
.ImlE TRANSACTIONS ON COMPUTERS; VOL. 38, NO. 8, AUGUST 1989 1173

Failure Transparency in Remote Procedure Calls
K. RAVINDRAN, MEMBER, IEEE, AND SAMUEL T. CHANSON, MEMBER, IEEE

Abstract-Remote procedure call (RPC) is a communication
abstraction widely used in distributed programs. The general '
premise entwined in existing approaches to handle machine and
communication failures during RPC is that the applications
which interface to the RPC layer cannot tolerate the failures. The
premise manifests as a top level constraint on the failure recovery
algorithms used in the RPC layer in these approaches. However,
our premise is that applications can tolerate certain types of
failures under certain situations. This may, in tum, relax the top
level constraint on failure reco'\'ery aJgorithms and allow exploit
ing the inherent tolerance of ap1>licutions to faiJures in a
systematic way to implify falJure rccoveey. Motivated by the
premise, the paper presents a model of RPC. The model reflects
cenain generic properties of the application layer lhat may be
exploited by the RPC !aye[during failure recovery. Bused on the
model, a new technique of adopting orphans caused by failures is
described. The technique minimizes the rollback which may be
required in orphan killing techniques. Algorithmic details of the
adoption technique are described followed by a quantitative
analysis. Tbe model has been implemented as a prototype on a
local area network. The simplicity and generality of the failure
recovery renders the RPC model useful in distributed systems,
particularly those that are large and heterogeneous and hence
have complex failure modes.

Index Terms-Client-server model, orphans, partial failures,
roll back, state inconsistency.

I. INTRODUCTION

D
l TRIBUTED systems are becoming larger and
heterogeneous, with computing resources distributed

extensively across hundreds of machines interconnected by
one or more local area networks (LAN's) through gateways.
The processes that manage resources are called servers (also
referred to as services) and the processes that access the
resources are called clients. Examples of services are termi
nals, printers, files, time information, name assignment, and
mathematical library computations. A client communicates a
request to a server to access a resource, and the server
communicates the outcome of the request to the client by a
response (request-response style of communication). A serv
ice may be provided by a group of server processes executing
on different machines with functions replicated and distributed
among the processes for reasons of availability and perform
ance. For example, a time service may consist of a group of
server processes with each one providing time information to
clients. Multiple requests for time may be handled concur
rently by the various processes. If a process in the group fails,
the time service may continue to be provided by the other

Manuscript received September 15, 1988; revised April I, 1989.
K. Ravindran is with Bell Northern Research, Ottawa, Ont., Canada.
S. T. Chanson is with the Department of Computer Science, University of

British Columbia, Vancouver, B.C., Canada, V6T IW5.
IEEE Log Number 8928526.

processes in the group. Thus. in a large scale distributed
system, a program implementing an application I often consists
of clients and servers residing on different machines and
communicating extensively across machine boundaries. Such
programs are referred to as distributed programs.

Remote procedure call (RPC) is widely accepted as a natural
and convenient abstraction that may be used In distributed
programs to map onto the client-server communications [6],
[3] b cause the RPC encapsuJates the easily understood
procedure call mechanism that allows a client to access remote
services in much the same way as local service •. On the part of
the system, a semantics of RPC close to that of a local
procedure call should be provided. A key requirement is that
the machine and communication failures during an RPC f9],
[14] should be masked in the RPC interface to the program so
that the program may function nonnally in the presence of the
failures (failure transparency).

Machines are assumed to exhibit a fail-stop behavior [16].
Typical communicalion failures include: 1nessa es used for lhe

RPC being lost or misordered in the gateways du to
congestion, network partitioning due to gateway failures, and
persistent message loss at the gateways and network inter
faces. Frequently, the failures result in server executions
cominuing to exist even after termination of the RPC requests
from clients. Such server executions are known as orphuns

[91,
Treating failures as a subset of RP events, existing RPC

models deal with orphans by enforcing atom.icily and ordering
constraints on the RPC events. In other words, an RPC event
(e.g., RPC request, network failure) seen by a client should
also be seen by the server and vice versa, and in the same
order with respect to other causally related events. Suppose
during an RPC on a server, the client terminates its request
because it sees a 1emporary network failure. As per existing
RPC models, the order of events at the server ·hould be for the
server to receive the request, then see the failure and terminate
lhe requested operation. If the server does not see the failure
(violation of atomicity , or if the server ees the failure after it
has ompleted the requested operation violation of ordering),
the models consider the operation incorrect. Furthermore,
since the orphan may interfere w 1h normal executions
subsequently reque ted by the clien1 (or other clients). it It
killed by using techniques uch as rollback [61. [5]. uch a
treatment of failures is independent of the applications.

1 Applications are programs that are written by system programmers who
implement the resource-dcpendelll componenr of the servers (e.g., tenninii.1,
ftle) or system users who implement their oWTI specific needs (e.g., nurmmcal
program, database access program).

0018-9340/89/0800-ll73$0l.00 © 1989 IEEE

1 174

In this paper, we view the implications of failures from an
application perspective as outlined below [l) .

A. Inherent Failure Tolerance of Applications

Many applications have an inherent abil ity to tolerate
cer1ain types of failures th, t may occur during RPC' . Tbis is
partly due lo the evoluLion of a wide range r idempotent

applications that do not change the ·care of the server uch as
query to l ime ervers. remote compu1ation, on math library
servers . access to name servers, and so on in large scale
Jistributed systems . Typical ly in these applicatioM. a server
may process the RPC requests from multiple dients in any
rder since the requests are usually uol'elated to one anocher.
lso, the failure f a cLienL need 1101 be seen by the server since

the failure usually does not affect the server. Thus, the servers
in th · e :ipplications need not enforce the atomicity and
ordering con traints on the RPC evenLs. This absolves the
.�erver from maintaining state information which may other
wise be required if the con traints are to be en forced. This is in
c mrast to applications such as operations on file and database
servers which usually enforce the at micity and ordering
constraints on l he RPC events. Even so, a server need not
enforce the constraints for a equence of idempotent opera
tions (e .g . . reading a tile) .

The fol low tng examples funher i l lustrate how applications
exh ihit some level of fai lur tolerance.

Examples: Consider an RPC by a c lient to seur ·h or a tile
)r to get time in formation from a group of ·crver processes_ fn
both cases. lhe RPC event need not be seen by every server m

the group. For the file search. it uffice · if the cl ien1 gers a
re pon e from the particular s rver 1.hat manages the til . for
the time request , response from any of the servers w i l l do.
Thus , a communication failure which result 1r1 noudel ivery of
the RP event to every server in the group doe · not affe l the
successful ·ompletion f the RPC . A another e ample,
c.: nsider r he multiple executions of a server ·auscd by re
transmission · of an RPC request message to 1he server rom a
diem. say lue to message loss. The orphaned 'erver e�ecu
tl ns l8] . (9 1 may not be harmful when they a.l'e idempotent .

onsider the earl ier example of an RPC on a server where t he
dient terminates ils rcque t because it observes a temp rnry
netw rk failure . [f Lh erver e ecucion is idempotent, then it
tl s not matter whether the server observes the failure bd re

r after completing the execution , and in some cases if the
fai lur is observed at all by Lbe s rver.

S ince many such applications cru1 tolerate certain types of
fai lures, we suggest that the rdering and atomicity c nstraint!
{ n the RP events need not be ·ubsumcd in the RPC layer but
may be specified by lhe application layer above i t . In other
words, the ordering constraints on a given sdquence of RPC
events depend on the appl icauon. This premise al lows
relaxal1on llf the constraints in the RPC layer using appl ication
la er i n formation which may in 1um ignificanrly simplify the
recovery algorithms.

