Application-driven Failure Semantics of Interprocess
Communication
in Distributed Programs

K. Ravindran;
Department of Computer Science & Automation,
Indian Institute of Science,
Bangalore - 560 012, India.

Samuel T. Chanson,
Department of Computer Science,
University of British Columbia,
Vancouver B.C. V6T 1W5, Canada.

K. K. Ramakrishnan,
Distributed Systems Architecture and Performance,
Digital Equipment Corporation,
Littleton MA 01460, USA.

25 June 1988

Abstract

Distributed systems are often modelled after the client-server paradigm where resources are managed
by servers, and clients communicate with servers for operations on the resources. These client-server
commaunications fall into two categoriee — connection-oriented and connection-less, depending on whether
the servers maintain state information about the clients or not. Additionally, each of the servers may itself
be distributed, i.e., structured as a group of identical processes; these processes communicate with one
another to manago shared resources (intra-server communications). Thus, the activities of a distributed
program mszy be viewed as a sequence of client-server communications interspersed with intra-server
communications. In this paper, we identify suitable interprocess communication (IPC) abstractions for
such communications — remote procedure calls for client-server communications and spplisation-driven
shared oariables (2 shared memory-like abstraction) for intra-server group communications. We specify
the properties of these abstractions to handle partial failures that may occur during program execution.
The issues of orphans and consistency arising due to partial failures are examined, and solution techniques
specified as part of the run-time system. The abstractions allow certain relevant information of the
application to be incorporated in the run-time system. Examples are given to illustrate the use of these
abstractions as primitives for constructing distributed programs.

Key words:

Client-server model, remote procedure call, shared variable, partial failures,
orphan, group communication

*Work was partly paformed when the author was with the Department of Computer Science, University of British Columbia.
The autbor is currently with Bell Northern Research, Ottawa, Canada.

_— e ——

1 Introduction

The client-server model of interprocess communication (IPC) is a very useful paradigm for structuring commu-
pication between the various processes in a distributed system. In this model, the processes that implement
and manage resources (also referred to as services) are called servers and the processes that access these
resources are called clienfs. The clients and the servers may possibly reside on different machines. A server
exports an abstract view of the resource it manages with a set of allowable operations ou it. A client com-
municates a request to the server for operations on the resource, and the server conununicates the outcome
of the operations to the client by a response. This request-response style of communication is fundamental to

client-server communications (also referred to as client-server interactions) [24,10].

In contemporary distributed systems, a service may itself be distributed, i.e., provided by a group of
identical server processes executing on different machines, with functions replicated and distributed among
the various processes to enhance failure tolerance and availability. Clients access the service as a unified
logical entity across a well-defined interface. An example is a distributed file service shared by a cluster
of workstations across a local network. The service may consist of a group of server processes each one
managing a subset of the fille name space. Clients access the file service with a unified set of primitives in a
network transparent fashion. If a process in the group fails. only the files managed by the failed process will
be unavailable to clients. To encompass such an architecture, we extend the client-server model as follows:
In general, the management of a distributed service underscores some form of resource sharing among the
processes of the service: the sharing manifests in the form of communication among the processes, which we
refer to as intra-server commsnication. The communication exhibits a contentson style whereby the processes

contend among themselves to access the resource and coordinate the sharing.

Commaunication abetractions are required to map the client-server and the intra-server communications in
distributed programs on such systems. The abstractions reside on top of a primitive message-passing IPC
substrate and interface to the clients and servers which constitute the application layer. Usually, two types
of IPC mechanisms are provided by the message-passing substrate —one-to-one and one-to-many. The client-
server and intra-server commmnications are structured on top of this substrate. Viewing from the application
side, though the basic message-passing substrate is sufficient for some classes of client-server aund intra-server
communications, semantically it is not powerful enough to handle the consistency issues with regard to the
distributed state maintained in the client-server interface. Higher level abstractions are needed to provide a

stronger form of IPC for reliable communications among the processes of the program.

The theme of this paper is to identify suitable communication abstractions for use in distributed programs,

and to specify their abstract properties to handle process, machine and commmunication failures that may
occur during the IPCs. The paper uses a new application-driven approach in specifying the properties of the
abatractions. The approach allows certain relevant information of the application to be incorporated in the

client-server interface, thereby simplifying the underlying failure recovery algorithms.

The paper is organised as follows: Section 2 characterizes the client-server and intra-server communica-
tions in a distributed program. Section 3 identifies two high level IPC abstractions mapping the different
characteristics of these communications: (1) Remote Procedure Call (RPC) for structuring client-server com-
munications, and (2) n-driven shared variables (ADSV) for structuring intra-server communications.
Sections 4 and 5 specify the properties of the abstractions with respect to failures. Using these IPC abstrac-
tions, the client process of a distributed program may interface to operating system services in a manner
similar ¢o that offered in single machine systems, While specifying the properties of the abstractions, we have
largely refrained from specific implementation details. Sections 6 and 7 show how the abstractions may be

used as primitives for reliable distributed programming.

2 Application-driven model of a distributed program

As described in section 1, server processes implement resources and client processes communicate with the
servers to access the resources. Such a request-response communication is a common communication style in
distributed programs. Additionally, a service may be provided by a group of server processes. We organize
such server processes into a process group [11,1], referred to as a server group, to manage the resource. In
general, the member processes {or simply members) of a server group share one or more abstract resources
and contend among themselves to provide a unified interface to the clients. The intra-server communication
in the service may take place by one-to-many {group) communication among the members of the server group,
i.e., the sender of a group message and the recepients of the message belong to the same group. The server
group is specified by the pair (rsre_nm, sryr_gid), where rsrc_nm is the name of the resource and sror_gid is

the identifler (id) of the process group.

A file server group is a process group file_srur_gid that provides file service (referred to as
FILE). Thus, for example, it manages the global name space of files in the system with each member
of the gronp implementing a smbset of the name space, The server group is identified by the pair
(FILE, Jile_srvr_gid). A spooler group is a process group prnt_gid that provides print spooling service,
referred to as SPOOL, with each member of the group serving a subset of the clients. The spooler group
is identified by the pair (SPOOL, prat_gid).

