes in a to processors on rings in the set R[a,b]· 

This paper is concerned with three closely related problems; solitude 
detection, solitude verification and weak solitude verification defined as fol­
lows. 

Solitude Detection. a solves solitude detection with confidence 1- E 

on rings in R1a,bJ if: 

i) For any element of ala,b] containing exactly one initiator, solitude is 
asserted with probability at least 1 - E. 

ii) For any element of afa,b] containing more than one initiator, nonsolitude 
is asserted with probability at least 1 - E. 
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Solitude Verification. a solves solitude verification with confidence 
1 - l on rings in R[a,b] if: 

i) For any element of ala,b] containing exactly one initiator, solitude is 
asserted with probability at least 1 - £. 

ii) For any element of a!a,b) containing more than one initiator, solitude is 
not asserted, with probability at least 1 - l. 

Weak Solitude Verification. a solves weak solitude verification with 
confidence 1 - l on rings in R[a,b] if: 

For any element of a! ",61 containing more than one initiator, soli­
tude is not asserted, with probability at least 1 - l. 

These definitions make it clear that weak solitude verification is a sub­
problem of solitude detection. Lower bounds for weak solitude verification 
imply lower bounds for solitude detection. We recognize that nonsolitude 
can be ascertained with a low expected cost. But the problem we focus on 
is the cost of verifying that with high probability there is only one initiator. 
Therefore the complexity of weak solitude verification is defined to be the 
expected complexity when solitude is correctly asserted. (In the case of algo­
rithms which never correctly assert solitude, the complexity of weak solitude 
verification is undefined.) 

Let a be an algorithm that solves weak solitude verification with con­
fidence 1 - f. a has complexity f(n) on rings of size n if: for every 1r1,n E an 
with exactly one initiator, if solitude is asserted with probability at least 
1 - f, then the expected number of bits communicated by 1r1,n on a ring 
when solitude is asserted is at least f(n). 

The next section provides lower bounds for some versions of weak soli­
tude verification obtained by varying the size of the interval [a, b] which 
describes the class of rings for which an algorithm is required to work. 

5 Lower Bounds 

The following theorems, together with the upper bounds of section 3 com­
pletely characterize (to within a constant factor) the bit complexity of soli­
tude detection with confidence 1 - f for various classes of rings. The lower 
bounds all proceed similarly. We assume that there is some element of a!a,b] 

for which the complexity of weak solitude verification is smaller than the 
desired threshold. Thus there is some sequence 1r1 , ••• , 1rn with a single 
initiator and with n E [a, b] which asserts solitude with high probability and 
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with low expected communication complexity. Lemma 4.5 is used to create 
a line of processes from the ring of processes. If necessary lemma 4.8 and 
property 4.9 are used to collapse this sequence to a shorter one. Lemma 4.6 
or lemma 4. 7 is used to replicate the shorter sequence. The result is a new 
sequence with more than one initiator and size still in [a, b]. But the lemmas 
imply that this sequence erroneously asserts solitude with too high a proba­
bility. Finally property 4.2 or 4.3 is used to conclude that this probability of 
error carries over to computations of the sequence on a ring. Since the new 
sequence is also in ala,b], a contradiction is presented to the requirement of 
weak solitude verification on rings with more than one initiator. 

In the interest of ease of presentation, little effort is made to establish 
strong constants. 

Theorem 5.1: Let a be a distributively terminating algorithm which 
solves weak solitude verification with confidence 1-E on rings in R[i,N]• Then 

the complexity of a on rings of size n E [1,N] is n (nJlog(N/n)) bits for 
1 any E < 2. 

Proof: Let 71" 1 , ••• , 11"n be an element of all,N] with exactly one 
initiator. Suppose 7ri ,n asserts solitude with probability at least 1 - f and 
that the expected cost of computations of 71"1,n that assert solitude is at most 
µn. 