Thu . failure transparency in RPC requires specifying the
failure sernanrics of RPC i .e . . the impl ications f failures
Lluring RPC) and the t reatment of orphans caused by failures.
E L ting RP models typical ly do n t make use of the

IEEE TRANSACTIONS ON COMPUTERS, VOL. 38, NO. 8, AUGUST 1969

application layer properties for failure recovery. and are either
formulated primarily for nonidempotent applications or do nut
address failure transparency significantly . This paper presents
a different model of RPC from an application perspective. Tho
model makes new types of failure recovery techniques useful,
particularly in large distributed systems.

The paper is organlzed as follows: Section II describes a
model f RPC which . ystematically incorporates certain
application layer properties and al lows them to be exploit d
during fal l are recovery. Section 1IT discusses the failure
semantics f RPC. Based on the RPC model and semantics.
Section rv introduces a new technique of adopting oq,bans
caused by failure . The technique mirtimizes rollbacks that

may be required for recovery and avoids wastage of useful
work already completed. Secti n V describes the essential
details of the technique . Section Vl presents a quantitative
analysis of the recovery technique. Section VII provides
details of a prototype implementation f the model and
includes performance i ndications. ection vm discusses the
model in relati u to existing work ,

II. MODEL OF REMOTE PROCEDURE CALL

As described earlier, server processes implement reiiources
and respond to requests from client processes to access the
resources. A server exp rts an abstract v iew of the resource
(e .g . . file.) it manages with a Ret f peralion on i t . A clieru
communicates an RP request to the server for operations on
the re ource , and the server communicates the outcome of th
operations to the c l ient by an RPC response (or return). In
prov iding the resource � r ils l ients, the server often needs to
communicate a� a client with another server ecause the

resource may be implemented on top o another resource. For
example . file� are implemented on c p of disk storage; so a file
server need to communicate as a client with a disk server to
Implement the files . Thus, the role of a process as client or
server i. tlynarnic .

Additionally . a service may be provided by a gr up of
crver processes rga11 ized into a process group [13] , re� rred

L > as u server group, to manage the resource. The member
processes of a server group share one r ru re abstract
resources and ntend omon themselves to access tlJe
restiurces. Example uf the resources a.re the name binding
inf rmation mai ntained by 11 name server group. the leadership
within a server group . and distributed load information. The
co11rencion style intraserver communication may take place
by one-co-many (group) communicmions among the members
of rhe server g.roup. The intraserver gr up communication
initiated by a server is usually triggered by an RPC request on
t11e erver from a cl ient . Thus, a dislributed program may be
t ructured as a sequem:e of cl ient-server communications

interspersed with intraserver group communications. The
latter may ·pan across program boundaries because a shared
resource managed by a server group may be accessed from
more than one program.

A. RPC Types

RPC's from a l ient on a �erver 1 nay be of two types
connection-oriented and connection-less [8)-as described

1· RAVINDRAN AND CHANSON: FAil.URB TRANSPARENCY IN REMOTE PROCEDURE CALLS 1175

.,_ below: 2

An RPC is connection-oriented if in a sequence of such
calls, the server should maintain a certain ordering relation
ship among them. The call (or interaction) may cause changes
to the resource the server exports to the client. The server
maintains state for the interaction which consists of i)
information about the client, and ii) resource-dependent
information which is anchored onto i). (Item i) constitutes the
permanent variable for the connection.) The state is main
tained in the server across calls throughout the duration of the
connection. Among other things, the state information is used
by the server to maintain the required ordering relationship
among the calls, and to protect the resource against inconsis
tencies caused by client failures. An example of a connection
oriented call is a client operating on a file maintained by a file
server; part of the state maintained by the server for the call is
the seek pointer.

An RPC is connection-less if in a sequence of such calls, the
server need not maintain any ordering relationship among
them. This implicitly assumes that the call should not cause
any changes to the resource the server exports to the client.
Thus, the failure of the client is of no concern to the server.
For the above reasons, the server need not maintain any state
information for a connection-less call. Examples of connec
tionless calls are a client requesting time information from a
time server, and a numerical computation from a math library
server.

Because no ordering constraints are imposed, the connec
tion-less calls are lightweight and the algorithms to implement
the calls may be simpler and more efficient as compared to
connection-oriented calls. The failure recovery component of
the algorithms may also be simpler (Section IV-D).

We now discuss how state transitions occur in servers to
formalize the application layer properties that may be used in
the RPC.

B. State Transitions in Servers

An R PC TR from a client on a server is denoted by

(1)

where Cbcr and c.ft are the states of the client before and after
the execution of TR, and Sbcr and Saft are the corresponding
states maintained by the server for TR. The TR causes the
server in state Sbcr to emit a value p_ val and change state to
Saft, and the client in state Cbcr to accept p_ val and change state
to C.rt. The state transition from Sbcr to Saft in the server may
take place by its interactions as a client with other servers and
by its local executions operating on its internal permanent
variables. Thus, Caft depends on (Cbcr, p_ val) and Saft depends
on (Sbcr, TR). If TR is connection-less, it is simply denoted by

since the server does not maintain any state information for
TR.

1 The meanings of these terms differ somewhat from those used in
communication protocols.

The p_val may be abstracted as a set of (attribut.ej value)
pairs. An attribute, used by the client, specifies an operation
on the server which may return one of many possible values
for the attribute. As an example, suppose TR is a query to a
print server to get the status of a printer. The attribute
ST A TUS may be specified in TR. Let the possible return
values for the attribute be {ACTIVE, DOWN}. Then one
possible outcome of TR is P-val = {(STATUS, DOWN)}.
Such a characterization of p_ val is in general useful to
transmit abstract values in messages [12] . In particular, it is
used to represent the return value in RPC (Section IV-B).

Based on state transitions in the server, we now describe the
idempotency property of client-server interactions. It is an
application layer property used in RPC for failure recovery.

C. Idempotency

Consider a client-server call TR as given by the relation (1)

TR

(Chef• Sher) --+ (Caft, Saft).

The idempotency property of TR [9] relates to the effect of TR
on the state maintained by the server for the calls from the
client, and it specifies the ordering relationship of TR with
respect to a sequence of calls. TR is an idempotent call if the
state of the server remains unchanged after the execution of
TR, i.e., Saft = Sbcr; however, Caft need not be the same as
Cbcr since the client may change state due to the P-val returned
from the server. Examples of idempotent calls are a read
(without seek) operation on a file and a status query operation
on a p.rinter. If TR is nonidempotent, then Soft may be different
from Sbcr• Examples of nonidempotent calls are relative seeks
on a file and opening a file.

To expose additional properties of TR that may be useful in
the recovery algorithms, we introduce two concepts-reenact
ment of TR and reexecution of TR.

1) Reenactment: In a reenactment of TR, the states of both
the client and the server are first restored to those when TR
was issued and a new call TR' which has the same properties
as TR is made. If TR is given by the relation (1), then TR' is
defined as

where C.r., depends on (Chef , P-val') aad Sar,, depends on
(Sbcr, TR'). The concept of call reenactment is useful in
backward recovery schemes in which the server rolls back the
effect of the call. and subsequently the client reissues the call
(Sections V-D and III-A). The idea is to be able to reproduce
the effect of the call (i.e., Saft ' = Saft and Caft ' = Caft), In
order to accomplish this, the server state transition and the call
TR should be deterministic, i.e., repeated call on the server at
a given state should cause the server to make the ame state
transition and emit the same p_val. The former condition
ensures Saft/ = Saft while the latter ensures Caft I = c.ft.
Consider, as an example, a "read" operation provided by a
file server that returns the data value read from a file. It is
deterministic since a reenactment of the operation returns the
same value as the original operation. Suppose the "read"

1176

_____. Locus of call thread

C - Call initiation

E - Call eJ<eallion
R - Call raJum

IEEE TRANSAC110NS ON COMPUTBRS, VOL. 38, NO. 8, AUGUST 1989

EXECUrNG

Fig. 1. Locus of the remote procedure call thread.

operation also returns a time stamp, then it is nondeterministic
since every reenactment of the operation may return a different
time stamp.

