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1. INTRODUCTION 

Computational vision is the study of intelligent systems that produce descriptions 

of a world from images of that world. The purpose is to determine those aspects of the 

world that are required to carry out some task. For most tasks, shape is a necessary 

component of any description produced. Thus, shape representation is a central con-

cern to designers of computer vision systems. 1 

In a general purpose vision system, the mapping from signal input to final shape 

description is too complex to be treated as a function in a single representation. Shape 

analysis requires many levels of intermediate representation. Identifying those levels 

and establishing the constraints that operate both within and between levels is the fun­

damental challenge of computational vision research. Each level of representation must 

consider both the processes that derive the representation and the processes that com­

pute with the representation. At the level of the signal, one deals with descriptions that 

can be derived directly from the image. This leads initially to representations for the 

2D shape of image patterns. Interpreting image properties as scene properties leads to 

representations for the visible surfaces in the scene. Finally, recognition of distinct 

objects and their spatial arrangement requires representations for 3D shape that are 

independent of viewpoint. Computational vision thus distinguishs three levels of 

representation: 2D image, visible surfaces, and 3D objects [1-5]. The principal shape 

representations considered at each of these levels are discussed in [6]. 

1 'l'o avoid confusion, t he term re presentation is used to identify a formalism, or languag.e, for encod­
ing a gener al class of shapes. Th e term description is restr icted t o mean a specific express~on in the for­
malism that identifies an instance of a particular shape, or class of shapes, in the representa tion. 
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This chapter identifies stability as one of several design criteria that a shape 

representation should satisfy. The definition of stability adopted here is the standard 

one from numerical analysis. That is, a computation is stable if small changes in the 

input produce correspondingly small changes in the output. This definition is well­

routed in mathematics but it is difficult to make precise when dealing with symbolic 

descriptions. One small step in this direction is the use of the mixed volume as a meas­

ure of the similarity between two convex polyhedra. Technical details are found in the 

Ph.D. thesis of Little[7] and related publications [8-10]. Here, we interpret Little's 

results, compared to alternatives, in terms of stability. 

Section 2 outlines a general approach to vision research and identifies one particular 

research strategy to follow. Section 3 describes design criteria for shape representation. 

Section 4 introduces orientation-based representations for 3D shape and describes a pro­

totype vision system suitable for automatic bin-picking. Section 5 provides the neces­

sary background detail for convex polyhedra. Section 6 discusses similarity measures for 

convex polyhedra. Concluding remarks are in Section 7. 

2. AN APPROACH TO VISION RESEARCH 

A complete theory of human vision must account for the relationship between the 

natural world and human visual perception. It is here taken as a given the the natural 

world consists of 3D objects and that perceptions ultimately can be represented as sym­

bolic descriptions. In this view, the 2D image acts as an intermediate representation 

that mediates between the 3D world and visual perception. Figure 1 illustrates. To 



understand the relationship between the 3D world and perception, there are four com­

ponents to consider, as suggested by the four labelled arrows in Figure 1. 

Arrow 1 characterizes the mapping from the 3D world to the 2D image. Given a 

spatial arrangement of objects made of a particular set of materials and illuminated in a 

particular way, the laws of physical optics determine the image. Geometric equations 

determine where each point on a visible surface will appear in the image and 

corresponding radiometric equations determine its brightness and colour. This is prop­

erly the domain of computer graphics, although it is relevant to point out that computer 

graphics is primarily concerned with producing "realistic" images, to convey informa­

tion, as opposed to images that necessarily depict physical reality. 

Arrow 2 characterizes the inverse mapping from 2D image to 3D world. All so­

called "shape from" methods, including shape from binocular stereo [11-12], shape from 

shading [13-17] and photometric stereo (18], shape from contour (19-23], shape from 

motion [24] and optical flow [25], and shape from texture [19,26] are formulated as prob­

lems at this level. Since the mapping from the 3D world to the 2D image ( arrow 1) is 

many-to-one, the inverse mapping (arrow 2) is underconstrained. That is, there are 

many 3D worlds that produce the identical 2D image. In most situations, the inverse 

problem is ill-posed in that there is no unique, stable solution [27]. 