First suppose that µ < ½· Then, with probability greater than ½, 
some processor communicates nothing. But, by the message driven nature 
of computations, it follows that with probability greater than ½ the initia­
tor concludes that it is alone without receiving any communication. Thus, 
for computations of a on rings with two or more initiators, some initiator 
erroneously concludes that it is alone with probability greater than ½· 

Hence we have a linear lower bound, and it suffices to assume that 

lN/nJ ~ 16. Supposeµ< (Jlog(N/n)) /5. By lemma 4.5 there is a cyclic 
permutation Pi,n = 7l"i+1,n 11"1,i of 11"1,n and a history h with 11h11 :$ 4µ such that 
Pr(l:!.h [Pi,n] hl:!.) ~ (1 - E)2- 4µ-I _ Now splice together t = max(l, lhl) :$ 2µ 
copies of Pl,n· Using property 4.1, 

Pr(l:!. t [PLnJ *) > Pr(l:!.' [PLnJ h) 
t-1 

> IT Pr(l:!.t-jh(;) [P1,n] 6t-j-lh(j+1)) 
j=O 

> ( (1 - E)2-.fµ-l)' 

> 2-•t(µ+l) 
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Now splice together k = lN/(nt)J blocks of P1 n• By lemma 4.7 , 
I 

Butµ< (Jlog(N/n)) /5 and t ~ 2µ. Sok= lN/(nt)J > 241(µ+1) if 

µ > ½· Therefore Pr(6tA: [p~~nl *) > 1- ¼ > ½- By property 4.3, P1~n errs with 
probability at least ½· ■ 

Theorem 5.2: Let a be any (even nondistributively terminating) 
algorithm which solves weak solitude verification with confidence 1 - £ on 
rings in R[l,N]· Then the complexity of a on rings of size n E [1,N/2] is 
n ( n log(¼)) bits. 

Proof: Let 1r1, ••. , 7rn be an element of a[1,N/2l with exactly one 
initiator. Suppose 1r1,n asserts solitude with probability at least 1 - £ and 
that the expected cost of computations of 1r1,n that assert solitude is at most 
µn withµ< (log(¼))/16. Since a linear lower bound follows easily, (as in 
theorem 5.1), it suffices to assume£< 1/20. By lemma 4.5 there is a cyclic 
permutation P1,n = 7rH1,n 1r1,, of 1r1,n and a history h with lihll ~ 4µ such that 
Pr(6h [P1,n] h6) ~ (1 - e)2-4µ-l. Consider the sequence Pl,nPI,n formed by 
splicing together two copies of Pl,n· By lemma 4.6 

Pr(66h [P1,nP1,n] h66) > ((1 - e)2-4
µ-

1)2 
> (1 ~ £)2 \h 
> f 

if f < 1/20. 

By property 4.2, p1,nPl,n errs on a ring with probability more than f 

even under nondistributive termination. ■ 

Corollary 5.3: When it is known that n ~ N, and in fact n ~ N /2, 

the expected bit complexity of solitude detection is 0(nJlog(~) + nlog(¼)), 
when there is in fact a single contender. 

The preceding lower bound holds only when the actual ring size n is 
at most half of the known upper bound N. The next result concerns the 
case when n > N /2. Although theorem 5.4 holds when it is known that 
cN ~ n ~ N for any c < 1, it is stated and proved for the case when 
3N/4 ~ n ~ N. 
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Theorem 5.4: Let a be any (even nondistributively terminating) 
algorithm which solves weak solitude verification with confidence 1 - e on 
rings in R[sN/•,NJ• Then the complexity of a on rings of size n E [3N/4,N] 
is n (nmin(loglog(¼),logN)) bits. 

Proof: Since the theorem is trivially true for moderately sized N and 
1 / e, assume that N is very large and f is very small. Let ,r1, .•• , ,r n be an 
element of alSN/4,N) with exactly ·one initiator. Suppose 1r1,n asserts solitude 
with probability at least 1- E and that the expected cost of computations of 
1r1,n that assert solitude is at most µn where µ < 1~0 min (log log(¼), log N). 

By lemma 4.5 there is a cyclic permutation P1,n = 1r,+1,n 1r1,i of 1r1,n 

and a history h with jjhjj $ 4µ such that Pr(.6h (Pi,n) h.6) ~ (1 - E)2-4µ-l 

where the cheapness threshold is x = 2µn. The sequence Pi,n is collapsed 
by repeated application of lemma 4.8 and property 4.9. Let ,,- = l 297" J and 
c = l: J. Since µ < 1~0 log N it is easily seen that u > 1 for large N and 
that the conditions of lemma 4.8 are satisfied for any t > N /2. During each 
collapsing step, a segment of length less than ru $ N /8 is removed, so it is 
assured that a new sequence z of length m E [3N /8, N /2] can be achieved. 
Since at least u is removed at each step, in the worst case no more than 
N / (2u) applications are required. Therefore 

Pr(.6h (z) h.6) ~ ,,--N/( 2a)(1 - e)2- 4µ-l 

A single replication results in the sequence zz of length 2m E [ 3N / 4, N]. By 
lemma 4.6, 

Pr(.6.6.h [zz] h.6..6.) > (,,--N/(2al(1 - e)2-•,,-1)2 
> (.,--8T2-4(u+1))2 
> f 

because µ < 1~0 log log(¼). 
By property 4.2, zz errs on a ring with probability more than E even 

under nondistributive termination. ■ 

Lemma 4.8 also provides the tool to show that the log(}) term in the 
complexity of the algorithm for all n between ( ½ + p)N and N where p > 0 
is really necessary. 