We ob ·erve that the change in the server state caused by TR

depends only on the server state prior to the execution of TR,

but not on the p_val returned by the server. On the other hand,
the change in the client state depends only on the client state
prior to the execution of TR and on the p_ val returned by the
server, but not on the server state. Thus, the idempotency and
the determinism properties of TR do not interfere with one
another. Hence, any techniques to deal with the nondeter
ministic behavior of program executions need not interfere

with those provided to tackle the idempotency issues. Thus,
for simplicity and without loss of generality, we confine our
discussion to deterministic programs.

D. Reexecution

In a reexecution of TR, only the client state is restored to
that when TR was first initiated. In that state, the client
generates a new call TR" such that TR" has the same
properties as TR. If TR is given by the relation (1), then TR"

is defined as

The concept of call reexecution is useful in the forward
recovery scheme described in Section IV and also in dealing
with orphans caused by message duplicates (Section V-Bl).

In order for a reexecution to be useful, TR should be
idempotent. It follows from the definition of idempotent calls
(Section 11-C) that if TR (and therefore TR") is idempotent,
then Saft" = Saft = Sber• In other words, the server state does
not change under reexecutions of an idempotent call. Also,
since TR is deterministic, Caft " = Caft •

Based on the above concept of reexecution, the call TR may
further be classified as 1-idempotent if the server changes state
only for the first execution of TR but not under reexecutions of
TR. An example is an absolute seek operation on a file.

Having-cast the RPC model with application layer proper
ties, we now discuss the failure semantics of RPC.

III. FAILURE SEMANTICS OF RPC

Refer to Fig. 1. The P;'s are the processes in the program.
Suppose P; _ 1 calls P; which in turn calls P; + 1 , then P; _ 1 is the

client (or caller) of P; and P; is the server (or callee) of P;_ 1.

Similarly, P; is the caller of P; + 1 and P; + 1 is the callee of P;.
The P;'s (i = l, 2, · · · i, i + 1) contain portions of the call
thread with the tip of the thread currently residing in P;+ 1•

When a caller makes a call on a callee, the caller is suspended
and the tip of the call thread extends from the caller to the
callee which then begins to execute. When the callee returns,
the call thread retracts from the callee to the caller and the
latter resumes execution.

As the call thread executes P;, it may visit various servers
P;+ 1, P.r1, Px2, • • • through a series of calls causing the
servers to change states (c.f. Section II-B). We refer to the
state of all such servers as the state of the environment as seen
from P; _ 1• The thread may resume execution in P; _ 1 when it
returns from P; either normally after completion of TR by P;
(i.e., TR succeeds), or abnormally when P; fails or when there
are communication failures between P; _ 1 and P; (i.e., TR

fails).
Suppose X is the state of the environment when the call TR

is initiated, a desired failure semantics of TR is as follows. If
TR succeeds, P;_ 1 should see the final state of the environ
ment Y, otherwise, P;_ 1 should see the initial state X. These
two outcomes are represented as CALL_SUCC(TR, X, Y)
and CALLJAIL(TR, X, X), respectively, where (TR, X,

Y) indicates a state transition from X to Y for TR. The
semantics underscores the all-or-nothing effect of the call, a
requirement for the call to be atomic [5].

A. Rollback and CALLJAIL

Suppose that during the execution of TR, P; initiates a call
on P;+ 1 and then fails. The portion of the thread at P;+ 1 down
the call chain is an orphan. Let X' be the state of the
environment when P; failed. The failure of P; can be masked
from its communicants P;- 1 and P; + 1 if the failure can be

recovered and P;_ 1 sees the outcome CALL-SUCC. A
necessary condition for such a failure transparency is that there
exists another process, identical to P, in the service provided,
whose state is the same as that of P1 when the latter failed and
which can continue the execution of TR (from the failure
point), causing the state of the environment to change from X'
to Y. If the failure cannot be masked, then the failure
semantics requires that P; _ 1 sees the outcome CALL_F AIL.

The latter is provided by killing the orphan [5], [3], [9] which
1rntnifests in rolling back the state of the environment from X'

1178

RS •• Restan point

IEEE TRANSACTIONS ON COMPUTERS, VOL. 38, NO. 8, AUGUST 1989

Server re-executes

(Connec1ion-oriented call)

(Connedion-oriented call)

Event log can1aininQ cal
ooq,lellon events

Fig. 2. Recovery of a procedure.

Thus, Lhe necessary condition for the server to execute TR1'

without causing state inconsistency is that TR i ' should be
idempotem. However, a sufficient condition is given by the
requiremems L.-;e relation (2)J that

Assumjng the call is decenrunistic. the first requirement is
satisfied. Thus, TRi' may be given by

Pattern matching this relation with (l), the second require
ment, namely C; = C,. can be satisfied only if S;_ 1 = S1 =
Sk . This is true if the condi(ion

is satisfied. This is possible only if TR1, TR i+ 1, • • •, TRk are
all idempotent calls. The condition specifies, in general, when
the server may reex_ecute a call without causing inconsisten
cies. If TR1 is a l-idempotent call, then TRi' can be
reexecuted only for i = k.

The above analysis supports the following commutative
property of the caUs seen ya erver. Given that EV _seQ and
[TR'' ·1 are idempotent sequences. i.e., contain only idempo
tent calls, EV_SEQ > [TR;'] is an idempotent sequence (and
so is [TRi'] > EV_SEQ). We also observe that EV_SEQ >
EV_SEQ' > [TRi'] is an idempotent sequence if EV_SEQ'
is an idempotent sequence. The analysis is useful in the server
for l) reex_ecution of calls, 2) ordering of incoming calls (e.g.,
generation of serializable schedules for the calls), and 3)
interspersing of calls from multiple clients-even though a
client may issue a sequence of idempotent calls, if there is at
least one nonidempotent call from other clients interspersed in
the sequence, the client perceives the effect of a nonidempo
tent call. We also note that connection-less calls can be
interspersed in any serializable schedule.

------ ------

B. Event Logs

An event log is used to record an event so that the event can
be replayed at a later time. We use the replay technique for
connection-oriented calls (without reexecuting the calls) dur
ing forward recovery. When a server completes a call, it logs
the call completion event (described by a data structure
containing, among other things the p_ val returned by the
server to its client). The event log allows the client to _perceive
the effect of a caU without the server actuaUy (re)executing it.
Thus. if TR' is a call represented by (c.f. relation (2)1

and TRI is the call last completed by the server, i.e., TR; >

TR I, then a replay E i from the event log for TR; may be
represented as

where TRI > £i. Thus, a recovering client may roll forward
to a consistent state with the server simply replaying the
logged call completion events.

If a call from a recovering client cannot be completed either
from the event Jog or by reexeculion, the call fails with the
CALL_INCONSISTENT outcome.

C. Locks on Shared Resources

If the orphan is holding a lock on a shared resource, the
suspension of the orphan during its adoption may prevent other
programs from acce sing the resource (e.g., a printer or name
binding infom1ation). until the adoption is completed. Depend
ing on factors such as how critical Lhe resource is and whether
I.he operations on the resource are recoverable, the orphan may
either suspend its executi n or recover the lock on the resource
(c.f. Section lll-C) and forces a CALLFAIL or CALL
INCONSISTENT exception, as the case may be, to the client
of the failed process.

