
Probabilistic Solitude Detection I:
Ring Size Known Approximately**

Karl Abrahamson*
Andrew Adlert
Lisa Higham*

David Kirkpatrick*

Technical Report 87-8
March 1987

*Department of Computer Science
tDepartment of Mathematics

* * A preliminary version of this paper appeared in the Proceedings of the
Fifth ACM Symposium on Principles of Distributed Computing. This
research was supported in part by the Natural Sciences and Engineering
Research Council of Canada and the Killam Foundation.

;-

Abstract
Matching upper and lower bounds for the bit complexity of a prob­

lem on asynchronous unidirectional rings are established, assuming that
algorithms must reach a correct conclusion with probability 1 - i, for
some £ > 0. Processors can have identities, but the identities are not
necessarily distinct. The problem is that of a distinguished proces­
sor determining whether it is the only distinguished processor. The
complexity depends on the processors' knowledge of the size n of the
ring . When no upper bound is known, only nondistributive termi­
nation is possible, and 0(n log(¼)) bits are necessary and sufficient.
When only an upper. bound N is known, distributive termination is
possible, but the complexity of achieving distributive termination is

0{nJlog(~) +nlog(¼)), When processors know that (½+p)N $ n $

N for p > 0, then the bound drops to 0(nloglog(¼) + nlog(¼)), for
both distributive and nondistributive termination, for sufficiently large
N.

1 Introduction

An asynchronous unidirectional ring of processors is one of the simplest of
network topologies. Nonetheless, rings exhibit features which can be ex­
pected to show up in many topologies. Consequently, rings serve as a suitable
test-bed for studies in distributed computing.

Numerous studies in distributed computing have made it clear that,
in general, the complexity, or indeed the solvability, of a distributed prob­
lem depends on features of the processors and on the nature of the desired
solution. Features which are relevant to an asynchronous ring are:

Knowledge. What does each processor know about the size of the
ring? Do processors have identities? To what extent can an algorithm exploit
identities?

Type of algorithm. Is the desired algorithm deterministic, random­
ized (always correct) or probabilistic {correct with probability 1 - E)?

Type of termination. Must the algorithm terminate distributively,
or is nondistributive termination acceptable? An algorithm terminates dis­
tributively if each processor, upon reaching a conclusion, will not subse­
quently revoke its conclusion on receipt of further messages. (Nondistribu­
tively terminating algorithms are rarely admitted in the literature. Reasons
for considering them here will become apparent.)

This paper is one of a series of three papers (see [1,2]) addressing the
question of how the above features affect the bit complexity, that is, the total
number of bits transmitted, of a fundamental problem, solitude detection, on

1

asynchronous unidirectional rings. Taken together, the three papers give a
fairly complete answer. The bit complexity of solitude detection exhibits
a surprisingly rich dependence on features of the ring and the nature of
algorithms, but not so rich that analysis is intractable.

The solitude detection problem is as follows. A nonempty set of prer
cessors, called contenders, are distinguished. Each processor must determine
whether or not there is exactly one contender.

In this paper, we are primarily concerned with vel"Sions of solitude
detection which cannot be solved with certainty, but which can be solved
probabilistically, with arbitrarily small positive probability of error.

One of a few recognized fundamental problems on rings is that of elect­
ing a leader. It was pointed out in [5], and later expanded upon in [1], that
leader election is composed of two more fundamental problems: attrition
and solitude verification. The attrition problem is that of reducing a set of
contenders to ju.st one contender. Solitude verification is a weak form of soli­
tude detection; a solitary contender must verify that it is the only contender.
When there are two or more contenders, solitude verification requires only
that no contender concludes that it is the only contender.

Attrition, solitude verification and solitude detection all reduce to leader
election in O(n) bits, where n is the size of the ring. Thus our lower bounds
for solitude verification imply corresponding lower bounds for leader election.

Deterministic [4,8,7] and randomized [1,5] solutions to leader election
and solitude detection in unidirectional rings have been considered elsewhere.
Pachl [6] shows that probabilistic algorithms are not significantly better than
deterministic algorithms for the closely related problem of maximum finding
when processors have distinct identities.

However, for solitude verification, probabilistic algorithms can be more
powerful than deterministic algorithms. We establish complementary upper
and lower bounds on the bit complexity of probabilistic solitude detection in
two situations where processors do not necessarily have distinct identities,
and an error-free solution is impossible. The two situations are (1) each
processor knows an upper bound on the size of the ring, and termination is
distributive, and (2) each processor knows nothing about the size of the ring,
and termination is nondistributive.

In addition, we consider one situation where solution with certainty is
possible, but admitting error can decrease the complexity significantly. That
is the situation in which each processor knows a quantity N such that the
ring size n lies in the range (1/2 + p)N ~ n ~ N, where p > 0.

Section 2 summarizes the results of this paper. Results of the two com-

2

panion papers are described in Section 7. Section 3 contains descriptions and
correctness proofs of some solitude detection algorithms, assuming various
properties of the ring. The corresponding lower bounds are proved in Section
5, using a model described in Section 4. An additional section (section 6)
compares two types of error tolerance in order to enhance the generality of
the lower bounds.

2 Overview of Results

A solitude detection algorithm runs on a ring of processors of two kinds:
contenders and non-contenders. There is guaranteed to be at least one con­
tender. The problem is to determine whether or not there is exactly one
contender. It is presumed without loss of generality that only contenders
may send a message without first receiving one.

There are some important differences between the algorithms with
which we establish upper bounds and the model of computation to which
our lower bounds apply.

Our algorithms assume that processors of each kind (contenders and
non-contenders) are indistinguishable from one another. Each processor of a
given type runs the same probabilistic process. On the other hand, our lower
bounds apply when processors can have arbitrary identities, or equivalently,
when each processor might run a different probabilistic process. Algorithms
may rely on identities for achieving efficiency. The crucial requirement is
that identities are not guaranteed to be distinct. Specifically, algorithms
must not rely on either the distinctness or the distribution of identities for
their correc.tness. This generality in the lower bounds is a result of a nonde­
terministic attribute of the model for which the lower bounds hold. A more
extensive discussion of the implications of the nondeterministic aspects of
the model appears in the conclusions of a related paper, [2].

Our algorithms make errors on one side only. If there is only one
contender, then with probability one, our algorithms cause that contender
to reach the conclusion "alone". If there are two or more contenders, then
with probability at least 1 - f every processor reaches the conclusion "not
alone". Our lower bounds permit two-sided error of at most E on each side.
Although the error tolerance is the same for both the "alone" and "not alone"
cases, even this is not an essential restriction. The extension to tolerance of
6 error when there is one contender, and tolerance off error when there are
more than one contender, is presented in section 6.

Our algorithms all solve solitude detection. In fact, when there are two
or more contenders, the algorithms send only O(n) expected bits. But our

3

lower bounds apply to a weaker problem which we call weak solitude verifi­
cation. Specifically, the lower bounds apply to the expected bit complexity
of an algorithm applied to any configuration where there is one contender,
regardless of the complexity when there are two or more contenders, or of
the complexity of other configurations with one contender. An algorithm can
loop forever or deadlock for some rings of processors, and our lower bounds
still apply. Thus the lower bounds preclude the existence of an algorithm
which is very efficient on some ring with one contender in which processors
are labelled in a particular way, while still tolerating error of at most f on
all rings.

(Examination of our algorithms gives some indication of why the lower
bounds can be so strong. Essentially, a solitude detection algorithm runs
until it has run "long enough" without detecting non-solitude. Moreover,
non-solitude is usually detected with few bits, when there are two or more
contenders. So it is pointless for an algorithm to fail to detect non-solitude,
and it gives nothing away to permit such behaviour.)