Theorem 6.5: Let a be any (even nondistributively terminating) al­
gorithm which solves weak solitude verification with confidence 1-Eon rings 
in R[(½+p)N,N) where p > 0 and (½ + p)N is an integer. Then the complexity 

of a on a ring of size n = (½ + p)N is O (nmin(log(}),log(¼),logN)) bits. 
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Proof: The theorem is true for N, p, and E of moderate size so assume 
that N is very large and that both p and E are very small. In particular, 
assume M = l min(log(¼) , log(¼) , log N) j ~ 32. Let 1r1 , ••• , 11"n be an element 

of a(½+p)N with exactly one init iator . Suppose ,r1,n asserts solitude with 
probability at least 1 - E and that the expected cost of computations of 1r1,n 

that assert solitude is at most µn where µ < M/145. 
By lemma 4.5 there is a cyclic permutation Pi,n = 7r;+i,n 1r1,i of 11"1,n and 

a history h with 11h11 s 4µ such that Pr(L"i.h (Pi,n) h.6.) ~ {1- E)2-41-1-l where 
the cheapness threshold is 2µn . The sequence p1,n is first collapsed by using 
just one application of lemma 4.8 and property 4.9. Let u = l2f_ij and 

r = 2M/3, Then u ~ pN and ro < N/4 so with one collapsing operation the 
resulting sequence z will have length m well within [ (¼ + f) N, N/2]. The 
preconditions for lemma 4.8 are easily checked. Therefore 

Pr(6h (z) h6) > r- 1 (1 - E)T4
"'-

1 

> f-12-4(µ+1) 

A single replication results in the sequence zz of length 2m E [ ( ½ + p) N, NJ. 

By lemma 4.6, Pr(66h [zz) h66) > (r- 1 2 -◄ ( u+1))2. But 

log (r- 12-4(u+1lf
2 

2 logr + 8µ + 8 

2 8 
< 3M+ 145M+ 8 

1 
< log(-) 

E 

since Ms log(~). Therefore Pr(66h [zz] h66) > E. 

By property 4.2, zz errs on a ring with probability more than E even 
under nondistributive termination. ■ 

Corollary 5.6: When it is known that (½ + p)N s n s N, the 
expected bit complexity of solitude detection is 0(nmin(loglog(¼),logN) + 
nmiu(log(}),log(¼),logN)) when there is in fact a single contender. 

6 One-sided Versus Two-sided Error 

The preceding lower bounds hold for solitude verification algorithms that 
allow the probability of error to be at most E either when there is one or 
more than one contender. A natural generalization might permit probability 
of error at most 6 when there is one contender and probability of error at most 

24 



E when there is more than one contender. The upper bounds, on the other 
hand, have only one-sided error, since, when there is only one contender, they 
assert solitude with probability one. It turns out that the different versions 
of error tolerance are closely related. We demonstrate the relationship for 
nondistributively terminating algorithms. A similar, and simpler, approach 
works for distributive termination. 

Let a be a nondistributively terminating (nondeterministic) probabilis­
tic algorithm for solitude detection, with two-sided error ( E, 6). Let {3 be a 
similar algorithm with one-sided error E. Consider the following algorithm 
7: 

1. All contenders flip a coin at random and send the result to the next 
contender. 

2. Contenders which receive a different bit from that sent send an alarm. 
(Receipt of an alarm forces the decision "not alone".) 

3. Contenders which receive the same bit as was sent initiate algorithm 
a. (Note: we only need to worry about the case when all contenders 
initiate a.) 

4. If a contender enters, even tentatively, the state "not alone" then it 
sends a sweepup message after possibly sending its tentatively last mes­
sage. 