D. Connection-less Calls

Since connection-less calls on a server do not require any
form of ordering among them, the calls are not logged by the
server. So these calls when reissued by the recovering client,

I

communicants from timing out. Subsequent recovery activities
depend on the state the failed P; was in at the time of failure. If
P; failed when it was IDLE, no activity other than INlT is
required. When the prefailure state of P; was EXECUTING or
SUSPENDED, a RESTART activity whereby RI(P;) restarts
the new P; is necessary. We describe the REST ART activity in
the next section followed by the data structures required for
the RESTART. and finally the recovery of P;.

A. RESTART Activity

RI(P;) restarts the new P; which then starts (re)issuing the
calls between the last checkpoint to the point where the
erstwhile P; failed (see Fig. 3). A server (such as P;+r)
handles such calls sent to it by returning the results p_vol) of
the calls to P1 . Since the server had already executed the calls
previously, P-vol may be obtained from the local event log or,
if it is not available in the log, by reexecuting the call if this
will not cause state inconsistencies [c.f. Section IV-Al)]. If the
server has all the calls sent to it in its log, no reexecution of the
calls is necessary. Ideally, the size of the log should be large
enough to retain all the calls since the last checkpoint.
However. the finite size of the log in any implementation
means there is a possibility a nonidempotent call cannot be
logged by the erver. We consider the following options in
handling this problem:

1) Option 1: Intermediate Checkpoints: The server (such
as P;+ 1) may force its client P; to 1ake a checkpoint (at P;_ 1 's
site). The checkpoint may then occur even before the return of
the (nonidempotent) call P; is executing. Such an intermediate
checkpoint has the following implications. 1) The frequency of
checkpointing may be higher than the case where checkpoint
ing is done only at caJJ return. This is the case if there are
nonidempotent calls arriving after the log is full. 2) The state
checkpointed needs to include the instruction pointer, stack
pointer, and the execution stack. This may restrict the replicas
of a server to run only on machines of the same hardware
architecture. 3) Extra heckpoint messages are required, ·ome
of which may be piggybacked on the call return messages if
the checkpointing is done during call return.

2) Option 2: Rollback of the Unlogged Call: The
implications of the server befog unable to log the nonidempo
tent call it returns are as follows. If the client (P; in our case)
fails and recovers, the calls which are reissued from the
recovering P; on the server and which are not in the server's
log annot be completed. To enable P; to roll forward by
completing such calls, the effects of the unlogged nonidempo
tem call should be rolled back before P; can reissue the calls. If
the RPC layer already maintains data structures to support
rollback and provide the CALLJAIL outcome, the rollback
of the unlogged call does not require any additional data
structures. If the rollback cannot be carried out, then since P;
cannot roll forward, it may fall the call by deUvering the
CALLJNCONSISTENT outcome to P; _ 1 •

The RPC designer may choose one of the above options
after weighing their implications in light of the application
environment the system should support. We have chosen
option 2 in our implementation because the data structures to

u,.r.r. 1KANSAL"TlONS ON COMPUTERS, VOL. 38, NO. 8, AUGUST 1989

support rollback are already available to provide the CALL_
FAIL outcome.

As noted earlier in Section IV-D, the connection-less calls
on a server are not logged by the server, so these calls when
reissued by the new P; are invariably reexecuted by the server.
Also if a server fails during a connection-less call on it, the
client simply reissues the call on another replica of the server.

B. RPC Dato Structures and Protocols

The RPC layer maintains a set of variables and data
structures for recovery purposes (see Fig. 3). Only those
essential to describe the adoption technique are given below:

CALL-REF(P;, P1): It is a name reference to a callee Pj

(e.g., P1 + 1) held by P, in the fonn of a (service__name1 srvr _
pidj) pair. where service.J1amej uniquely identifies the
service provided by Pi and srvr _pid1 is the process id of P1 .
When P; makes a call on P1, this reference information is
checkpointed at the caller of P, (e.g., P;_i); wheo P1 returns
the call, the checkpointed information is deleted. If Pj

recovers after a failure, the process id in CALL-REF is
updated to refer to the recovering process.

(G_tid,qs,,l.j , nLtid,1111,;,;): G_tid,qrr,i,i is a global call id
which is assigned the nen sequence number for every new call
by P; on P1 . nLtid,qst,i,j is a nonidempotent call id which is
assigned the next sequence number for every nonidempotent
or I -idempotent call on P1 . The call id pair maintained by P;
(as a client) pertains to its last call on Pj . The set of such pairs
is referred to as the thread state of P;.

(G_tid1as,,i, nLtid,as1,;): It is the caJl id pair maintained by P;
(as a server) for the last call it has completed.

CALL_THRD(P;, P1): It is the thread state of Pj

checkpointed at its caller P;. If P1 fails and recovers, it is
initialized by P; to this thread state during the INIT activity.

CALL_OWN(P;): It is a recursively structured list of
procedure names maintained by P; in the SUSPENDED or in
the EXECUTING state. The first element of the list is the
name of P; itself, and each element of the remaining list is the
CALLOWN(Pj) returned by a callee P1 when the latter
completed a nonidempotent call from P;. Thus, CALL_
OWN(P;) contains at least one element, the name of P;.

CALLJJCK(P;, Pj): It is a checkpointed version of
CALLOWN(Pj) maintained by P; while in the SUS
PENDED state for its on-going call on Pj .

CALR-RL.FLAG(P;): It is a Boolean variable (flag) and
is meaningful only when P; is in the EXECUTING or the
SUSPENDED state. A true value of the flag indicates that if
the caller of P; fails, a rollback should be performed for
recovery; a false value indicates otherwise.

CALR-ENV_JNTRCT(P;): It is a flag meaningful only
when P; is in the EXECUTING or the SUSPENDED state. A
true value of the flag indicates that if the caller of P; fails and
recovers, its reexeoution up to the failure point will cause at
least one interaction with the environment.

HISLOWN(P;): It is a list of the values of the permanent

3 PVi may be represented in a nmchine-independent fonn by using
techniques such as ex1emal data represenmtion and abstract syntax notation
(12), (10].

_j

!
"'

RAVINDRAN AND CHANSON: FAILURE TRANSPARENCY IN REMOTE PROCEDURE CALU 1181

variable PV; maintained by P;3 and its thread state; a value is
stored when P; completes a nonidempotent call. It constitutes
the history of P;.

HIST JJCK(P;, Pj): It is a checkpointed version of the
history of Pj maintained by its caller P; (the recovery initiator
for Pj). Note that the last entry contains the value PJ'j to
which Pj should be initialized (during the INIT activity) in
case Pi fails and recovers.

It should be noted that for connection-less calls from P; on
Pi, only the CALLREF(P;, Pj) is maintained; all the other
data structures are maintained only for connection-oriented
calls.

For details of the protocols to send and receive RPC
requests and returns, see [l]. We describe below only the call
validation phase of the protocols.

1) Call Validation: Suppose P; makes a call request,
identified by (G_tid,qst.i,i+ 1, nLtid,qst,i,i+ 1), on P;+ 1• If P; is a
recovering procedure, then G_tid,qst,i,i+ 1 :s: G_tidiast ,i+ 1 and
nLtid,qst,i,i+, :s: nLtid1asi,;+ 1 for the reissued calls. Thus, the
following situations are possible when P; + 1 validates the
request:

Case 1) G_tid,qst,i,i+ I = (G_tid1as1,i+ I + 1): G_tid,qst,i,i+ I
is a new call, so P; + 1 carries out the requested call and sends
the completion message to P;.

Case 2) G_tid,qst,i,i+ I < (G_tid1as1.i+ I + 1): G_tid,qst,i,i+ I
is a reissued call (e.g., a duplicate call request message). If the
call completion event is available in the log, P;+ 1 replays the
event to the recovering P;. Otherwise, if the requested call is
idempotent or 1-idempotent, and nLtid,qst,i,i+ 1 = nL
tid1as1,i+,, then P;+ 1 may reexecute the requested call and
return the results to P;. If the call is nonidempotent or nL
tid,qsr,i,i+ 1 < nl_tid1asr,i+ 1, then P;+ 1 returns an error message
ALRDY_OVER to P;.