Arrow 3 characterizes the mapping from the 2D image to perception. This is prop­

erly the domain of perceptual psychology. The mapping from the 2D image to percep­

tion also is many-to-one in that many different 2D images produce identical perceptions. 

Familiar examples include colour and texture metamers and edge contrast effects, such 

as the Cornsweet illusion. Many constraints on the visual perception of 2D images 
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derive from the assumption that a 2D image is an image of a 3D world. Thus, one can­

not deal only with the perception of images (arrow 3). Necessarily, one must consider 

the relationship between 3D worlds and their 2D images (arrows 1 and 2). 

Arrow 4 characterizes the inverse mapping from a perception to the 2D image. 

Again, this inverse mapping is underconstrained. But, the question can be posed as, 

"What is the equivalence class of images that produces a given perception?" Answer­

ing this question corresponds to identifying perceptual metamers. 

2.1 The Research Strategy 

"Shape from" methods define the computational task in terms of arrow 2 of Fig­

ure 1. That is, the task is to determine the 3D shape of objects from their 2D projection 

onto images. Although each method differs considerably in precise detail, all share a 

common characterization as computational tasks. Each embodies the following steps: 

• Identify the visual task. This involves picking a task domain and a class of locally 

computable image features for the domain that provide cues to 3D shape. 

• Derive mathematical equations that describe how the world determines the image. The 

equations are based on the laws of optics and, in general, consider both geometry and 

radiometry (arrow 1 of Figure 1). The equations determine the mapping from scene 

to image. Shape analysis, however, requires a solution to the inverse problem. That 

is, one must determine the mapping from image to scene (arrow 2 of Figure 1). 

• Demonstrate that the inverse problem is underconstrained. It is usually straightfor­

ward to demonstrate that the problem is locally underconstrained. In general, the 
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problem is also globally underconstrained although this can be more difficult to 

demonstrate. 

• Identify additional constraints that lead to a unique stable solution to the inverse prob­

lem. Image features determine equivalence classes of possible scene features. Concep­

tually, a unique stable solution is obtained when a suitable metric is applied to the 

equivalence classes to select a single preferred solution. The metric is often expressed 

as a performance index designed to achieve smooth, regular, or minimal energy solu­

tions. Identifying a suitable performance index is not a trivial matter. There are 

many possible measures to consider for a given visual task. Some degree of 

mathematical rigour is generally required to demonstrate that a particular choice 

does, in fact, lead to a unique stable solution. Finally, even when the existence of the 

desired solution is established, it is still necessary to develop an algorithm to compute 

the solution. 

• Show that the solution thus obtained agrees with human perception. Whatever the 

metric, the correct physical solution cannot be obtained in all cases. Human percep­

tion does not always correspond to the correct physical solution either. One level of 

agreement with human perception is to demonstrate that the computed solution 

agrees with human perception for the chosen visual task. At a second level, one also 

compares known algorithms for computing the solution to plausible mechanisms for 

biological implementation. 
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3. SHAPE REPRESENTATION 

Several authors propose design criteria that general-purpose shape representations 

should satisfy (4,6,28-30]. No single representation proposed to date satisfies all of the 

criteria. Nevertheless, the criteria provide a useful framework to discuss representations 

that have been proposed. The designed criteria are summarized below: 

• The representation of shape must be computable using only local support. The ability 

to derive the representation from the input data is the minimal requirement. Local 

support further stipulates that the representation can be computed locally. This is 

required to deal with occlusion and to perform detailed inspection. It is also of practi­

cal importance since processes that derive the representation can then be implemented 

efficiently. 

• The representation of shape must be stable. That is, small changes in the input 

should cause only small changes in the result. Images are subject to noise. Thus, sta­

bility is an important criterion for processes that derive initial descriptions from an 

image. Stability is also an important criterion for subsequent levels of representation 

because, without stability, it is difficult to define an effective measure of similarity to 

compare descriptions. 