5. Sweepup messages get forwarded by non-contenders. 

6. If a contender receives a sweepup message without having sent one, it 
sends an alarm. 

7. If a contender receives a sweepup message without having received 
anything else since it sent one, it initiates algorithm {3. (Again we need 
only worry about the case where all processors initiate algorithm /3.) 

8. Assuming no alarms, the result of algorithm /3 is the result of the entire 
algorithm. 

Complexity. First, consider the case of a single contender. Suppose 
that a costs / expected bits and /3 costs g expected bits on a particular ring 
with one contender. Steps 1, 3 and (4,5) cost a total of/+ O(n) bits, since 
each processor sends at most one sweepup message. The lone contender will 
start algorithm f3 only if the sweepup message travels all the way around the 
ring, without any more messages arriving at the contender. So {3 is started 
only if a terminates with the contender erroneously concluding that it is not 
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alone, which happens with probability at most 6. The expected cost of step 
7 is thus 6g. 

Algorithm --, has lower expected complexity than algorithm /3 unless 
f + og + O(n) :2:: g. That is, / :2:: (1 - c5)g - O(n). 

When there are two or more contenders, the expected complexity can 
be made O(n) by interleaving coin tosses with the regular messages, which 
only doubles the cost when there is a single contender. 

Error analysis. It is clear that a lone contender cannot err, since al­
gorithm--, only concludes "not alone" when algorithm /3 does so. So consider 
the case of two or more contenders. With probability :2:: ½, some contender 
sends an alarm at step 2. So the probability that --, proceeds to step 4 with­
out any alarms is S ½· With probability S £ algorithm a answers "alone", 
and algorithm I halts in error. With probability s £, algorithm a concludes 
"not alone", and /3 answers "alone". Thus Pr(error) s ½(E + E). 

If follows from the complexity analysis that if we have a lower bound of 
0(/(n, E)) on nondistributively terminating algorithms for solitude detection 
(or verification) with one-sided error E, then we have an 0((1 - o)(f(n, E)) 
lower bound for nondistributively terminating algorithms for solitude detec­
tion ( or verification) with two-sided error ( E, 6). As remarked earlier, the 
same holds if nondistributive termination is replaced by distributive termi­
nation. 

Note that the converse also holds. If we have an 0(/(n, E)) bit algo­
rithm a for solitude detection with one-sided error f and with either type of 
termination, then we can construct an O(n + (1 - 6)(/ (n, E)) bit algorithm 
for solitude detection with two-sided error ( f, 6) and the corresponding type 
of termination. Each contender simply, with probability 6, sends an alarm 
forcing the conclusion "not alone". Otherwise, it runs algorithm a. 

7 Conclusions 

We have presented upper and lower bounds that match to within a constant 
factor for the bit complexity of solitude detection on various classes of rings. 
The type and complexity of the solution were found to depend not only 
upon the amount of error that could be tolerated, but also upon the a.mount 
of knowledge of the ring size which the algorithm could assume. Without 
any knowledge of ring size, only nondistributive termination is possible for 
solitude detection. When size is bounded, distributive termination is possi­
ble. And when ring size is known to within a constant factor, there is no 
additional cost for insisting on distributive termination over nondistributive 
termination. 
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This contrasts with the case when an algorithm need only work for one 
fixed ring size. This situation is explored in a companion paper [2] in which 
the following is proved. Let v( n) be the smallest nondivisor or n. The inher­
ent complexity of distributively terminating solutions for solitude detection 

with confidence 1- £ is 0(n min(logv(n) + Jlog log(¼), Jlog n, loglog(¼))) 
expected bits when n is known exactly. This complexity reduces to 
E>(n min(log v(n)+log log log(¼), log log n, log log(¼))) expected bits for nondis­
tributively terminating solitude detection with confidence 1 - £. 

When no error can be tolerated, these results simplify to E>(nJlogn) 
bits for distributive termination and 0(nloglogn) bits for nondistributive 
termination with exact knowledge of ring size. 

Solitude detection is related to some other well studied problems. As 
pointed out in the introduction, solitude detection reduces to leader election 
in O(n) bits. For distributively terminating algorithms, the reductions are 
natural ones. Reductions for nondistributively terminating algorithms are 
more subtle and can be found in [2]. Algorithms for leader election can be 
constructed from the solitude detection algorithms described here together 
with an attrition algorithm. A discussion of the various resulting leader 
election algorithms appears in [3]. The same paper comments on the relation 
between solitude detection and the "n-finding" problem - the problem of 
determining the size of the ring. 
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