When P;+ 1 rejects the call request with the ALRDY _QVER
error message, P; may request P;+ 1 to rollback. If P;+ 1 rolls
back, P; may reissue the call. Otherwise, the call fails with the
CALLINCONSISTENT outcome.

When P; + 1 r�Lurns the call to P;, the latter uses CALL_
REF(P;, P;+ 1) and (Q_tid,qst,i,i+I, nLtid,qsr,i,i+i) to validate
the return. In general, a client uses its CALL_REF to detect
returns from orphaned calls. For this purpose, the process id's
used in CALL_REF should be nonreusable [14].

C. Rollback Algorithm

The structure of the list CALLOWN(P;) [and CALL
BCK(P;_ 1, P;)] reflects the sequence in which the execution
thread from P; visited the various callees. A rollback should
follow a last-called-first-rolled order, i.e., only after the
rollback for the last call (last entry in the CALL_OWN) is
completed should the rollback for the previous call be
initiated. Suppose P; is the rollback initiator (RBI). It
recursively traverses its CALL-OWN (or CALL_BCK as the
case may be) list in the last-in-first-out order. For each entry in
the list, P; sends a message RL_BCK to the procedure
identified in the entry. On receipt of this message, the
concerned procedure rolls its permanent variable back to the
last value contained in its HIST _OWN, and returns a RL_
BCK_ACK message indicating successful completion of the

rollback operation. If rollback is not possible. the procedure
returns a R.LBCK-F A1L message to ioclicate the situation. On
receipt of the RL....BCK..ACK message from all procedures
listed in CALL-OWN, the RBI assumes the rollback is
successfully completed. 1f at least one RL-BCI<-FAIL mes
sage is received, the RBI considers the rollback to have failed.

A callee need not perform rollback if the calls involved in
the rollback have been logged. Thus, if the log size is large
enough that all calls can be logged, then rollback is not
required during recovery.

We now describe below the recovery of P; when it fails in
the EXECUTING or the SUSPENDED state.

D. Recovery of P;

If P; was EXECUTING when il failed, Rl(P1) initiates the
rollback activity (see previous section) using CALL
BCK(P1_1, P;). and then executes the INIT activity. If both
the activities complete successfully. P1_ 1 restarts the execution
of P1 [c.f. section II-Cl)]. If the rollback completes success
fully but the JNIT is unsuccessful P1_ 1 fails the call on P; with
the CALL-FAJL error message. If the rollback fails (on
arrival of the RL_BCK_F AIL error message from at least one
of the procedures to be rolled back), P;_ 1 fails the call with the
CALLINCONSISTENT error message.

If P,- was SUSPENDED when it failed, the callee of P; (i.e.,
P;+ 1) is an orphan, so the recovery should handle the orphan
as described below:

1) Adoption of P1+ 1: The rphan adoption algorithm first
determines if an orphan is a<loptable, i.e., if its continued
existence in the system does not interfere with the recovering
procedure. For this. tbe orphan P1 1 executes a brake
algorithm: if P1 1 finds lhat the execution of the orphaned
thread will interfere with the recovering thread (e.g .• both the
threads may try to acquir a I ck on a hared variable), a
BRAKE message is ·ent down Uie orphan chain (P; 1, P1 ... z,
· · ·) to suspend the tip of the orphaned thread; otherwise. the
orphan continues. On successful completion of the brake
algorithm. P, recovers and resons co a thread stitching

algorithm whereby the orphaned Lhrcad and -the recovering
threa(t are "stitched" together by ending an ADOPT message
down the (erstwhile) orphan chain and resuming the suspended
thread for normal execution. On the other hand, if the orphan
is not adoptable even by suspending its thread, then the state of
the environment is rolled back to provide the CALLY AIL

outcome. 4

We now present the details of the adoption algorithm. The
algorithm is recursively executed at the different P/s.

E. Adoption Algorithm

Pj maintains three Boolean variables. When true, the flags
have the following meanings:

bmke_Jlag(P;): A brake is set at Pj Whereby Pi is not
al lowed to make a call on P1 + 1 or return to Pi -1 until brake_
flag is set to false.

4 Such a rollback is quite infrequent. And it is not necessary if the CALL_

FAIL outcome is not required.

1182

adoption..flog(Pr)- Adoption is still to be completed at PJ.
So, P1 is not aUowed to return to P1_,.

cum_c/r _r/_flag(P1): At least one of the callers P1,(i s k
s j - 1) up along the orphaned call chain should perfonn a
rollback as part of the recovery.

Thus, when P1 is an orphan, brake_flag(P1) and/or
adoption_flag(P1) is true.

Let P1U � I + I) be a callee in the orphaned call chain.
For j = i + I, i.e., the first procedure in the orphaned chain,
P;,. 1 kn w it is an orphan upon detecting the failure of Pr ; for
J > i + I, Pi knows it is an orphan upon receipt of the
BRAKE message from its immediate caller P1- 1 • In both
cases, Pj sets brake.,/lag(P1) and adoption_Jlag(P1) to true.

Consider P,,.. 1 • lf CALR-ENV -1NTRCT(P, + 1) is false,
Pi+ 1 c atinues (concurrently with the recovering P,) irrespec
tive of whether the call is idempotent or not, because the calls
originating from the recovering P1 between the tart and che
failure points will be replayed by P, � 1 from its event Jog, and
heoceP; does not interfere with P1 1 's execution. In this case
brake-flag is et to false. lf CALR-ENV-1NTRCT(P,+i) is
lnte. P1+, sets cum_c/r _r/_//ag(Pr+ 1) = CALR_RL_
FLAG(P1+ 1). The re.'lt of lhe algorithm applies to ail the
procedures in the orphaned call chain (i.e., j � i + I).

I) Braking Orphaned Thread: P1 piggybacks a bit given
by

CUM_FLAG=cum_c/r_r/_f/ag(P1)

V (lasLnLcall(P1 , *X)�(Ks + 1))

on the BRAKE message to Its callee PJ + 1 , where lasLr1L
ca/l(P1 , * X) is o. function that operate_<; on CALLOWN(P1)
aJ'l<l returns the global call id of the last nonidemp tent ·call
from Pi on * X; Ks ls the . ize of the event log maintained by
* X. On receiving the mes age, P1 , 1 sets cum_c/r_rf_
flag(P1 + 1) = CUM...RLYLAO.

Consider the orphaned call on P1. The call may be one of
the following:

a) ltlempotenr: Suppose cum_c/r _r/Jlag(P;) is true. i.e ..
a rollback i required by at least one PkU � k � j - l) when
the failed Pi rec vers. If Pi is in the EXECUTING ·tate, a
BRAK _A K message is sent to P1_ 1 indicating completion
fthe brake operation at P1 and those down the call chain.1f P1

i · in the SUS-PENDED state, il sends a BRAKE message 10 the
callee P1 ... , down the ca.II chain. Suppose cum_c/r_rLflag(P1)
is false. P1 may continue to execute (concurrently with Pt,;)
since the call is idcmp 1enl and th re is no pending rollback
that may inter ere with the call. So. P1 sets bruke_J/ag to fals
and sends a BRAKE-A K message to PJ- t •

b) Nonidempotenr: If Pl is EXECUTING. it sends a
IlRAKE-ACK message to Pi- I· lf it is SUSPENDED, P

1

sends a BRAKE message to P1_,.
Consider the arrival of the BRAKE-ACK message from

P,; f, at P
1

. lf the call onP
1 is idempotent. P1 simply passe the

message to P,_ 1 up the call chain. If the call is nonidempotent
and if CALLOWN(P

1
) contains at lea tone returned entry,

P, completes Lhe rollback aJgorithm and sends Lhe BRAKE
A K message to P1_,. At P,+ 1 sending the BRAKE-ACK to

P1 mpletes the brake algorithm.