The intra-server group communication initiated by a server is orthogonal to the communication between
the server and its clients. Thus, a distributed program may be structured as a sequence of client-server
communications interspersed with intra-server gronp communications. The latter may span across program
boundaries because a shared resource managed by a server group may be accessed from more than one program

(see Figure 1). Each of the two communication styles is further discussed in the following subsections.

21 C -server interactions

Client-server interactions may be of two types — connection-oriented and connection-lese — as described

below:

A client-server interaction is connection-oriented if in a sequence of such interactions, the server maintains
certain ordering relationship among them. The interaction may cause permanent changes to the resource
the server exports to the client. State information about the resource and the client is maintained in the
server across interactions thronghout the duration of the connection. The information is used by the server
to maintain the required ordering relationship among the interactions, and to protect the resource against
inconsistencies caused by client failures. An example of a connection-oriented interaction is a client operating
on a file maintained by a file server; part of the state! maintained by the server is the seek pointer. As another
example, consider the static variables supported in & distributed implementation of the ‘C’ language. A server
implements a procedure and maintains the static variables, while a client implements a calling proc.edufe ﬁnd

interacts with the server over a connection to operate on the variables.

A client-server interaction is connection-less if in a sequence of such interactions, the server need not
maintain eny ordering relationship among them. This implicitly assumes that the interaction should not
cause auny changes to the resource the server exparts to the client. Thus, the failure of the client is of no
concern to the server. For the above reasoms, the server need not maintain any state information relating
to a connection-less interaction with the client during or past the interaction. Examples of connection-less
interactions are a client requesting i) time information from & time server, and iij s numerical computation

from a math library server.

Because of their inherent characteristics, connection-less interactions are lsghé-wesght — the algorithms to
implement them may be simpler and moré efficient — as compared to connection-oriented interactions. The

failure recovery component of the algorithms may also be simpler (sectlon 8).

UHere, ‘state’ refers to high level, resource-dependent iuformation.

2.2 Intra-server group interactions

Members of a server group manage one or more shared resources and interact among themselves to provide a
uniform interface to clients. Such interactions exhibit a contention style of communication whereby members
contend with one another to access the resources. This style of communication is different from the request-

response style in client-server interactions, and hence requires a different type of communication abstraction.

The shared resources are characterized by dietrib fed state varisbles maintained by the group. Let V be
such a state variable maintained by a server group Sg (see Figure 2). V may assume a set of values which are
dependent on the resonrce abstracted by V. It may be updated during an interaction between the client and
Sg. or an intra-server interaction within Sg. Examples of V are the name binding information maintained by a
name Server group, the lock variable maintained by a spooler group managing a shared printer, the leadership
within a server group, distributed lists containing information about membership in a group, distributed load

information, and the alive status of machines.

Let v, va...., vy be the instances of V maintained by the members gy, , 84,,....24, (of S} respectively,
and let v, be the instance of V maintained by the client. The values assumed by these instances of V may be
inconsistent with one another due to partial failures and due to the asynchronous nature of the intra-server
interactions. Qur premise is that these inconsistencies may be tolerated to some extent depending on the

_resource V abstracts (i.e., it is Dot necessary to ensure ‘fthe" ir_nstm-cesv. are consistent at all tixhes, see section

7), and that the inconsistencies may be handled by the IPC abstraction that governs access operations on V.
2.3 State transitions in the program

The state of a distributed program is given by the set of states of all the processes in the program. Thus an
interaction between a client and a server may cause the program state to change if the state of the client or

the server changes during the interaction. A client-server interaction TR is denoted by

(Coes Sver) 5 (Cagey Sage) By

where Chey and C,y: are the states of the client before and after the execution of TR, and Spes and Say¢ are
the corresponding states of the server. S,y¢ depends on {Sees, TR) and Coy¢ depends on (Ces. TR, p-val)
where p_val is a value emitted by the server in state Sy.s in response to TR. Thus TR canses the server to
emit a value p_va! and change its state to S,z¢, and the client to accept p_val and change ita state to Coye.

Suppose TR is a connection-less interaction, then since the server does not maintain any state information,

TR is simply represented by
(Coer) = (Cae).

In a client-server interaction, the server may change its state in the following ways: (i) Interactions as a
client with other servers; the state transition is caused by the returned values p_val. (ii) Intra-server group

interactions when a shared resource is manipulated. We examine each in detail below:

2.3.1 Returned value

The p_val may be abstracted as a set of (attribute, value) pairs. An attribute is a name used by the client
to specify an operation on the server, and the server may return cne of many possible values for the at-
tribute. The (attribute, value) pairs are defined for the operation by the application layer. They are specified
in the request and the response messages exchanged between the client and the server to transport TR.
As an example, suppose TR is a request to a file server to open a file. Two attributes FILE LOOK_UP
and ALLOCATE RESOURCE may be specified in TR for a look up operation on the file and allocation
of resources for the file respectively. Let the possible return values for the attribute FILE LOOK_UP be
{ FILE FOUND, FILENOT FOUND }, and that for the attribute ALLOCATE RESOURCE be { RE-
SOURCE._ALLOCATED, RESOUR LE }. Then one possible return value for TR is

1 '
p-val _{ (RCEUNAVAILABLE) |

Such a characterization based on attribute names and values is useful in specifying the semantics of client-

server communication in general (section 7.1).

The client level interpretation of the outcome p_val as a successful completion of TR or otherwise de-
pends on the application. In the example given above, suppose the file server is unable to locate a file
(FILE NOT_FOUND) under a given name in response to a search request from a client. The fact that the
search failed may be considered by the client to be successful if the search is a prelude to creating a new file
under the name, or unsuccessful if the search is a prelude to opening the file. Such client level interpretations
of non-success constitute application-level faslures which may be present even with a fully reliable communi-
cation layer. Thus one should distinguish between partial failures and application-level failures. The latter

are application-dependent and are outside the scope of the paper.

