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Abstract 

In this paper, we present the basic ideas underlying an Estelle-C compiler, which accepts 
an Estelle protocol specification and produces a protocol implementation in C. We discuss 
our experience gained from using the semi-automatic approach to implement the ISO class 2 
transport protocol. A manual implementation of the protocol is performed and compared 
with the semi-automatic implementation. We find the semi-automatic approach to protocol 
implementation offers several advantages over the conventional manual one, including cor­
rectness and modularity in protocol implementation code, conformance to the specification 
and reduction in implementation time. Finally, we present our ongoing development of a 
new Estelle-C compiler. 

1 Introduction 

The development of formal description techniques (FDTs) [Boch80] for specifying protocols 

has proceeded hand-in-hand with research and development of formal techniques and tools 

for the design, validation, implementation and testing of communication protocols. Based on 

standard FDTs such as Estelle[Estelle85,Estelle86] and LOTOS[Lotos84,Brink85], a number 

of compilers and interpreters, [Ansart83], [Blum82], [Bria86], [Ford85], [Gerber83,Boch84] and 

[Hans84,Hans85], have been developed to automate the process of protocol implementation. 

This new approach to protocol implementation has proven to be superior to traditional 

methods. The compiler can generate automatically, in a well-constructed way, a large portion 
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of the protocol implementation code in a standard target language. The system-dependent fea­

tures of the protocol can be encapsulated into a few routines. The implementation is, therefore, 

easy to produce and to maintain; it tends to conform to the specification and is highly portable. 

We have developed an Estelle-C compiler to allow automatic generation of protocol im­

plementations C (Ford85,Lau86,Vuong86,Vuong87]. To our knowledge, our Estell-C compiler 

is the only complete compiler which accepts Estelle specifications and produces code in C. 

Other compilers either accept non-Estelle specifications [Blum82] or produce code in Pas­

cal [Ansart83,Gerber83,Hans84]. Our compiler currently runs on a VAX 11/750 and various 

SUN2 and SUN3 Workstations under UNIX 4.2BSD. In order to verify the usefulness of this 

tool, we have specified the ISO class 2 transport protocol [CCITT85,ISO82b] in Estelle and 

tested the generated code on a VAX and a number of SUNs in an Ethernet environment. 

In this paper, we will discuss the Estelle-C compiler and our experience with semi-automatic 

implementation of protocols using this compiler. After a brief overview of Estelle, we will present 

the basic ideas underlying the Estelle-C compiler. The discussion will then proceed to the design 

and implementation of the ISO cl8.88 2 transport protocol using both the semi-automatic and the 

manual approaches and an evaluation of the two implementations. Subsequently, the ongoing 

development of our compiler will be presented, followed by a number of concluding remarks. 

2 The Estelle Language 

Estelle (an Extended State Transition Language) is a formal description technique of com­

munication protocols and services developed within the International Standard Organization 

(ISO) by the TC 97 /SC 16/WG 1 Subgroup B [ISO84,Estelle85]. The technique is based on 

an extended finite state transition model, the Pascal programming language and some Ada 

modular constructs. The framework of an Estelle specification is a set of co-operating entities, 

each described as a module, interacting with each other by exchanging information through 

channels. The actual behaviour of a module is specified either as an integrated behaviour of a 

set of interacting submodules or at the innermost level, as an extended finite state machine. An 
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example of an Estelle specification of the ISO Class 2 transport protocol is given in Appendix A. 

Basically, a channel is a bidirectional pipe which transmits information between two connected 

modules. A channel-type definition specifies a set of interaction primitives which are grouped 

under two different roles, e.g. user and provider. Information is transmitted between module 

instances via the parameters in the interaction primitives. 

A module is the basic component of an Estelle specification and it represents an entity in 

the specification. A module-type definition consists of a list of interaction points at which 

the module interacts with its environment. The interaction points are abstract interfaces used 

by the module to interact with other connected modules. For each interaction point, a role is 

specified for its associated channel-type. An interaction is then identified by the name of the 

interaction point at which it occurs and the name of the interaction primitive used. For a given 

module-type, one or more module instances can be created. 

In Estelle, the actual behaviour of a module is specified either indirectly as a refinement or 

directly as a process. If a module is not a completely self-contained entity, i.e. a process, it is 

decomposed into a set of co-operating submodules, each of which may be further decomposed. 

The behaviour of the module is the integrated behaviour of the submodules and, thus, it is called 

a refinement. An Estelle refinement specification includes definitions of internal channel-types, 

module-types, and specifications of the corresponding processes and refinements. After the 

definition of the internal structures, module instances are created and connected accordingly. 

If necessary, interaction points of internal module instances may be replaced by those in their 

parent module instance. An Estelle process definition specifies a queuing discipline ( queued 

or rendezvous) associated with each interaction point, the initial conditions and all possible 

transitions for the corresponding extended finite state machine. 

The general specification of a transition is given in Figure 1, with the following semantics. 