All complexity bounds stated below apply when there is one contender.

Without distinct identities, no algorithm can distinguish with certainty
between a ring of size n containing one contender and a ring of size 2n
containing 2 contenders directly opposite each other. Consequently, no al­
gorithm can solve solitude verification with certainty, even if all processors
know that N ~ n ~ 2N. Furthermore, for any possible communication
history, h, of one processor on a ring R of size n with one contender, it is
possible, by splicing together enough copies of R, to form a ring R' with sev­
eral contenders in which the probability that more than one processor has a
history of which h is an initial segment is arbitrarily close to one. Therefore,
without any knowledge about ring size, it is impossible for a processor to
halt and declare its solitude with any degree of certainty. This implies that
when processors have no knowledge of ring size, there can be no distribu­
tively terminating algorithm a for solitude detection even if a is allowed to
give the wrong answer with arbitrarily high preassigned probability less than
one.

Solitude detection can be solved probabilistically with nondistribu­
tive termination even if nothing is known about the ring size. A simple
nondistributively terminating probabilistic algorithm for solitude detection
(cf. Theorem 3.1) achieves probability of correctness at least 1 - f by ex­
changing a total of O(nlog(¼)) bits. A matching lower bound (Theorem
5.2) shows that O(n log(¼)) bits are required to solve solitude detection with
probability 1 - f of correctness, with nondistributive termination.

If processors know that ring size n is at most N, there is a distribu-

4

tively terminating probabilistic solitude detection algorithm with expected
bit complexity O(nJlog(~) +nlog(¼)) (Theorem 3.4). That algorithm uses
as a subroutine another algorithm that solves solitude detection with prob­
ability at least 1 - £ of correctness using 0(nJ log C + n log(¼)) bits, where
C is an upper bound on the number of contenders (Theorem 3.2).

There is a matching lower bound (Theorems 5.1 and 5.2) of O(nJlog(~) +
n log(¼)) when an upper bound N on ring size is known and n :::; N /2. The
lower bound applies to expected case.

The proof of the latter lower bound depends upon a doubling argument
and therefore does not hold when n > N /2. In fact, there is a distributively
terminating solitude detection algorithm which is correct, with probability at
least 1 - £, for all rings of size n:::; N, and which sends only O(nlog log(¼)+
n log(;)) expected bits when n ~ (½+p)N, for any fixed p > 0 (Theorem 3.7).
For sufficiently large N, a matching lower bound of O(n log log(¼)+ n log(}))
is proved (Theorems 5.4 and 5.5), for algorithms which know that (½ + p)N :::;
n :::; N, for fixed O < p < ½- The restriction to sufficiently large N is
necessary, since, when n is known to lie between N/2+1 and N, it is possible
to solve solitude detection with zero error probability in O(nlogn) bits [1],
and for small N it is possible that n log n < n log log(¼) + n log(}).

To summarize qualitatively, our results show that, although there can
be no distributively terminating solution to solitude detection without some
knowledge about the ring, even a large overestimate of ring size permits
a distributively terminating solution. In addition, the complexity of the
solution is very insensitive to the degree of overestimation.

3 Solitude Detection Algorithms

In the proofs of the following four theorems, algorithms are described which
solve four different versions of probabilistic solitude detection. In all cases,
the size of the ring, denoted by n, is not known exactly by the individual
processors. Each algorithm uses O(n) expected bits when there are two or
more contenders.

Messages travel counter-clockwise around the ring. Say that a processor
receives messages from its left, and sends them to the right.

The simplest case is presented in Theorem 3.1 which assumes only
a unidirectional ring of identical processors with no additional knowledge
about the ring. Specifically, processors cannot assume any upper bound
on the size of the ring. As pointed out in section 2, only nondistributive
termination is possible in this case. In Theorem 3.2, processors are given an

5

upper bound on the number of contenders. Because of this upper bound,
distributive termination can be achieved. For Theorem 3.4, processors are
given an upper bound, N, on the size of the ring. Theorem 3. 7 applies when
processors know that (½ + p)N ~ n ~ N for some p > 0.

Theorem 3.1: There is a nondistributively terminating probabilis­
tic solitude detection algorithm that communicates O(nlog(f)) bits in the
worst case, (O(n) bits in the expected case when there are two or more con­
tenders) verifies solitude with certainty, and erroneously asserts solitude with
probability at most L

Proof: In the basic algorithm, each contender flips an unbiased coin
t = r log(¼)l times , and sends the sequence of t coin tosses to its neighbour.
Non-contenders forward the packages of coin tosses to the next contender. A
contender which receives a sequence different from the one it sent concludes
that it is not alone, and sends an alarm. A contender which receives a
sequence of t flips identical to what it sent concludes that it is alone, but
is willing to change its mind on receipt of an alarm. Alarms are forwarded
until received by a processor which has already sent an alarm.

Clearly, if there is only one contender then after exactly nt bits have
been transmitted the algorithm terminates correctly, though termination
cannot be detected by the processors. Suppose there are two or more con­
tenders. If any contender discovers that it is not alone, then it will send an
alarm and eventually all contenders will be alerted. The algorithm reaches
the wrong conclusion only if all contenders send and receive the same se­
quence of coin tosses. Thus Pr(error) ~ 2-t ~ E.

This algorithm always sends nt bits. A simple modification reduces the
expected cost to O(n) bits when there are two or more contenders. Rather
than sending the coin tosses as a package, alternately send and receive them,
one at a time. As soon as an inconsistency is detected, or an alarm arrives,
send an alarm and abort the algorithm. Then each processor sends 0(1)
expected bits when there are two or more contenders. ■

Now suppose processors are given an upper bound Con the number of
contenders c.

Theorem 3.2: There is a distributively terminating probabilistic soli­
tude detection algorithm that communicates 0(nJ log C + n log(¼)) bits in
the worst case, (0 (n) bi ts in the expected case when there are two or more
contenders) verifies solitude with certainty, and erroneously asserts solitude
with probability at most f..

6

Proof: As in the proof of Theorem 3.1, contenders exchange coin
tosses, alternately sending and receiving one bit at a time. Any contender
which receives a message different from that most recently sent sends an
alarm in place of its next coin toss. This continues until a maximum of
t = r ✓ 2 log C + log (¼) l coin tosses have been sent by each con tender. Con­
tenders which received a sequence oft flips that matched those transmitted
conclude that they are alone. In contrast to the previous algorithm, the
conclusion is irrevocable here.

As before, if there is only one contender then after exactly nt messages
have been transmitted the algorithm terminates correctly. Suppose that the
number of contenders i is at least two. Then, as before, the expected bit
complexity is O(n). We must show that the probability of error is at most l.

A contender is said to be fooled for k flips if its first k outputs match
its first k inputs. Let Q0 , Q1, ... , Qe-l denote the contenders in sequence
around the ring. The algorithm terminates incorrectly if any one of the
contenders is fooled for t flips.

If any one processor, say Q;, is fooled fort flips then it must be the case
that processor Q;-1e is fooled fort - k flips, for 1 ~ k ~ t-1. (Subscripts are
implicitly reduced modulo c). If c ~ t then all of these flips are independent
and hence

Pr(Q; is fooled fort flips)< 2-t
2

/
2

•

On the other hand, if c < t then at least ct/2 of these flips are independent
and hence

Pr(Q; is fooled for t flips) < 2-ct/2 •

In either case, it follows that if t ~ J 2 log C + log (¼) then

Pr(Q; is fooled fort flips) < e/c

and hence,
Pr(some processor is fooled for t flips) < e.