• The representation of shape must be rich in the sense of information preserving. 

Images are two-dimensional, while objects are three-dimensional. Image projection 

loses information. An image defines an equivalence class, usually infinite, of worlds 

that project to the identical image. A representation is rich if it does not arbitrarily 



7 

restrict or extend this equivalence class. Rich representations are needed to describe a 

large class of objects, including objects that may never have been seen before. 

• The representation must describe shape at multiple scales. Representations at multi­

ple scales are useful for several reasons. First, representations at multiple scales 

suppress detail until it is required. Descriptions at a coarse scale relate to overall 

shape. Detail emerging at finer scales includes features that are more local. A 

pinhole in a metal casting is not significant when the task is to identify the part. But, 

it is critical when the task is to inspect the part for defects. Second, objects must be 

representable at different levels of detail. This can be accomplished using a hierarchi­

cal representation of shape that also takes into account the difference in object 

appearance owing to sea.le. For example, a forest is made up of individual trees. A 

forest can be represented hierarchically as a particular spatial arrangement and 

species composition of individual trees. At a coarser scale, the forest must still be 

represented as a forest, even when the individual trees are no longer discernible. 

Third, in the presence of noise, there is an inherent trade-off between the detectability 

of an image feature and its precise localization in space. By working at multiple 

scales, it is possible to optimize this trade--off dynamically, as required. Fourth, a 

coarse to fine analysis can introduce significant computational speed-up in methods 

for shape analysis requiring search or convergence. Fifth, to be useful, a representa­

tion should be storage efficient. Representations at multiple scales are needed to be 

both storage efficient and rich. 
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• The representation must define an oby"ect-based semantics for shape description and 

segmentation. In general, comparison of 2D shape descriptions fails because there is 

no stable similarity measure to use. Large changes in shape description follow from 

minor changes in either the spatial configuration of the objects in the world, the 

viewpoint, or the illumination. Shape analysis requires representations in which 3D 

shape is explicit so that spatial relationships between surfaces can be computed easily. 

This is necessary to segment complex shapes into simpler components, to predict how 

objects will appear, and to deal with occlusion. 

• The representation of shape must correspond to human performance on the task. Ear­

lier, it was noted that an image defines an equivalence class of worlds that project to 

the identical image. Similarly, a representation defines equivalence classes of images 

that produce identical descriptions in the representation. Human perception also 

defines equivalence classes of worlds and images that produce identical perceptions. A 

representation of shape corresponds to human performance on some task if two condi­

tions are satisfied. First, images that produce distinct descriptions in the representa­

tion are perceived as distinct in the task. Second, images that produce identical 

descriptions in the representation are perceived as identical in the task. A correspon­

dence to human performance is difficult to achieve, in part because much remains to 

be understood about human perception. Nevertheless, developing this correspondence 

is a major motivating factor for current work in computational vision. 
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4. ORIENTATION-BASED REPRESENTATION OF SHAPE 

A depth map is one way to represent the shape of a visible surface. A depth map 

determines distance to the surface along parallel rays on a dense, regularly spaced grid. 

A range finder is a sensor that produces surfaces descriptions of this form. Several 

"shape from" methods, including shape from binocular stereo and shape from motion, 

also produce surface descriptions in the form of a depth map. The depth map represen­

tation has certain deficiencies when the task is to determine 3D object identity, position 

and attitude. For one thing, depth maps do not transform in a simple way when the 

object rotates or, equivalently, when the viewpoint changes. Thus, it is difficult to com­

pare a sensed depth map directly to stored object models. 