WHEN an interaction is received, PROVIDED that a condition is satisfied, a transition will 

be taken to lead the process, FROM the current major state TO a new inajor state, through 

an action. The associated action of a transition is specified in terms of Pascal statements, and 

may include the initiation of OUTput interactions with its peer modules. 
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TRANS 
WHEN <input interaction> 
PROVIDED <enabling condition> 
FROM <from...state> 
TO < to...state> 
BEGIN 

<action> 
END 

/ 

Figure 1: Specification of a transition 

Transitions are classified into input and spontaneous transitions, depending on the pres­

ence or absence of an input interaction specification (i.e. the WHEN clause) respectively. 

A spontaneous transition may be executed regardless of any input interaction. It should be 

mentioned that the Estelle state machine is non-deterministic. At any given time, several 

different transitions may be executable. But the particular transition chosen for execution is 

not specified by the specification. 

3 The Estelle-C Compiler 

In order to experiment with the semi-automatic approach to protocol implementation, a 

Estelle-C compiler was developed at the University of British Columbia (Ford85] to support 

Estelle as defined in 1984 (ISO84]. The compiler reads an Estelle protocol specification as 

input and generates C code. The generated C program is subsequently made complete by the 

incorporation of additional system-dependent and pre-written run-time support routines. It 

was later substantially enhanced to support commonly used complex data structures, such as 

pointer and variant record, and to produce better-organized C code (Lau86]. The compiler is 

currently being rewritten to support the latest Estelle language specification [Estelle85]. 

The current Estelle-C compiler is implemented in C. The scanner and the parser for the 

compiler are generated by the UNIX standard utilities LEX (Lesk75] and YACC (John75], 

respectively. Since both LEX and YACC generate portable C code, the compiler is portable to 
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any system supporting C. Error handling, table management and code generation are embedded 

in the YACC grammar input file. Currently, the compiler does not optimize the generated C 

code. It completes the translation in a single pass through the source specification. 

A large number of semantic analysis is left to the C compiler which compiles the generated C 

code into executable machine code. The Estelle-C compiler only verifies the semantic conditions 

which would not be detected by the subsequent C compilation. For example, the Estelle-C 

compiler ensures that, for each connection, the two connected module instances play different 

roles in the same channel-type. On the other hand, the Estelle-C compiler does not verify that 

arguments are of types which are valid for an application of an assignment. 

Since Estelle is a Pascal-based language, some restrictions are imposed due to the inherent 

differences between Pascal and C. The compiler allows neither global variables and nested 

subroutines, nor supports the WITH statement. In addition, only a subset of the Pascal 1/0 

statements and pointer assignments are fully supported. Due to the additional Estelle scoping 

rules introduced by the enabling conditions for a transition-type, and the additional variables 

used by the run-time support routines, additional restrictions are also imposed. For example, 
" 

parameter names of input interactions are not allowed to be used for local variables in any 

module body. Furthermore, function and procedure identifiers used in an Estelle specification 

should be different from the reserved identifiers generated by the Estelle-C compiler and those 

of the run-time support routines. These limitations are not found to be too restrictive from our 

experience in using the Estelle-C compiler. 

In automatic implementation of protocols, a generic structure and organization for the im­

plementation must be adopted. The implementation strategy used by our Estelle-C compiler 

is similar to the one used by Gerber for his Estelle-to-Pascal compiler [Gerber83]. Record 

structures are used to represent module instances, interaction points, and interactions among 

module instances. A set of pre-written generic routines is used to allocate, initialize, and link 

the structures according to an Estelle specification. The pre-written routines also dispatch an 

output interaction to a recipient module, select the next available interaction, and make non­

deterministic scheduling choices. Since different systems have different global environments and 
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scheduling schemes, two special routines, system.Jnit and schedule, have to be tailored ac­

cording to each specification. Figure 2 depicts the procedure of semi-automatic implementation. 

Primitives 

Estelle _J7_____ + Generic _r7___ Executable 
Specification_____.~ Generated+ Functions-,...-~ Code 

Code 
C-Estelle C 
Compiler Compiler 

Figure 2: Procedure of Semi-Automatic Implementation 

There are three major data structures used in representing module instances, interaction 

points and interactions between module instances. When linked appropriately, these data 

structures can represent an arbitrary complex Estelle specification in a simple manner. 

In Figure 3, the data structure signaLblock represents an interaction (i.e. a signal or 

struct signaLblock { 

}; 

int signaUd; 
struct signaLblock *next; 
union { 

} lvars; 

Figure 3: Data Structure of an Interaction 

message) and is comprised of three attributes, signal.id, next and lvars. For convenience, the 

interaction primitives specified in channel-type definitions are numbered and signal.id is used 
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to identify the primitives. The attribute next links data structures to implement the queuing 

of incoming interactions at an interaction point. The values of the parameters of an interaction 

are stored as a single attribute lvars in the data structure. 