The p_val may also be used to specify the determinism properties of the program, namely a server generates
the same p_val whenever the server executes the same call under identical conditions (see [1] for details). For

simplicity and without loss of generality, we assume only deterministic programs in the model.

5

2.3.2 Operation on shared resources

Suppose the server is A member of a server group. The server may change the local instance of the state
variables it maintains by its interactions with other members in the group. The server may initiate the
interactions when it tries to access the resource shared among the members, or it may participate in the

interactions initiated by other members.

Based on the above discussion of how a server may change state, we describe in the next subsection the

idempotency property of client-server interactions which is useful in the failure recovery algorithms.
2.4 Idempotency
Congider a client-server interaction TR, as given by the relation (1)

(Chess Sves) 5 (Capt, Sage).

The idempotency property of TR [23.24] relates to the effect of TR on the state maintained by the server,
and it specifies the ordering relationship of TR with respect to a sequence of calls. TR is an idempotent call if
the state of the server remains unchanged afier the execution of TR, i.e, Sqy¢ = Spes; however, Cq s need not
be the same as Cp.y since the client may change its state due to the p_val returned from the server. Examples
of idempotent calls are read operat o a file which do not change the seek pointer, time requests to a time
server group and file search requests to a file server group?. If TR is a non-idempotent call, then Sy;¢ may

be different from Spey. Examples of non-idempotent calls are relative seeks on a file and opening a file.

To examine the usefulness of the idempotency property in the recovery algorithms, we introduce the

concept of re-ezecution of TR.

2.4.1 Re-executlon

In a re-execution of TR, the client state is restored to ¢hat when TR was first initiated. In that state, the
client generates a new call TR" which has the same properties as TR. If TR is given by the relation (1), then
TR" is defined as

(Coeg.Sagt) ™8 (Coptry Sager)-

The concept of call re-execution is useful in the forward recovery scheme described in section 6. It is also

useful in dealing with message orphans, i.e., multiple executions of a server cansed by re-transmisgions of a

examples are of the connection-less type, and hence are always idempotent because the server does not

call request message from a client {see section 6.1).

In order for a re-execution to he useful, TR should be idempotent. It follows from the definition of
idempotent calls that if TR (aud therefore TR") is idempotent, then S, = Sog¢ = Spes. In other words,
the server state does not change under re-executions of an idempotent call. Also, since TR is deterministic,
Case* = Caye. I TR is nop-idempotent, then S; ¢, Sege and Spey may be different; also, C, e and Coye

may be different.

Based on the above concept of re-execution, the call TR may further be classified as 1-idempotent if the
server changes state only for the first execution of TR but not under re-executions of TR, An example is an

absolute seek operation on a file,

3 Com ication abstractions

Having characterized the communication styles in a distributed program from an application point of view, we
now identify suitable communication abstractions which map naturally onto these styles. Failure semantics

will be discussed in the context of these abstractions in the subsequent sections.
8.1 Remote procedure call

RPC is a high level cation abstraction by which a client may interact with a server on a different
machine [5]. It is a widely accepted abstraction for building distributed programs because it encapsulates the
procedure call mechanism that is common and easily understood in programming, and allows a programmer

to access remote processes and system services much the same way as local processes.

Refer to Figure 3. The P;'s are the processes in the program. Suppose Py, calls P; which in turn calls
Ptyy, then P;_; is the client {or caller) of P; and P; is the server (or callee) of P;_;. Similarly, P¢ is the
caller of P;y) and Py is the callee of P;. The Pg's (i=1, 2.... i, i+1) are said to contain portions of the
call thread with the tip of the thread currently residing in P;;y. When a caller makes a call on a callee, the
caller is suspended and the tip of the call thread extends from the caller to the callee which then begins to
execute. When the callee returns, the call thread retracts from the callee to the caller and the latter resumes

execution

Though RPC maps well onto client-server interactions, it is not adequate for intra-server interactions
because the latter exhibit a contention style of communication (for accessing shared resources) that is different
from the request-response style of communication supported by RPC. Though in some cases, access to a

resource by a server may be triggered by RPC from a client, the server still needs to contend with other

7

members to access the resource. In some other cases, contentions by the server to access a resource may
exist independently of any client interactions with the server. For the above reasons, we introduce another
abgtraction in the next subsection which may be used either in conjunction with RPC or independently for

access to shared resources.

3.2 Application-driven shared variables

A high level abstraction that maps well onto the intra-server group interactions is shared-memory because i)
the interactions primarily deal with the distributed state variables shared among the server group members,
and ii) IPC by shared memory is a well-understood paradigm in centralized systems. The abstraction presents
amemory {ie., a state variable) that is logically shared among the members. We refer to such a logical memory
as application-driven shared varizhble (ADSV) because, as we shall see later, the consistency requirements of
the variable are specified by the application. Conceptually, ADSV is similar to physical shared memory, and
is an abstract container of the instances of V (see Figure 2) distributed across the members of the server
group. Conventional operations for reading, writing, locking and unlocking physical memory are definable
for the ADSV as well, so the members may use these operations to interact with one another to operate
on a shared resource. However, the procedural realization of the operations should haudle the nnderlying

consistency issues.

3.2.1 Operations on ADSV

The operations on the ADSV may be realized by using group communication across the server group members
because group IPC lends itself well for a member to interact with other members of the group conveniently
and efficiently through a single message {the process group mechanism allows processes to form groups, join
and leave them |11]). In such a realization, a shared variable V may be associated with the group id of the
server group whose members share the variable. The details of the protocols used to implement the operations

may be found in [1]. We now identify the basic operations:

status = Create Instance(V). The operation creates an instance of the variable V for the requestor so
that the latter may perform a series of operations on V. Procedurally, a server process joins the server

group and acquires the state of the shared resource,

val = Read(V). The operation returns the value of the variable V in val. Note that this operation (and
the write operation given below) and the interpretation of val are application-dependent. Procedurally,

the member reads the local instance of V; the member may also juteract with other members of the

group to correct its local instance if necessary.

