
A SCHEMA & CONSTRAINT-BASED REPRESENTATION

TO UNDERSTANDING NATURAL LANGUAGE

by

Eliza Wing-Mun Kuttner

Technical Report 87-2

January 1987

A SCHEMA & CONSTRAINT-BASED REPRESENTATION TO

UNDERSTANDING NATURAL LANGUAGE

By

ELIZA WING-MUN KUTTNER

B.Sc., University of British Columbia, 1983

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

10

THE FACULTY OF GRADUATE STUDIES

(DEPARTMENT OF COMPUTER SCIENCE)

We accept this thesis as conforming

to the required standard

&
.

...
.
..

.
(

.......
..

........
.
.. ..

iJ_L) jy j ········�······�-tf-;��

THE UNIVERSITY OF BRITISH COLUMBIA

November 1986

© Eliza Kuttner, 1986

Abstract

This thesis attempts to represent the syntax and semantics of English sentences using a

schema and constraint-based approach. In this approach, syntactic and semantic knowledge

that are represented by schemata are processed in parallel with the utilization of network con

sistency techniques and an augmented version of Earley's context-free parsing algorithm. A

sentence's syntax and semantics are disambiguated incrementally as the interpretation pro

ceeds left to right, word by word. Each word and recognized grammatical constituent provide

additional information that helps to guide the interpretation process.

It is desirable to attempt to apply network consistency techniques and schema-knowledge

representations on understanding natural language since the former ha.s been proven to be

quite efficient and the latter provides modularity in representing knowledge. In addition, this

approach is appealing because it can cope with ambiguities in an efficient manner. Multiple

interpretations are retained if ambiguity exists as indicated by the words processed so far. How

ever, incorrect interpretations are eliminated as soon as their inappropriateness is discovered.

Thus, backtracking search which is known to be inefficient is avoided.

11

Contents

Abstract

Contents

List of Figures

List of Tables

Acknowledgement

1 Introduction

2 Background

2.1 Early history
2.2 Knowledge-based systems .. .
2.3 Network consistency techniques
2.4 Earley's context-free parsing algorithm .

3 A Schema & Constraint-Based Approach to NL U

3.1 Overview of the system ..
3.2 Knowledge base (KB) ...

3.2.1 Syntactic schemata .
3.2.2 Semantic schemata .

3.3 System control .
3.3.1 Predictor .
3.3.2 Scanner ..
3.3.3 Completer .

3.4 Constraint satisfaction
3.4.1 Syntax handler
3.4.2 Semantics handler

3.5 Morpher
3.6 Garbage collector

m

ii

iii

V

vi

vii

1

6
6
8

16
20

25
25

29
30
3 4
42
44
47

48

51

51

54

62
63

• I

4 Discussion of examples

5 Conclusions and Future Directions

Bibliography

Appendix

iv

65

77

86

95

List of Figures

3.1 Overview of the system

3.2 BNF grammar for a syntactic schema

3.3 BNF grammar for a semantic schema .

3.4 Specialization Hierarchy for the noun 'music'

3.5 Sample semantic schema for the verb 'compose'

3.6 Sample semantic schema for the preposition 'in' .

3.7 Sample derived syntactic schema

3.8 Sample derived semantic schema

3.9 Sample derived semantic schema for a verb

3.10 Splitting a hypothetical NCG description

4.1 Representation for 'famous keyboard music'

4.2 Representation for 'Mozart's father's birthday'

4.3 Representation for 'which three sonatas were written by Beethoven'

4.4 A representation for 'who composed the Messiah in Dublin'

4.5 A second representation for 'who composed the Messiah in Dublin' .

V

26

31

35

39

41

41
45

55

56

59

67

69

71

73

74

List of Tables

3.1 Syntactic categories' abbreviations
3.2 Properties of a semantic schema
3.3 Sample schema relation for the verb 'compose'
3.4 Table of syntactic constraints
3.5 Table of semantic predicates

Vl

30

36

40

53

54

Acknowledgement

I would like to thank my supervisor, Bill Havens, for research ideas, help, support and

patience. My thanks also to the Natural Sciences and Engineering Research Council of Canada

and the Department of Computer Science at U.B.C. for financial support. I would also like to

thank all my friends at the Department for making my years of graduate studies an enjoyable

as well as educational experience. Special thanks to Michael, Alex, Lisa and my second reader,

Richard Rosenberg, for their help in correcting this thesis. Thanks to my parents, my brother

and my husband for their love and encouragement without which this thesis could never have

reached completion. Lastly, I would like to thank Babaji and Satish for teaching and helping

me with everything.

Vll

Chapter 1

Introduction

Research in knowledge representation (KR) for understanding natural language (NL) has

gained prominence over the years. In order for a natural language understanding (NLU) system

to attain the level of competence of humans, it must have the same kind of knowledge of the

world that a human has, and this large store of "world-knowledge" must be represented and

manipulated in an efficient manner.

Many KRs have been utilized for the task of understanding NL. Although there are advan�

tages in each representation, there are disadvantages as well. Thus, none of the representations

is perfect, and the search continues for a KR that encompasses the advantages of other ap

proaches and yet can avoid the disadvantages. This thesis conducts one such search attempt

by introducing a schema and constraint-based KR approach for understanding NL. It com

bines the advantages of logical and procedural representations while overcoming some of their

disadvantages.

Logic is precise and seems to express facts in a way that corresponds to our rational un

derstanding of some domain [Hayes, 1977] [McCarthy, 1977], and the use of first-order logic

1

CHAPTER 1. INTRODUCTION 2

for KR in NLU is quite popular. However, NLU systems using logic for KR are inefficient.

This is due to the fact that representation and processing are separated in the logic-based ap

proach [Barr & Feigenbaum, 1981]. A logic representation may be appealing but the processing

method that determines how the stored facts are manipulated can be inefficient. For example,

the use of the resolution method of inference in QA3 [Green, 1969] causes combinatorial explo

sion in the number of ways facts can be combined to make inferences as the number of facts in

the database increases.

A procedural approach to KR offers more efficiency because the embedding of knowledge

into procedures allows control over the deduction process. However, it has disadvantages as

well. In a logic-based system, addition of logical facts or assertions is straight-forward, but in

a procedural-based system, addition of facts can be complicated since it may cause changes

in the heuristic knowledge of different procedures due to the unavoidable interaction between

various facts and the nature of heuristics. Thus, modularity of knowledge in the database is

lost in this approach. Winograd's SHRDLU [Winograd, 1972] is a system that adopted this

KR. Winograd pointed out in [Winograd, 1980] that the representation of the speaker/hearer

internal structure in SHRDLU was ad hoc. As a result, the preciseness of logical representation

is lost.

In this thesis, we describe a schema and constraint-based approach to NLU that attempts

to incorporate the efficiency of a procedural approach, and yet can attain a reasonable level

of modularity of knowledge and preciseness of representation that a logical approach offers.

Efficiency is hard to achieve in most NLU systems with large databases because search is

CHAPTER 1. INTRODUCTION 3

involved. Our approach takes an alternative view of language as providing semantic constraints

on descriptions of the linguistic world instead of driving a search for such a description. This

means that we are trying to view NLU as a constraint satisfaction problem that avoids search

whenever possible.

A class of network consistency algorithms has been developed by Waltz, Montanari, Mack

worth and Freuder respectively to solve constraint satisfaction problems efficiently. The com

plexity of these algorithms has been studied [Mackworth & Freuder, 1984], and it has been

shown that one type of consistency, arc consistency, is achievable in quadratic time, and path

consistency in cubic time in the worst case. These algorithms have been applied to machine

perception tasks successfully [Waltz, 1972] [Mackworth, 1977b] [Havens & Mackworth, 1983]

[Mulder, 1985]; we apply them to NLU in this thesis. Computer vision and NLU can both be

considered as recognition tasks which need to resolve uncertainties or ambiguities in the input.

In computer vision, segmentation of the gray scale of a digitized picture into edges and regions

is required before interpretation is performed whereas in NLU, it is the segmentation of the

input sentence into words and syntactic categories. In both cases, there is a need for feed

back between segmentation and interpretation. Also, knowledge of either a visual or natural

language domain can be represented by specialization hierarchies [Brachman, 1982] which are

knowledge structures that categorize classes of objects in the world that is being represented.

These similarities between vision and NLU tasks as well as the successful application of net

work consistency techniques on vision tasks make us believe that it is appropriate to use a

constraint-based approach for NLU.

CHAPTER 1. INTRODUCTION 4

Logic is the best tool for achieving preciseness and modularity of knowledge; however,

efficiency is hard to attain at the same time. We believe that a schema and constraint

based approach offers efficiency as well as provide a reasonable degree of modularity and

preciseness of representation. Several representations fall into the category of schema knowl

edge representations. They include frames [Minsky, 1975], scripts and plans (Schank, 1975]

[Schank & Abelson, 1977]. Also, different forms of memory schemata (Bobrow & Norman, 1975]

are classified as schema knowledge representations. [Rumelhart & Ortony, 1976) also discusses

the representation of knowledge in memory in terms of schemata. In each case, a schema rep

resents a self-contained collection of related knowledge. An expansion of the knowledge base

(KB) is equivalent to the addition of schemata in this approach, and since the knowledge is

well-organized into schemata with the interactions between them well-defined, additions to the

KB are quite straight-forward.

The combination of consistency techniques and schema knowledge representations as a repre

sentational formalism has been described as schema labelling [Havens, 1985]. The methodology

has been used for interpreting hand-printed Chinese characters [Bult, 1986], and for recognizing

VLSI circuit designs from their mask layouts [Alon & Havens, 1985]. This thesis adopts this

approach to represent the syntax and semantics of English sentences.

The system implemented takes a simple sentence as input and produces a representation

of the sentence's syntax and semantics as output which is in the form of a parse tree (PT)

and a network consistency graph (NCG). The PT is the syntactic structure assigned to the

input sentence after it has been analyzed according to the given phrase structure grammar. It

CHAPTER 1. INTRODUCTION 5

represents the syntactic aspects of the input sentence. The semantics are captured in the NCG

which is a semantic network of schemata linked by labelled arcs which specify the relationships

between the semantic entities of the sentence. The PT and NCG are created in parallel as

the system analyses the input sentence one word at a time from left to right. Each word may

provide additional syntactic or semantic constraints that help the system to disambiguate the

syntax and semantics of the sentence. Syntactic constraints are applied in the PT whereas

semantic constraints are applied in the NCG. At this point, network consistency techniques are

utilized to maintain consistency in the NCG after the semantic constraints are applied. Schema

knowledge representations are used to represent all the knowledge needed by the system in the

KB which is a collection of static schemata of syntactic and semantic information. If a sentence

is ambiguous, then multiple representations are produced. An augmented version of Earley's

context-free parsing algorithm is used to provide control for the system [Havens, 1983]. Chapter

3 of this thesis presents this schema and constraint-based approach to NLU through a detailed

description of our implementation. Chapter 2 provides a background study of the field of NL

from the early history of ma.chine translation in the 1940s to the knowledge-based systems of

the 1970s. Also, descriptions of some network consistency techniques and Earley's context

free parsing algorithm are given. Chapter 4 describes some sample sentence representations

produced by the system. Chapter 5 discusses the merits and drawbacks of this approach, and

the possibility of expansion of the system in the future.

Chapter 2

Background

This chapter gives a brief history of natural language research showing how the research

trend has progressed from machine translation and pattern matching without the use of knowl

edge in the 1940s to knowledge-based systems in the 1970s. A collection of KR techniques for

NLU is presented and the systems that adopt these techniques are mentioned and discussed.

Finally, some background on network consistency techniques and Earley's context-free parsing

algorithm are given.

2.1 Early history

Soon after computers came into existence in the 1940s, researchers were interested in ap

plying them to the study of language. Initial attempts involved only surface-level processing

of text such as the compiling of word indexes and concordances. During the 1950s, the main

computer application for natural language was in machine translation [Weaver, 1949} where

the computer tries to assume the role of a human translator in the translation of texts from

one language to another. The basic method involves dictionary-lookup, word substitution, and

6

CHAPTER 2. BACKGROUND 7

rearrangement of the resulting string of words to fit the target language's word order. How

ever, the focusing on syntactic information alone in such attempts produced poor results. The

problems that arose include the choosing of appropriate word equivalences when a word has

several translations depending upon the context, and the rearrangement of words in the target

language to produce a truly equivalent sentence. It then became apparent that high-quality

translation can only be achieved if the system can "understand" the input text before it recon

structs the string of words in the target language. In addition, such language understanding

involves much "world-knowledge" which is applied implicitly when humans translate from one

language to another [Bar-Hillel , 1960].