Alternatively, one can represent the shape of a visible surface by specifying surface 

orientation on a dense, regularly spaced grid. This representation has been called a nee­

dle diagram by Horn (5]. Photometric stereo (18) produces surface descriptions of this 

form. Other "shape from" methods, including shape from shading and shape from tex­

ture gradient, also produce surface descriptions in the form of a needle diagram. A 

depth map description can be transformed into a needle diagram by numerical 

differentiation. The needle diagram itself still depends on both the position and attitude 

of the object in view. It is possible, however, to transform a needle diagram in a simple 

way to compute an orientation histogram. The orientation histogram corresponds to a 

hemisphere of the object's Extended Gaussian Image (EGI), as we shall see. Object 

identity and attitude is readily determined by comparing a sensed orientation histogram 

to object models stored using the EGI representation. 
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Consider the continuous case illustrated in Figure 2. Let U be the unit sphere, 

termed the Gaussian sphere. Each point on the Gaussian sphere identifies the unit vec­

tor formed by joining the origin to that point. Let E be a portion of a surface S 

bounded by a closed curve. The image of E under the Gauss map 

G(p) = w, p E S, w unit normal at p 

is G( E), the Gaussian image of E. 

The Gauss map allows us to define three related concepts. First, the Gaussian cur­

vature at p, denoted by K(p), is 

K(p) = Jim IG(E)I 
IEl- o IEI 

where E is a compact region on S enclosing p. Second, the area function at w, denoted 

by A(w), is 

A(w) = lim IG-
1
(R)I 

IRl-o IRI 
where R is a compact region on U enclosing w. Third, a 3D object's Extended Gaussian 

image (EGI) is simply its area function defined on U. The EGI of an object records the 

variation of surface area with surface orientation, using U as the reference system. If S 

has strictly positive curvature, p E G-1(w) is unique. That is to say, the EGI uniquely 

represents convex objects (up to translation) and is thus information preserving for this 

class of objects. 

In the case of polyhedra, the set of surface orientations is finite. Let { wi} be the set 

of unit ( outward) surface normals of the planar faces of a given convex polyhedron. 

Then its EGI can be represented as {A(wi)} where A(wi) is the area of the face with 

orientation wi. One can imagine translating each wi to a common point of application 
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and scaling it so that its length is A(wi)· This produces another representation, 

equivalent to the EGI, that has been called a spike model [5]. 

The EGI is invariant to translation and can be normalized to be invariant also to 

scale. Rotations are easy to deal with since an object and its EGI rotate together. The 

EGI is easy to derive from other representations of three-dimensional objects. (See [31] 

for a primer on extended Gaussian images.) 

Figure 3 illustrates a prototype vision system for automatically picking parts out of 

bin. Versions of this system have been built and reported in the literature[32-34]. A 3D 

object, made of a given material and illuminated in a given way, determines the 2D 

image. Using photometric stereo, or other techniques, a description of the visible sur­

face is computed from the image in the form of a needle diagram. The needle diagram 

is converted into a discrete orientation histogram, using a standard tesselation of the 

Gaussian sphere U. The EGI's of known objects are stored internally in the form of 

discrete orientation histograms. The measured orientation histogram determines a hem­

isphere of the object's EGI. Object recognition is achieved by matching the visible hem­

isphere to the correct stored EGI. The three degrees of freedom in object attitude also 

are determined by the position and orientation of the visible hemisphere at the correct 

match. This allows a robot to pick mixed parts out of a bin. 

Figure 3 provides the overview. Unfortunately, the matching computation can be 

ill-conditioned. Recently, the mixed-volume has been used as the similarity measure. 

The result is more robust than direct EGI matching and can support efficient multireso­

lution attitude determination. 
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5. CONVEX POLYHEDRA 

The discussion of convex polyhedra given here follows Little[7]. (See [35-36] for a 

more comprehensive treatment.) 

5 .1 Basic Definitions 

A plane can be represented as the set 

{ x I <w,x> = c } 

where < · , · > denotes vector inner product, w is a unit normal vector to the plane and 

c is a scalar constant. A plane also defines the half space given by 

{ x I <w,x> ~ c } 

The intersection of a finite number of half spaces forms a convex polyhedron denoted by 

n 
n { X I <wi,x> ~ Ci } (1) 
i=O 

A bounded polyhedron is termed a polytope. A 2D polytope is called a polygon. A 

3D polytope is called a polyhedron. 