IEEE TRANSAC'IlONS.ON COMPUTERS, VOL. 31.aNO. 8, AUGUST 1989

Upon completion of the brake algorithm, Rl(P1) (i.e., P, _ 1)
performs the rollback algorithm using CALLBCK(P, _ 1 , P1).

If the rollback activity of either P1+ 1 or P1 _ 1 fails as indicated
by the arrival of the RLBCK-PAIL message, P1_ 1 falls the
call on P1 by returning the CALLJNCONSISTENT excep
tion. lf only the INIT activity fails P1_ 1 fails the call by
returning the CALL-PAIL exception. lf che INIT activity and
both the rollback activities are successful, P;_ 1 carries ut the
REST ART activity on P1 • Wben Lhe (re execution of Pr falls
through to the call that was orpbaried, sending the call request
amounts to sending an ADOPT message down th orphaned
thread to "stitch" the latter with the recovering thread, as
described below.

2) Thread Stitching: P1U � i + 1), upon receipt of the
ADOPT message, sets the brake_j7ag(Pj) to false and
resumes the orphan execution from che point wher the brake
was set earlier.

Consider j = i + 1. If CALR_ENV-1NTRCT(P,-,.. i) is
false, the AD_CON algorithm (given below) is executed to
adopt the concurrently executing P1.,.1• Otherwise. the follow
ing algorithm is executed. Since the algorithm applies to all

procedures down the orphaned call chain. it is described for
the general case, i.e., j � i + 1:

If P1 is idempotent, the AD-CON algorithm is executed to
adopt the concurrently executing P1

• uppose P; is n nidem
potent. if P1 is EXECUTING, it sets adoption_J1ag(Pi) to
false and sends an ADOPT -ACK message up the caU chain
indicating completion of adoption at P;; if P1 is SUS
PENDED, then when the (re)ex cution thread reaches the
adoption point (i.e., where P1 got suspended), an ADOPT
message is sent to P1 + 1 •

Upon receipt of an ADOPT _ACK n,essage, P1 ets its
adoptionJ/ag(P

1
to false and pas es the message onto P1_ 1

up the call chain. At P1 ,.. 1, sending the ADOP'LACK to P;
completes the adopt.Jon algorithm.

3) AD_CON Algorithm: As we saw earlier, the recovering
caller Pk(i .s k .s j - I) may, under ce11ain situation ,
execute concurrently with P

1
. In such cases, brake.j7ag(P1)

is false when the ADOPT message arrives and P1 is allowed to
make calls on P1 + 1 but not return to P1 _ 1 •

If P1 completes ils executl n first, it awaits adoption by P1,

before returning the call. When P1-1 subsequently calls P1 . the
ADOPT message is sent Lo P1 , upon which, P1 se1s adoption_
J/ag(P1) to false, and simply returns the already completed
call piggybacking 1.he ADOP'LACK.' lf Pj- t sends the
ADOPT message befor Pj completes execution, the ADOPT
message is held until P1 completes execution, upon which, the
ADOPLACK is piggybacked on the call return and adop
tion-flag set to fal e.

We now provide a quantitative analysis of our failure
recovery technique.

VI. ANALYSIS OF THE RPC ALGORITHM

We introduce two indexes to characterize the recovery
activities carried out by the run-time system. The excenc of

5 Pi-• is, however, unaware that the call has returned immediately, and has
the illusion that the call went through a normal execution.

RA VINORAN AND CHANSON: FAILURB TRANSPARENCY IN REMOTE PROCBDURB CALLS 1183

0

0

Checkpoint interval 8

0

..,

K =•·5 _,,/

.,

�
..,

s __ e
-�--&--e--�---0---0---�

lf t C

ctchtip � K = 2 s _..
.., _..,_ _..,_ -- _ .-

:-1----........ ---..--........ ---.----..----.---.------, o.o 0.2 o.◄ o.& o.e 1.0

pldem --+

Fig. 4. Variation of catch up distance with respect to P;<1<m·

rollback required to recover from a failure is the criterion
underscoring these indexes. The indexes guide a proper choice
of the run-time parameters to minimize and/or eliminate
rollback (and the associated rollback propagation).

A. Catch Up Distance

A catch up distance is defined for a caller-callee pair. It is
the maximum number of calls a caller may make to a callee
such that if the caller fails and recovers, the callee need not be
rolled back. The event log size K., at the callee and the
application characteristics-measured in terms of Pidem, the
probability that a call is idempotent-determine the size of the
catch up distance for the caller-callee pair.

Let TR 1, TR 2, • • • , TR; be a sequence of calls carried out
by a caller on a callee (TR i is the last call in the sequence).
Suppose the caller fails and recovers. The callee should
rollback if the reexecution of TR I by the caller violates
idempotency requirements. If, on the other hand, TR I can be
reexecuted without rollback, then the entire sequence can be
reexecuted without rollback.

Let pR; be the probability that the reexecution of TR I by the
caller during recovery violates idempotency requirements.
Then pR; is given by

for l ::Si :S:Ks

for i=Ks+ l
for i'?!:. Ks +2.

The mean size of the catch up distance Ncichup, i.e., the mean
number of calls that the caller may execute beyond which a

failure will cause the callee to rollback, is given by

Nctchup=(Ks+ l) • {l-(Pidem)Ks+l)
"'

+ � i ' (Pidem) i- 1 • {l -Pidcm),

Ncichup is a static characterization of the program under the
given run-time system. Fig. 4 shows the variation of Nc,chup
with respect to Pidem for a given Ks. This parameter lends
insight into the choice of checkpoint intervals (the number of
calls between two successive checkpoints) to effect recovery
without rollback. Alternatively, it indicates the level of failure
tolerance provided by the run-time system without a rollback,
and hence may be used to determine the size of the event logs
required to meet a desired level of failure tolerance. From Fig.
4, it is clear that the level of failure tolerance is higher when a
server reexecutes calls (based on the idempotency properties)
than when it does not.
B. Rollback Distance

Rollback distance is the number of nonidempotent client
calls after the last checkpoint (call return in our case) whose
effects a callee should rollback when the client fails and
recovers. 6 Assume S calls have been completed by the client,
and there is no on-going call. Suppose the client fails and then
recovers. The probability that the rollback distance is R (0 :s:
R ::S (S - Ks)) is given by

Pr1bck.s(R)= (
S�

K
s) · (1-Pidem) R

. (P·)S-Ks-R
idem for S�(Ks + 1).

6 A nested rollback is considered as one rollback at the top level.

1184

a

0

0

a,

0

"'

0

•

0

N

"'\. Without
'- event logs

"'\.

event

0

o-t---r---ir---r--.---.-�--r--r--�-�
0.0 0.2 O.◄ 0.6 o.e 1.0

Pidem ---+
Fig. 5. Variation of rollback distance with respect to P;..,,,.

Note that Si lesi; than the checkpoint interval (in our case, the
number of calls between call receipt and return). If S <(Ks +
1), the question of rollback does not anse. The mean rolJback
distance i · given by

R(S)=

5

£
5

R • (S
�

Ks) • (1-Pidem)R • (P;dem)S-Ks-R.
R=O

The graphs in Fig. 5 illustrate the variation of R(S) with
respect 10 P1rrcm for a given value of S. As can be seen the
efti ct of th event log is 10 redu ·e the number of calls that
have to be rolled back. A related index of interest is the
probability U1ac the callee. hould rolJback. and is given by

(1-p (0)) = (1-(Pidem) s)[S-K

rlbck,S 0
for S?!:.(Ks + 1)
for S� Ks

When no logging is done, i.e., Ks= 0, the probability 1s (J -

(Prucm) 5). Th graphs in Fig. 6 illustrate the variation of the
probability of rollbac with respect to S for :1 given P1dem and
Ks , The effect o event I gs in reducing the probability of
rollback is more pronounced when S is small. Thus, 1.he
farther (in terms of the num r of remote calls) the failure
p inc is from the la t checkpoint. the less the advantages of
evenl logs.