Thus, the focus of AI natural language research shifted to that of natural language un

derstanding [Winograd, 1980]. However, the early NLU systems that were developed- in the

1960s still did not deal with the issue of knowledge representation; these systems used ad hoc

data structures to store facts about a restricted domain. In addition, the syntax of language

was not dealt with in any sophisticated way, and semantic knowledge was only implicit in

the patterns and heuristics used for parsing. A representative set of these early systems in

clude SAD-SAM [Lindsay, 1963], BASEBALL [Green et al., 1963], STUDENT [Bobrow, 1968],

ELIZA [Weizenbaum, 1966], and SIR [Raphael, 1968].

The next and current phase of NL research that began in the 1970s is closely connected with

research on the representation of knowledge. The NLU programs that belong to this category of

research are called knowledge-based systems in [Barr & Feigenbaum, 1981], since these systems

use a fair amount of knowledge about the domain of discourse to help understand sentences

CHAPTER 2. BACKGROUND 8

and the knowledge is stored within the system using some knowledge representation method.

2.2 Knowledge-based systems

Instead of using ad hoc data structures for storing facts about the domain of discussion

like the early NLU systems did, all knowledge-based systems utilize some formal KR method

for storing, retrieving and manipulating knowledge. The principal KR methods that have been

utilized in NLU systems include logical forms, procedures, semantic networks and the various

forms of schemata such as frames, scripts and plans.

Logic was one of the first KR methods used in Al. One of the early NLU systems that used

logic to represent knowledge is the general-purpose question-answering system QA3 [Green, 1969].

QA3 could solve simple problems in a few different domains such as chemistry, robot movement

and automatic programming. It used the resolution method of inference to perform deduc

tions and was quite successful in solving simple problems with a certain degree of generality.

However, as the number of facts increases in a database, the system's performance decreases

because the resolution method caused combinatorial explosion in the number of ways facts are

combined to make inferences.

More recent attempts in using logic for representing knowledge in NLU systems include

the works of NL researchers such as Dahl, Pereira, Warren, and McCord. Dahl has written

a NL query system to be consulted in Spanish/French [Dahl, 1981] where the grammar and

the facts of the database were written in PROLOG, a programming language based on first

order logic. This system was later adapted to Portuguese consultation by H. Coelho and F.

CHAPTER2. BACKGROUND 9

Pereira, and subsequently to English consultation by D. Warren and F. Pereira. With the

development of the PROWG programming language, logic was used in these cases as the

underlying representational formalism as well as a programming language for the translation

of NL input to a NLU system.

Logic programming, since the development of the PROLOG programming language, has

become quite popular. In addition, several grammar formalisms have been developed and

incorporated into PROLOG, including metamorphosis grammars [Colmerauer, 1978), extrapo

sition grammars [Pereira, 1981), and a special case of metamorphosis grammars which Pereira

and Warren have given the name definite clause grammars [Pereira & Warren, 1980).

Extraposition grammars were used in a NL question-answering system called Chat80 by

Pereira and Warren which was also written in PROLOG and was designed to be efficient as

well as easily adaptable to a variety of applications [Warren & Pereira, 1982]. NL analysis is

performed in three separate phases in this system. The translation phase translates an English

sentence into logic. Next, the planning phase augments the logical form with extra control

information which makes it an efficient piece of PROLOG program. The last phase is execution

where the optimised PROLOG code is executed to produce an answer.

Dahl and McCord have subsequently developed, both separately and jointly, NLU systems

that solve NL problems such as coordination and quantifiers [Dahl & McCord, 1983), and use

slots and modifiers for syntactic and semantic interpretation [McCord, 1982). These systems

were also written in PROLOG with the use of logic grammars.

The procedural representation of knowledge is another KR method that has been employed

CHAPTER 2. BACKGROUND 10

in NLU systems. The procedural approach stresses the importance of "knowing how" to use

knowledge and achieves this by representing the knowledge of the world as procedures which

when executed know how to carry out specific actions according to the heuristic knowledge that

is embedded in the procedures. This type of domain-specific information allows more directed

deduction processes and thus provides the efficiency that declarative representations lack. How

ever, the procedural approach has its disadvantages as well. The knowledge that is captured in

procedures cannot be stated explicitly as it can be in declarative representations thus making

it less accessible, and consequently making the task of adding and changing procedures quite

difficult as minor changes in one procedure may have far-reaching effects on other procedures.

The merits and drawbacks of the two methods are discussed in (Winograd, 1975] in response

to the declarative/procedural controversy of the 1970s.

Woods' question-answering system about airline flight schedules (Woods, 1968] 1s an ex

ample of an early procedural system. Input questions are translated into functions which

when executed over the system's database produce the correct answer. The LUNAR pro

gram [Woods et al., 1972] follows from this research and takes a similar approach. It is a NL

information-retrieval system that aids geologists with their task in evaluating data on moon

rock and soil composition obtained from the Apollo-11 mission. The system processes English

queries in three steps. The syntactic analysis step takes an English query and produces a

derivation tree with the help of an augmented transition network parser [Woods, 1970]. The

derivation tree is then transformed to an expression in a formal query language that captures

the semantics of the original English query in the semantic interpretation step. Finally, the

CHAPTER 2. BACKGROUND 11

query language expression is executed over the database to produce a response.

The other representative system of the procedural approach is the SHRDLU program

[Winograd, 1972]. The program maintains an interactive dialogue with the user regarding its

simulation of a robot arm that manipulates a set of toy .blocks on a table. Syntactic, semantic

and reasoning knowledge are embodied in procedures which are pieces of executable code. The

program was written in LISP and MICRO-PLANNER. The latter is a version of the PLAN

NER language [Hewitt, 1972] which represents procedural data in the form of "theorems".

PLANNER's paradigm is theorem proving, and it satisfies a goal by looking for the appropri

ate "theorem" to prove it. However, it allows the efficiency of the process to be increased by

providing the user the flexibility to specify his own heuristics in his procedures.

The semantic network formalism for KR has its origin in Quillian's development of a psy

chological model of human associative memory [Quillian, 1968] and his Teachable Language

Comprehender (TLC) program [Quillian, 1969] which simulates this memory model. Many

systems with a network-based representation have been written since then. However, all that

some of these systems have in common is simply the superficial common notation of having

nodes and arcs representing some sort of a taxonomic hierarchy. [Woods, 1975] stresses the

importance of understanding what the notation means, and [Brachman, 1983] discusses the

many different meanings that the IS-A link of a semantic network has adopted over the years

and points out those meanings which are important in expressing knowledge and which gives a

semantic network its expressive power.

An early attempt at using the semantic network formalism that follows directly from Quil-

CHAPTER 2. BACKGROUND 12

lia.n's TLC work is Ca.rbonell's work on a. computer-aided instruction program called SCHOLAR

[Carbonell, 1970]. This tutoring program can answer questions posed by students about South

American geography; the geographical information is stored in a semantic network. Around

the same time, Fillmore's work on linguistic case structure [Fillmore, 1968) was influencing the

development of semantic networks. The cases of Fillmore were utilized as the underlying re

lationships that label the arcs in the networks in [Simmons & Slocum, 1972], [Simmons, 1973]

and [Rumelhart & Norman, 1973]. Although these works all used the case frame approach in

choosing arc types, Rumelhart and Norman's system was more psychologically oriented and

placed more emphasis on the simulation of long-term memory and human cognitive processes,

whereas Simmons' system put more emphasis on the generation of answers to questions using

the semantic network. [Shapiro, 1982] is a. more recent attempt in the research in sentence

generation from semantic networks.

A couple of speech understanding systems, [Woods et a.I., 1976] and [Walker, 1978], used

semantic networks for representing knowledge. In connection with Walker's system, Hendrix

has developed the idea. of "network partitioning" [Hendrix, 1975] [Hendrix, 1979] in which the

nodes and arcs are partitioned into "net spaces" which allow for the representation of logical

connectives, the delimiting of the scopes of quantified variables, the encoding of alternative and

hypothetical worlds as well as the focusing of attention a.t particular levels of detail. Grosz has

adopted the idea. of network partitioning in her work on the representation and use of focus in

dialogue understanding [Grosz, 1977].

Woods's 1975 pa.per, "What's in a. link", has raised some important questions regarding

CHAPTER 2. BACKGROUND 13

the logical adequacy of the semantic network representation and has asked us to consider

for the first time the meaning of the semantic network notation. In response to these is

sues raised by Woods, many researchers have attempted to investigate the underlying logical

meaning of the network formalism and to deal with the expressive inadequacy of the nota

tion. This includes the following works: (Schubert, 1976], [Hayes, 1977], [Schubert et al., 1979],

[Levesque & Myl9poulos, 1979] and [Shapiro, 1979]. In fact, [Shapiro, 1979] follows directly

from Shapiro's earlier work, (Shapiro, 1971], where a distinction was already made between

the conceptual level and the structural level of the network. An excellent historical review of

semantic networks may be found in [Brachman, 1979].

Related to the research on semantic networks is the work on schemata for knowledge rep

resentation. The term schema was first used by Bartlett in relation to his work on memory

[Bartlett, 1932]. Schemata involve organizing knowledge into aggregate structures. A vari

ety of representations fall into this category. Minsky's frames [Minsky, 1975] and Schank's

scripts and plans [Schank, 1975] [Schank & Abelson, 1977] are among the well-known ones.

[Bobrow & Norman, 1975] and [Rumelhart & Ortony, 1976] also discuss schema representations

in representing knowledge in memory.

Frames are data structures that are used to represent stereotyped situations; scripts are

frame-like structures that are designed to represent sequences of events that describe some

stereotyped human activities, and plans differ from scripts in the sense that they participate

in the explanation of the sequences of actions that lead to a goal. An important characteristic

of schema-based or frame-based systems is their capability to represent both declarative and

CHAPTER 2. BACKGROUND 14

procedural knowledge [Winograd, 1975]. A frame is organized into slots and besides represent

ing a collection of static facts, a frame can have procedures attached to its slots to drive the

reasoning process of the system. Other interpretations of the idea of frames are provided in

[Hayes, 1981].

The GUS system [Bobrow et al., 1977] is an experiment with frame-based NLU. It was de

signed as a prototype of an automated airline reservation assistant. It attempted to illustrate the

expectation-driven processing of frames and facilitate in the understanding of various aspects of

NL such as indirect answers and anaphoric references. The systems, SAM (Script Applier Mech

anism) and PAM (Plan Applier Mechanism), were developed to demonstrate the use of scripts

and plans in understanding simple stories [Schank et al., 1975] [Schank & Abelson, 1977]. By

understanding a story, we mean the ability to paraphrase the story and make inferences from

it. SAM does this by trying to fit the story into one or more scripts and it has been used to

understand newspaper stories [Cullingford, 1978]. The PAM system [Wilensky, 1978] under

stands stories by determining the goals of the characters in the story and then interpreting

their actions by matching them to plans that lead to those goals.

The idea of frames as structures that unify a collection of related knowledge is interesting

but vague. The development of KRL (Knowledge Representation Language), a frame-based

representation language, was an attempt to make precise the intuitive ideas about frames

and to explore frame-based processing [Bobrow & Winograd, 1977]. The language KL-ONE

[Brachman, 1978] [Brachman, 1979] [Brachman & Schmolze, 1985) has also been designed for

supporting structured knowledge representations. The principle structure of KL-ONE is the

CHAPTER 2. BACKGROUND 15

"concept" whose primary component is a "role". Roles are like generalized attribute descrip

tions representing the relationships between entities denoted by the concept and other entities.

KL-ONE has inspired other new research efforts done on representations including KRYP

TON and KL-TWO. The KRYPTON system [Brachman et al., 1983a] [Brachman et al., 1983b)

overcomes some of the trouble with frames with regard to its limitations in representing either

assertions or descriptions. Instead of defining the system in terms of structures for representing

knowledge, KRYPTON provides a functional view of a knowledge base emaphasizing what it can

be asked and told about the domain. The system has two major components, namely the ter

minological component and the assertional component. The former represents objects in terms

of definitional knowledge using frame-like structures whereas the latter represents propositions

similar t6 the manner of first-order predicate calculus language. Thus, KRYPTON handles

both terminological and assertional knowledge by combining frame-like structural representa

tions with a first-order theorem prover. This type of hybrid inference system that provides

more than one language for expression of domain knowledge is appealing because an intelligent

system usually has more than one kind of representational need [Brachman & Levesque, 1982]

[Brachman et al., 1985].