•
Theorem 3.2 at once gives an O(nJlogN +nlog(¼)) upper bound for

solitude detec tion when an upper bound N on the ring size is known by all
processors . This upper bound can be sharpened to O(nJlog(~) +nlog(¼))
by using the following idea. Each contender Q; forms an estimate 9; of the
size of the gap separating Q; from the nearest contender to the left. Then
N/ g,- can be used as an estimated upper bound on the number of contenders.
(Here, each contender makes the bold assumption that all gaps are equal. It
is remarkable that the a lgorithm performs well when the gaps are not at all

7

equal.) This upper bound is then used in an algorithm essentially the same
as the one described in the proof of Theorem 3.2.

The basic gap estimation algorithm proceeds as follows. Let the con­
tenders be Q0 , ••• , Qc-i, counter-clockwise around the ring. Let g; be the
number of processors in the interval [Q,_1, Q;). Gap estimation proceeds
in rounds, starting with round 0. In round t, each passive processor tosses
a coin with success probability min(2t

2
/ N, 1). Each contender Q;- i sends

a message across the gap to its right, informing Q; whether there were any
successes in the gap. If there were no successes, then Q; proceeds to the
next round. If there was a success in the gap to its left in round t, then Q;
sets its estimate 9; = N 2-(t+l)

2
, sends a message indicating the end of the

gap estimation phase, and waits to receive such a message. Such messages
end gap estimation for any processor receiving them, and are forwarded until
they reach a processor which started one. Not all contenders Q; will produce
an estimate §;, but at least one must do so. Any contender which does not
produce an estimate can be sure that it is not alone, so we can ignore such
processors.

Lemma 3.3:

(a) E(§;) :S g,-.

(b) If c = 1 then E(Jlog(N/g0)) = O(Jlog(~)).

(c) If c = 1, the expected number of bits communicated during the

estimation of g0 is O(nJlog(~)).

Proof: (a) Pr(§; = N 2-(t+1)
2

) is easy to bound crudely. If g; coins are
tossed with probability of head 2t

2
/ N, then the probability of at least one

head is at most g; 212
/ N, so

Therefore
00

E(g;) :SL g, 2-(2t+1) < 9;•
t=O

(b) When there is a single con tender, T = ,j log (N / g0) rounds are used
for gap estimation. We bound E(T), the expected stopping time. Suppose
that N 2-k

2 < n < N 2-(k- 1)
2

• The stopping times less than k + 3 give
contribution less than k + 2 to the expectation. It remains to show that the
later stopping times make only a small contribution. But Pr(T = k + 2 +
j) :S Pr(no successes at stage k + 1 + i). This is zero if z(Hi)

2
~ N, and

8

otherwise it is (1 - 2(H;)
2 /N)n. But n > N2-"2, so Pr(T = k + 2 + j) <

exp(-221:;+;
2
). So from k + 3 to the end, the contribution to E(T) is at most

I;~ 1 (k + 2 + j) exp(- 221:;+;
2
), which is 0(1).

(c) This follows easily from the fact that E(T) = O(Jlog(~)). ■

Theorem 3.4:: If an upper bound N on ring size is known by all
processors, there is a probabilistic solitude detection algorithm that com­
municates a mean of O(nJlog(~) + nlog(¼)) bits when there is a single
contender (O(n) bits for two or more contenders), terminates distributively,
verifies solitude with certainty, and erroneously ~serts solitude with proba­
bility at most e.

Proof: Contenders execute the gap estimation algorithm, with a
small modification. Alternating with gap estimation rounds are coin tossing
rounds. In each coin tossing round, each contender sends and receives a coin
toss. If the coin toss received is different from that sent, then the contender
aborts the algorithm, sends an alarm as before, and concludes that it is not
alone. The purpose of the modification is to reduce the complexity when
there are two or more contenders.

If contender Qi obtains gap estimate 9i, it executes the algorithm of
Theorem 3.2, with the number of coin flips t = log(2/e) + K;, where K; =
J2 log(N/fh).

When there is a single contender, on the average O(nJlog(~) +n log(¼))

bits are communicated, since by lemma 3.3(c), O(nJlog(~)) bits on the av­
erage are communicated in the gap estimation phase, and by lemma 3.3(b),

E(Ko) = 0(J log(~)). When there are two or more contenders, each pro­
cessor sends 0(1) bits in the gap estimation phase and 0(1) bits in later
phases. It remains to show that the algorithm erroneously asserts solitude
with probability at most e. This part of the analysis is a more elaborate
version of the analysis in Theorem 3.2.

Let c be the actual number of contenders. For any particular run of
the gap estimation algorithm, let S1 = { j : K; ~ c} and S2 = { j: K; < c }.

Let F; be the probability that the contender Q; is fooled, given that the gap
estimation algorithm has produced particular estimates.

Claim 3.5: If j E S1 , then F; ~ (e/4)c- 1 .

Proof: Since K; ~ c, in order for Q; to be fooled K; + log{2/e)
times, every contender must be fooled at least 1 + log(2/e) times. Hence
F; ~ 2-(c-l)log(4/,) = (e/4)c-1. ■

9

Claim 3.6: If;" E S2 , then F; ::; Eg; /2N, where g; is the gap estimate
produced in that run.

Proof: In order for Q; to be fooled, the K; distinct processors Q;,
Q;-1 , .•• , Q;-K;+l must be fooled a total of

K;

E(Iog(2/E) + k) ~ log(2/E) + K;/2
t=l

times. Hence

■

If Q; does not produce a gap estimate, then Q; is not fooled. Sup­
pose Q; produces an estimate. The probability that Q; is fooled is at most
(E/4)c-l + (E/2N)E(g; I g; < c). But the conditional expectation of g; is
clearly at most E(g;), which by Lemma 3.3(a) is at most g;. So the proba­
bility that Q; is fooled is at most (E/4y-1 + E9;/2N.

Hence the probability that some contender is fooled is at most c(E/4)c- 1+
(E/2N) E; 9;• Since c(E/4)c-l ::; E/2 and E; 9; = n =:; N, the probability that
some contender is fooled is at most E. ■

When n is known to lie between (½ + p)N and N, where p > 0, it is
possible to improve further on the bit complexity of solitude detection; there
is a solitude detection algorithm of expected bit complexity O(n log log(~)+
n log(})) expected bits when there is one contender.

Theorem 3.7: Suppose each processor knows that the ring size n
satisfies (½ + p)N::; n::; N where p > 0. Then there is a solitude detection
algorithm which terminates distributively, has one-sided error probability at
most f and sends O(nloglog(¼) + nlog(})) expected bits when there is a
single contender (O(n) bits when there are two or more contenders).

Proof: We begin by producing an algorithm with two-sided error, and
then show how to eliminate the error on one side.

Let 9; be the distance from the (i - 1)-' to the i'h contender counter­
clockwise around the ring. An obvious algorithm has the J°'h contender obtain
counts c1 = g; and c2 = 9;-1, concluding that it is alone iff c1 = c2 >
N /2. Implemented deterministically, that algorithm uses O (n log n) bits.
The complexity can be reduced by obtaining estimates of the counts. Each
contender starts a counter, which propagates to the next contender. Each
non-contender increments the counter with probability >-../ N, where).. is a

10

chosen constant. Let c1 be the count obtained. Each contender sends c1 to
the next contender, and receives c2 • It concludes that it is alone iff c1 = c2 ~

s.X, where s = 1~e.
We can presume that p is small. Then an appropriate choice of A

is .A = ¼ r fr ln :pl· Since each counter has an expected value less than .A,
the expected bit complexity is O(nlog.X) = O(nloglog(¼) +nlog(})). The
complexity can be reduced to O(n) when there are two or more contenders
by starting the algorithm with a sequence of log log(} log(¼)) coin tosses,
with the usual provisions for alarms. It remains only to bound the error
probabilities.