Representing a module instance, the data structure process_block (Figure 4) consists of 

struct process_block { 
struct process_block *next; 
char pjdent[MAXJDENT_LENGTH+l]; 
struct channel.block *chanJist; 
struct process_block *refinement; 
int (*proc_ptr)(); 
union { 

} lvars; 
}; 

Figure 4: Data Structure of a Module Instance 

six attributes: next, p_ident, chanJist, refinement, proc..ptr, and lvars. Similar to signaLblock 

structure, a variant record is provided for the attribute lvars in the structure of each module type 

definition. The attribute proc..ptr is an entry point to a transition function which implements 

the transition process of the corresponding protocol machine. The remaining attributes are 

used to identify the corresponding transition function, and to build and link the various data 

structures modeling the specified system. 

Representing an interaction point, data structure cbanneLblock (Figure 5) contains the 

following attributes: target_proc, and target_channel are entry points to data structures which 

represent peer module instance and its corresponding interaction point; signaUist points to a list 

of incoming interactions; queued is a boolean flag that indicates the queuing discipline ( queued 

or rendezvous) of the interaction point; c_id identifies the interaction point and additional 

indexJium is used in case of multiplexing channel; and, finally, next links all interaction points 

in a module-type. 

In a given global system state, a number of different input interactions may be pending 
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struct channeL.block { 
struct channel.block *next; 
int *signalJist; 
int *target.proc; 
struct channeL.block *target_channel; 
int queued; 
int cjd; 
int index..num; 

}; 

Figure 5: Data Structure of an Interaction Point 

for several different module instances. Within a given module instance and for a given input 

interaction, several different input transitions may be enabled. In addition, several spontaneous 

transitions may be executable irrespective of input interactions. The selection of the next 

available transition to be performed is made by a global scheduler. The schedule algorithm is not 

a part of the Estelle specification but is a part of the run-time support for the implementation. 

For simplicity, the first enabled transition as defined in the specification is selected for execution 

in our current implementation. Thus, for each cycle, the global scheduler selects a module 

instance with a pending interaction, and then selects the next input transition based on the 

interaction, and tries all possible spontaneous transitions. 

For each implementation, the protocol implementors will have to manually look after the 

system-dependent portion of the implementation, i.e. the interface between the specified proto­

col machine and its working environment. For example, interactions with the operating system 

usually cause an undesirable blocking of the protocol machine. Solutions to such blocking 

problems vary largely for different machines and different operating systems. With the working 

environment and the operating system known a.priori, the interfaces with the specified system 

can be well defined to simplify the system interactions. For instance, in our implementations 

of the transport protocol, UNIX 4.2 socket primitive select is used to preview the socket so 

that the blocking is avoided when reading a socket. For implementations of lower-level pro­

tocols such as X.25 and HDLC, we will need to interface with the corresponding lower-level 
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software/hardware such as the communication controller chip and its driver. Thus, output to 

the environment can be implemented by invoking a set of system-dependent routines, and input 

from the environment can be implemented by including spontaneous transitions which invoke 

the same set of routines. The global scheduler is fully aware of when and which spontaneous 

transition is to be executed. 

4 Implementation Example - The ISO Transport Protocol 

In order to evaluate the usefulness of the Estelle-C compiler, a complex protocol, the 

ISO class 2 transport protocol, has been implemented semi-automatically by using the Estelle­

C compiler and subsequently re-implemented manually. Both protocol implementations run 

on a VAX 11/750 as well as several SUN Workstations under the UNIX 4.2BSD operating 

system. In this section, we present our design of the protocol implementation and discuss our 

experience gained from using these two different approaches. A state diagram for the ISO class 

2 transport protocol is given in Figure 6. Details of the protocol can be found in the documents 

[ CCITT85) and [ISO82a), and details of the corresponding Estelle spe<;i.fication are described in 

(ISO84) and (Lau86]. The ISO transport protocol is a connection-oriented, end-to-end protocol 

providing a reliable and efficient mechanism for the exchange of data between processes in 

different computer systems. The class 2 protocol assumes a highly reliable network service, 

such as X.25, and has the ability to multiplex multiple Transport connections onto a single 

network connection. It uses a credit allocation scheme to provide explicit flow control but does 

not provide mechanism for error recovery to the higher layers. 

4.1 Implementation Design 

The overall structure of an Estelle specification of the ISO class 2 transport entity is given 

in Figure 7. There are four different module types: TS_user, ATP, System and RS. The 

module instances of these four module types are combined to form a transport entity. 

A TS_user module is a sub-layer which converts a Transport Service user request into 

a well-defined transport service primitive. A user task in the working environment can be 
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Figure 6: Transport Protocol State Diagram 
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Figure 7: A Typical Refinement of a Transport System 
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bound to one or more TS_user modules, and thus to one or more transport connections. An 

ATP module is an Abstract Transport Protocol entity that establishes transport connections, 

transfers data, and releases connections. A System module simulates a. system timer for an 

incoming network connection and for the flow control of a transport connection. Finally, a RS 

module converts the network service primitives into system calls. It also sets flags and stores 

data. whenever an incoming network event occurs. 