KL-TWO [Vilain, 1985] is similar to KRYPTON in that it is also a hybrid representation

system. However, instead of basing the representation system on a first-order theorem prover,

KL-TWO is based on a device called RUP (Reasoning Utility Package) [McAllester, 1980]

[McAllester, 1982]. RUP provides only a subset of the inferential power of a first-order theo

rem prover, but it is computationally more efficient. KL-TWO is basically composed of two

CHAPTER 2. BACKGROUND 16

components, called PENNI and NIKL. PENNI is a modified version of RUP and NIKL is a

terminological reasoner which is a direct descendant of KL-ONE.

Another recent attempt in hybrid representation is the integration of frames with production

rules in the KEE system [Kehler & Clemenson, 1984]. The use of a frame-based representation

in this system to assist in the task of reasoning is well-described in [Fikes & Kehler, 1985].

The lattest attempt in providing a representation that incorporates schemata and yet can

avoid their vagueness is schema labelling !Havens, 1985], which defines schemata precisely for

recognition tasks. The theory shows how schema knowledge representations can be combined

with network consistency techniques to yield a descriptively and procedurally adequate formal-

ism.

This thesis adopts the schema labelling approach and is therefore partially schema-based.

The knowledge base for our system is organized into schemata. In addition, the resulting net

work representation that captures the semantics of an input sentence is a network of schemata,

each being a particular instance of one of the model schemata given in the knowledge base. Our

schemata basically provide us with a structured representation of a collection of information,

but do not have embedded procedures that participate in the reasoning process of the system

as frames and scripts have.

2.3 Network consistency techniques

Some network consistency techniques are reviewed in this section to provide the background

for understanding our constraint-based approach to NLU that adopts these techniques.

CHAPTER2. BACKGROUND 17

Network consistency techniques were developed in the attempt to solve constraint satisfac

tion problems (CSP). [Mackworth & Freuder, 1984] defines a CSP as follows: Given a set of

n variables, each with a particular domain and a set of constraining relations which involve a

subset of the variables, find all possible n-tuples such that each n-tuple is an instantiation of the

n variables in their particular domains satisfying the relations. The variable domains can be

continuous or discrete, and the relations can be unary, binary or generally n-ary. For discrete

domains that consist of a finite set of values, backtracking may be used to solve a CSP. However,

backtracking is inefficient and exhibits problems such as thrashing (Bobrow & Raphael, 1974].

As a result, network consistency algorithms were developed.

Waltz's filtering algorithm [Waltz, 1972) was the first of a set of network consistency al

gorithms. His algorithm was designed to analyse line drawings of toy blocks. In particular,

the algorithm was a procedure for filtering out impossible labels for the lines in the drawing.

Lines in the drawing meet at points called junctions, and there are a set of possible labellings

for each type of junction. The junctions in the drawing are the set of variables for this CSP.

Each variable has a domain of allowable labelled junctions. The problem is to determine which

junction interpretations provide a globally consistent interpretation. Consistency is forced by

the constraint that each line in the drawing must be assigned one and only one label along its

entire length.

Waltz's filtering algorithm works as follows. The filtering procedure goes through the junc

tions in any order. For each junction, the procedure looks at its neighbours and sees whether

the constraint is satisfied. The constraint is satisfied if the line shared by two junctions has

CHAPTER 2. BACKGROUND 18

the same label at both ends. If this constraint is not satisfied, that labelling for the junction

is eliminated. When such a deletion occurs, all neighbouring junctions whose interpretations

are constrained by the deleted junction interpretation are revisited. This and other network

consistency algorithms eliminate all local inconsistencies that cannot participate in any global

solutions, but they do not necessarily solve the CSP. In the best possible case, the CSP can be

solved to yield one interpretation for each junction if there are sufficient constraints to propa

gate such a solution. However, if the algorithm does not leave us with a unique labelling for

each junction when it terminates, a backtracking search can be used to enumerate the remain

ing possible labellings. In any case, the algorithm is at least an efficient preprocessor in that •

it reduces the size of the domains of the variables in only a single pass through the junctions.

Waltz's filtering algorithm only deals with binary constraints.

Mackworth [Mackworth, 1977a] presented three types of network consistency algorithms,

namely node, arc and path consistency algorithms for eliminating local inconsistencies that

involve 1, 2 or 3 variables respectively. An obvious generalization of his algorithm would deal

with arbitrary n-ary constraints. Waltz's filtering algorithm is in fact a special case of AC-2,

the second arc consistency algorithm presented by Mackworth, whereas Montanari's algorithm

[Montanari, 1974] is a version of a path consistency algorithm.

Freuder's network consistency algorithm [Freuder, 1978] called k-consistency removes all

inconsistencies involving all subsets of size k out of the n variables. His algorithm is a gener

alization of Mackworth's algorithms. Node, arc and path consistency corresponds to Freuder's

1-, 2- and 3-consistency for k=l, 2 or 3 variables respectively. Freuder's algorithm differs from

CHAPTER 2. BACKGROUND 19

the others in the sense that it may determine all solutions to a CSP if we have k=n, thus

eliminating the need to have further tree search to determine the solutions.

[Mackworth & Freuder, 1984] is a study of the complexity of these network consistency algo

rithms. It is shown that node, arc and path consistency can all be achieved in polynomial time.

In particular, arc consistency is achievable in time linear in the number of binary constraints

using AC-3, the third arc consistency algorithm, and the worst case complexity for arc and

path consistency is O(n2) and O(n8) respectively. In comparison to depth-first backtracking

whose worst case complexity is exponential time, these network consistency algorithms show a

significant improvement.

A network consistency algorithm known as HAO (Hierarchical Arc Consistency) has recently

been developed [Mackworth et al., 1985] to exploit structured domains of the variables in CSPs.

This algorithm is useful when the variable domains can be organized hierarchically such that

all the possible labels in each domain need not be represented explicitly but can be represented

implicitly by one or more abstract labels. Hierarchical arc consistency can also be achieved

in linear time like AC-3. Under the specific condition where the domains are appropriately

structured, HAO performs better than AC-3, but in the worst case where there is no solution,

HAO may be twice as slow as AC-3. The HAO algorithm has been used in the Mapsee3 system

[Mulder, 1985] for interpreting hand-drawn sketch maps.

Our approach to NLU is partially constraint-based. We try to view the task of NLU as

a CSP so that we can exploit these network consistency techniques to achieve efficiency in

analysing NL. Backtracking search is so commonly used in NLU systems to discover the validity

CHAPTER 2. BACKGROUND 20

of a sentence and as we have mentioned before, network consistency techniques are superior

to backtracking. When viewing NLU or any other recognition tasks as a CSP, we need to

identify the variables of the problem, their domains and the constraints that are applied on

them. We have chosen the semantic entities of a sentence as the variables for the CSP; the

domain for each of these entities is the set of meanings that are attached to it, this is similar to

all the facts of the database that are applicable to this entity; the constraints on these entities

are the semantic constraints that express the allowable relationships or interactions between

these entities. A hierarchical version of arc consistency, AC-2 [Mackworth, 1977a] in particular,

is used by our system to arrive at an interpretation for each semantic entity. Although arc

consistency does not guarantee a solution, the algorithm can reduce all local inconsistencies

such that the resulting network incorporates all the possible interpretations of the sentence.

Backtracking search may then be used to assemble actual global interpretations. However, the

use of network consistency techniques for pre-processing has restricted backtracking search to

a minimal.

2.4 Earley's context-free parsing algorithm

Many parsing algorithms have been developed in the past. This includes the left-parsable

(LL) parsing algorithms, the operator precedence parsing algorithms, the predictive parsing

algorithms and the right-parsable (LR) parsing algorithms. Although these algorithms are very

efficient in that they run in linear space and time, they can only handle a small subset of context

free grammars. However, these efficient algorithms are adequate in handling all the syntactic

CHAPTER 2. BACKGROUND 21

features of programming languages. Natural languages include more difficult phenomena than

programming languages. For example, the grammar may be ambiguous and usually all parses

instead of just one are of interest. Thus, at least a general context-free parsing algorithm is

needed for processing natural languages.

Backtracking algorithms may be used but they require exponential time. Tabular meth

ods, on the other hand, are asymptotically much faster than backtracking algorithms. Ear

ley's context-free parsing algorithm [Earley, 1970] and the Cocke-Younger-Kasami algorithm

[Aho & Ullman, 1972] are two of the most well-known ones that run in polynomial time. They

each take space n 2 and time n8 where n is the length of the input string. Earley's algorithm

has the advantage that it only requires time n2 whenever the grammar is unambiguous and

can even operate in time n for most grammars for programming languages whereas Cocke

Younger-Kasami 's algorithm requires the grammar to be in Chomsky normal form. Also, it has

been shown that Earley's algorithm is applicable to schema-based systems [Havens, 1983]. As

a result, we adopted Earley's algorithm for our system.

We will now describe the algorithm informally. A formal description may be found in

[Earley, 1970]. The use of Earley's algorithm in the context of our NLU system is explained in

detail in chapter 3.

Earley's algorithm is a recognizer. This means that it takes as input a string and either

accepts or rejects it depending on whether or not the string is a sentence of the specified

grammar. The grammar is a context-free grammar (CFG) and is formally defined as a 4-tuple

G = (N,T,P,S)

CHAPTER 2. BACKGROUND 22

where N is a finite set of non-terminal symbols, T is a finite set of terminal symbols, P is a

finite set of production rules, and S is a distinguished symbol of N called the start symbol.

Each production in P is of the form

A-+ a

where A is a symbol in N and a is a string u1 ... un where Ui is in (NUT). Let w = x1x2 ..• Xn

be the input string with every Xi in T, 1 :$ i $ n.

Earley's algorithm scans the input string from left to right and as each symbol Xi is scanned,

a set Si of states is constructed. A state has the form

[A-+ o. /3,j]

which represents the condition of the recognition process in recognizing the non-terminal A

starting at x;+1 in w using the production A -+ o/3 where o and /3 are in (NU Tt. The

dot between o and /3 is a metasymbol not in N or T, and it delimits the portion, o, of the

production's right hand side which has been recognized so far from the portion, /3, that still

needs to be recognized.

Initially, since none of the symbols in the input string has been recognised, the algorithm

begins by creating the state set So containing just the state [ti> -+ ·S -l, O]. t/> is a new non

terminal that is not in N, -l is a new terminal symbol not in T ,and S is the root of the

grammar. -l represents the null character at the end of an input string to act as a terminator.

AB the algorithm processes each new symbol Zi+t, a new state set S,+1 is generated. If the

entire input string is processed and the state set Sn+l contains the single state [4> -+ S -l ·, O],

CHAPTER 2. BACKGROUND 23

then the input string is an accepted sentence of the given grammar. On the other band, if at

any point in the processing Si+1 remains empty after Si has been processed, then w is rejected

as a valid sentence of the grammar G.

A state set Si is operated on in the following manner, The states in the set are processed in

order and depending on the form of the state, one of three operations is performed on it. These

three operations are known as predictor, scanner, and completer. They may add more states

to S; and may also put states in the next state set Si+l · The algorithm moves on to process

the states of Si+l after all the states in S; have been processed.

The predictor operation is applicable to a state when there is a nonterminal to the right of .

the dot. This operation causes a new state to be added to Si for each alternative production of

that non-terminal. Thus, in the beginning , the state [cl> --+ ·S -I, OJ indicates that the predictor

operation can be applied and states of the form [S--+ •a, OJ are placed in Si for each production

S--+ainP.

The scanner operation is applicable to a state when there is a terminal to the right of the

dot. This operation compares that terminal symbol with Xi+l, and if they match, it adds the

state to Si+1 with the dot moved to the right of the terminal symbol to indicate that it has

been scanned. Thus, if the state is [A--+ a· c/3, kj and c is a terminal symbol that matches the

input symbol Xi+l , then the state [A --+ ac · /3, k] is placed in the next state set.

The completer operation is applicable to a state such as [A --+ ac•, k] when the dot is at the

end of the production. This operation retrieves all states from the previous state set S11: that

have in their productions the non-terminal symbol A to the right of the dot. The dot is then

CHAPTER 2. BACKGROUND 24

moved past A in these states and these updated states are added to the current state set S,.

Thus, if the state under processing is [A__. a•, k], then the completer operation will retrieve all

states from the state set Sk that have the form [B __.a• A,8,J°l, 1 � j � n, J° < i, propagates

them as [B __. aA · ,8,J°], and places them into S,.