The rollback distance and the rollback probability constitute
a dynamic characterization f the program ·ince they depend
also on the failure point given by S. These indexes lend insight
into the extent of rollback required for given checkpoint
intervals.

We now give some details of our prototype implementation
along with iodicallons about the perfonnance of the orphan
adoption technique.

VII. PROTOTYPE IMPLEMENTATION

A prototype system based on the RPC model has been
implemented on top of the V Kernel running on a network of

IEEE TRANSACTIONS ON COMPUTERS, VOL 38, NO. 8, AUGUST 1989

SUN workstations inrerconnected by an Ethernet. The basic
"send-receive-reply" style of message passing supported by
the kernel is used as the message transport layer for the RPC
model (11]. The system performs as expected under intention
ally created machine and communication failure conditions.
Two key aspects of the implementation are described here.

A. Information Flow Between Application and RPC

Layers

See Fig. 7. The exchange of applicatioo layer information
with the RPC layer takes place through an interface consisting
of a set of stub procedures. The stubs interface between a
language level .invocation of RP and the underlying RPC
layer [15]. A server makes static declarations about 1) the
!dempotency properties of the various operations it supports,
and 2) the resource t,ype (e.g .• name binding infonnation
leadership in a group). Thes declarations are used by a
preprocessor for the language in which the server is imple•
mented to enerate the apprnpriace stubs. The stubs form pan
o the executable images of the client and the server.

At run-time, the RPC layer obtains the application layer
information from the stubs and structures its internal al
gorithms aad protocols described in the earlier sections.
Communication exception are delivered to the stubs. which
then deal with the exceptions either by handlers built into the
stub r by user-supplied handlers hooked to the ·tub .

B. Performance Indications

Since the prototype implememation nm on top of another
operating system and has not been ptimized. we feel absolute
timing of the various activities in RPC is not meaningful.
Instead. we give an analysi of the c rnmunication overhead in
term of the number of pro ·ess level mes 'ages, i.e., lhe
number of messages ex hanged by the communicating proc
esses. The message size is usually 32 bytes long. When
required to send information larger than 32 bytes in size. a
segment containing up to 1024 bytes may be sent in one
message.

I) Sending Call Request and Call Return: Refer to Fig. 3.
Suppose P; makes a ca11 on P1-.-1 • Sending the call request
requires lbree messages: l) a message from P, to P1+ 1
containing the call request and the all arguments. 2) a
message from P1 to P1_ 1 t checkpoint CALL.REF(P,, P; .. 1)
at P1_ 1 ·s site, and) an acknowledgment message from P,_ 1
to P1 • Returning the call requires three messages: 1) a message
from Pr+ 1 toP, c ntaining the results of the call and the thread
·1a1e of" Pr+ 1• 2) a messag from P, to P1 _ 1 ro delete the
·heckpointed CALL-REF(P1 , P1 .,. 1), and 3) an acknowledg
ment message from P,_ 1 to P;. In additi n, the return of a
non idempotent call requires transfer of two types of informa
tion: CALL-OWN (P, + 1) and P Vi+ , , The message from P11- 1
to P, includes both ALLOWN(P,, 1) and PVi 1. The
message from P1 to P1_ 1 includes ALL.OWN(Pi+ 1) (to
checkp int the list). Depending on sjze. various inti rmation
may be transmitted in one or more segments.

For a connection-less call. one message is required f r
sending a ca11 request and another for receiving the call return.

-19

C

V

AND CHANSON: PAILURB TRANSPARENCY IN REMOTB PROCEDURE CALL',

Probability

"'

0

of
rollback ...,

0

"'·
0

Ks 3• P idem '1.9

Without .,,,
61"'

event !2.961"'
Ill"

/

With
event logs

�
c:,-t---e--...g..------.----.----.----.----.----.---,

0.0 2.0 ◄.0 6.0 8.0 10.0

s

Fig. 6. Variation of probability of rollback with respect to P;c1em•

Stub interface

Applica1ion layer

Communication
abstraction

Message transport
layer

(E.g., Termin'al server,
numerical program)

(RPC)

message-passing in V kernel

C-A - Flow of communication exceptions

-

A-C - Flow of information' from the application layer to the
communication layer

• Typical information:

1 . ldempotency properties of calla
2. RPC type - CoMection-oriented / connection-less
3. Type of shared resoun:e (e.g., leadership, name binding

Information, distributed
load information)

Fig. 7. Interface between application and communication layers.

1185

In addition, a group message followed by one or more replies
may be required to locate a server if the client's cache does not

contain the name binding information for the server.

message for notification and the other for acknowledgment) to

each of the procedures connected to P; .

2) Overhead in Failure Recovery: Suppose P; fails. The
messages required for failure recovery depend on the state of
P; when it failed.

The messages required for the INIT activity are basically to
locate a new server and initialize the server. Locating the

server requires a group communication. The initialization
requires transferring the CALL_ THRD(P; _ 1 , P;) and HIST_
BCK(P;_ 1, P;) from P;_ 1. The transfer requires two messages

(in one or more segments). On completion of the recovery of
P;, two messages are required to notify the completion (one

Suppose P; was IDLE when it failed, then the messages
required for the INIT activity constitute the only overhead.

Suppose P; was EXECUTING when it failed. Then, in
addition to the messages required for the INIT activity, the
recovery requires messages for the transfer of CALL_

BCK(P;_ 1, P;) from P;_ 1 and for any required rollback. For
each element in CALL_OWN(P;), the rollback requires two
messages.

Suppose P; was SUSPENDED when it failed. The brake
algorithm requires two messages for each procedure in the
orphan chain in addition to the messages required for any

1186

rollback initiated by the procedure. The thread stitching
algorithm requires two messages for the procedure.

VIII. RELATED Wou:s

In this section, we compare our adoption technique to
techniques proposed elsewhere and used in some experimental
systems.

ISIS: In ISIS [2], one of the replicas of a server is
designated to be the coordinator that executes client calls while
the others act as cohorts. The coordinator periodically takes

checkpoints at the cohorts, and retains the results (the p_ val's)

of all calls returned to the client since the last checkpoint.

These results are used in forward failure recovery when the
coordinator fails and a cohort takes over as the new coordina
tor and reissues the sequence of calls from the checkpoint. The

technique implicitly assumes that all client-server calls are

connection-oriented because only these calls may have the

required connection descriptors to retain results of the calls. In
other words, the descriptors (including retained results) should
be maintained for every call irrespective of the operation it

invokes. Our program model on the other hand is application

driven, and so encapsulates connection-less calls also. The
recovery of such calls is simple in our technique-the calls are

simply reexecuted. Second, it is not clear if ISIS deals with an

on-going call thread that may be orphaned due to a failure. Our
technique uses explicit algorithms to adopt the orphaned
thread. Also, ISIS checkpoints the instruction pointer and the

execution stack in addition to the application layer state. Our
technique does not require these unless intermediate check
points are taken.