Write(V, val). The operation writes the value val into the variable V. Procedurally, the member writes
into its local instance of V, and may also communicate with other members of the group to update their

instances of V.

status = Lock(V). The operation locks the variable V for exclusive access by the requestor. The oper-
ation succeeds immediately if V is readily allocatable (typically, if V is not already locked): otherwise it
is queued up waiting for V to become allocatable (typically, when the current holder of V either releases
V or suffers a failure). Once allocated, the requestor has exclusive possession of ¥ until the lock is
released. In the realization of this operation, the member may interact with the group to resolve any

simultaneous attempts to lock V (the arbitration mechanism is unspecified).

Status = Unlock(V). The operation unlocks the variable V from the exclusive possession of the re-
questor. If there are queuned lock requests on V, some form of arbitration mechanism is employed to
allocate V to one of the waiting requestors. Procedurally, the member may send a group message

advising release of the lock on V.

Status = Delete_Instance(V). The operation deletes the instance of the variable V created by the
requestor. Procedurally. the member may leave the gronp. If it has locked V, i.e., holds any shared

resource, it should send a group message advising return of the resource.

Since the arbitration mechanisms in the Lock and the Unlock operations do not guarantee any specific
ordering among the operations, they are semantically weaker than the P and V operations on semaphores
where a well-defined arbitration order (such as FIFQ, LIFO) is usually specified. As we shall show later, the
weaker semautics is sufficient at this level of abstraction for many applications. Specific ordering required by
high level algorithms, say for concurrency contfol and serialization of access to the resource, may be structured
using these operations.

We now specify the failure semantics of the RPC and the ADSV. The semantics allow design of the failure

handling algorithms and protocols in the later sections.

4 TFailure semantics of C

Refer to Figure 4. Let F;_y (itself the callee of P;_5) make a call (TR) on Py As the call thread executes

P, it may visit the various servers Fyii, Py1, Py3,... through a series of calls causing the servers to change

9

states. We refer to the state of all such servers as the state of the environment as seen from P;—y. The thread
may resnme execution in P;_; when it returns from FP¢ either normally or abnormally. The abnormal return
may occur when F; fails or when there are communication failures between P¢ and P¢—;. TR is considered to

Liave succeeded if the thread makes a normal return, failed otherwise.

A desired failure semantics of the call TR is as follows: Suppose X is the state of the environment when
the call is initiated. If the call succeeds, P;_; should see the final state of the environment ¥'; otherwise, Py,

should see the initial state X. These two outcomes are represented as:

CALL SUCC(TR)= (X.Y). and
CALL FAIL{TR) = (X.X) (2)

where (X, Y) indicates a state transition from X to Y. The RPC run-time system exposes these cutcomes
to the caller, ahstracting (denoted by ‘=') the underlying state transitions. The semantics underscores the
notion of the recoverability of the call. an important property for the call to be atomic [16]. It means that the

overall effect of the call should be all-or-nothing.

Suppose when Pg; initiates the call TR on Py, the state of the environment is X. Suppose also that
during the execution of TR, P initiates a call on Pyyy and then fails. Let X’ be the state of the environment
when P failed. The failure of P; is considered to have been masked from its communicants Py, and Peyy if
the run-time system is able to recover from the failure and provide the ontcome CALL_SUCC(TR) to Pi—1.
A necessary condition for such a failure transparency is that there exists another process, identical to P in
the service provided, whose state is the same as that of P; when the latter failed and which can continue the
execution of TR (from the failure point), cansing the state of the environment to change from X’ to Y. If
the run-time system is unable to mask the failure, say due to the u bility of such an identical process,

then the failure semsaatics requires that Py, sees the ontcome CALL_FAIL(TR).

The failure semantics implies a failure recovery that allows delivery of the outcome CALL SUCC|TR)
or CALL_FAIL(TR) as the case may be to Pi_,. I TR is connection-less, the semantics is still applicable,

but requires no recovery because P; does not maintain any state.
4.1 Rollback and CALL_FAIL outcome

Consider the failure scenario described in the previous section namely that Py during the execution of TR
initiated from Py, . fails after initiating a call on Pgy;. The portion of the thread at P, down the call chain
is an orphan while that at P;_; up the call chain is an uprooted call.

10

Suppose the RPC run-time system is unable to mask the failure of Py, then the run-time system rolls
back the state of the environment from X' to X to provide the required CALL _FAIL(TR) outcome. This
requires, among other things, killing the orphan Poyy [15,19]. In general, if the failure of a process cannot be
recovered, it may be necessary to rollback all servers to their states prior to the initiation of the orphaned
thread that visited the servers. Thus, to provide the CALL FAIL outcome, the orphan should be detected
and killed [5,23]. This amounts to destroying the execution of the orphan and undoing its effects (rollback).

For connection-less calls, the requirement for such a rollback does not exist as far as the failure semantics

ia concerned. However, killing the orphans may still be desirable since they waste system resources.
4.2 Unrecoverable calls

Assume the RPC run-time system encapsulates algorithms and protacols to support rollback and provide the
outcome CALL_FAIL. Even so, rollback may not be possible in many situations, particularly ifo opera-
tions that affect the external environment (e.g., human user or a peripheral device). In some applications
such as print operations, rollback may not be meaningful [L8]. In other applications, rollback may not be
possible. Consider, for example, operations in certain real-time industrial plants. Undoing the effects (on the
environment) of an operation such as opening a valve or firing a motor is neither meaningful nor feasible.
The calls that so affect the external environment are unrecoverable when a failure accurs. The outcome of
such unrecoverable calls is referred to as CALLINCONSISTENT indicating to the caller that the state of

the environment may bhe inconsistent.