Conceptually, the predictor provides all possible extensions of a partially completed parse.

The scanner checks potential extensions against the input. The completer updates the confirmed

extensions to enable the parsing process to continue.

Our system adapts the idea of Earley's parsing algorithm to processing sentences. In fact,

the algorithm's three main operations of predicting, scanning and completing form the basis of

control in our system. However, the productions that are used in our system have embedded

syntactic and semantic constraints to enable the analysis of English sentences whose grammar is

not context-free. The algorithm has been altered to accomodate this and also to produce all the

possible parse trees or derivations of the input sentence instead of just acting as a recognizer.

Chapter 3

A Schema & Constraint-Based

Approach to NLU

The schema and constraint-based approach to NLU is explained in this chapter through the

description of a NLU system which follows this approach. See [Havens, 1985] for an introduction

to combined schema and constraint-based recognition.

3.1 Overview of the system

An overview of the system is shown in Figure 3.1. Each component of the system is described

briefly in this section. The main purpose of the system is to explore the use of schema knowledge

representations in combination with network consistency techniques in the task of NLU. Thus,

the system is not designed as a NL query system that provides answers to questions on a

database, but rather as a representational system that produces a syntactic and a semantic

representation for a given input sentence.

The system accepts simple declarative or interrogative English sentences as input. It utilizes

the information provided by the knowledge base (KB) to analyse the sentence, producing as

25

CHAPTER 3. A SCHEMA k CONSTRAINT-BASED APPROACH TO NLU

0

X

.,__. e

INPUT SENTENCE

MAIN DRIVER

redictor Scanner Garbage

Collecto

ompleter

Morpher

Knowledge Representation

Process

Data Flow

Processes' Interactions

Figure 3.1: Overview of the system

26

CHAPTER 3. A SCHEMA & CONSTRAINT-BASED APPROACH TO NL U 27

output a parse tree (PT) and a network consistency graph (NCG) which represent the syntax

and semantics of the input sentence respectively. If there are multiple interpretations for a

sentence, then multiple PTs and NCGs are produced in parallel with shared structures whenever

possible. Focus of the system is on representing the meaning of input sentences.

A PT represents the syntactic structure of an input sentence and is built by the system

as it analyses the sentence according to the grammar provided in the KB. This structure is

a tree with each node representing a syntactic category, and each leaf node also represents a

word in the input sentence thus identifying the word's syntactic category and its relation with

respect to the entire structure. The formation of this structure is performed in parallel with the

construction of the NCG which represents the semantic structure of the input sentence. As each

input word is analysed and appropriately identified with a PT node, one or more semantic nodes

may be created in the NCG which correspond to the semantics of the input word. Links are

established at this point between the PT node that represents the current input word and the

corresponding semantic nodes in the NCG. This allows the ongoing parsing process to further

guide the construction process of the NCG.

The NCG is a semantic network that is built incrementally in parallel with the PT. The

semantics of each input word is represented by one or more nodes in the NCG. The arcs that link

these semantic nodes represent the relationships that exist between the semantic components of

the sentence. These semantic components are entities from the database and the relationships

between them correspond closely with the cases of Fillmore [Fillmore, 1968]. As each new node

is added to the NCG, additional semantic constraints are introduced. These constraints may

CHAPTER 3. A SCHEMA k CONSTRAINT-BASED APPROACH TO NL U 28

alter the existing interpretation that each node contributes towards the global interpretation

of the sentence. In order to maintain a consistent global interpretation with all constraints

satisfied, network consistency techniques are applied at this point.

The KB provides the knowledge about the task domain. It also contains both syntactic and

semantic knowledge that guide the system in its construction of the PT and the NCG. The

information within the KB is represented using schemata.

The main driver of the system controls the interpretation of each sentence by manipulating

a combination of processes. These processes are the predictor, the scanner, the completer and

a garbage collector. They direct the analysis performed by the system and are derived from

Earley's context-free parsing algorithm.

The predictor computes the phrase structure grammar rules that may be involved in the

derivation of the PT and predicts the syntactic nodes that may participate in one or more of

the final PT structures. The scanner scans the input sentence one word at a time to provide

the necessary information that leads to the acceptance or rejection of the predictions made by

the predictor. The completer then narrows the predictions of the multiple interpretations to

the appropriate ones that conform to the input. The garbage collector removes the impossible

interpretations as soon as they are discovered. This involves the removal of syntactic and

semantic nodes from the PT and the NCG.

There are other subordinate processes defined in the system. The scanner has a subprocess

called the morpher which performs suffix analysis on each word scanned. The completer has

two subprocesses, namely the syntax and the semantics handlers. The syntax handler applies

I •

CHAPTER 3. A SCHEMA k CONSTRAINT-BASED APPROACH TO NL U 29

syntactic constraints on the nodes in the partially built PT whereas the semantic handler

applies semantic constraints on the nodes in the partially built NCG. It also participates in the

construction of the NCG. Network consistency techniques are utilized by the semantic handler

to resolve the semantic constraints that arise as each word is scanned. If either the syntactic

or the semantic constraints are not resolved, then the completer is notified to terminate the

current interpretation.

In summary, the main driver, with its processes and subprocesses, performs the analysis of

input sentences while the KB provides the knowledge that enables the interpretations to take

place. The PT and NCG are the final products of this interpretation. Multiple PTs and NCGs

will be created if there is more than one interpretation for an input sentence.

3.2 Knowledge base (KB)

The knowledge that the system needs in order to analyse English sentences resides in the

KB. The task domain is composers and their music. The KB is a static collection of model

schemata. Each of these schemata is a prototype which represents either syntactic or seman

tic knowledge. During the interpretation process, derived schemata are generated from these

prototypes forming the syntactic and semantic nodes of the PT and the NCG.

There are two types of model schemata in the KB. The syntactic schemata represent syn

tactic knowledge which specifies how sentences are structured. This is its knowledge of English

grammar. The other type of model schemata is the semantic schemata which represent the

semantics of words. These two types of model schemata are described in the following sections.

CHAPTER 3. A SCHEMA k CONSTRAINT-BASED APPROACH TO NL U

3.2.1 Syntactic schemata

30

Each syntactic schema represents a syntactic category and is referred to by the abbreviated

name of the syntactic category which it represents. Table 3.1 shows the abbreviated names of

the syntactic categories that are handled by the system. Figure 3.2 gives the BNF syntax of a

syntactic schema.

s -sentence pp(s) -prepositional phrase(s)
np -noun phrase qword -question words
subnp -noun group auxv -auxiliary verb
vp -verb phrase V -verb
comps -subject-complements det -determiner
mods -general modifiers adj -adjective
nmods -noun modifiers npr -proper noun
adjs -adjectives n -common noun
nposs -possessive nouns prep -preposition

Table 3.1: Syntactic categories' abbreviations

Each syntactic schema contains a set of composition rules which define the various ways the

syntactic category can be composed. If the syntactic category denotes a terminal symbol in

the grammar, then the syntactic schema will have the rule (*dot •term) to indicate that the

syntactic category is composed of an input word. Otherwise, a composition rule is composed of

the symbol *dot, grammar constituents, plus one or more predicates. The symbol •dot at the

beginning of ea.ch rule serves a special purpose in Earley's parsing algorithm that is described in

section 2.4. It is used to delimit the portion of the rule that has been recognized and constraints

that have been applied and resolved successfully from the portion that still needs to be found

CHAPTER 3. A SCHEMA dt CONSTRAINT-BASED APPROACH TO NLU

<syntactic schema> ::== (<composition rulel>+)I(<composition rule2>)
<composition rulel> ::= (*dot <grammar constituent>+ I <predicate>•)
<composition rule2> ::= (*dot *term)
<grammar constituent> ::= slnplngroupjvplcompsjmodsjnmodsjadjs!nposslpplppsjqwordl

auxvlvldet!adjjnprjnjprep
<predicate>::= (<syn predname> <syn args>•)j(<sem predname> <sem args>•)

31

<syn predname> ::= rwordisjhasfeaturelgparhasnojgparhasjisposs!isnotposs!nvagreejvvagree!
dnagree

<sem predname> ::= buildlsetptr!sp!checknum
<syn args> ::= <wlist> I <syn feature> I(<grammar constituent>)I <grammar constituent>2

(<test>){O,l}

<sem args> ::= <grammar constituent><word>{O,l} I <grammar constituent>2

<arc reln> {O,l} !(schild <grammar constituent>)<grammar constituent>
<arc reln>

<wlist> ::== a list of English words
<syn feature> ::== (trans)l(intrans)l(cop)
<test> ::= (iftrans)l(ifnosubj)
<word> ::= an English word
<arc reln> ::= <condn list> I <case> I <function>
<condn list> ::= ((<word> <case choice>)+)
<case> ::== agentlobjlmoditempllocnlevent
<function> ::= dependslrdepends
<case choice>::= <case> !(<case>+)

Figure 3.2: BNF grammar for a syntactic schema

CHAPTER 3. A SCHEMA k CONSTRAINT-BASED APPROACH TO NL U 32

from the input sentence and from the constraints that still need to be applied. The predicates

are either syntactic or semantic constraints that should be applied at the appropriate time in

the recognition process. They provide context-sensitive information to the system in deciding

the appropriate parse. They also provide the necessary instructions on when and how to build

and link nodes and maintain consistency in the NCG. The semantics of these predicates are

explained in section 3.4. The complete set of syntactic schemata can be found in the appendix.

Each composition rule of a syntactic category denotes a possible composition or parse or in

terpretation for that syntactic category. Multiple interpretations exist when multiple rules of a

syntactic schema are simultaneously active. For a particular interpretation to be valid, all con

straints in that rule must be satisfied and the input must conform with the rule's compositional

elements.

The syntactic schemata are models of grammatical rules. The schemata in the PT that

capture the grammar of a sentence are derived schemata of these model syntactic schemata

in the KB. They are created during the analysis of a sentence and are dependent both on the

models and on the input. The *dot symbol is always at the beginning of a rule of a model

syntactic schemata, but each derived schema's rule will probably have its *dot in different

positions in the rule reflecting the status of that �chema with respect to the condition of the

parsing process. The creation and manipulation of these derived schemata is explained in more

detail in the following sections.

AB an example, one rule in the set of composition rules for the sentence syntactic schema

named 's' is:

CHAPTER 3. A SCHEMA de CONSTRAINT-BASED APPROACH TO NLU

(*dot np vp (nvagree np vp) (sp vp np agent) (sp np vp agent) (checknum

vp))

33

This rule says that an input sentence is a valid sentence if it is composed of a noun phrase (np)

followed by a verb phrase (vp). This is the rule for the composition of a declarative sentence

and there are other rules that specify alternate ways that a sentence can be formed. They can

be found in the s syntactic schema given in the appendix.

There are four predicates in this sample rule:

(nvagree np vp)
(sp vp np agent)
(sp np vp agent)
(checknum vp)

(nvagree np vp) is a syntactic constraint. It says that to satisfy the constraint there must exist

a number agreement between the main noun in np and the main verb in vp. For instance, if the

main noun is in singular form, and the main verb is in third person singular form, as in 'Bach

lives', then the constraint is satisfied. Interpretation of a sentence based on this rule is allowed

to continue only if the constraint is satisfied. All syntactic constraints serve a similar purpose,

which is to check certain nodes in the partially constructed PT for a particular property or for

some syntactic agreement between nodes that must exist before a sentence can be considered

valid and that the interpretation process can continue.

The remaining constraints in the example are semantic constraints, and are applied on the

semantic nodes in the NCG(s). The first two constraints are called specialization constraints.

They create arcs between the semantic node that represents np and the semantic node that

CHAPTER 3. A SCHEMA k CONSTRAINT-BASED APPROACH TO NL U 34

represents vp in the NCG. The relationship between the two is marked 'agent'. This means

that np fills the agent case of the schema relations of vp. Network consistency must exist

when such links are made between semantic nodes. The technique of network consistency was

introduced in section 2.3, and section 3.4.2 explains how it is performed on a NCG in detail.

If the NCG is still consistent after a link is made between two of its nodes, then the semantic

constraint is satisfied.

The (checknum vp) semantic constraint does not create new links in the NCG. Instead, it

tries to apply the number constraints provided by determiners on the semantic nodes of nouns.

The specialization constraint and the number constraint are the two basic types of semantic

constraints. The specialization constraint is usually less straight forward in its specification

of the relationship that should exist between nodes such as the 'agent' relationship given in

the above example. In most cases, a list of possible relationships and the conditions under

which they are applicable are specified, and it is the semantic handler's job to decide which

relationship is appropriate for a given situation.