Since there are many unspecified properties in the protocol specification, these properties, 

either implementation-defined or implementation-dependent, have to be designed for 

each specific implementation so that the resulting implementation will best fit the working 

environment. 

Implementation-defined properties are left unspecified and their definitions can vary from 

one implementation to another. For example, in the TS_primitives channel definition (shown 

in Appendix A), data type ADDR_TYPE is implementation-defined. Type ADDR_TYPE rep­

resents transport address which may be defined differently depending on the implementors. 

Similarly, the buffer management and data exchanged between TS_users and a TS_provider are 

implementation-defined. 

However, some properties are defined in the specification but their implementation is left 

unspecified. Examples of such properties include the routines which construct the transport 

protocol data units (TPDUs). The format of each TPDU is specified but the method of TPDU 

construction is left unspecified. 

4.2 Semi-Automatic Implementation 

The protocol was first specified in Estelle using the description in the ISO document 

[CCITT85,1S082b] and other existing specifications [IS084,NBS83]. Next, the Estelle specifi­

cation was translated by the Estelle-C compiler to generate code for a major part of the protocol 

implementation. Finally, the generated C code was combined with pre-written generic routines 

and system-dependent routines to form a complete C program. 

The generated code can be classified into three types. The first type is the typedef and 
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struct declarations which represent module instance, interaction, type and variable definitions 

as defined in the specification. These definitions are required by the run-time executives to keep 

track of the state information in the protocol machines. The second type of code consists of a 

set of routines which creates, initializes and links data structures according to the specification. 

The third type is another set of routines which implements the transition processes in the 

protocol machines. 

Initialization routines can be further subdivided into two classes. One class corresponds 

to the Estelle process definitions. These routines create and initialize the process_block 

data structure. The other class of routines corresponds to the Estelle refinement definitions. 

These routines create the sub-module instances and link the instances according to the Estelle 

CONNECT and REPLACE definitions. Both classes of initialization routines make use the set 

of pre-written generic routines to perform the creation, initialization, and integration of the 

various system components. 

Transition functions are implemented as a series of conditional expressions and statement 

blocks. For each transition specified, a conditional expression is used to evaluate its enabling 

conditions and a statement block is used to perform the associated action. The conditional 

expression handles the transition clauses in the order shown in Figure 1. The WHEN clause 

is translated into tests for the identity (signal_id) of the received interaction and the identities 

( c_id and indez_num) of the interaction point on which it is being received. Additional tests, 

which correspond to the PROVIDED clause and/or the FROM clause, may also appear in 

the conditional expression. The TO clause is translated into a statement within the statement 

block. At the end of each statement, a goto dispose statement passes control to the code which 

disposes the received signal data structure. For a spontaneous transitions, the conditional 

expressions does not include tests corresponding to the WHEN clause. Unless a priority is 

set, input transitions are always generated ahead of spontaneous transitions. In this scheme, 

transitions which are enabled simultaneously are executed in the order in which they are defined 

in the specification. 

Creation and destruction of signal structures representing the dynamic interactions between 
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module instances are implemented completely within the generated transition functions. For 

each OUT statement a signal structure is created and initialized with the given parameters. 

The signal structure is then passed to a generic routine out together with the information of 

the interaction point at which the module instance interacts with the peer. If the interaction is 

a queued type, the signal structure is placed in the reception queue of the peer module instance, 

then control is returned to the initiating module instance immediately. If the interaction is a 

rendezvous type, control is passed to the transition function corresponding to the peer module 

directly. The destruction of the signal structure is handled by the recipient module instance. 

4.3 Manual Implementation 

Based on the experience of an initial manual implementation and the subsequent semi­

automatic implementation, the protocol was finally re-implemented manually. Most principles 

discussed in Sections 3 and 4.1 were followed. The overall structure is similar to that of the 

semi-automatic implementation. The transport entity is implemented as a single task in the 

operating system. It communicates with user tasks and the network service provider through 

operating system primitives (i.e. system calls). 

Instead of using a single data structure process_block, three different data structures, 

TS..MACHINE, TP ..MACHINE and NP .MACHINE, are designed to effectively and econom­

ically store the state information of a transport service user, a transport connection and a 

network service provider respectively. 

The interactions between the transport entity task and the working environment, the user 

tasks and the network service provider, are based on the inter-process communication prim­

itives provided by the operating system, i.e. UNIX 4.2BSD socket primitives. Spontaneous 

transitions initiated by the working environment are handled in a manner similar to that in the 

semi-automatic implementation. Whenever an external event occurs, the corresponding module 

instance is selected and a proper spontaneous transition is activated. A series of input transi­

tions, initiated after this spontaneous transition, is then executed until all module instances are 

in such a state that no more transition is possible. Therefore, the global scheduler can simply 
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be implemented as a loop which performs the processing for the incoming external events one 

after the other. 