Claim 3.8: Let p1 be the probability that a sole contender erroneously
concludes that it is not alone. Then p1 ~ f.

Proof: Let r = ½ + p. The quantity s.A is an integer, and we can
presume without loss of generality that r N is also an integer.

A sole contender is fooled if it gets an estimate less than s.A. The
probability of that occurring is maximum for n = rN, so

,>. (rN) (.A)le (.A)rN-k P1<L - 1--
- k=O k N N

The ratio between consecutive terms in the sum is at least r / s = 1
1~

2
/.

So the entire sum is at most 1
~

2e < ¾ times its largest term. Using the

approximations (;) ~ nkekk-k and (1 - ;; rN-lc ~ e-r>. (iv->.r gives

We can presume that N > !f;-, since otherwise an O(n log n) bit algorithm

has the desired complexity, with zero error probability. So (NN_>.)' < ,.(_>. <
1 + e:... But e•-r = 1 - e. + e:... - · • • and ! = 1 + f. - e:... + · • · So 2 2 ()' 2

8' 2 8 , 2 8 •

Pi < m (1 - ~ + · · -f
< f

for sufficiently small p. ■

Claim 3.9: Let p2 be the probability that some contender erroneously
concludes that it is alone. Then p2 ~ L

11

Proof: Say that a contender is almost fooled if c1 + c2 ~ 2s>.. A
contender erroneously concludes that it is alone only if it is almost fooled,
so it suffices to bound the probability that some contender is almost fooled.
That probability is maximized when there are just two contenders, since
changing any one of k ~ 3 contenders to a non-contender can only increase
the probability that some contender is almost fooled. In the case of two
contenders, c1 +c2 is just the total number of non-contenders which increment
a counter. It suffices to consider the case n = N. Then

Now the approximations ,!_>. ~ 1 + e;., e2•-1 = 1 + p + e;.. + • • • and

(
1+ 2/g)l+p 2 1:P = 1 - p + T + • • • gives

P2 <

< E

for sufficiently small p. ■

The algorithm given has two-sided error. Errors when there actually is
a single contender can be eliminated as follows. Run the above algorithm. If
the outcome is "alone", then conclude alone. Otherwise, run the algorithm of
Theorem 3.4, and adopt its conclusion. The modified algorithm does not err
when there is one contender, and has error probability at most 2f when there
are two or more contenders. Moreover, the modified algorithm is correct for
all n ~ N. When n ~ (½+ p)N, and there is in fact one contender, it runs in
O(nloglog(¼) + fnlog(¼)) expected bits. But flog(¼)~½ for E ~ 1/4. The
results of section 5 imply that the modified algorithm is optimal, to within
a constant factor, for n ::s; N/2 and n ~ (½ + p)N, for sufficiently large N. ■

4 A Model for Solitude Detection Algorithms

Our objective is to study the inherent bit complexity of distributed proba­
bilistic algorithms that verify solitude with a high probability of correctness
on unidirectional rings. A distributed algorithm can be viewed as an assign­
ment of processes to processors. So it suffices to model computations as a

12

ring of processes. In order to describe such a computation we first state some
relevant attributes of a process, and deduce useful properties of sequences of
processes. The relationship between algorithms and sequences of processes
is then made precise in order to highlight the generality of the lower bounds
which follow.

4.1 Processes

The following description of a process incorporates two non-restrictive as­
sumptions, namely, that messages are self-delimiting, and that communica­
tion is message driven, with only one message sent in response to receipt of
a message. What follows is a collection of definitions concerning processes
and sequences of processes, then a statement of the relationship between a
line of processes and the same sequence considered as a ring, and finally a
number of tools that allow us to manipulate sequences of processes.

A message is an element of M = {O, 1}• · □. The symbol □ is called the
end of message marker. If mis a message we denote by llmll the length of the
binary encoding of m, including the end marker, using an encoding scheme
in which each symbol { 0, 1, □ } is encoded with two bits. A communication
event is an element of MU {L}. The null event L denotes the absence of
an input or an output message and should be distinguished from the empty
message ' □ '.

Any even length sequence of communication events, C = (ei, e2 , ••• , e2t)
describes a (possible) computation. The subsequence {e1 , e8 , ... f2t-i) is called
the input history of C and subsequence (e2 , e•, ... , e2t) is called the output
history. Computation C is said to be reduced if C does not begin or end
with a pair of null events. The null events are used to ensure that every
input event has an associated output event and vice versa. Since we have
restricted our attention to message driven processes, we can assume that
input histories are elements of L • M"'.

If h E (M U { L}) • is any history we denote by I hi the length of h and
11h11 the cost of h, that is, the sum of the lengths of all encoded messages in
h. Note that the last two bits of the encoded form of h must encode a □.
Hence, the last two bits are redundant, and there are at most 2•- 1 histories
of cost at most i.

A (probabilistic) process, 1r, is modelled by an assignment of probabil­
ities to reduced computations. Specifically, for each element x E M*, the
set of all reduced computations with input history L tx, for t ~ 0, form a
probability space. We denote by h { 1r} h' the event that process 7r produces
a computation with output history h', given that it has input history h.

13

On occasion we need to deal with unreduced computations. The no­
tation is extended, by assigning identical probabilities to each of the events
h { 11-} h', 6h { 7r} 6h' and h.6 { 1r} h' 6, since those events are indistinguish­
able.

If his a history let h(i) denote the length i prefix of h. By the sequential
nature of communication, we have,

Property 4.1: For all histories hand h' and all i ~ I, Pr(h {1r} h') s
Pr(h(i) {,r} h(i))·

We say that process ,r is at-initiator fort~ I if EheW Pr(.6' {,r} h) >
0. All other processes are non-initiators. An initiator (i.e. a t-initiator for
some t ~ 1) is just a process which has nonzero probability of sending at
least one message before it receives one. If 7r is a I-initiator and ,r is not
a t-initiator for any t ~ 2 then ,r is a single initiator. We assume that the
contenders in any ring are just single initiators and all other processes are
non-initiators.

If 1r1 and ,r2 are processes then their composition, denoted 1r1 1r2 , is the
process 1r satisfying

Pr(h{1r}h') = I::Pr(h{7r1}h") • Pr(h11 {1r2}h').
h"

Thus, 11"1 1r2 is obtained by identifying the output of 1r1 with the input of 1r2 •

If exactly one of ,r1 and 11"2 are single initiators then so is ,r, The statement
1r1 ,r2 contains exactly one initiator is used informally to mean that 1r1 1r2 is
a single initiator.

If 1r1 , .•• , 1rt is a sequence of processes, let 1ri,; denote the composition
1ri · · · 1r;, for 1 S i S ;· s t. It is convenient to view a sequences of processes
1r1 , •.. , 1rt as a single process, namely the composition 1r1,t, By abuse of
notation, a sequence is frequently identified with its composition. The real
difference between the two is that, although 1r1,t is a single process, with
communication cost assigned only to its input and its output, the sequence
1r1 , ..• , 'll't has communication cost assigned to each link from '1ri to '1ri+i, for
1 Si< t.