The CALL FAIL(TR) and CALL INCONSISTENT(TR) outcomes of TR, when they occur, are
delivered to the caller as exceptions. Handlers may be provided to deal with the exceptions in an application-
dependent manner, say, either by aborting the program or by taking an appropriate corrective action. As an
example, suppose a client of a time server periadically calls the server to obtain time information and update
its local time, If a call TR fails with the CALL_FAIL(TR) outcome, the client may deal with the exception
by tolerating the failure and hoping to correct the time at the next call. Details of how the exceptions are

communicated to the application layer and their effects in the presence of concurrent calls may be found in

{1,21].

5 Failure se ntics of SV

Recall that the concept of ADSV is used in the context of a server group, so the failure semantics of ADSV
is specific to the gronp. The implications of the failure of a group member are application-dependent.

11

Take for example the case where a member of the group holds a lock on a shared resource. If the member
fails, the lock should be released so that the resource is usable by the other members. Thus, as part of the
lock acquigition, the member should also arrange for the restoration of the lock to a consisten¢ state should
the member fail {1]. For certain resources, the lock recovery becomes part of a rollback activity that may be
initiated by the member if its client fails (refer to section 4.1). The failure of a member that does not hold

any lock on the resonurce may not introduce any inconsistency in the state of the resource,

Suppose in another case, the group maintains a ranking among its members. Each member occupies a
position in the ranking and has a view about the positions occnpied hy other members in ¢the ranking. This
view constitutes the shared variable of the group. If it is required that all members have a consistent view of
the ranking, then the failures of members should be observed in the same order by the (surviving) members

of the group.
Thus the atomicity and the ordering constraints on the failure events are application-dependent.

The communication layer obtains such abplica.tion layer information during run-time and structures its

internal algorithms and protocols accordingly as outlined in sections 6 and 7 helow.

6 Orphan adoption in PC

In this technique, one of the replicas of the server executes a client call while the other replicas are standing by.
When the executing replica fails, one of the replicas standing by reconfigures to continue the server execution
from the point of failure. Such a re-tnearnated process adopfs the orphan caused by the failure, i.e., the
orphan is allowed a controlled ¢ roivel rather than being killed and causing rollback of the server state. The
adoption may occur when the re-incarnated process re-executes from its restart point to the adoption point
{typically the point where the process failed) in the same state as the failed process, During the re-execution,
the re-incarnated process (re-)issues the various calls embedded in the call thread from the restart to the
adoption points. However, the re-executions by the various servers due ¢o such calls should cause no effect on
the environment (see sections 2.4.1 and 6.1). The re-execution of the re-incarnated process allows it to roll
Jorward, and may be categorized as a forward error recovery technique [6]. The technique minimizes rollback

which may otherwise be required in orphan killing techniques.

Refer to Figure 4. Consider the failure scenario described earlier in section 4, namely that F;, during the
execution of TR initiated from P, fails after initiating a call on Pyyy — X and X' are the state of the envi-
ronment when TR was initiated and when P; failed respectively. Suppose Py re-incarnates at the point where

it was initially called and rolls forward. If the orphan Fyy, is adopted by the re-incarnated Py, then Py

12

can make a normal return of the call to P;. If the roll forward is not possible, then the call fails. To deliver
the CALL_FAIL outcome, rollback {killing the orphan) may be required. If rollback is not possible (unre-
coverable call) or if the CALL_FAIL outcome is not required, then the outcome CALL INCONSISTENT
(= (X, X)) is delivered.

The run-time system effects a roll forward based on two mechanisms (refer to Figure 5):

1. Controlled re-execution of the caills, if necessary, hased on their idempotency properties.

2. Event logs that contain call completion events allow a recovering process to get in step and become

congistent with other processes without actually re-executing the calls (see section 6.2).
These are examined in the following subsections:

6.1 Re-execution of call sequences

Let EV_SEQ = [TR'.TR?,... TR%,... TR¥] be the sequence of call events seen by a server when there
are no failures. The ordering on EV _SEQ is denoted by TR! = TR? - ... > TRt > ... > TR*, where
TR! > TR? represents the order ‘TR! happens before TR%. The call TRt is represented as

(Co1, 5im1) 8 (C S0), (3)

where (Ci_1,S5¢-1) is the state of the client and the server before the execution of TRt and (Cy, 5¢) is the
state after the execution. Suppose a failure causes a re-execution of TRY, represented as TR*', after the server
has executed TR¥; the request for TR may be either a m orphan or from a recovering client. The call
sequences EV _SEQ and [EV _SEQ > TR"] are not ordered sequences with respect to one another. Thus call
re-executions by the server often requires the relaxation of ordering constraints on calls without affecting the
consistency of the server state. The re-executions of a call underscore the idempotency property associated

with the call (c.1. section 2.4) as described below:

6.1.1 Interfering calls

Refer to the example given above. Let Sy be the state of the server after the completion of the last call
TR* in EV_SEQ. Assuming that the server does not maintain an event log, the re-execution TRY (ie.,
TR* > TRY) invoked by a re-incarnated client may interfere with the calls in EV_SEQ which the server had
already completed. TR does not interfere with TR¥ if

v
(€L, S T2 (CL Sk).

13

Thus, the necessary condition for the server to execute TR without causing state inconsistency hetween the
re-incarnated client and the original instance of the client is that TR should be idempotent. However, it
is not a sufficient condition. The necessary and sufficient condition for such a consistency is given by the

requirements (see relation (3)) that
Cé—l =C¢-1, and O} =0

Because the program is deterministic, the first requirement is satisfied. Thus the effect of TR¥ may be given
by
i
(Ci1 8 ™D (G4, 50).
Pattern matching this relation with (1), the second requirement, namely C! = C; can be satisfied only if S;_,

= 5S¢ = Sg. This is globally true if the condition
L i)
(Cimt.Sict) ™8 (G Sit) T (Ciprn Sict) o (Chon, Sict) ™5 (CreSica)

is satisfied. This is possible only if TR, TR, .. TR¥ are all idempotent calls. The condition specifies, in
general, when the server may re-execute a call without causing inconsistencies. If TRY is a 1-idempotent call,

then TR¥ can be re-executed only for ¢ = k.