4.4 Results 

For a comparison of the two implementation approaches, the sizes of the different parts of 

the resulting implementations are shown in Table 1. Both implementations use the same INET 

Numbc1 ot Number ot P1ogram siic 
PART Of functions and Sou1cc tines (in brccs) 
PROGRAM Macros 

(Al (Bl (Al (Bl (Al (Bl 

INET 
9 )09 10969 

PRIMITIVES 

TSP 
ll ,., 1707) 

PRIMITIVES 

ESTB.LE - 20 - 1110 - 46])1 
SPECIFICATION 

GENERATED 
20 l•U7 91421 

CODE 

,- - - , 

RUN-TIME 
76 16 ]◄ 20 '110 7H21 210,4 

SUPPORTING 
ROUTINES - - -
PRIMITIVE u ]049 71]40 
ROUTINES 

(A) •·· Manual Implementation 

(Bl •·· Semi-Auotmacic Implementation 

Table 1: Sizes of Different Parts of Implementations 

primitives to interact with the network service provider. INET primitives provide an uniform 

access scheme which can be easily modified to suit different network service access schemes 

in different systems. This network service provider is usually a part of the operating system. 

Similarly, TSP primitives are used for the interactions between transport service user tasks and 

the transport entity task. 

Both implementations spent a large amount of code in TPDU encoding/decoding and buffer 
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management. The encoding/decoding of TPDUs are almost identical in both implementations. 

Since all codes are implemented intermixed within each other in the manual implementation, 

they are not classified into separate entries in Table 1. 

Forty-two additional routines are used in the semi-automatic implementation. Sixteen of 

which are pre-written run-time support routines and the rest are specially designed for the 

global scheduler to activate the specific modules. 

Due to the inherent weakness in the old Estelle language[IS084], the number of pro­

cess_block representing the module instances must be statically allocated. The number of 

transport service users and network connections must also be pre-defined in the specification. 

The scheme used by the Estelle-C compiler is to generate code to allocate the process..hlock 

structures in the global initialization phase. The pre-defined number of transport service user 

tasks must also be created during the initialization stage so that they can be connected to the 

process_block structures. 

The advantage of using the semi-automatic approach is that well-constructed code is gen­

erated. Since the code is translated directly from a formal specification, the conformance to 

the specification is almost guaranteed. As well, the generated code can be designed such that 

the system dependent properties are isolated within a few routines. Therefore, the protocol 

implementation can be easy to maintain and can also be easy to make portable. 

Although the manual implementation is based on the same specification that produced the 

semi-automatic implementation, no restriction on static allocation is imposed in the global 

initialization phase. Any number of transport service user tasks can interact with the transport 

entity. The transport entity does not requires static connections in its initialization phase. 

Furthermore, any number of network connections can be established during the execution. 

The manual implementation can take better advantage of the working environment. For 

instance, an interaction was implemented as simply a function call rather than a primitive on 

a channel with a complex data structure as in the case of the semi-automatic implementation. 

As such, we can achieve a significant reduction in the amount of implementation code and in 

the amount of processing overhead needed in copying data structures for module interactions. 
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We spent approximately one year to study, analyze and implement the ISO class 2 transport 

protocol manually without an Estelle specification. The protocol was subsequently specified in 

Estelle in about a month and implemented semi-automatically in another month with most of 

the effort devoted to analyzing the generated code and designing its interface to the operating 

system. It should be noted that most system-dependent routines and some implementation­

specific primitives, such as TPDU encoding and decoding routines, were borrowed and adapted 

from a previous manual implementation. These routines represent about half of the total 

implementation code, as shown in Table 1. By this time, we have gained a profound experience 

on protocol (both automatic and manual) implementation and have acquired a good insight 

into the ISO class 2 transport protocol. Thus, in our last attempt, we have made use of the 

accumulated experience and the code available to produce, in just a month, the enhanced final 

"manual" implementation version. This version was discussed in Section 4.3 and was compared 

with the semi-automatic version in this section. 

From our experience, we note that it is a good practice to start with the semi-automatic 

implementation of protocols because it saves protocol development time. The code produced 

is well structured, easy to maintain, and guaranteed to conform to the specification. Even if 

the code is not efficient, we can always attempt a manual implementation subsequently. It is 

worthwhile to note that in protocol implementations, whether manual or semi-automatic, a lot 

of time is generally required in developing the interfaces needed to work with the operating 

system. Additional debugging time is typically required in the manual approach as compared 

to the semi-automatic approach. 

5 Ongoing Development of the Estelle-C Compiler 

With the basic ideas underlying the semi-automatic approach to protocol implementation 

well understood, the motivation for developing a new Estelle-C compiler is to upgrade the 

compiler to support the latest Estelle language specification [Estelle85]. Because the new Es­

telle language is substantially different from the old specification (ISO84], a decision is made 
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to rewrite the compiler from scratch rather than to modify the current compiler. The new 

compiler will also incorporate features left out in the current compiler as well as streamlining 

its operations. 

The new Estelle-C compiler is implemented in C but it is written without using LEX and 

YACC. This will allow the new compiler to be further developed in non-UNIX environments. 