The notion of a computation can be extended to sequences of processes.
A sequence h0 , ••• , h, of histories describes a computation of the process
line 1r1,, which is equivalent to the conjunction of the independent events
hi {,rH1} hi+l, for OS i -< t, in the appropriate product space. The cost of
such a computation is given by E!=i llhill- Note that ho does not contribute
to the cost. If 1r1, ••• , 1rt are processes (or sequences of processes), let
h 0 {1r1} h1 · · · {1ri}h1 denote the event described by sequence ho, ... , ht,

14

We distinguish a subset M 0 ~ M called accepting messages, and a sub­
set M,. ~ M called rejecting messages. A history is an accepting history
(respectively, rejecting history) if and only if its last message is an accept­
ing message (respectively, rejecting message). A computation h0 , ••• , ht of
1r1 , ... , 11"t asserts solitude if any history h1 where 7r1 is an initiator, is an
accepting history, and asserts non-solitude if each of the h1 is a rejecting
history. A process ,r is said to terminate distributively if 1r never outputs an­
other message after having output an accepting message. The obvious bias
in these definitions reflects the fact that we are addressing the complexity of
an algorithm when there is one initiator. The definitions given here lead to
slightly stronger results than the obvious unbiased ones would.

The preceding definitions allow us to study the behaviour of a sequence
of processes on a line as a function of the behaviours of the individual pro­
cesses. Our objective, however, is to study the behaviour of processes on
a ring. Informally, process 1r is on a ring if its output is fed back into its
input. Fortunately, the essential properties of process rings are reflected by
properties of associated process lines. The mapping from lines back to rings
is characterized by two properties - one for distributively terminating and
one for nondistributively terminating sequences. Let h [1r] * denote the event
that given input h the computation of 1r asserts solitude. The event h [1r] h'
denotes the conjunction of the events h { 1r} h' and h [1r] *·

Property 4.2: Let 1r be any process. If Pr(.6'h [1r] h.6') = p for some
t 2:'.: 1, then with probability at least p, computations of 1r on a ring assert
solitude.

Property 4.3: Let 1r and 1r' be any distributively terminating pro­
cesses. If Pr(.61 [1r] *) = p then, with probability at least p computations of
1r' 1r on a ring assert solitude.

The placement of nulls in Property 4.2 is important. For example, it is
quite possible that, when given input history h, process 1r produces output
history h with positive probability, that is, Pr(h{1r}h) > 0. But when 1r's

output is fed back into its input, ,r produces no messages; 11' is deadlocked,
waiting for itself.

Property 4.2 is used to draw conclusions about nondistributively ter­
minating processes on a ring. History h appears in both the input and the
output of 1r but shifted by t messages. This allows the individual messages
of h to be fed back into ,r as input as soon as they are produced as output.
Therefore none of the processes in 7r can distinguish between computations
on a line with input 6 'h which produce output ht:::,t and computations on

15

a ring in which each process makes the corresponding probabilistic choices.
Property 4.3 is used for conclusions that require the assumption of distribu­
tive termination. Suppose sequence ,r asserts solitude with probability p

without any input. Then, when ,r is a segment of a ring, with probability
at least p there is some initiator in ,r with an accepting message in its out­
put history. The distributive termination assumption then ensures that the
entire ring asserts solitude.

The next property serves a complementary role to the previous two
properties. It produces computations on lines from computations on rings.

Property 4,4: Let ,r = 7ri, ••• , ?rt be a single initiator process se­
quence. Suppose that with probability p computations of ,r on a ring as­
sert solitude and some fixed process ,ri has a fixed output history h. Then
Pr(6h [1ri+l,h 1r1,i] h6) = p.

A sequence 1r1 ,c of processes is said to assert solitude (respectively, non­
solitude) on a ring with probability p if computations of 1r1,t on a ring assert
solitude (respectively, non-solitude) with probability p.

Let x be a number (which will be given a specific value whenever neces­
sary) called the cheapness threshold. A computation of an arbitrary sequence
of processes is said to be cheap if it has total cost at most X· Let h (1r1 ,c) *
denote the event h [1r 1 ,c] * & A, where A is the event that the computation of
processor sequence 1r1,t with input history his cheap. Leth (1r1 ,c) h' denote the
conjunction of the events h (1r1,c) * and h {1r} h'. Similarly, h0 (1r1) h1 • • • (1rc) ht
denotes the event ho (1r1,c) * & ho {1r1} h1 · · · {1rc} ht.

The following lemma shows that if the expected cost of computations
of a single initiator sequence 1r1,c on a ring is bounded, then inexpensive com­
putations of the form 6h {Pi,t} h6 occur with reasonably high probability,
where Pi,t is some cyclic permutation of 1r1,t and h is some fixed element of
M".

Lemma 4.5: Let 1r1, ••• , 7rc be any single initiator process sequence.
Suppose that 1r1,t asserts solitude on a ring with probability at least 1 -
£. Suppose also that the expected cost of computations of 1r1,t that assert
solitude is at most µ,t bits. Then there exists an integer i, where 1 $ i $ t,
and a history h with 11h11 $ 4µ, such that

Pr(6h (1rH1,t 1r1,i) h6) ~ (1 - e)2-(4
µ+1)

where the cheapness threshold x has the value 2µt.

16

Proof: Since the expected cost of accepting computations is at most
µt, the probability that an arbitrary computation of 1r1,, asserts solitude and
communicates fewer than 2µt bits is at least (1- £)/2.

Let ei denote the expected number of bits in the output history of
process 11"i, over all accepting computations of ,r1,t with costs at most 2µt
bits. For some i, e, :$ 2µ, and hence with probability at least (1- £) / 4, 1r, has
an output history with no more than 4µ bits and the entire computation has
cost at most 2µt and the computation asserts solitude. But there are fewer
than 2•µ-l distinct histories with at most 4µ bits and hence, with probability
at least (1- £)2-(•µ+1), 1r, outputs some fixed history h, where 11h11 :$ 4µ and
the entire accepting computation has cost at most 2µt. Thus, using Property
4.4 and conditioning over cheap computations, Pr(6.h (1rH1,, 1r1,i) h6.) ~ (l­
£)2-(•µ+1) where x = 2µt. ■

A process sequence 1r can be replicated to form the new sequence 1rk

consisting of the concatenation of k copies of 1r. The following two lemmas
express the probability that 1rk asserts solitude as a function of the proba­
bility that 1r does. The proofs of both lemmas follow from applications of
elementary probability theory, and are therefore omitted.

Lemma 4.6: If Pr(6.h [1r] h6) = p then Pr(6.kh [1rk] h6.k) ~ pk.

Lemma 4.7: If Pr(6t [1r] *) = p then Pr(6'k [1rk] *) ~ 1- (1- p)k.

At the heart of our lower bound proofs is the observation that a se­
quence of histories of sufficiently small total cost must contain the same
history twice. The following lemma refines that observation to a proba­
bilistic setting, and provides information about the separation between the
repetitions.

Lemma 4.8: Let 1r1,, be any single initiator sequence of processes.
Let a and r be positive integers satisfying

(a) r ~ 362 ,

(b) 24x < tlogr, and

(c) t > ra.

Let h be any element of M". Then there exist integers i and ;' where 1 <
i < J0

:$ t and a history h • such that

i) a :$;' - i < ra and

17

Proof: Suppose without loss of generality that € = Pr(b.h (11"1,t) hb.) >
0. For 1 ~ i < t, let ei be the expected cost of the output history of
,ri, conditional on b.h (11"1,t) hi::::,.. That is, ei = (1/ €) Eh; II hill · Pr(b.h (1r1,i)
hi (11"i+1,t) hb.). Let o = log r.