The support function, H(w), of a convex polytope is defined as the perpendicular 

distance to the closest tangent plane, with normal vector w, that touches but does not 

pass into the interior of the polytope. Distance is measured from an arbitrary origin 

chosen inside the polytope. Figure 4 illustrates the geometric construction of the sup­

port function, H(w), for a sample polygon. The polygon is shown in Figure 4(a). The 

orientation, w, is defined with respect to an origin, interior to the polygon, and a refer­

ence direction, as shown in Figure 4(b). For any w, consider the tangent line having 

normal vector in the direction w. H(w) is the distance of closest approach of the tangent 

line to the origin. The points of closest approach all lie on a set of circles, as shown in 
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Figure 4{ c). Each circle passes through the origin and one vertex of the polygon. The 

resulting support figure is drawn in Figure 4{d). {For polyhedra, the support function, 

H( w), determines a piece-wise spherical support figure.) Even though the set of orienta­

tions, {w;}, corresponding to faces is discrete, the support function, H(w), is a defined for 

all w. 

The volume of a convex polytope can be expressed in terms of its area function, 

A(w;), and support function, H(w;). For the 2D case, the area of the polygon 1s 

1/2 <H(w;),A(w;)>. For the 3D case, the volume of the polyhedron 1s 

1/3 <H(w;),A(w;)>. In all cases, the measure is independent of choice of origin in the 

definition of H(w). 

Let { w;} be a fixed set of orientation vectors. Then, a convex polytope can be 

uniquely represented in terms of { w;} either by specifying the corresponding set { c;} or 

the corresponding set of areas { A ( w;)}. H { c;} is given, the polytope is determined by 

equation (1). At first, it might seem that some information is lost if only {A(w;)} is 

given since the positions of the surface normals is not preserved. Said another way, the 

adjacency information of the faces is not explicit. Minkowski first showed in 1897 that 

the EGI (i.e., {A(w;)}) uniquely determines (up to translation) a convex polyhedron. 

Reconstructing the convex polyhedron from its EGI was first demonstrated using an 

iterative algorithm developed by Little [8]. 

Now, two polyhedra P and Qare homothetic if 

p = {XI X = >.·y + t, y E Q,). E R.1, t E R 3
} 

That is, two polyhedra are homothetic if they differ only by a translation and by a seal-
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mg. (Two polyhedra are not homothetic if they differ by a rotation.) If two polytopes 

are homothetic, their EGl's can be made equal by a scaling. 

The convex sum (or mixture} of two polyhedra P and Q is 

>. · P + ( 1 - >.) · Q = { >. · x + ( 1 - >.) · y I x E P, y E Q, 0 < >. ~ 1} 

Let R = >.·P + (1 - >.)·Q where O ~ >. ~ 1. Then, the EGI, AR(w), of the convex mix-

ture, R, is the convex sum of the EGl's Ap(w) and AQ(w). That is, 

Similarly, 

Hn(w) = >.·Hp(w) + (1 - >.)·HQ(w) 

The support function, Hn(w), of the convex mixture, R, is the convex sum of the sup-

port functions Hp( w) and HQ( w). 

5.2 The Mixed-Volume 

The volume, V(R), of the convex mixture, R, is more difficult to express. For the 

3D case, one obtains 

where 

V(R) = >.3 V(P) + 3>.2(1 - >.) V3(P,Q) + 3>.(1 - >.) 2 V3( Q,P) + (1 - >.) 3 V( Q) (2) 