The new compiler uses recursive descent to parse the Estelle specification and it contains the 

syntax error recovery mechanism described by Brinch Hansen in [Brinch85]. Consequently, this 

revised compiler provides better syntax error diagnostics as well as complete semantic error 

diagnostics. In contrast, the current compiler has no mechanism to recover from syntax errors 

and it will abort after the first syntax error without producing any useful error messages. 

The new Estelle language has provision for dynamic reconfiguration of the various entities 

in the protocol specification. In order to support this feature, transitions are allowed to take 

place in modules other than those in the lowest level of the module hierarchy. This new feature 

enables a. pa.rent module in a.n Estelle specification to dynamically create and destroy child 

modules as well as to dynamically connect and disconnect channels. These features are fully 

supported by the new Estelle-C compiler. 

In our previous versions of the Estelle-C compiler, the Pa.seal data. type SET was left out 

due to the lack of its support within the C language. In the new compiler, SET is provided as 

a library package written in C that implement SET as an abstract data type. The compiler 

translates Estelle SET operations to invoke this package. Incidentally, the new compiler itself 

makes use of this package to implement its syntax error recovery mechanism. 

As part of the redesign of the new Estelle-C compiler, the user operation of the compiler has 

been greatly simplified. In the old compiler, the user is required to modify certain sections of the 

generated C code a.swell as the runt-time support routines. Furthermore, because the run-time 

support routines have to be modified for each Estelle specification, the user must recompile 

the run-time support routines using the C compiler along with the C code generated by the 

Estelle-C compiler. In the new compiler, the run-time support routines have been rewritten to 

contain only specification independent details. Consequently, the user of the new compiler is no 
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longer required to modify any of generated C code and automatic implementation of protocols 

can be realized. 

6 Conclusions 

In this paper, we have proposed and discussed a semi-automatic approach to protocol 

implementation. A protocol specification in Estelle FDT is translated into C code by using the 

Estelle-C compiler. The generated code is then combined with system-dependent primitives and 

run-time supporting routines to form a complete C program which implements the protocol in 

question. 

Despite the fact that an initial effort is required to learn the Estelle FDT language and 

the operation of the Estelle-C compiler, the new approach of protocol implementation has the 

following benefits: 

1. Ease in maintenance due to the modularity and uniformity of the generated code. 

2. Guaranteed conformance to the specification due to the direct automatic translation of 
the protocol specification into C code. 

3. High portability because a large a.mount of code is generated in standard C language and 
system-dependent properties are easily located and modified. 

4. Reduction in development time because a large a.mount of code is translated automatically 
from the specification, and the code is well-structured and easy to debug. 

From our experience in implementing the ISO class 2 transport protocol semi-automatically, 

we find the Estelle-C compiler to be a very useful tool. The semi-automatic approach to 

protocol implementation is, indeed, attractive and practical. We have also used this approach to 

implement the alternating-bit and the LAPB protocols. We strongly recommend the following 

general steps to be taken in protocol implementations: 

1. Implement the protocol semi-automatically using the Estelle-C compiler. 

2. Optimize the generated code from the semi-automatic implementation, if necessary. 

3. Re-implement the protocol manually, if necessary (e.g. for efficiency reason). 
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The Estelle-C compiler is currently available and is portable to any system (including non­

UNIX environments) supporting C. Our new compiler will be ready by the summer of 1987. In 

conclusion, we would like to encourage protocol implementors to use tools similar to the Estelle­

C compiler to develop protocol implementations in an effective and systematic manner. 
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A Estelle Specification of the ISO Class 2 Transport Protocol 

MODULE Transport_system; 
END Transport_system; 

REFINEMENT Transport_ref FOR Transport_system; 
(• Constant and Type Definitions•) 

(• Channel Definitions•) 
CHANNEL TS_primitives ( TS_user, TS_provider) ; 

BY TS_user: 
T_CONNECT_request ( Fro11Ltranaport_addr ADDR_TYPE; 

To_transport_addr ADDR..TYPE; 
Qual_of_service QOS_TYPE; 
TS_user_data DATA...TYPE ); 

T_CONNECT_response ( Qual_of_aervice QOS_TYPE; 
TS_user_data DATA... TYPE ) ; 

T_DATA_request ( TS_uaer_data : DATA...TYPE ); 
T_XPD_request ( TS_uaer_data : DATA_TYPE ); 
T_DISCONNECT_requeat ( TS_user_data: DATA...TYPE ); 

BY TS_provider: 
T_CONNECT_indication ( From_tranaport_addr ADDR_TYPE; 

To_tranaport_addr ADDR_TYPE; 
Qual_of_aervice QOS_TYPE: 
TS_uaer_data DATA...TYPE ); 

T_CONNECT_confirm ( Qual_of_aervice : QOS_TYPE; 
TS_user_data : DATA...TYPE ); 

T_DATA_indication ( TS_uaer_data : DATA_TYPE ); 
T_XPD_indication ( TS_user_data: DATA_TYPE ): 
T_DISCONNECT_indication ( Reason REASON_TYPE; 

TS_uaer_data : DATA...TYPE ) ; 
END TS_primitivea; 