If e, < o/8, say that link i is cheap. If 11h11 < o/4, say that history
h is short. Suppose that link i is cheap and let h; be the short history
which maximizes Pr(b.h (1r1,i) h; (1ri+1,t) hb.). Each history has either one
!:::,. at its start or one !:::,. at its end, which is not included in its encoding.
Therefore there are fewer than 26/ 4 = ,,-1/• short histories. It follows that
Pr(b.h (11"1,,) h; (1r,+1,i) h6) ~ ~' since otherwise e, > (8/4)(1 - 2'";;;,) =
6 /8, contradicting the cheapness of link i.

For 1 ~ j < t - (r - l)u, let B; = {j + ku : 0 ~ k < r}. Choose a j
such that at least 1/3 of the r members of B; are cheap links. Such a j must
exist, since otherwise at least 2/3 of at least rul(t - 1)/ruJ ~ t/2 links are
not cheap, contradicting the assumption that E:=1 e, ~ x < to /24.

Again, because there are at most ,,- 1/ 4 short histories, at least w =
f ,,.3/

4 /31 of the cheap members k of B, have identical h;. Let i1 , ••• , iw be
w such members, and let h• denote the common history. Let D 6 denote the
event 6h (1r1,,.-i) h• (1r,.,t) h6, for 1 ~ s ~ w. By the inclusion-exclusion
principle,

L Pr(Dr & D,) ~ (I: Pr(n,)) - e.
r<• •

Since Pr(D,) ~ 2rb, there must exist r and s such that

for T > 362
•

Thus Pr(Dr & D,) ~ ,,.-1 Pr(6h (11"1,t) h.6). So it suffices to choose i = ir and
J = i,. ■

Lemma 4.8 only locates repeated histories. The following property uses
repeated histories to relate lines of different sizes.

Property 4.9: Let 1r1, ... , 1ft be a single initiator sequence of pro­
cesses and let 1 < i < j ~ t. Let h and h • be histories. Let p =
Pr(6h (1r1,i-1) h* (1r,,,-i) h* (1r,,t) h6). Then Pr(6h (7r1,,-1) h* (1r;,t) h.6) ~ p

and Pr(h• {11\;-i} h*) ~ p.

18

Proof: Any computation satisfying 6.h {1r1,i-1} h• {1ri,;-1} h• {1r;,t} h6.
includes disjoint subcomputations satisfying 6.h {1ri,i-1} h•, h• {1ri,;-i} h•
and h • { 71" ;,,} h6.. Clearly if the total computation is cheap then each piece
is. Furthermore, histories preceding an initiator must differ from those fol­
lowing an initiator because their first events differ. Therefore the initiator
cannot be in the segment ,ri • • • 'lr;- 1 and the initiator's history remains the
same accepting history. ■

4.2 Solitude Detection Algorithms

Let A denote the set of all probabilistic processes. A distributed probabilistic
algorithm is normally specified by assigning a fixed initiating process from
A to all contenders and a fixed non-initiating process to all non-contenders.
(Certainly all of the algorithms of Section 3 satisfy this property). It is
convenient to generalize this notion of a distributed algorithm to permit
assignments from an arbitrary set of processes. In fact, we define an algorithm
to be just the set a ~ A available for assignment.

This generalization gives algorithms both probabilistic and nondeter­
ministic attributes. Like conventional probabilistic algorithms, an algorithm
is said to solve a problem with probability p if for all possible process as­
signments, the resulting computation reaches the desired conclusion with
probability at least p. Like conventional nondeterministic algorithms, it is
said to solve a problem efficiently if for some choice of process assignments
the resulting computation has low expected cost.

More formally, let [a, b] denote an interval of positive integers and let
R[a,bJ denote the class of all rings of size n where n E [a, b]. If a ~ A is an
algorithm, we denote by an the set of sequences 7ri, ••• , 7r n where 7ri E o:

for 1 :S i :S n. ala,bJ denotes Une[a,b] a". o:fa,b] corresponds to the set of all
assignments of processes in a to processors on rings in the set R[a,b]·

This paper is concerned with three closely related problems; solitude
detection, solitude verification and weak solitude verification defined as fol­
lows.

Solitude Detection. a solves solitude detection with confidence 1- E

on rings in R1a,bJ if:

i) For any element of ala,b] containing exactly one initiator, solitude is
asserted with probability at least 1 - E.

ii) For any element of afa,b] containing more than one initiator, nonsolitude
is asserted with probability at least 1 - E.

19

Solitude Verification. a solves solitude verification with confidence
1 - l on rings in R[a,b] if:

i) For any element of ala,b] containing exactly one initiator, solitude is
asserted with probability at least 1 - £.

ii) For any element of a!a,b) containing more than one initiator, solitude is
not asserted, with probability at least 1 - l.

Weak Solitude Verification. a solves weak solitude verification with
confidence 1 - l on rings in R[a,b] if:

For any element of a! ",61 containing more than one initiator, soli­
tude is not asserted, with probability at least 1 - l.

These definitions make it clear that weak solitude verification is a sub­
problem of solitude detection. Lower bounds for weak solitude verification
imply lower bounds for solitude detection. We recognize that nonsolitude
can be ascertained with a low expected cost. But the problem we focus on
is the cost of verifying that with high probability there is only one initiator.
Therefore the complexity of weak solitude verification is defined to be the
expected complexity when solitude is correctly asserted. (In the case of algo­
rithms which never correctly assert solitude, the complexity of weak solitude
verification is undefined.)

Let a be an algorithm that solves weak solitude verification with con­
fidence 1 - f. a has complexity f(n) on rings of size n if: for every 1r1,n E an
with exactly one initiator, if solitude is asserted with probability at least
1 - f, then the expected number of bits communicated by 1r1,n on a ring
when solitude is asserted is at least f(n).

The next section provides lower bounds for some versions of weak soli­
tude verification obtained by varying the size of the interval [a, b] which
describes the class of rings for which an algorithm is required to work.

5 Lower Bounds

The following theorems, together with the upper bounds of section 3 com­
pletely characterize (to within a constant factor) the bit complexity of soli­
tude detection with confidence 1 - f for various classes of rings. The lower
bounds all proceed similarly. We assume that there is some element of a!a,b]

for which the complexity of weak solitude verification is smaller than the
desired threshold. Thus there is some sequence 1r1 , ••• , 1rn with a single
initiator and with n E [a, b] which asserts solitude with high probability and

20

with low expected communication complexity. Lemma 4.5 is used to create
a line of processes from the ring of processes. If necessary lemma 4.8 and
property 4.9 are used to collapse this sequence to a shorter one. Lemma 4.6
or lemma 4. 7 is used to replicate the shorter sequence. The result is a new
sequence with more than one initiator and size still in [a, b]. But the lemmas
imply that this sequence erroneously asserts solitude with too high a proba­
bility. Finally property 4.2 or 4.3 is used to conclude that this probability of
error carries over to computations of the sequence on a ring. Since the new
sequence is also in ala,b], a contradiction is presented to the requirement of
weak solitude verification on rings with more than one initiator.

In the interest of ease of presentation, little effort is made to establish
strong constants.

Theorem 5.1: Let a be a distributively terminating algorithm which
solves weak solitude verification with confidence 1-E on rings in R[i,N]• Then

the complexity of a on rings of size n E [1,N] is n (nJlog(N/n)) bits for
1 any E < 2.