V3(S, 1j = .!_ <Hs(wi),Artwi)> 
3 

is called the mixed volume of Sand T. V3(S, T) is the inner product of the support func-

tion of S with the area function of T. For the 3D case, the mixed volume is not, in gen-

eral, symmetric (i.e., Va(S,1j f=. V3(T,S)). For the 2D case, the mixed volume is sym-

metric. 
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As above, let R = ')..•P + (1 - ')..)•Q be the convex sum of two convex polyhedra P 

and Q. Then, by the Brunn-Minkowski Theorem, 

V(R) 113 ~ ').. V(P) 118 + (1 - ')..) V( Q) 118 (3) 

with equality if and only if P and Qare homothetic. Combining equations (2) and (3), 

we obtain 

V8(P,Q) 8 ~ V( Q) 2 V(P) 

with equality holding if and only if P and Q are homothetic. The mixed volume cap-

tures the relationship between the shapes of two polytopes. When the mixed volume is 

minimal, the polytopes are homothetic. Mixing the two does not cause a shape change, 

only a scaling. Little's iterative algorithm [8] minimizes the mixed volume to recon­

struct object shape, determined by H(wi), from the given EGI, A(wi). 

6. SIMILARITY MEASURES FOR CONVEX POLYHEDRA 

When the task is object recognition, the similarity measure should be invariant to 

translation and scaling, since these typically vary with viewpoint rather than with 

object identity. Rotation also is a viewpoint dependent measure. When the task 

requires the determination of object attitude, the similarity measure must be sensitive to 

rotation. The mixed volume captures exactly these properties. 

Initially we were mislead into thinking the adjacency structure of a polytope was 

important. (Adjacency structure determines which faces share an edge, which edges 

meet at a vertex and which vertices lie on a face.) Interestingly, Little's reconstruction 

method, based on the mixed volume, does not deal explicitly with adjacency structure. 



16 

Adjacency structure is determined as a consequence of the minimization and can change 

many times as the algorithm iterates. It is also important to note that adjacency struc­

ture is not a stable property of a polytope. Small changes in the relative positions of 

faces can produce large changes in the adjacency structure. 

6.1 Determining Attitude by Comparing Area Functions 

Determining the attitude of a known object is equivalent to finding the rotation, </>, 

that brings the known area function into correspondence with the sensed area function. 

Let {A(wi)} be the sensed area function of the visible surface of an object. Let {A;(wi)} 

be the area function of prototype object with rotated attitude </>. At each sampled atti­

tude</>, the measure of similarity is given by 

:E (A;(wi) - A(wi)) 2 

i 

Determining the best match corresponds to finding the attitude, </>, that minimizes this 

measure. (Equivalently, one can find the attitude,</> that maximizes <A;(wi),A(wi)>.) 

A direct comparison of area functions is the method used by Horn and Ikeuchi [32]. 

But, there are difficulties. As the resolution is increased, effectiveness of area matching 

decreases. The tesselation of the Gaussian sphere, U, becomes finer resulting in more 

empty cells in the orientation histogram of the known object. Thus, even when the atti­

tude difference between the sensed and the known area functions is small, the match 

may be poor. In fact, the match may be poor even at the correct attitude. Said 

another way, the similarity measure used is not stable. 
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6.2 Determining Attitude with Mixed Volumes 

Let {A(w.-)} be the sensed area function of the visible surface of an object. Let 

{H<P(w,)} be the support function of the known object with rotated attitude¢. Rotating 

an object preserves volume. Thus, the mixed volume 

<H;(w.-),A(w,)> 

is minimized at the attitude, <P, that brings the known object into correspondence with 

the sensed object. 

For polytopes, the area function, A(w), is non-zero for only finitely many values of 

w. When the attitude of the sensed object is slightly different from that of the known 

object, the correlation of area functions can be zero. (It is possible to consider smooth­

ing the area functions directly, to improve correlation, as Brou has observed [37].) The 

support function, H(w), is a continuous function of w and the mixed volume achieves 

this smoothing in a more rigourous way. 