3.2.2 Semantic schemata

For each English word, there's a schema in the KB that represents it. The schema contains

all the syntactic and semantic knowledge of the word that is needed in order that the system

may function. Figure 3.3 gives the syntax for such a semantic schema. A brief explanation of

each of the properties that a semantic schema may have is given in Table 3.2.

Words of different syntactic categories have different types of syntactic and semantic knowl-

CHAPTER 3. A SCHEMA & CONSTRAINT-BASED APPROACH TO NL U

<semantic schema> ::= <word><syn cat><inflns><syn feature>{O,l}<labelset>
<ca.se list> {O,l} <schema relations> {O,l} <sem rule> {O,l}

<word> ::= a word
<syn cat> ::= njnprjpnladjjqwordjdetjprepjvlauxv
<inflns> ::= sjesjs-dis-edjes-edjer-estir-stjirrl*I <infln entry>
<syn feature> ::= (trans)l(intrans)j{cop)
<labelset> ::= (<label>+)
<ca.se list> ::= (<case>+)
<schema relations> ::= (<sreln> +)
<sem rule> ::= (equal-num <num>)l(morethan <num>)
<infln entry> ::= (<rootwd> <possessive> {O,l} <number> {O,l} <tense>• <person>{O,l})
<label> ::= <word> I <fabricated label>
<case> ::= agentJobjlmoditempllocnieventjlabel
<sreln> ::= (<fabricated label> <label>+)
<num> ::= 0IIl2l3l4l5l6l7l8l9
<rootwd> ::= the non-inflectional form of an English word
<possessive> ::= (poss)
<number> ::= (number pl)
<tense> ::= (infin)l(tns present)l(tns past)l(pa.stpart)l(prespart)
<person> ::= (pncode <code>)
<fabricated label> ::= <word> <num> +

<code> ::= lsgl3sgj13sglx13sg

Figure 3.3: BNF grammar for a semantic schema

35

CHAPTER 3. A SCHEMA k CONSTRAINT-BASED APPROACH TO NL U

word: an English word or an identifier representing an English description.

syntactic category: the syntactic class that the word belongs to.

36

inflectional knowledge: the possible variety of terminations of a word to express the
relations of number, person and tense.

syntactic features: exists only for verbs, classifying them as transitive, intransitive or
copula verbs.

label set: A collection of labels to capture the meaning of a word.

case list: exists only for verbs and prepositions, specifying the cases that may be filled.

schema relations: exists only for verbs and prepositions, specifying the objects that

may fill the given cases, thus showing the relationships between the objects.

semantic rule: exists only for determiners, a semantic predicate that specifies how to

quantify nouns.

Table 3.2: Properties of a semantic schema

edge in their schemata. Thus, not every semantic schema has all the properties listed in

Table 3.2. Each of these properties and the type of words to which it pertains is explained

further below.

Basically, syntactic knowledge includes the syntactic category that a word belongs to and

its syntactic features. All words have syntactic knowledge in their semantic schemata. Words

that are of the syntactic categories of nouns and verbs also have knowledge of their inflections

included in the schemata. Inflection is a type of syntactic feature that through variance in word

termination expresses the relations of number, person and tense. For example, the plural form

of the noun 'composer' can be formed with the suffix 's' appended to the word. Thus, 's' is the

inflectional knowledge within the schema for the word 'composer'.

Certain verbs are considered as irregular and have no inflectional knowledge that can guide

the morpher in deriving the tense and person of an inflected form of the verb. Thus, the

CHAPTER 3. A SCHEMA k CONSTRAINT-BASED APPROACH TO NL U 37

knowledge of person and tense are provided explicitly for each present, past and past participle

form of the verb in the KB. Verbs also have the syntactic features that categorize them as

transitive, intransitive or copula verbs.

Syntactic knowledge of words is needed because the satisfaction of syntactic constraints

depends on them. For example, a syntactic constraint such as (hasfeature (trans)) is satisfied

if the schema for the verb has (trans) as a syntactic feature meaning that the verb is transitive.

Similarly, the satisfaction of semantic constraints depends on the semantic knowledge within

the semantic schemata. Words of the syntactic category of determiner are basically quantifiers

in our system. Their semantics is represented by predicates, such as (equal-num 1) for the

determiner 'one', which is basically a semantic constraint which when executed captures the

semantics of the word. Thus, we are assuming that the semantic significance of determiners is

in providing number constraints on nouns.

Words of other syntactic categories have their semantics represented by label sets. A label

set is a collection of labels which are meant to capture the meaning of a word. For example,

the word 'composer' which is a noun has the label set:

(Bach Handel Haydn Mozart Beethoven Chopin Berlioz Tchaikovsky Verdi)

We are assuming that a noun represents a class of objects and we call each of these objects

a label. A label may be another noun or a pseudo-noun which also has a label set whose

labels also have label sets and so on. As a result, a hierarchy of knowledge organized into

classes and subclasses is formed for each noun. This is known as the specialization hierarchy

CHAPTER 3. A SCHEMA k CONSTRAINT-BASED APPROACH TO NLU 38

(Brachman, 1982]. Pseudo-nouns are descriptions for a collection of nouns. They allow groups

of nouns or labels to be categorized under one name. For example, 'voe-music' is a pseudo

noun that represents the collection of objects that fall under the category of vocal music. The

specialization hierarchy for the word 'music' in Figure 3;4 shows how pseudo-nouns can group

nouns together and be used as labels. The pseudo-nouns are in italics in the figure and the

descriptions that they represent are given in parentheses.

AB with nouns, the semantic knowledge of adjectives and question words are represented

by label sets within the semantic schemata. For an adjective, its label set is the class of all

objects that may be modified by the adjective. For example, the adjective 'famous' has in its

schema the label set (music composer) in our KB because all of the musical compositions

and composers are considered famous and can be modified by this adjective. Similarly with a

question word, its label set represents a class of objects. For example, the question word 'who'

represents the class of all people and since all the people in our database are composers, its

label set is simply (composer).

Prepositions and verbs also have label sets for representing semantics of words. However,

there is a substantial difference between their label sets and those of nouns, adjectives and

question words. Verbs denote linguistic events, and each event involves the interaction of

objects. For example, the verb 'compose' represents all the composing events and each such

event may involve a composer, a composition and the time and place that the compositon was

written. Thus, verbs' label sets are not simply classes of objects as in nouns but are classes

of events. We represent each event by what we call a fabricated label so that the event with

�
oq'
i::
...

Cl)

w

�

en
"O

�
E
N.c:» �
....

0
i:,

t:i:::
;·
... c:»
...
0

�
o'
...

��
Cl)

oratorio

voe-music
(vocal music)

opera mass ballet

Music

ins-music
(instrumental music)

�
'i:l
�
::t:i
�

>
1::1)

I
�

8
�
�
>

�
�
to
>
1::1)
t"l
t:,
>

�

8� The-Creation Don-Giovanni Aida Falstaff The-NutcrackerThe-Fifth-SymphonyThe-Emper�atapolonaise
/

w·a1tz ovenure-fantasy �
�� � / I \ 6

i:,
0
i::
i:,

The-Pathetique-Sonata The-Moonlight-Sonata The-Appassionata Polonaise-in-A-flat Valse-BrillianteRomeo-and-Juliet
�
c::

w�

CHAPTER 3. A SCHEMA k CONSTRAINT-BASED APPROACH TO NLU 40

all the inter-related objects can be referred to by a single name. For example, if there are

altogether three composing events for the verb 'compose', then its label set will be (compose!

compose2 compose3) where each element in the list is a fabricated label denoting an event.

In addition, we also need to include what we call a case list and schema relations within the

semantic schemata of verbs. The case list within a semantic schema expresses the cases of the

verb that may be filled. This is an adaptation of Fillmore's cases [Fillmore, 1968]. For each

fabricated label, there is a corresponding schema relation that lists the objects that fill the

cases of the verb for a particular incidence of that verb. The set of schema relations is a set of

tuples which represents all the events that are denoted by the verb in the KB. Thus, for the

verb 'compose', the case list is (label agent obj mod) and each line in Table 3.3 denotes a

schema relation for each of the three events in the label set.

label agent obj I mod I
composel Bach Mass-in-B-minor inl
compose2 Bach Well-Tempered-Clavier
compose3 Handel Messiah in2

Table 3.3: Sample schema relation for the verb 'compose'

The first schema relation in the table says that we have an event named 'composel' which

represents the event of composing where 'Bach' is the agent of the act of composing and the

composition 'Mass-in-B-minor' is the object of the act. Modifiers on the act are summarized by

the fabricated label 'in 1 '. The other two schema relations can be interpreted in a similar fashion.

To summarize, in the case that there are only three composing events, then the semantic schema

CHAPTER 3. A SCHEMA k CONSTRAINT-BASED APPROACH TO NL U

word:
syntactic category:
inflectional knowledge:
syntactic features:
label set:
case list:
schema relations:

compose
V
s-d
(trans)
(composel compose2 compose3)
(label agent obj mod)
(composel Bach Mass-in-B-minor inl)
(compose2 Bach Well-Tempered-Clavier)
(compose3 Handel Messiah in2)

Figure 3.5: Sample semantic schema for the verb 'compose'

word: m
syntactic category: prep
inflectional knowledge: *
label set: (inl in2 in3)
case list: (label event temp locn)
schema relations: (inl composel 1733 Leipzig)

(in2 compose3 1742 Dublin)
(in3 bornl 1685 Eisenach)

Figure 3.6: Sample semantic schema for the preposition 'in'

for the verb '·compose' in the KB contains the information given in Figure 3.5.

41

In order to understand the fabricated label 'inl' that appeared in a schema relation in Figure

3.5, we now turn to the semantic schemata of prepositions. Somewhat like verbs, prepositions

do not simply represent classes of objects but represent the relationships between objects. Thus,

within the semantic schemata of prepositions, we again have label sets of fabricated labels, case

lists and schema relations as in verb schemata. A simplified version of the semantic schema of

the preposition 'in' is given in Figure 3.6 to illustrate this.

The 'inl' in the schema relation of the fabricated label 'composel' in the previous example

is itself a fabricated label which expresses the relationship of the event of composing with the

time and location of the event in one name. For example, the schema relation of 'inl' informs us

CHAPTER 3. A SCHEMA & CONSTRAINT-BASED APPROACH TO NLU 42

that the event represented by 'compose!' has happened in the year 1733 in the city of Leipzig.

3.3 System control

Earley's context-free parsing algorithm (Earley, 1970] and Havens' schema-based recognition

method [Havens, 1983] have been adapted to provide the necessary control for the interpretation

process in our system. Recognition is performed in a bottom-up fashion coupled with top-down

control. This integrated bottom-up and top-down recognition method allows the construction

of the PT and the NCG in parallel. In addition, all possible interpretations can be explored

in parallel while each schema retains control of the recognition process. The result is the

creation of multiple PTs and NCGs with shared networks for multiple interpretations. We

shall describe control in terms of three processes after Earley's three parsing functions in the

following sections. A brief description of the actions involved in the interpretation process is

given below.

The main driver of the system is responsible for controlling the direction of interpretation

of an input sentence. Direction is either bottom-up or top-down depending on the status of the

derived syntactic schemata in the state sets of the system. The status of the derived syntactic

schemata are in turn dependent on the input sentence and the KB. A derived syntactic schema

is an instantiation of a model syntactic schema in the KB. Its creation signifies the possibility

of its corresponding model syntactic schema in capturing the syntax of a part of or the entire

input sentence. Derived syntactic schemata reside in state sets which eventually turn into the

PT representation.

CHAPTER 3. A SCHEMA k CONSTRAINT-BASED APPROACH TO NL U 43

Initially, the main driver of the system creates a state 1 called the derived root schema

that contains the rule (*dot s •term) 2 and places this schema in the state set called stO.

This schema is responsible for the chain reaction spawning of syntactic schemata derived in

the future. The list (*dot s *term} represents the status of the derived root schema. *dot

is a symbol that delimits the recognized portion of the rule from the unrecognized portion.

Initially, *dot is at the far left of the r�le stating that e which is the root of the grammar has

not been recognized yet. The user may choose another nonterminal symbol to be the root of the

grammar. For example, if one wants to see the representation for a noun phrase instead of an

entire sentence, then one may choose np to be the root of the grammar and (*dot np •term)

will be the derived root schema instead. *term is a terminal symbol whose presence causes

the scanner process to scan a word from the input sentence and in this case a null character

should be scanned to signify the end of the input sentence. It is necessary to recognize •term

after s as stated in the above rule to ensure that the end of the input string is reached after s

has been recognized.