Proof: Let 71" 1 , ••• , 11"n be an element of all,N] with exactly one
initiator. Suppose 7ri ,n asserts solitude with probability at least 1 - f and
that the expected cost of computations of 71"1,n that assert solitude is at most
µn.

First suppose that µ < ½· Then, with probability greater than ½,
some processor communicates nothing. But, by the message driven nature
of computations, it follows that with probability greater than ½ the initia­
tor concludes that it is alone without receiving any communication. Thus,
for computations of a on rings with two or more initiators, some initiator
erroneously concludes that it is alone with probability greater than ½·

Hence we have a linear lower bound, and it suffices to assume that

lN/nJ ~ 16. Supposeµ< (Jlog(N/n)) /5. By lemma 4.5 there is a cyclic
permutation Pi,n = 7l"i+1,n 11"1,i of 11"1,n and a history h with 11h11 :$ 4µ such that
Pr(l:!.h [Pi,n] hl:!.) ~ (1 - E)2- 4µ-I _ Now splice together t = max(l, lhl) :$ 2µ
copies of Pl,n· Using property 4.1,

Pr(l:!. t [PLnJ *) > Pr(l:!.' [PLnJ h)
t-1

> IT Pr(l:!.t-jh(;) [P1,n] 6t-j-lh(j+1))
j=O

> ((1 - E)2-.fµ-l)'

> 2-•t(µ+l)

21

Now splice together k = lN/(nt)J blocks of P1 n• By lemma 4.7 ,
I

Butµ< (Jlog(N/n)) /5 and t ~ 2µ. Sok= lN/(nt)J > 241(µ+1) if

µ > ½· Therefore Pr(6tA: [p~~nl *) > 1- ¼ > ½- By property 4.3, P1~n errs with
probability at least ½· ■

Theorem 5.2: Let a be any (even nondistributively terminating)
algorithm which solves weak solitude verification with confidence 1 - £ on
rings in R[l,N]· Then the complexity of a on rings of size n E [1,N/2] is
n (n log(¼)) bits.

Proof: Let 1r1, ••. , 7rn be an element of a[1,N/2l with exactly one
initiator. Suppose 1r1,n asserts solitude with probability at least 1 - £ and
that the expected cost of computations of 1r1,n that assert solitude is at most
µn withµ< (log(¼))/16. Since a linear lower bound follows easily, (as in
theorem 5.1), it suffices to assume£< 1/20. By lemma 4.5 there is a cyclic
permutation P1,n = 7rH1,n 1r1,, of 1r1,n and a history h with lihll ~ 4µ such that
Pr(6h [P1,n] h6) ~ (1 - e)2-4µ-l. Consider the sequence Pl,nPI,n formed by
splicing together two copies of Pl,n· By lemma 4.6

Pr(66h [P1,nP1,n] h66) > ((1 - e)2-4
µ-

1)2
> (1 ~ £)2 \h
> f

if f < 1/20.

By property 4.2, p1,nPl,n errs on a ring with probability more than f

even under nondistributive termination. ■

Corollary 5.3: When it is known that n ~ N, and in fact n ~ N /2,

the expected bit complexity of solitude detection is 0(nJlog(~) + nlog(¼)),
when there is in fact a single contender.

The preceding lower bound holds only when the actual ring size n is
at most half of the known upper bound N. The next result concerns the
case when n > N /2. Although theorem 5.4 holds when it is known that
cN ~ n ~ N for any c < 1, it is stated and proved for the case when
3N/4 ~ n ~ N.

22

Theorem 5.4: Let a be any (even nondistributively terminating)
algorithm which solves weak solitude verification with confidence 1 - e on
rings in R[sN/•,NJ• Then the complexity of a on rings of size n E [3N/4,N]
is n (nmin(loglog(¼),logN)) bits.

Proof: Since the theorem is trivially true for moderately sized N and
1 / e, assume that N is very large and f is very small. Let ,r1, .•• , ,r n be an
element of alSN/4,N) with exactly ·one initiator. Suppose 1r1,n asserts solitude
with probability at least 1- E and that the expected cost of computations of
1r1,n that assert solitude is at most µn where µ < 1~0 min (log log(¼), log N).

By lemma 4.5 there is a cyclic permutation P1,n = 1r,+1,n 1r1,i of 1r1,n

and a history h with jjhjj $ 4µ such that Pr(.6h (Pi,n) h.6) ~ (1 - E)2-4µ-l

where the cheapness threshold is x = 2µn. The sequence Pi,n is collapsed
by repeated application of lemma 4.8 and property 4.9. Let ,,- = l 297" J and
c = l: J. Since µ < 1~0 log N it is easily seen that u > 1 for large N and
that the conditions of lemma 4.8 are satisfied for any t > N /2. During each
collapsing step, a segment of length less than ru $ N /8 is removed, so it is
assured that a new sequence z of length m E [3N /8, N /2] can be achieved.
Since at least u is removed at each step, in the worst case no more than
N / (2u) applications are required. Therefore

Pr(.6h (z) h.6) ~ ,,--N/(2a)(1 - e)2- 4µ-l

A single replication results in the sequence zz of length 2m E [3N / 4, N]. By
lemma 4.6,

Pr(.6.6.h [zz] h.6..6.) > (,,--N/(2al(1 - e)2-•,,-1)2
> (.,--8T2-4(u+1))2
> f

because µ < 1~0 log log(¼).
By property 4.2, zz errs on a ring with probability more than E even

under nondistributive termination. ■

Lemma 4.8 also provides the tool to show that the log(}) term in the
complexity of the algorithm for all n between (½ + p)N and N where p > 0
is really necessary.

Theorem 6.5: Let a be any (even nondistributively terminating) al­
gorithm which solves weak solitude verification with confidence 1-Eon rings
in R[(½+p)N,N) where p > 0 and (½ + p)N is an integer. Then the complexity

of a on a ring of size n = (½ + p)N is O (nmin(log(}),log(¼),logN)) bits.

23

Proof: The theorem is true for N, p, and E of moderate size so assume
that N is very large and that both p and E are very small. In particular,
assume M = l min(log(¼) , log(¼) , log N) j ~ 32. Let 1r1 , ••• , 11"n be an element

of a(½+p)N with exactly one init iator . Suppose ,r1,n asserts solitude with
probability at least 1 - E and that the expected cost of computations of 1r1,n

that assert solitude is at most µn where µ < M/145.
By lemma 4.5 there is a cyclic permutation Pi,n = 7r;+i,n 1r1,i of 11"1,n and

a history h with 11h11 s 4µ such that Pr(L"i.h (Pi,n) h.6.) ~ {1- E)2-41-1-l where
the cheapness threshold is 2µn . The sequence p1,n is first collapsed by using
just one application of lemma 4.8 and property 4.9. Let u = l2f_ij and

r = 2M/3, Then u ~ pN and ro < N/4 so with one collapsing operation the
resulting sequence z will have length m well within [(¼ + f) N, N/2]. The
preconditions for lemma 4.8 are easily checked. Therefore

Pr(6h (z) h6) > r- 1 (1 - E)T4
"'-

1

> f-12-4(µ+1)

A single replication results in the sequence zz of length 2m E [(½ + p) N, NJ.

By lemma 4.6, Pr(66h [zz) h66) > (r- 1 2 -◄ (u+1))2. But

log (r- 12-4(u+1lf
2

2 logr + 8µ + 8

2 8
< 3M+ 145M+ 8

1
< log(-)

E

since Ms log(~). Therefore Pr(66h [zz] h66) > E.