_ The abave analysis supports the following commutative property of the calls seen by a server: Given that
EV _SEQ aud [T'RY) are idempotent sequences, i.c., contain ouly idempotent calls, then EV _SEQ > [TRY]is
an idempotent sequence. The analysis also lends insight into other commutative properties of calls such as: (i)
ordering of calls by the server (e.g., generation of serializable schedules for incoming calls), (ii) interspersing
of calls from multiple clients on the server — even though a client may issue a sequence of idempotent calls, if
there is at least one non-idempotent call from other clients interspersed into the sequence, the client perceives
the effect of a non-idempotent call, and (iii) connection-less calls can be interspersed into any serializable
schedule.

6.2 Event logs

An event log is nsed to record an event that happened at some point in time so that the event can be replayed
at a later time. We use the replay technique for connection-oriented calls (without re-executing the calls)
during forward recovery. When a server completes a call, it logs the call completion event in a linked list.
The completion event is described by a data structure containing, among other things, the p_val returned

by the server to its client. The event log allows the client to perceive the effect of a call withont actually

14

{re-)executing it. Thus, if TR! is a call represented by relation (3):

(Cier, Sie1) 8400, 50,

then a replay E? from the event log for TR may be represented as
(Ci1,89) 5 (Co, 7,

for some TRS such that TR > TRS > E¥. In other words, an event log allows a re-incarnated client to roll

forward to a consistent state without violating the call idempotency requirements.

If a call from a recovering client cannot be completed either from the event log or by re-execution, the
call fails with the CALL INCONSISTENT outcome. The details of the algorithms and protocols nsed by the

run-time system to r orphan adoption may be found in [1].
6.3 Locks on shared resources

If the orphan is holding a lock on a shared resource, the suspension of the orphan during its adoption may
prevent other programs from accessing the resource (e.g., a printer or name binding information) until the
adoption is completed. Depending on factors such as how critical the resource is and whether the operations
on the resource are recoverable, the orphan may either suspend its execution or recovers the lock on the
resource and forces a CALL_FAIL or CALLINCONSISTENT exception, as the case may be, to the client of

the failed process.
6.4 Connection-less calls

Since connection-less calls on a server do not require any form of ordering among them, the calls are neither
assigned call identifiers nor logged by the server. So these calls when re-issued by the new Pg are invariably
re-executed by the server. Also if a server fails during a connection-less call on it, the client simply re-issues
the call on another replica of the server. Since our program model encapsulates connection-less calls, such
recoveries are required in the underlying algorithm. In this aspect, the algorithm is distinct from ¢hat used
elsewhere [3,20,17).

7 t e consistency re ir ents on SV

As described in the earlier sections, RPC maps outo the request-response style in client-server communications
while ADSV maps onto the contention style in intra-server gronp communications. Partial failures during a

group communication may not affect the outcome of the communication nnder certain sitnations, and may

15

be difficult to be distinguished from application-level failures (see section 2.3). Hence the ADSV abstraction

should deal with the problem of inconsistency among the various instances of a shared variable.

One way to ensure consistency of the shared resource is to provide atomicity, order and cansality properties
in the group communication layer, such as the group communication primitives proposed by Birman 4] and
Cristian [12]. Such primitives may be used to perform atomic andfor ordered operations on the resource.
However, distributed server interfaces typically do not require absolute consistency with the attendant penalty
in higher overhead. Occasional inconsistencies may be detected at higher level (which may possibly include the
userj when the resource is accessed, and cosrective measures t if necessary. For example, the consistency
constraints on a service name registry need not be as strong as that for many commercial data bases [13,9). The
consistency constraints on V, i.e., the acceptable level of consistency (or inconsistency) among the instances
of V depend on the resource V abstracts. Relaxing the consistency constraints in turn reduces the complexity

of the underlying algorithms that maintain the consistency of V.

Our approach is not to require absolute consistency but to provide simple primitives upon which applica-
tions can build additional properties if necessary. This allows usage of a minimal set of protocols for access
operations, as required by the applications. Generally, this will result in better efficiency in the execution
of the various operations. Inconsistencies, if any, may be detected and handled (by the protocols realizing
the access operations) when the resource is accessed. Suppose, for example, the binding information for an
object changes because the object has migrated or changed its name [14]. Correcting all the externally-held
references to the object requires atomic delivery of notifications of the change. Instead, if a client of the object
can correct its reference to the object at the time of access using a search protocol {22], a weak delivery of
the notification message (i.e., the message delivery need not be atomic) may be sufficient at the time of the
change, or even no notification at all (section 7.2.3). Thus. a relaxed consistency of the ADSY may be

sufficient in many applications. More detailed discussion can be found in [1}.

Thus our nation of consistency refers only to operational consistency, i.e., the variable V need not be
totally consistent so long as the correct operation of the group is not compromised. This approach shares
some ideas with Cheriton’s model of problem-oriented shared memory with the ‘fetch’ and ‘store’ operations
on the memory defined in an application-dependent manner [9]. Such a relaxed consistency allows the various

operations on the ADSV to be realized nsing a weak form of group communication as described in the following

sections,

16

7.1 Semantics of group communication

The semantics of gronp communication is quite complex because:

1. The outcome of the requested operation at each member of the group may be independent of one

another

2. What happens at a particular member may not influence the outcome of the group communication. This
is, for example, the case when the sender considers the operation successful if at least one member of the
group has carried ount the operation despite failure at other members. In addition, such application-level

failures may not be distinguishable from partial failures.

3. The constituency or the size of the group may be unknown to the sender, and in fact, may change

dynamically.