The main driver contains a loop that processes state sets one at a time until a new version

of the derived root schema with the rule (e •term *dot) appears in a state set indicating that

the input sentence has been interpreted successfully or until an empty state set is encountered

indicating failure in the interpretation process. A state set is processed if all the derived

syntactic schemata that it contains have been operated on in order; a derived syntactic schema

1Earley's terminology. [Aho & Ullman, 1972] calla a state an item, and calla a state set a pane list. We call
the 1tate1 in a state 1et derived ayntactic schemata since each of them contains a collection of information baeed
on the model syntactic schemata from the KB instead of being just a simple rule of the form [A-+ 01 • p].

2Our LISP representation of the right hand side of the rule 1, -+ -S -f] described in section 2.4.

CHAPTER 3. A SCHEMA & CONSTRAINT-BASED APPROACH TO NLU 44

may be operated on by either the predictor, the scanner or the completer processes depending

on its status. These three processes may add more derived syntactic schemata to the current

state set under processing or to the next state set to be processed. The actions of each process

is either top-down or bottom-up processing. Derived syntactic schemata that do not contribute

to the final interpretation of the input sentence are deleted from the state set that contains

them by the garbage collector as they are found to be inappropriate during the interpretation

process. Thus, all the derived syntactic schemata in the series of state sets at the end of

the interpretation process form a parse tree (PT) that provides a syntactic structure for the

analysed input sentence. The three processes are described in the following sections.

3.3.1 Predictor

When the main driver inspects the status of a derived syntactic schema within the current

state set being processed and notices that there is a nonterminal symbol to the right of *dot

in the rule within the schema, the predictor process is invoked. The predictor creates a new

derived syntactic schema for each composition rule within the model syntactic schema indicated

by the nonterminal symbol, and places them in the current state set for future processing. In

the beginning, stO is the current state set containing the derived root schema with the rule

(*dot s *term). Since s is a nonterminal symbol, the predictor is invoked. It retrieves the

model syntactic schema for the syntactic category s from the KB, and for each composition

rule within the s model syntactic schema, a derived syntactic schema is created.

One of the derived syntactic schemata of the s syntactic category created at this point is

shown in Figure 3.7.

CHAPTER 3. A SCHEMA k CONSTRAINT-BASED APPROACH TO NL U

s0-0
s
stO

45

instance:
class:
state:
rule:
parent:
potchild:
child:
word:
sem:

(*dot np vp (nvagree np vp) (sp vp np agent) (sp np vp agent) (checknum vp))
root0-0
nil
nil
nil
nil

Figure 3.7: Sample derived syntactic schema

The instance slot stores the name of a derived syntactic schema which is 's0-0' in this ex-

ample. Names are constructed following a special rule that allows it to reflect information of

which syntactic class the derived syntactic schema belongs to, its position in the list of derived

syntactic schemata of the same syntactic class, and which state set it resides in. The purpose

of the naming convention is basically for ease of identification during the creation of the PT.

This schema is derived from the s syntactic category and is contained in the state set stO

as specified by the class slot and the state slot respectively. The rule slot contains the

composition rule that represents the status of this schema in the recognition process.

The parent slot records the name of the derived syntactic schema which causes the pre

diction of this schema. This is necessary so that the completer process knows which derived

syntactic schema to complete to when this schema's rule has reached the completion stage.

Completion of the rule reflects that the nonterminal symbol s has been captured in the input

sentence by the composition rule of the s syntactic category represented in this schema.

The potchild slot records all the derived syntactic schemata that will be predicted from

this schema. For example, this and other derived syntactic schemata spawn from 'root0-0' are

CHAPTER 3. A SCHEMA k CONSTRAINT-BASED APPROACH TO NL U 46

all potential children of 'root0-0' representing all the possible parses with s as the root. Later,

when this schema is processed, the nonterminal symbol np after *dot in the rule will cause all

the possible compositions of np to be predicted as derived syntactic schemata, each of these

will be placed in the potchild slot of this 's0-0' schema. The purpose of having this slot is

to facilitate garbage collection. This schema can be garbage collected when all its potential

children in the potchild slot have been deleted from the slot. The entry of a derived syntactic

schema in the potchild slot is removed if that schema is garbage collected due to its rule

not being able to capture the input thus destroying its potential in being a child of the current

schema in the final PT. Alternatively, the entry of the derived syntactic schema in the potchild

slot can be removed if that schema has completed its rule and has made a copy of the current

schema, thus showing that it no longer needs the original version of the current schema. The

copy of the current schema is that schema's new parent; the rule in this copy is updated to

reflect the successful completion of that schema in recognizing the nonterminal symbol after

*dot. It is necessary to make a copy of the current schema and update the rule in the copy

instead of just updating the rule in the original schema because the original one may have more

than one potential children, some of which may complete to it later expecting the rule not to

have changed in the mean time.

The child slot is used to record those potential children that have successfully completed

their rules. This information enables the system to print out the PT representation at the

end of the interpretation process thus allowing Earley's algorithm to be a parser instead of

simply a recognizer in the formal sense. The word slot is used to record the word from the

CHAPTER 3. A SCHEMA dt CONSTRAINT-BASED APPROACH TO NL U 47

input sentence that is scanned during the processing of the current schema such that it may

be printed with the schema that it is associated with in the PT output. Only those derived

syntactic schemata that have a terminal symbol in their rules can have the word slot filled.

The sem slot provides a link to the NCG by storing the names of those semantic nodes in the

NCG that represent the semantics of the current derived syntactic schema.

Lastly, there is one important point that needs to be mentioned with regard to the actions of

the predictor. Before the creation of any new derived syntactic schemata, the predictor checks

the current state set to see whether those schemata have already been predicted previously

and are waiting to be processed. If so, the predictor will not create duplicate derived syntactic

schemata, but will instead retrieve those derived syntactic schemata from the current state set

and update its parent slot to reflect the fact that there exists another schema which also

predicts them. This means that subparses may be shared by multiple PTs thus yielding space

efficiency.

3.3.2 Scanner

The scanner process is invoked when there is a terminal symbol, •term, to the right of

*dot in the rule of the derived syntactic schema under processing. The scanner then fetches

the next word from the input sentence, and passes it to the morpher subprocess so that the

root form of the input word can be determined. It then checks whether the resulting root

word belongs to the syntactic category specified under the class slot of the current derived

syntactic schema. If it does, it partially confirms the validity of the series of derived syntactic

schemata that lead to the prediction of the current derived syntactic schema. It is only a partial

CHAPTER 3. A SCHEMA k CONSTRAINT-BASED APPROACH TO NLU 48

confirmation because there may still exists constraints that need to be satisfied:-before these

derived syntactic schemata just mentioned can participate in the final PT representation.

A derived syntactic schema that has been scanned successfully will be updated and then be

placed on the next state set. The updating operation involves altering the name of the schema

to comply with the naming convention, and most importantly to update the rule in the schema

to reflect its new status. Before scanning, the rule in the derived syntactic schema is (.•• *dot

•term), and after updating, it will be (... •term *dot) which means that all symbols to the

left of *dot has been recognized.

A special case that the scanner process has to deal with is when the scanned word is a null

character signifying the end of the input sentence. If the derived syntactic schema is the root

schema with the rule (s *dot •term), then the scanning is successful, and normal updating as

mentioned above is performed. Otherwise, an incorrect prediction has occured which expects

more input and yet input has been exhausted. As a result, the garbage collector is invoked to

dispose of the current schema as well as any other related derived syntactic schemata that are

involved in the incorrect prediction. The garbage collector is also invoked when an unsuccessful

scan has occurred; that is when the scanned input word does not belong to the syntactic class

specified by the current derived syntactic schema or when it cannot be analysed successfully by

the morpher.

3.3.3 Completer

The completer process is invoked whenever the derived syntactic schema under processing

has *dot at the end of its rule. It usually means that a successful scan has occurred previously

CHAPTER 3. A SCHEMA k CONSTRAINT-BASED APPROACH TO NL U 49

when this derived syntactic schema was last processed, and now its parents should be informed

that the prediction is correct. So, the first operation of the completer is to retrieve all the

parents of the current schema as listed in its parent slot. If required, consistency checks are

performed on each parent. If the results are satisfactory, then the parent schema is updated and

placed at the end of the queue in the current state set to await further processing. This involves

either more prediction to see if the current predicted parse can be carried to its completion or

completion has actually been reached. In the latter case, a trace back the prediction path is

needed to confirm the success of the prediction.

When a parent is retrieved, a copy is made so that the status of the original copy will not be

affected. The original copy is needed by other incompleted potential children and thus should

not have its status changed. A new name is given to the copy and its rule is updated to reflect

the completion of a derived syntactic schema predicted from it.

For example, if the rule in this parent copy is (np •dot vp (nvagree np vp) (sp vp np

agent) (sp np vp agent) (checknum vp)), then the updated rule will have *dot to the

right of vp. This indicates that a derived syntactic schema of the syntactic category vp has

been correctly predicted and is now completing to its parents. Consistency checks are required

for this parent since four constraint predicates, (nvagree np vp)(sp vp np agent)(sp np

vp agent) (checknum vp), appear after the *dot in its rule. The syntactic handler will be

invoked to handle the syntactic constraints, and the semantic handler the semantic constraints.

*dot will be advanced to the right of each constraint after it has been satisfied. When all

constraints are satisfied, the completed derived syntactic schema will be recorded under the

CHAPTER 3. A SCHEMA k CONSTRAINT-BASED APPROACH TO NL U 50

child slot of its parent. The potchild slot of this parent which is the copy is set to nil since

no predictions has been made from it yet. The derived syntactic schemata representing the

recognized portion of its rule are listed under its child slot. The original copy of this parent

will have the completed derived syntactic schema removed from its potchlld alot since it is

now a completed child of the copy.

The changes made to Earley's parser are incorported in the operations of the completer

as mentioned above. Whereas Earley's completer just retrieves the parents and updates their

rules, our completer also has subprocesses to apply syntactic and semantic constraints in order

to be able to incoporate context-sensitive information in the grammar rules in the appropriate

places.

Although a completed derived syntactic schema may be shared by multiple parents, its

corresponding semantic nodes in the NCG cannot be shared as well since each parent may

be involved in a different interpretation. Thus, copies of semantic nodes must be made to

ensure that all the semantic interpretations are distinct and do not interact. However, space

efficiency is desirable; so some semantic nodes are still shared by different NCGs as long as the

interpretations can be kept separated. This handling of multiple NCGs is described in section

3.4.2 on the semantics handler.

The description of the three system control processes has shown that the parsing procedure is

nondeterministic. The predictor process predicts all the possible parses simultaneously in a top

down fashion. These multiple parses are incorporated in the state sets. The derived syntactic

schemata which reside in the state sets are created as a result of the prediction process. They

CHAPTER 3. A SCHEMA & CONSTRAINT-BASED APPROACH TO NL U 51

are retained unless they are found to be incorrectly predicted via the bottom-up action of the

scanner and the completer. The derived syntactic schemata which cannot participate in the

final PT representation will be deleted from the appropriate state sets.

The scanner detects those incorrectly predicted derived syntactic schemata by checking the

prediction against the words in the input sentence. On the other hand, the completer detects the

incorrectly predicted derived syntactic schemata by calling the syntax and semantics handlers

to apply the necessary constraints. Those derived schemata, both syntactic and semantic ones,

that do not satisfy the constraints are then deleted.

3.4 Constraint satisfaction

This section explains how syntactic and semantic constraints are resolved. These constraints

are embedded in the composition rules of a model syntactic schema. They are resolved through

the actions of the syntax handler and the semantics handler respectively.

3.4.1 Syntax handler

The syntax handler is invoked by the completer whenever the derived syntactic schema

under processing has syntactic constraints that need to be satisfied. Syntactic constraints are

applied to the syntactic nodes of the PT. These syntactic nodes are simply the derived syntactic

schemata in the state sets from where the final one or more PTs are formed. The main function

of these syntactic constraints is to provide context-sensitive information to the system so that

an incorrect parse may be found as early as possible. The information that these constraints

provide is essential for the parsing of English sentences since they do not conform to a simple

CHAPTER 3. A SCHEMA k CONSTRAINT-BASED APPROACH TO NL U

context-free grammar.