By property 4.2, zz errs on a ring with probability more than E even
under nondistributive termination. ■

Corollary 5.6: When it is known that (½ + p)N s n s N, the
expected bit complexity of solitude detection is 0(nmin(loglog(¼),logN) +
nmiu(log(}),log(¼),logN)) when there is in fact a single contender.

6 One-sided Versus Two-sided Error

The preceding lower bounds hold for solitude verification algorithms that
allow the probability of error to be at most E either when there is one or
more than one contender. A natural generalization might permit probability
of error at most 6 when there is one contender and probability of error at most

24

E when there is more than one contender. The upper bounds, on the other
hand, have only one-sided error, since, when there is only one contender, they
assert solitude with probability one. It turns out that the different versions
of error tolerance are closely related. We demonstrate the relationship for
nondistributively terminating algorithms. A similar, and simpler, approach
works for distributive termination.

Let a be a nondistributively terminating (nondeterministic) probabilis­
tic algorithm for solitude detection, with two-sided error (E, 6). Let {3 be a
similar algorithm with one-sided error E. Consider the following algorithm
7:

1. All contenders flip a coin at random and send the result to the next
contender.

2. Contenders which receive a different bit from that sent send an alarm.
(Receipt of an alarm forces the decision "not alone".)

3. Contenders which receive the same bit as was sent initiate algorithm
a. (Note: we only need to worry about the case when all contenders
initiate a.)

4. If a contender enters, even tentatively, the state "not alone" then it
sends a sweepup message after possibly sending its tentatively last mes­
sage.

5. Sweepup messages get forwarded by non-contenders.

6. If a contender receives a sweepup message without having sent one, it
sends an alarm.

7. If a contender receives a sweepup message without having received
anything else since it sent one, it initiates algorithm {3. (Again we need
only worry about the case where all processors initiate algorithm /3.)

8. Assuming no alarms, the result of algorithm /3 is the result of the entire
algorithm.

Complexity. First, consider the case of a single contender. Suppose
that a costs / expected bits and /3 costs g expected bits on a particular ring
with one contender. Steps 1, 3 and (4,5) cost a total of/+ O(n) bits, since
each processor sends at most one sweepup message. The lone contender will
start algorithm f3 only if the sweepup message travels all the way around the
ring, without any more messages arriving at the contender. So {3 is started
only if a terminates with the contender erroneously concluding that it is not

25

alone, which happens with probability at most 6. The expected cost of step
7 is thus 6g.

Algorithm --, has lower expected complexity than algorithm /3 unless
f + og + O(n) :2:: g. That is, / :2:: (1 - c5)g - O(n).

When there are two or more contenders, the expected complexity can
be made O(n) by interleaving coin tosses with the regular messages, which
only doubles the cost when there is a single contender.

Error analysis. It is clear that a lone contender cannot err, since al­
gorithm--, only concludes "not alone" when algorithm /3 does so. So consider
the case of two or more contenders. With probability :2:: ½, some contender
sends an alarm at step 2. So the probability that --, proceeds to step 4 with­
out any alarms is S ½· With probability S £ algorithm a answers "alone",
and algorithm I halts in error. With probability s £, algorithm a concludes
"not alone", and /3 answers "alone". Thus Pr(error) s ½(E + E).

If follows from the complexity analysis that if we have a lower bound of
0(/(n, E)) on nondistributively terminating algorithms for solitude detection
(or verification) with one-sided error E, then we have an 0((1 - o)(f(n, E))
lower bound for nondistributively terminating algorithms for solitude detec­
tion (or verification) with two-sided error (E, 6). As remarked earlier, the
same holds if nondistributive termination is replaced by distributive termi­
nation.

Note that the converse also holds. If we have an 0(/(n, E)) bit algo­
rithm a for solitude detection with one-sided error f and with either type of
termination, then we can construct an O(n + (1 - 6)(/ (n, E)) bit algorithm
for solitude detection with two-sided error (f, 6) and the corresponding type
of termination. Each contender simply, with probability 6, sends an alarm
forcing the conclusion "not alone". Otherwise, it runs algorithm a.

7 Conclusions

We have presented upper and lower bounds that match to within a constant
factor for the bit complexity of solitude detection on various classes of rings.
The type and complexity of the solution were found to depend not only
upon the amount of error that could be tolerated, but also upon the a.mount
of knowledge of the ring size which the algorithm could assume. Without
any knowledge of ring size, only nondistributive termination is possible for
solitude detection. When size is bounded, distributive termination is possi­
ble. And when ring size is known to within a constant factor, there is no
additional cost for insisting on distributive termination over nondistributive
termination.

26

This contrasts with the case when an algorithm need only work for one
fixed ring size. This situation is explored in a companion paper [2] in which
the following is proved. Let v(n) be the smallest nondivisor or n. The inher­
ent complexity of distributively terminating solutions for solitude detection

with confidence 1- £ is 0(n min(logv(n) + Jlog log(¼), Jlog n, loglog(¼)))
expected bits when n is known exactly. This complexity reduces to
E>(n min(log v(n)+log log log(¼), log log n, log log(¼))) expected bits for nondis­
tributively terminating solitude detection with confidence 1 - £.

When no error can be tolerated, these results simplify to E>(nJlogn)
bits for distributive termination and 0(nloglogn) bits for nondistributive
termination with exact knowledge of ring size.

Solitude detection is related to some other well studied problems. As
pointed out in the introduction, solitude detection reduces to leader election
in O(n) bits. For distributively terminating algorithms, the reductions are
natural ones. Reductions for nondistributively terminating algorithms are
more subtle and can be found in [2]. Algorithms for leader election can be
constructed from the solitude detection algorithms described here together
with an attrition algorithm. A discussion of the various resulting leader
election algorithms appears in [3]. The same paper comments on the relation
between solitude detection and the "n-finding" problem - the problem of
determining the size of the ring.

References

[1] K. Abrahamson, A. Adler, R. Gelbart, L. Higham, and D. Kirkpatrick.
The Bit Complexity of Randomized Leader Election on a Ring. Techni­
cal Report 86-3, University of British Columbia, Vancouver B.C., 1986.
submitted for publication.

[2] K. Abrahamson, A. Adler, L. Higham, and D. Kirkpatrick. Probabilistic
Solitude detection II: Rings Size Known Ezactly. Technical Report 86-26,
University of British Columbia, 1986. submitted for publication.

[3] K. Abrahamson, A. Adler, L. Higham, and D. Kirkpatrick. Probabilis­
tic solitude verification on a ring. In Proc. 5th Annual ACM Symp. on
Principles of Distributed Computing, pages 161-173, 1986.

[4] D. Dolev, M. Klawe, and M. Rodeh. An O(nlogn) unidirectional
distributed algorithm for extrema finding on a circle. J. Algorithms,
3(3) :245-260, 1982.

27

[5] A. Itai and M. Rodeh. Symmetry breaking in distributed networks. In
Proc. eend Annual Symp. on Foundations of Comput. Sci., pages 150-
158, 1981.

[6] J. Pachl. A Lower Bound for Probabilistic Distributed Algorithms. Tech­
nical Report CS-85-25, University of Waterloo, Waterloo, Ontario, 1985.

[7) J. Pachl, E. Korach, and D. Rotem. Lower bounds for distributed maxi­
mum finding. J. Assoc. Comput. Mach., 31(4):905-918, 1984.

[8] G. Peterson. An O(n log n) algorithm for the circular extrema problem.
ACM Trans. on Prog. Lang. and Systems, 4(4):758-752, 1982.

28