Taking these into considerations, we introduce a parameter R in the group communication primitive [7). R
is specified by the sender of a group message, it indicates the number of members that should carry out the
requested operation for the communication to be successful. R combines the (attribute, value) pairs described
earlier in section 2.3 with a qualification criterion. The criterion specifies the condition for the outcome of
the communication to be considered successful. Thus, the sender of a group message may specify R and a set
of (attribute,value) pairs in the group communication primitive. These are used to pattern match with the
return values from the group members to determine if the requested operation is successful. The operation is

considered successful only if at least R of the replies meet the qualification criterion.

It is desirable for some applications to specify R independent of the size of the group. Examples of snch
applications are updates on replicated data, distributed election and synchronization among the members of a
group. Other applications require a specific number of replies meeting the qualification criterion. An example
of such applications is name solicitation such ag searching a file or binding a host name to its network address.

Consequently, we specify R as follows:

Case i). R = (FRACTION, r), where 0.0 <r < 1.0.
The group communication layver acquires the size N of the group using a protocol such as that based
on logical host groups used in the V-kernel [11]. After receipt of at least r*N replies which meet the
qualification criterion or a timeout, whichever occurs first, the sender is notified the outcome of the
communication using the representation ATLEAST(s). where 8 is a fraction indicating the relative

number of group members whose return values satisfy the criterion. Note that s may or may not be the

17

same as r. See [7] for details.

Case ii). R = (INTEGER. num), where num > (.
After the specified number, nwm, of replies meeting the qualification criterion are received or a timeout

occurs, whichever is earlier, the sender is notified of the actual number of replies that qualify.

Case iii). R = (FRACTION. 0.0) or (INTEGER, 0).
The communication is statelesa in that the sender is notified of success immediately after the group

message is sent. The receiving members may not reply to the message.

We now show by examples how the ADSV operations proposed in section 3.2.1 may be realized using the
above form of group communication. As we shall see, the underlying protocols often exemplify the contention

style of commuaication among the members of the group.
7.2 Sample illustrations

Some examples are given below illustrating the use of the ADSV model:

7.2.1 Host name allocation

The logical bost name (id) space managed by a distributed kernel is a shared resource, and name allocation
to newly joining machines must be arbitrated to ensure uniqueness. Nou-reusability of the allocated id’s
is another desirable property for reliability reasons. It may be achieved by polling a certain pumber N of
hosts to determine the last allocated id and then using the next higher id. During this activity, the machine
should exclude other machines from accessing the id space (Lock operation). In other words, the procedural
realization of the the Write operation on the id space should encapsulate this exclusion mechanism [8]. The
variable is subject o inconsistencies which may lead to issues such as duplicate id allocation and unused id's.
Relaxing the consistency constraints on the variable depends on the implications of such issues. For example,
the issue of unused id’s may not be gerious if the id space is chosen to be large (say a 24-bit host id resulting
in 2 possible id’s). Thus a weak form of the the underlving group communication suffices for operational
consistency. Accordingly, a new machine specifies R = (INTEGER.N) in polling (Read operation on the id
space) for the highest host id. Before adopting the selected id, the machine specifies R = (INTEGER.1) to
solicit objections from other machines. If even one objection is raised, the machine drops the tentative id and

repeats the procedure.

18

7.2.2 Replicated data

Consider a client operating on a replicated file. An operation on the file may be idempotent or non-idempotent.
A sequence of idempotent operations on the file may proceed concurrently without requiring any atomicity
and for ordering constraints® at the server end (see section 6.1.1). In this case, the client needs only one
positive reply from any member of the server group (R=(INTEGER.1)) for each of the operations {atomicity
not necessary). These operations may be interspersed by each of the members in any order, say, order of
request arrivals, including re-executions. Non-idempotent operations however should meet atomicity and
ordering constraints to maintain the various instances of the file in a consistent state. For each of these
operations, R=(FRACTION,1.0) may be specified by the client to ensure execution by all members: the
members should also prevent re-executions and preserve order among the operations. The leader in the server

group or the client may use R=(FRACTION.L.0) to commit or abort such operations [2].

7.2.3 Publishing name bindings

A distributed name server group consists of a set of name server processes distributed across the network.
When a server process registers a service under its group id with the local name gerver, the latter may publish
this information by sending an intragroup message to members of the name server group. This message may
serve as a hint that may be cached by the remote name servers. If such a publishing is only a supplementary
activity to client-driven name solicitation mechanisms, then the local name server does not require confirmed
delivery of the message to auny of the other name servers. Thus it may specify R=(FRACTION,0.0), and
may declare the operation of publishing (i.c., Write operation on the name space) successful as soon as the

message is dispatched.

7.2.4 Name resolution

When a client wishea to resolve a logical name (such as a service) to its contact address, it may send a e
to the local name server requesting a Read operation on the name space. The latter may send an intragroup
message soliciting the binding information from the name server group. It may specify R=(INTEGER.1). If
there is at least one reply with the information, the name resolution may be considered successful and the
binding established. The returned binding information may be inconsistent however, and its correctness is to

be ascertained at a higher level (relaxed consistency).

The causal ordering of the operations is a client-lovel requirement, aud may be met at the clint end.

19

7.2.5 Shared printer

A printer spooler i3 a resource shared by clients. The spooler may realise the Loek operation on the printer
a8 follows: It may first solicit any objection from other spoolers to a proposed access to the printer specifying
R=(INTEGER,1} in the group communication primitive. If at least one objection is raised, the attempt is
aborted and retried later. If there is no objection, it may commit a lock on the printer by sending a gronp mes-
sage with R=(FRACTION,0.0). When Unlocking the printer, the spooler may specify R=(FRACTION.1.0)

advising release of the lock.

8 Conclusions

This paper has specified the semantic requirements of IPC abatractions for structuring reliable clien¢-server
and intra-server group interactions in a distributed program. Qur program model is distinct from those used
in other related works on failure handling in that the model is application-driven, i.e., the concepts underlying
the model reflect application characteristics. These concepts — the idempotency properties, the notion of
connection-less interactions and intra-server group interactions — influence the design of the failure recovery

algorithms. Knowledge of these application characteristics simplifies the recovery algorithms considerably.