52

The syntactic constraints may be divided into two categories. Syntactic constraints of the

first category are basically conditions that a particular derived syntactic schema must satisfy

or properties that the derived syntactic schema must poSBess. This type of syntactic constraint

assists the system in deciding which composition rule to follow at the appropriate stage during

the interpretation process. The second category of syntactic constraints usually involves two

particular derived syntactic schemata. The constraint specifies the number agreement that

must exist between these two schemata. This type of syntactic constraint assists the system in

deciding which composition rule to discard.

Both constraint types are represented as a list such as (basfeature (trans)) where the

head of the list is the name of the constraint, and the tail of the list gives the arguments to

the constraint. The syntax handler's job is to call on the appropriate LISP function to perform

the named constraint. It must also pass the required arguments to the LISP function. This

usually involves a search for the appropriate derived syntactic schemata to which the constraint

is applied. For example, the constraint (nvagree np vp) can only be applied after the syntax

handler has located the main noun and the main verb of the sentence. The main noun, for

instance, can be found in the word slot of a derived syntactic schema of class D which is listed

in the child slot of another derived syntactic schema of class np. Sometimes a constraint

may have an argument that specifies the condition under which it is appropriate to apply the

constraint. This type of embedded constraints must be handled by the syntax handler as well.

A list of the syntactic constraints, and a brief explanation of each one is given in Table 3.4.

I.
I

CHAPTER 3. A SCHEMA k CONSTRAINT-BASED APPROACH TO NL U

• Category I syntactic constraints:

53

rwordis: The current derived syntactic schema must be associated with an input word

whose root form is specified in the argument list of this constraint.

hasfeature: The argument of this constraint specifies the particular syntactic feature

that the word in the word slot of the current derived syntactic schema must have.

gparhasno: The argument of this constraint specifies a syntactic class that the rule of

the grandparent of the current derived syntactic schema must not have.

gparhas: The opposite of the above constraint.

isposs: The word in the word slot of the current derived syntactic schema must be in

possessive form.

isnotposs: The opposite of the above constraint.

• Category II syntactic constraints:

nvagree: Number agreement must exist between the main noun and the main verb.

vvagree: Number agreement must exist between the auxiliary verb and the main verb.

dnagree: Number agreement must exist between the determiner and the main noun.

Table 3.4: Table of syntactic constraints

CHAPTER 3. A SCHEMA k CONSTRAINT-BASED APPROACH TO NLU

3.4.2 Semantics handler

54

The semantics handler is invoked whenever the completer process encounters semantic pred

icates in the rule of the derived syntactic schema under processing. Semantic predicates may

be constraints that need to be applied on the semantic nodes in the NCG, or they may be

commands that specify how the NCG is built and linked to its corresponding derived syntac-

tic schemata. The semantic handler also manages the creation of mutiple NCGs to capture

multiple semantic interpretations of an input sentence.

Each semantic predicate is in the form of a list similar to a syntactic constraint with the

name of the predicate given in the head of the list, and the arguments of the predicate given

in the tail. If the semantic predicate is a constraint, then the semantic handler has to perform

a search operation similar to that of the syntax handler in finding the appropriate semantic

nodes to which to apply the constraint. There are four semantic predicates, given in Table 3.5.

Build and setptr are commands for the semantics handler whereas sp and checknum are

semantic constraints.

build: Specify what type of semantic node to build and which derived syntactic schema

it should correspond with.

setptr: Specify additional links between syntactic and semantic nodes, and when to

create copies of semantic nodes to allow multiple NCGs to exist separately.

sp: A semantic constraint that causes the execution of arc consistency between semantic

nodes. As a result, links between semantic nodes are established and made consistent.

checknum: A semantic constraint on the number of labels in the label set of a semantic

node as applied by a determiner.

Table 3.5: Table of semantic predicates

CHAPTER 3. A SCHEMA k CONSTRAINT-BASED APPROACH TO NL U 55

The checknum constraint is the simplest of the four. It simple checks the cardinality of

the label set of a semantic node to see if it conforms with what the determiner indicates it to

be. The operations of the semantics handler with regard to each of the other predicates are

explained below.

The build predicate

The build predicate is applicable after an input word has been scanned. It builds one

or more semantic nodes to represent the additional semantic entities that the new scanned

word has introduced. A semantic node is a derived semantic schema which is an instantiation

of a model semantic schema in the KB. The form of a semantic node for the scanned word,

'composer', is given in Figure 3.8.

snode:
rword:
lset:
comps:
rcomps:
filledc:
rfilledc:
syn:

sem6
composer
(composer)
nil
nil
nil
nil
(subnp4-3)

Figure 3.8: Sample derived semantic schema

The name of the semantic node is given in the snode slot. Names are numbered in the

sequence in which they are created, and do not have any special significance as names of

syntactic nodes do. The rword slot holds the root form of the scanned input word that has

triggered the building of this node. It provides access to the model semantic schema associated

with this derived semantic schema so that the case list and schema relations of the model one

CHAPTER 3. A SCHEMA k CONSTRAINT-BASED APPROACH TO NLU 56

can be retrieved when needed. The }set slot initially contains the label set of the associated

model semantic schema. The label set is refined as the interpretation process proceeds and

only consistent labels that satisfy all constraints applied to them are retained. The label set

represents the interpretation of the semantic node. The comps slot holds a list of semantic

nodes which are the components of this node. A semantic node is a component of another if it

applies a constraint on the other semantic node. Thus, a change in the label set of a semantic

node will affect all the semantic nodes that have it as a component. The rcomp slot holds a

list of semantic nodes which have this semantic node as a component. These two slots allow

the semantic handler to have access to all the semantic nodes that are linked to this node.

The filledc and rfilledc slots provide case information for the nodes listed in the comps and

rcomps slots respectively. Figure 3.9 illustrates this through the example of a semantic node

which denotes a verb.

snode:
rword:
!set:
comps:
rcomps:
filledc:
rfilledc:
syn:

sem5
write
(composelO composell compose12)
(sem4 semO)
nil
((sem4 (obj)) (semO (agent)))
nil
(vp0-4)

Figure 3.9: Sample derived semantic schema for a verb

In Figure 3.9, the component, 'sem4', fills the objective case of the verb write, and 'semO'

fills the agent case. These two components have refined the labels in the lset slot to only

three composing events from the original list of all composing events when the node was first

built. Lastly, the syn slot specifies the derived syntactic schema or schemata with which this

CHAPTER 3. A SCHEMA k CONSTRAINT-BASED APPROACH TO NL U 57

semantic node is associated. The argument to the build predicate may specify the syntactic class

of the derived syntactic schema with which this semantic node should associate. If unspecified,

it defaults to the derived syntactic schema currently being processed by the completer which

contains the build predicate in its rule.

The setptr predicate

The setptr predicate is applied when the list of semantic nodes of a completed derived

syntactic schema should be incorporated into its parent's list. There are three special cases in

which the setptr predicate applies:

1. A child has only one parent and the parent does not have other potential children.

2. A child has more than one parent to which to complete.

3. A child is completing to a parent which has other potential children.

The first case indicates that there is only one interpretation or parse active at the time and

the other two cases indicate the existence of multiple parses or subparses. When multiple inter

pretations are involved, the current NCG would need to be split to capture each interpretation.

This involves the copying of semantic nodes and creating a new NCG.

In the first case of only one interpretation existing, the setptr predicate can simply be

executed by updating the parent's sem slot to include the semantic nodes in the sem slot of

its child. Also, the syn slot of all the semantic nodes must be updated to indicate a new link

to another derived syntactic schema. These additional links are necessary so that the system

control which is provided via the syntactic parsing process can be carried over to control the

formation of the semantic representations, the NCGs.

CHAPTER 3. A SCHEMA & CONSTRAINT-BASED APPROACH TO NL U 58

This simple case of having only one active predicted parse or subparse seldom occurs.

Usually, one or both of the remaining cases occur during a completion process. In the second

case, each parent of the child represents a different parse or aubparse. Even though the child

schema can be shared in the syntactic description, its ·corresponding semantic nodes cannot

be shared since each parse represents a different semantic interpretation. Thus, appropriate

actions must be taken to ensure that -each parent has its own corresponding NCG. Similarly,

in the third case, each potential child represents a different parse or subparse. As one of these

potential children completes to its parent, a copy of this parent is made, as explained in section

3.3.3. Since each copy is involved in a different interpretation, its set of semantic nodes must

be kept separated from that of other copies.

Copies of semantic nodes must be made in the two cases just mentioned to keep the semantic

interpretations separate. However, each semantic node is linked to other semantic nodes in a

NCG. If a copy of a semantic node is needed, all the linked semantic nodes that cannot be shared

between NCGs must also be copied. The result is a splitting of a single NCG description into

multiple NCG descriptions. Figure 3.10 illustrates how this is done. For the sake of readability,

we use a hypothetical example to demonstrate the actions involve in splitting a NCG description.

Here, semantic nodes have alphabetic names and only the comps and rcomps slots are shown.

These slots contain the information on the links in & NCG and are the only slots that are affected

in the splitting; thus we include them in the diagram to illustrate how they get updated.

The example assumes that node A is a semantic node that needs to be copied. Thus, node

Al is created as a copy. However, the fact that node A is connected to other nodes in the

CHAPTER 3. A SCHEMA k CONSTRAINT-BASED APPROACH TO NLU

Before splitting:

-col!lp•;C:
7C0111p• l nJ J

After splitting:

co•puC
tC'l:uap, �1'11 J

G

nu

Original NCG

means 8 is a component of A

means A and B are components of

each other

A copy of node Xis named Xl

New NCG

Figure 3.10: Splitting a hypothetical NCG description

59

CHAPTER 3. A SCHEMA k CONSTRAINT-BASED APPROACH TO NL U 60

network means that other nodes that cannot be shared by two interpretations must be copied

and linked appropriately as well. Basically, if a node is copied, then all the nodes listed in its

rcomps slot need to be copied as well, but the nodes listed in its comps slot need not be

copied and can be shared. For example, node A's comps slot bas nodes B and D, and its

rcomp slot has nodes C and D. Thus, copies are made for C and D where none is made for

B. Copies are necessary for C and D because they have node A as a component which apply

constraints on them, and if A's bf lset slot is changed, C and D's lset slots must be updated

accordingly. Therefore, if node A has a copy Al which is supposed to represent a separate

interpretation, then C and D should not still be linked to Al since they should not let their

lset slots be affected by Al's interpretation as well. A13 a result, copies of C and D are made.

To summarize, the action of copying one semantic node usually leads to a propagation of the

copying action until two interpretations can be represented by two separate NCGs that do not

interact although they may share certain semantic nodes. An efficiency of representation is

achieved with this sharing of node while keeping the interpretations separate.

The ep constraint

The sp constraint is applied whenever a link has to be established between two or more

semantic nodes in the NCG. The arguments of the constraint give guidelines to the semantic

handler in finding the semantic nodes that should be linked, and the relationship between them.

Linking two nodes means one node is made a component of the other. The semantic handler

then records the information concerning each link in the appropriate comps, rcomps, filledc

CHAPTER 3. A SCHEMA & CONSTRAINT-BASED APPROACH TO NLU 61

and rfilledc slots of the two semantic nodes involved. In addition, it runs arc consistency to

ensure that any inconsistencies introduced by the additional links are removed. Inconsistencies

that cannot be resolved result in the constraint not being satisfied.

Consistency checking is basically a filtering mechanism for maintaining consistent label sets,

which may also refine the label sets gradually to reflect a global interpretation if enough con

straints exist. The network consistency algorithm that is adopted by our system is an implicit

version of hierarchical arc consistency (RAC) [Mackworth et al., 1985]. In RAC, constraints

are represented by relation matrices of leaf labels. These are explicitly established and prepro

cessed at the outset. In our system, the constraints are represented implicitly in the schema

relations.

Network consistency in our system works as follows. For a link inserted between each pair

of semantic nodes, one node is made the component of the other, say for example that node B

is made a component of node A. Each label in the label set of A is checked to see whether the

addition of B as a component has made a label inconsistent. If so, that label is deleted from

A's label set, and every neighbour of A in the network that has A as a component must also be

checked for consistency. Thus, consistency checks propagate throughout the network to ensure

that all labels in the label sets of all nodes are consistent with the inconsistent ones removed

in the process.