MODULE TS_user_module; 
TCEP: TS_primitives ( TS_uaer ); 

END TS_user_module; 

PROCESS TS_user_process( TS_index integer) FOR TS_user_module; 

END TS_user_proceaa; 

(*******************••····································••) 
MODULE System_module; 
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SAP: System_primitives ( S_provider ); 
END System_module; 

PROCESS System_process ( Sys_index integer) FOR System_module; 

END System_process; 

(* Abstract Transport Protocol module*) 
MODULE ATP_module; 

TCEP ARRAY[TSAP_TYPE] OF TS_primitives ( TS_provider ); 
NSAP ARRAY[NCEP_TYPE] OF NS_primitives ( NS_user ); 
SAPT ARRAY[TSAP_TYPE] OF System_primitives ( S_user ); 
SAPN ARRAY[NCEP_TYPE] OF System_primitives ( S_user ); 

END ATP_module; 

PROCESS ATP_process FOR ATP_module; 
QUEUED TCEP, NSAP; 
(* Variable declarations•) 

(* Primitive functions and procedures*) 

(*Initialization*) 

(*Transitions*) 

TRANS 
WHEN TCEP[tid].T_CONNECT_request (* Transition 3 *) 

PROVIDED ( ( tc[tid].state •CLOSED) 
and ( NOT New_nc_required( nc, From_transport_addr, To_transport_addr) ) 
and ( Choose_class( Qual_of_service) = CLASS_TWO) 
and ( Size( TS_user_data) <- MAX_CRCC_SZ ) ) 

BEGIN 
tc[tid].state := CR_SENT; 
tc[tid].local_addr : • From_transport_addr; 
tc[tid].remote_addr := To_transport_addr; 
tc[tid].l_suffix : = Get_suffix( From_transport_addr ); 
tc[tid].f_suffix :• Get_suffix( To_transport_addr ); 

Get_net_addr( tc[tid].l_net_addr, From_transport_addr ); 
Get_net_addr( tc[tid].f_net_addr, To_transport_addr ); 
nid := Get_ncep( nc, tc[tid].l_net_addr, tc[tid] .f_net_addr ); 

tc[tid].ncep_id := nid; 
nc[nid].link :• nc[nid].link + 1; 
tc[tid].qual_of_service := Qual_of_service; 
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tc[tid].src_ref :• Alloc_ref; 
Construct_CR( data, tc[tid].rcv_upper_edge, 

tc[tid] .erc_ref, 
tc[tid].l_auffix, 
tc[tid] .f_auffix, 
tc[tid].max_TPDU_aize, 
tc[tid].qual_of_aervice, 
TS_user_data 

Concatenate_2_NSDU 
END; 

END ATP_proceas; 

MODULE RS_module; 

) ; 
( nc[nid], data) 

NSAP : NS_primitivea ( NS_provider ); 
END RS_module; 

PROCESS RS_process ( RS_index integer) FOR RS_module; 
END RS_process; 

(**********••···········••*••···••**••••*•·····••***••·••*••) 
(• Create the module instances•) 
U1: TS_user_module with TS_user_proceaa(1); 
U2: TS_user_module with TS_user_procese(2); 
ATP: ATP_module with ATP_procesa; 
S1: System_module with System_process(1); 
S2: System_module with System_process(2); 
S3: System_module with System_procese(3); 
S4: System_module with System_procese(4); 
RS1: RS_module with RS_process(1); 
RS2: RS_module with RS_process(2); 

(• Connect the module instances•) 
CONNECT 
U1.TSAP TO ATP.TCEP[1]; 
U2.TSAP TO ATP.TCEP[2]; 
ATP.NSAP[1] TO RS1.NCEP; 
ATP.NSAP[2] TO RS2.NCEP; 
ATP.SAPT[1] TO Si.SEP; 
ATP.SAPT[2] TO S2.SEP; 
ATP.SAPN[1] TO S3.SEP; 
ATP.SAPN[2] TO S4.SEP; 

END Transport_ref; (• End of the refinement•) 
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B Sample of the Generated Code 

I* The generated code corresponding to Trana! tion 3 */ 

it ((channel!= HULL)) { 
p_block->lvara.a_ATP_proceaa.tid • 

(channel->index_num / 1) + 1 ; 
it ((channel->c_id •= 1) h (aignal->aignal_id == 0)) 

it ((((p_block->lnra.a_ATP_proceaa.tc 
(p_block->lvara.a_ATP_proceaa.tid-1) .atate 

(!(New_nc_required(p_block->lvara.a_ATP_proceaa.nc, 
~(aignal->lvara.TS_primitivea.T_CONNECT_requeat. 

From_tranaport_addr), 
~(aignal->lvara.TS_primitivea.T_CONNECT_requeat. 

To_tranaport_addr)))) h 
( (Chooae_claaa ( 

~(aignal->lvara.TS_primitivea.T_CONNECT_requeat. 
Qual_ot_aervice)) • = 1)) ~~ 

( (Size( 
~(a1gnal->lvara . TS_pr111itivea .T_CONHECT_requeat . 