RPC is the abstraction chosen for client-server interactions. The failare semantics of RPC has been
specified. The semantics requires proper handling of orphans arising due to failures. As an alternative to
killing the orphans, techniques have been proposed to adopt such orphans and avoid roll backs wherever
posgible, The techniques involve controlled call re-executions and event lag based call replay. The underlying

issues of call idempotency aud mutually interfering calls have also been examined.

A shared memory-like ahstraction, which we refer to as ADSV, is introduced to map onto intra-server
group interactions for managing shared resources. Primitive operations on the ADSV have been specified.
We have shown that the consistency requirements of shared variables (associated with shared resources) such
a8 information on name bindings and leadership within a server group can be relaxed. Thus the algorithms
and protocols to realize the ADSV operations enforce consistency of the variable only to the extent required by
the underlying resource. This allows nse of a weak form of group communication among the various members

of the server group in realizing the operations. Examples are given to illustrate the ADSY abstraction.

The ahove abstractions strive to mask partial failures inherent in the distributed environment. The
high level specifications of such abstractions provide the gystem designer with a concise set of functional

requirements of the client-server interface for building reliable systems. The specifications are applicable to a

variety of the underlying hardware and software architectures.

References
(1] K. Reli unication in Distributed Programs. Technical
Rep ty of s 1
(2] M. w. . J editors. Distributed Systems: Architecture and Im-
ple fon. Pu Co., '81.
(3] K. rant Distributed Objects. IEEE Transsctions
on .
[4 K.P.B T. A. co failures. Technical
Report Dept. p ce, .'86 '85.
[5) A. D. J. ting Remote Procedure Calls. ACM Transactions on
Comp (1)
[6] R ell and B. in asynchronous Systems. IEEE Transactions on
$ snecering, S
[8.T.C an dran. for ble group communication.
In 6-th Y Time CS. '86.
[8] S. T. Chan on in reliable distributed kernels. Computer
Networks o 9 88,
[9] Pro ared ryt A decentrallsed approach to distributed
. .. In Confe on Distributed Computing Systema, pages 190-197,
IEEE CS, May '86.
j10] D. A for ne cation
te Co ures ls, SIGCO
Aug. 86,
f11] D. R. and W, Istributed process groups in the V-Kernel. ACM Traneac-
tions eler Syst 7, May '85.
(12 F. et ntine agreement.
Te R 84.
[13] B. W. Ice. In 5-th Symposivm on Principles of Distributed
Comp , Aug. '86.
14 F.C. M. uted Sys
14] y
In 4-th § 146-154,
CS. Oct. 84.
[15] K. J. Lin and J. D. . Atomic Remote Procedure Call. /EEE Transsctions on Software
Engineering, SE-11(1 1135, Oct. '85.
[16] ndR.S ons: Lingulstic support for Robust Distributed
. ACM Languages and Syrtems, 5(3):381-404, July '83.
[17) alco itions Ina
In re and ems,
IEEE CS, Oct. '84.

21

[18] M. S. Mckendry. Ordering actlons for visibility. /EEE Transactions on Software Enginecring, SE-
11(6):509-519, June '85.

[19] M. S. Mckendry and M. Herilihy. Time-driven orphan elimination. In #-th Symposivm on Reliability
in Distributed Software and Database Systemn, pages 42-48, IEEE CS. Jan. '86.

[20] M. L. Powell and D. L. Pre sotto. PUBLISHING: A Reliable Broadcast Communication Mech-
anism. In 9-th Sympossum on Operating System Principles, pages 100—109, ACM SIGOPS. June '83.

[21] K. Ravindran and S. T. Chanson. Orphan Adoption-based Failure Recovery In Remote Pro-
cedure Calls. Technical Repart 87-3 (to be published), Dept. of Computer Science, Univ. of British
Columbia, Jan. ‘87.

[22] K. Ravindran aud S. T. Chanson. State inconsistency lasues in local area network based dis-
tributed kernels. In 5-th Symposium on Relsability in Distributed Software and Datahare Systems,
pages 188-195, IEEE CS. Jan. ’86.

[23] S. K. Shrivastava. On the treatment of orphans in a distributed system. In 3-rd Symposixm on
Reliability sn Distribsted Seftware and Database Systems, pages 155-162, [EEE CS, Oct. '83.

[24] Liba Svobodova. File Servers for Network-based Distributed Systems. ACM Computing Serveys,
16(4]:350—398. Dec. '84.

22

Program1

Program 2
C-S
Serve
rou
group Program 3
P ... -— Processes
11, 12,
C-S --- Client-server interaction
ISG --— Intra-server group interaction

Figure 1. Logical view of a distributed program

Server
group S-1
Client-server interaction []1
e v
$ S-2
Group IPC
a D ntr;_a-serve
ve v2 interaction
S-1, S-2,.., S-N -- Server ’
processes
v, v2,.., vN - lnstances of a distributed S-N
state variable V
ve - Instance of V maintained by client DN
v

Figure 2. . Logical model of a distributed server

Machine Machine Machine

P' P P
i-1 APC i+1
RPC
P P P —— Procedures
i-1 i+1
Call thread
Figure 3. Remote procedure call
. x1
. Pi
i-1 c
R
SUSPENDED SUSPENDED C
Pi+1 Px2
C

— Locus of call thread

C -- Cali initiation
E -- Call execution R
R -- Call return

EXECUTING

Figure 4. Locus of the remote procedure call thread

RPC re-request Sarver re-axecutaes

(Connection-less call)

Rea-Incamated cliant

Searver re-executes
(Connection-oriented call)
re-request

RS -- Restant point

Server . .
(Connection-oriented call}

Server replays from event log

Event log containing call
completion events

Figure 5, Recovery of a re-incarnated procedure

—_ 2 —-

P IS S