DEMOS/MP: In DEMOS/MP [7], checkpoints are period

ically taken for every process at a central site. Also, every
message received by a process since the last checkpoint is

logged and the sequence number of the last message sent by
the process to each of the other processes is recorded. If the

process fails and recovers (from the last checkpoint), the

logged messages are replayed to the process. Also, the kernel
discards all the messages the process tries to (re)send up to the
last message prior to failure. In effect, the process rolls
forward to a consistent state without affecting the environ

ment. The logging of messages is done at a low level (the

central site monitors the broadcast network). The method
requires logging of a large number of messages per process

and regeneration of all low-level events when the process fails

and recovers. Second, it requires a reliable broadcast bus
because every message put on the bus (sent or received by a

process) has to be logged by the central site. It is not clear how
such a broadcast may efficiently be realized. Our technique, in

contrast, is driven by application layer requirements, and
works at a much higher level of abstraction.

ARGUS: ARGUS is a distributed programming language
supporting guardians and atomic actions whereby client

guardians can invoke atomic actions on server guardians [6].

The emphasis in ARGUS is to provide language level
constructs to deal with failures. The RPC run-time system uses

orphan killing based recovery to ensure call atomicity. Thus,

the scope of our work as well as the underlying recovery
technique are different from those of ARGUS.

IEEE TRANSACTIONS ON COMPUTERS. VOL. 38, NO. 8, AUGUST 1989

Lin's model of RPC: Lin provides a model of RPC which

ensures call atomicity by orphan killing and rollback [5].
Though his notion of atomic and nonatomic calls is similar to
that of nonidempotent and idempotent calls, his program
model does not support connection-less calls. Thus, our
program model as well as the underlying recovery technique
are different from those of Lin.

IX. CONCLUSIONS

We have described a new model of RPC which systemati
cally incorporates certain application layer properties and

allows them to be exploited during failure recovery. The
motivation for the model arises from our premise that many

applications have an inherent ability to tolerate certain types of

failures. The application layer failure tolerance capability is

partly due to the evolution of many idempotent applications in
large scale distributed systems. These applications do not

require enforcement of ordering and atomicity constraints on

the RPC events. The paper presents a wide range of examples
to illustrate the effects of failures on various applications to
support the premise.

Existing RPC models enforce the atomicity and ordering
constraints on the events without regard to the application

layer failure tolerance capability. So the algorithms used in the
RPC layer to enforce the constraints are usually complex.

Instead, the inherent failure tolerance capability of the

application may be exploited to relax the constraints to
simplify the algorithms in the RPC layer. Our RPC model
provides a framework by which the application layer failure

tolerance capability may be systematically exploited in failure
recovery.

The model incorporates specific properties such as idempo

tency and connection-less calls. The properties allow a new

type of failure recovery whereby orphans caused by failures
during RPC are adopted rather than killed. The adoption

technique minimizes the rollback which may be required in

orphan killing techniques. Essential details of the technique
are presented along with a quantitative analysis. A prototype

of the model has been implemented on a network of SUN
workstations interconnected by Ethernet.

The model is generic and simple, and is useful in distributed
systems, particularly those which have complex failure modes
(e.g., large and heterogeneous systems).

REFERENCES

[I) K. Ravindran, "Reliable client-server communication in distributed
programs,'' Tech. Rep., Univ. of British Columbia, July '87.

[2) K. P. Binnan et al., "Implementing fault-tolerant distributed objects,"
IEEE Trans. Software Eng., vol. SE-I 1. pp. 502-508, June I 985.

(3) A. D. Birrell and B. J. Nelson. "Implementing remote procedure
calls,'' ACM Trans. Comput. Syst .. vol. 2, pp. 39-59, Feb. 1984.

[4] R. H. Campbell and B. Randell. "Error recovery in asynchronous
systems," IEEE Trans. Software Eng., vol. SE-12, pp. 811-826,
May 1986.

(5) K. J. Lin and J. D. Gannon, "Atomic remote procedure call," IEEE
Trans. Software E11g., vol. SE-11. pp. 1121-1135. Oct. 1985.

[6] B. Uskov and R. Scheiner. "Guardians and ac1fons: Linguistic suppon
for robusr dislributed programs." ACM Trans. Progromm111g La11-
guages Syst., vol. 5, pp. 381-404. July 1983.

(7) M. L. Powell and D. L. Presono, "PUBLISHING: A reliable
broadcast communication mecharusm." in Proc. 9th Symp. Oper
Syst. Prirrcip/es, ACM SIGOPS, June 1983, pp. 100-109.

i

RA VINDRAN AND CHANSON: FAILURRTRANSPARENCY IN REMOTE PROCEDURE CALLS 1187

[SJ K. Ravindran and S. T. Chanson, "State inconsistency issues in local
area network based distributed kernels," in Proc. 5th Symp. Reliabil
ity Dis/rib. Software Database Syst., Jan. 1986, pp. 188-195.

[9] S. K. Shrivastava, "Treatment of orphans in a distributed systems," in
Proc. 3rd Symp. Reliability Distrib. Software Database Syst., Dec.
1983.

(10] SUN Network Services-System Administration for the SUN Worksta
tion. Feb. 1986.

(11] D. R. Cheriton, "V-Kemel: A software base for distributed systems."
IEEE Software, vol. I, pp. 19--42, Apr. 1984.

(12] M. Herilihy and B. Liskov, "A value transmission method for abstract
data types," ACM Trans. Programming Languages Syst., vol. 4,
pp. 527-551, Oct. 1982.

(13] K. Ravindran and S. T. Chanson, "Relaxed consistency: A basis for
structuring interprocess communications in distributed server architec
tures," IEEE Trans. Comput., to be published.

[14] S. T. Chanson and K. Ravindran, "Host identification in reliable
distributed kernels," Comput. Networks ISDN Syst., vol. 15, pp.
159-175, Aug. 1988.

(15] P. B. Gibbons, "A stub generator for multilanguage RPC in heteroge
neous environments," IEEE Trans. Software Eng., vol. SE-13, pp.
77-87, Jan. 1987.

[16] R. D. Schlichting and F. B. Schneider, "Fail-stop processors: An
approach to designing fault-tolerant computing systems," A CM
Trans. Comput. Sys/., vol. 1, pp. 222-238, Aug. 1983.

K. Ravindran (S'84-M'87) received the B.Eng.
degree in electronics and communications engineer
ing in 1976 and the M.Eng. degree in automation in
1978, both from the Indian Institute of Science,
Bangalore.

Until 1982. he was a Systems Engineer at the
!SRO Satellite Centre, Bangalore, working primar
ily on computer simulation techniques for real-time
systems. He received the Ph.D. degree in computer
science from the University of British Columbia,
Vancouver, B.C., Canada in 1987 in the areas of

Distributed Operating Systems. Until July 1988, he was an Assistant Professor

in the Department of Computer Science and Automation lU the Indian institute
of Science. Currently, he is II Research Scientist with the Bell Northern
Research. Canada pursuing exploratory· work on broad-band lSDN 11TOhitec
rures and protocols. His research interests include design and modeling of
distributed systems, distributed programming languages, architectures and
protocols for LAN's anu JSDN's, computer urcb1tectures, software engineer
ing and real-time systems.

Dr. Raviadran is a member of the Association for Computing Machinery
and the IEEE Computer Society.

Samuel T. Chanson (M'76) received the Ph.D.
degree in electrical engineering and computer sci
ences from the University of California, Berkeley,
in 1974.

He was an Assistant Professor at the School of
Electrical Engineering, Computer Division at Pur
due U Diversity for two years before joining the
Depanrnent of Computer Science at the University
of British Columbia where he is an Associate
Professor and a founding member and director of its
Distributed Systems Research Group. He has been

actively doing research in distributed operating systems, computer communi
cations, and performance analysis of distributed systems.

Dr. Chanson has served on program committees of international confer
ences and workshops on distributed operating systems and communication
protocols. He organized and c<Xhaired the first International Workshop on
Protocol Test Systems held in Vancouver, B.C., Canada, in October 1988.