Little's experiments [7] support this approach. The effects of the magnitude of the 

difference in attitude between object and prototype are significantly smaller for the 

mixed volume method. This suggests that it is possible to trade-off resolution on the 

Gaussian sphere, U, with the number of test attitudes, <P, to achieve an efficient and 

accurate coarse-to-fine determination of object attitude. The justification for the 

mixed-volume method depends on the area function and support function being defined 

over the entire Gaussian sphere. But, it appears to work well in practice when only the 

visible hemisphere of the sensed object is available. 
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7. CONCLUDING REMARKS 

The prototype bin-picking system demonstrates that robust, practical machine 

vision systems can be designed and built. The approach is based on a careful analysis of 

the physics of imaging and on the view of machine vision as an inverse problem. This 

resulted in the concepts of photometric stereo, the Extended Gaussian image and mixed 

volumes. 

The research strategy exemplified by this work is applicable to a broader class of 

vision tasks. The discussion of the research strategy and of design criteria for shape 

representations is intended to suggest that this is so. We have only just begun, how­

ever, and much remains to be learned. 

Stability, in particular, is relevant to a number of the design criteria discussed 

above. It is not yet clear how the computations of early vision, which are primarily 

numeric in form, can interface with knowledge representations, which are primarily sym­

bolic in form. 

Currently, we do not know how to define stability for symbolic representations. 

The basic mechanism to compare two symbolic expressions is to test for equality. More 

general matching of expressions is possible when syntactic transformations are allowed 

to reduce the comparison to an equality test. For example, the substitution of terms in 

one expression for variables in the other to make the expressions identical is called 

unification. Algorithms exist to find the most general (i.e., simplest) unifier of any finite 

set of unifiable expressions, or to report failure if the set cannot be unified. Finally, 

when transformation includes the ability to do deductive inference, two symbolic expres-
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sions can be considered equivalent if each implies the other. Stability, as it's currently 

defined, requires the ability to quantify similarities and differences. If a significant por­

tion of a computational vision system is to be symbolic, rather than numeric, it will be 

necessary extend the notion of stability to cover the symbolic domains too. 
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Figure 1. Visual perception of the natural world. The natural world consists of 
3D objects made out of different materials illuminated in different ways. An image is a 
spatially varying brightness pattern. Visual perception consists of symbolic descriptions 
of the natural world computed from the image. There are four mappings to describe. 
Arrow 1 is the mapping from the 3D world to the 2D image. Arrow 2 is the inverse 
mapping from the 2D image to the 3D world. Arrow 3 is the mapping from the 
2D image to perception. Arrow 4 is the, inverse mapping from a perception to the 
2D image. Since the mappings 1 and 3 are, in general.; many-to-one, the inverse rna.p­
pin,gs 2 and 4 determine equivalence classes, respectively, of worlds that produce identi­
cal images and of images that produce identical perceptions. 
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Figure 2. The Gauss map. Let p be a point on a surface S. The unit surface normal 
vector at p determines a point won the Gaussian sphere U. G(E) is the Gaussian image 
of E under the Gauss map G(p) = w. 
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Figure 3. A 3D object, made of a given material and illuminated in a given way, 
determines the 2D image. Using photometric stereo, or other techniques, a description 
of the visible surface is computed from the image. Here, the description is of surface 
orientation at each visible point, called a needle diagram. Each of severaJ 3D object 1s is 
represented by its Extended Gaussian Image (EGI). The needle diagram determines a 
hemisphere of the object's EGI. Matching the visible hemisphere to known EGI's deter­
mines both object identity and object attitude. This, for example, allows a robot to 
pick mixed parts out of a bin. 
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Figure 4. Geometric construction illustrating the definition of a support function, 
H(w), shown here for the 2D case. A sample polygon is shown in (a). Orientation, w, is 
defined with respect to an origin, interior to the polygon, and a reference direction, as 
shown in (b). For any w, consider the tangent line having normal vector in the direc­
tion w. H(w) is the distance of closest approach of the tangent line to the origin. The 
points determined by H(w) all lie on a set of circles, as shown in (c). Each circle passes 
through the origin and one vertex of the polygon. The resulting support figure is shown 
in ( d). 