TS_uaer_data)) <= 32)))) 
{ 

{ 

bcopy( 

p_block->lvara.a_ATP_proceaa.tc 
(p_block->lvara.a_ATP_proceaa.tid-1). 

state• S; 

(char *)•Caignal->lvara.TS_prillitivea.T_CONNECT_requeat. 
From,__tranaport_addr), 

(char *)~(p_block->lvara.a_ATP_proceaa.tc 
[p_block->lvara.a_ATP_proceaa.tid-1). 

local_addr), 
aizeot(aignal->lvara.TS_primitivea.T_CONNECT_requeat. 

From,__tranaport_addr)); 

bcopy( 
(char *)•Caignal->lvara.TS_primitivea.T_CONNECT_requeat. 

To_tranaport_addr), 
(char *)•(p_block->lvara.a_ATP_proceaa.tc 

[p_block->lvara.a_ATP_proceaa.tid-1). 
remote_addr), 

aizeof(aignal->lvara.TS_primitivea.T_CONNECT_requeat. 
To_tranaport_addr)); 

p_block->lvara.a_ATP_process . tc 
(p_block->lvara.s_ATP_proceaa.tid-1) .l_auttix = 

Get_auftix( 
•Caignal->lvara.TS_primitivea.T_CONNECT_request. 

From_transport_addr)); 

p_block->lva.ra.a_ATP_procesa . tc 
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[p_block->lvare.e_ATP_proceee.tid-1] .f_eu!fix = 
Get_euffix( 

&(eignal->lvare.TS_primitivee.T_CONNECT_requeet. 
To_transport_addr)); 

Get_net_addr( 
p_block->lvare.e_.ATP_proceee.tc 

[p_block->lvare.e_ATP_proceee.tid-1] .l_net_addr, 
t(eignal->lvare.TS_primitivee.T_CONNECT_requeet. 

From_traneport_addr)); 

Get_net_addr( 
p_block->lvare.e_.ATP_proceee.tc 

[p_block->lvare.a_ATP_proceee.tid-1] .f_net_addr, 
&(eignal->lvare.TS_primitivee.T_CONNECT_requeet. 

To_transport_addr)); 

p_block->lvare.e_.ATP_proceee.nid • 
Get_ncep( 

p_block->lvare.e_.ATP_proceee.nc, 
p_block->lvare.e_ATP_proceee.tc 

[p_block->lvare.e_ATP_proceee.tid-1]. 
l_net_addr, 

p_block->lvare.e_.ATP_proceee.tc 
[p_block->lvare.e_ATP_proceee.tid-1]. 

f_net_addr); 

p_block->lvare.e_.ATP_proceea.tc 
[p_block->lvare.e_ATP_proceee.tid-1] .ncep_id = 

p_block->lvare.e_.ATP_proceee.nid; 

p_block->lvare.e_.ATP_proceee.nc 
[p_block->lvare.a_ATP_proceee.nid-1] .link= 

p_block->lvare.e_.ATP_proceee.nc 
[p_block->lvare.e_ATP_proceee.nid-1] .link+ 1; 

bcopy( 
(char *)&(eignal->lvare.TS_primitivee.T_CONNECT_requeet. 

Qual_of_eervice), 
(char *)&(p_block->lvars.e_ATP_proceee.tc 

[p_block->lvare.e_ATP_proceee.tid-1]. 
qual_of_eervice), 

eizeof(eignal->lvare.TS_primitivee.T_CONNECT_requeet. 
Qual_of_eervice)); 

p_block->lvare.e_ATP_proceee.tc 
[p_block->lvare.e_ATP_proceee.tid-1] .erc_ref 

= Alloc_ref(); 

Conetruct_CR( 
&(p_block->lvars.e_ATP_proceee.data), 
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p_block->lvars.s_ATP_process . tc 
[p_block->lvars.s_ATP...,process.tid-1] .rcv_upper_edge, 

p_block->lvars.s__ATP_process.tc 
[p_block->lvars.e_ATP...,proce■s.tid-1] . ■rc_ref, 

p_block->lvara.a__ATP_proceas.tc 
[p_block->lvare.a_ATP...,proceea.tid-1] .l_auffix, 

p_block->lvars.s__ATP_proce■s.tc 

[p_block->lvara.a_ATP...,proceas.tid-1] .f_euffix, 
p_block->lvars.s_ATP_process.tc 

[p_block->lvars.a_ATP...,process.tid-1] .max_TPDU_size, 
t(p_block->lvars.a_ATP_process.tc 

[p_block->lvars.a_ATP...,procesa.tid-1] .qual_of_aervice), 
t(signal->lvars.TS_priaitives.T_a:JNNECT_request.TS_uaer_data)); 

Concatenate_2_NSDU( 
l(p_block->lvars .a_ATP_procasa.nc 

[p_block->lvars.s_ATP...,process.nid-1]), 
t(p_block->lvars.s_ATP_proceaa.data)); 

} 
goto dispose; 

} 
} 
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