A label of node A is considered consistent if it or at least one of its descendants in its

specialization hierarchy of labels is compatible with at least one label in the label set of node

B. Compatibility basically means equality. Two labels are compatible if they are equal in name,

CHAPTER 3. A SCHEMA k CONSTRAINT-BASED APPROACH TO NL U 62

or if one of them is compatible with a member of the schema relation of the other label under

the specified case. For example, the label 'Verdi' is compatible with the label 'compose21' whose

schema relation is (compose21 Verdi Otello) if the specified case is 'agent' since 'Verdi' is a

member of its schema relation and it resides in the agent case slot. If a fabricated label resides

in that slot instead of 'Verdi', then the semantic handler will have to fetch the fabricated label's

schema relation to check for compatability and a recursive process is involved until an atomic

label can be reached to allow an atomic name comparison.

If a label is incompatible, its descendants at the next lower lever in its specialization hi

erarchy will be fetched to replace it in the label set. If at least one of its descendants is

consistent with node B's label set, consistency is achieved for that original label. The checking

for consistency in the hierarchy of a label and its descendants is essentially RAC.

Constraints are predominantly given by the schema relations of verbs and prepositions.

However, noun modifiers also apply constraints on nouns. Adjectives and possessive nouns are

the two types of modifiers that the system can handle. They refine the label set of the noun

that they are modifying to only those labels to which the noun modifiers can be applied.

3.5 Morpher

The morpher is a subprocess to the scanner. It performs suffix analysis on an input word.

Words that are not root words themselves but are formed in a regular way from their roots are

analysed by the morpher to have the root form determined. These words need not be entered

into the KB explicitly. However, words that are formed in an irregular way must be placed in

CHAPTER 3. A SCHEMA & CONSTRAINT-BASED APPROACH TO NL U

the KB.

63

The morpher is given a table of possible suffixes and the syntactic features associated with

each. It can determine the root form of the input word, the part of speech, and other syntactic

features of the input word so that a semantic schema can be created for it dynamically. If a

word cannot be analysed, the user will be asked to either respell it, give a definition for it,

or abort the interpretation process. The definition must be given in the format of a semantic

schema.

3.6 Garbage collector

Over the course of the interpretation process, many derived schemata, both syntactic and

semantic ones, are created. However, only some will actually be part of the final PT and NCG

representations. Therefore, for reasons of space efficiency, a garbage collector is provided in our

system to reclaim the space used by derived schemata once they are found to be incorrectly

predicted and do not play a part in the global interpretation.

The garbage collector is invoked whenever one of the three main processes of the system

discover that a derived schema is inappropriate. The garbage collection process works differently

depending on which process is calling it. The following is a description of the actions of the

garbage collector in each situation.

After scanning, a derived syntactic schema may be found to have incorrectly predicted

the input word. Thus, this derived syntactic schema is garbage collected. In addition, all

the derived syntactic schemata that are related to this prediction, and are not involved in an

CHAPTER 3. A SCHEMA & CONSTRAINT-BASED APPROACH TO NL U 64

alternate prediction at the same time are garbage collected. This involves tracing the prediction

path to all the ancestors of this current derived syntactic schema and garbage collecting those

which cannot participate in another parse. For each ancestor that can be garbage collected,

its completed children may also be garbage collected if they are not shared by other derived

syntactic schema.ta. As a result, the garbage collector traverses up and down the potential

PT looking for derived syntactic schemata that can be disposed. At the same time, derived

syntactic schemata. that are related to the garbage collected ones must have the appropriate

slots in their schemata updated to delete their connections to the garbage collected schemata.

A similar process is performed when a derived syntactic schema cannot complete successfully

to its parent because some constraints are not satisfied. In this case, the garbage collector must

also collect the related semantic nodes as well. Again, all connected semantic nodes that do

not participate in another NCG description can also be garbage collected. Those that cannot

be garbage collected must have their comps, rcomps, filledc and rfilledc slots updated to

reflect the discontinued links.

The garbage collector can also be invoked when the predictor process is called to make

further predictions when input has already been exhausted. In this case, the derived syntactic

schema under processing cannot possibly be part of any final interpretations and it is garbage

collected accordingly.
1·-

Chapter 4

Discussion of examples

The NLU system is written in FRANZ LISP and runs on a VAX 11/780 under the UNIX

operating system. The grammar and semantic knowledge base is given in the appendix. The

system can handle simple declarative and interrogative sentences. Approximately twenty com

plete sentences and ten sentence fragments were tested successfully. Four of these and their

corresponding PT and NCG representations are illustrated in this chapter. A brief dicussion is

given for each example.

The examples show how constraint propagation works and how the label sets of semantic

nodes are refined incrementally to give a global consistent interpretation. The first two examples

illustrate how noun modifiers are represented and manipulated in the system. Both of these

examples are sentence fragments. The third example shows how determiners and prepositional

phrases are handled. The last example demonstrates how multiple representations are generated

for a sentence which has multiple interpretations. The last two examples are complete sentences.

A diagram showing the PT and N CG representations in a network form is given for each example

to facilitate understanding of the system's behaviour.

65

CHAPTER 4. DISCUSSION OF EXAMPLES 66

The contents of the syntactic and semantic nodes in the PT and the NCG are not shown

in full in the diagrams to increase readability. Only information essential to the understanding

of the diagrams is included. Leaf nodes of the PT indicate each input word that is scanned.

The rword and lset slots of semantic nodes are listed beside the nodes in the diagrams. Also,

the schema relations of the abstract labels in the label set of semantic nodes are listed even

though they are not explicitly represented in each semantic node. They only reside in the model

semantic schemata in the KB, but are listed in the diagrams to aid the reader in interpreting

the fabricated labels.

Figure 4.1 gives the representation of the sentence fragment 'famous keyboard music'. The

PT is shown on the left and the NCG on the right in the diagram. This example shows how

adjectives affect the label set of a noun that they modify. In this noun phrase, both adjectives,

'famous' and 'keyboard', provide constraints on the noun, 'music'. AB the parsing process scans

the words from left to right, the semantic nodes, 'sem3', 'sem4' and 'sem5', are created along

with their corresponding syntactic nodes. The label set of the noun 'music' is originally (voc

music ins-music). When 'subnp3-3' has established both 'mods2-2' and 'n3-3' as its children,

the sp constraint in its composition rule is applied. It specifies the addition of links between

the semantic node representing the noun and the semantic nodes representing the adjectives.

Consistency checks are performed when the links are established. This results in the label set of

'sem5' to be refined to (key-music) to represent music which is famous and of type keyboard.

At a first glance , neither 'voe-music' nor 'ins-music' in the original label set of 'sem5' matches

the label 'key-music' in the label set of 'sem3'. However, the labels (oratorio opera mass)

CHAPTER 4. DISCUSSION OF EXAMPLES 67

.. ,,,
n3-3

'111,, ,¾JO rd :mus :::..c

semS
rword:music
lset: (key-music)

,,,,,,,,
adjs0-2

···············!••,,,.,,,,
'•q, .. ,,

adj0-1

word:famous

adjs3-2

•• ••••• .. , .,
sem4 sem3

_____ .,...,.,-,,,,, ,.,,.,,,, .. , .. .

adjl-2

rword:famous rword:keyboard
lset: (music lset: (key-music)

composer)

word:keyboard

Q a syntactic node in the PT

LJ a semantic node in the NCG

G> 0

�

A denotes B

Bis a component of A; A's label set is
constrained by B's. Every label in A's
label set must be compatible with at
least on label in B's label set.

A fills the k case slot in the schema
relations of B.

B fills the k case slot in the schema
relations of A.

Figure 4.1: Representation for 'famous keyboard music'

CHAPTER 4. DISCUSSION OF EXAMPLES 68

and {ballet symphony concerto key-music pro-music) exist under the hierarchy of the

two abstract labels, 'voe-music' and 'ins-music', and 'key-music' is a member of one of these

lists. The consistency propagation process then causes these descendant labels to be retrieved

and to replace (voe-music ins-music). All except the.label 'key-music' are then deleted from

the label set of 'sem5' because of incompatibility.

The second example, Figure 4.2, shows how possessive nouns differ from adjectives in the way

they apply constriants on the main noun. A comparison of Figure 4.1 and Figure 4.2 illustrates

this. In Figure 4.1, each adjective applies constraints on the main noun independently. In Figure

4.2, a chain relationship is established where each possessive noun only apply constraints on the

immediately following noun. In the system, the noun phrases, 'father of Mozart' and 'Mozart's

father', are equivalent in meaning. Although the syntactic structures generated for these two

noun phrases are different, the semantic representations are the same. Thus, the NCG in Figure

4.2 represents both the noun phrases, 'Mozart's father's birthday' and 'birthday of the father

of Mozart' .

At the beginning of the recognition process, multiple syntactic nodes of the syntactic class,

subnp, are active. Each node is predicted to correspond with a particular composition rule that

resides in the model syntactic schema of subnp. When 'Mozart's' is scanned from the input,

only the syntactic nodes that are derived from composition rules with the grammar constituent,

mods, are retained. The semantic nodes, 'semO' and 'semi', are built at this point. An sp

constraint is applied to create a link between the two nodes to represent all the objects that

are 'of Mozart'. For example, 'father of Mozart', 'music of Mozart' and 'birthday of Mozart'.

CHAPTER 4. DISCUSSION OF EXAMPLES

subnp3-3 ··················

T

modsl-2

npossl-1

n

4

-3

B'•
--- 3

'• 1 word:birthday

,,,
,
:::::::ii.,,,,,,

,, ,/

ag
j

nt

··1 +
nmods3-2 •

;
1

EJ
nposs2-2

1

1
1 1

1
1

�

word:Mozart�s: ::::_-_-_-_-_-_-_ ,,' �

word,::�:er•s aglnt

7•···············•··············1 semO

rword:birthday
lset: (1719)

rword:of
lset: (of28)
sch-rel:
(of28 1719 Leopold)

rword:father
lset: (Leopold)

rword:of
lset: (ofl of8 of9 of27)
sch-rel:
(ofl Leopold Mozart)
(of8 Don-Giovanni Mozart)
(of9 Symphony-no.40-in-G-min or

Mozart)
(of27 1756 Mozart)

rword:Mozart
lset: (Mozart)

Figure 4.2: Representation for 'Mozart's father's birthday'

69

CHAPTER 4. DISCUSSION OF EXAMPLES 70

The label set of 'seml' is refined from the list of all 'of' relationships to those with 'Mozart' as

the agent in the schema relations. Subsequent scanning of the input word 'father's' results in

the building of semantic nodes 'sem2' and 'sem3'. A similar link is established between these

two nodes to reflect in the label set of 'sem3' all the 'of' relationships pertaining to all the

fathers in the KB. As the parsing process discovers that there are no more possessive nouns,

the link between 'sem2' and 'seml' is made. Consistency checks then refine the label set of

'sem2' to just the father of Mozart, Leopold. Lastly, the input word 'birthday' is scanned and

'sem4' is built. When 'modsl-2' and 'n4-3' have both completed to 'subnp3-3' successfully, the

link between 'sem4' and 'sem3' is made. The label set of 'sem4' is then refined from the list of

birthdays of every person in the KB to only the birthday of Mozart's father.

The third example is a complete sentence with a prepositional phrase and a determiner.

Figure 4.3 shows the representation for this sentence, 'which three sonatas were written by

Beethoven'. Multiple prepositional phrases also apply independent constraints on a verb or

noun as in the case of multiple adjectives. Both the PT and the NCG are built incrementally

as in previous examples. The input words, 'which' and 'sonatas', cause the semantic nodes

'semO' and 'seml' to be built after the words have been scanned. The determiner, 'three', does

not cause a semantic node to be constructed. Instead, it applies a number constraint on the

cardinality of the label set of 'seml' after the entire NCG has been built. In this case, there

are exactly three sonatas in the label set; therefore, the constraint is satisfied. The input word,

'which', represents initially all the objects intensionally via its label set. Thus, the label set of

'semO' is originally (composer music father date place). It is refined to the list of all sonatas

CHAPTER 4. DISCUSSION OF EXAMPLES

qword0-1

word:whic

detl-2

word:three

vpl2-7

word:were

n4-3

word: sonata 5:

v2-5
,, word:written,, 1

,,,.,,

,,
,,

,,,,
···
···
··

,,,1,,, ..

,,
,

11,., ••••• 4.,1,11••··

,,•'
,,,

,
-----�.,,

. .

II
[1411 It I tf 1) : I I I I I I I I I I I I I I

I I I I I I I I I 1 'i I : I I I I' I I I I I' I I I I I •

prep2-6

word:by

comps3-7

ppsS-7

subnp30-7

nprl0-7
I I I I I I I I I I I I f 1' I I

I I I I I I I I I I I I:
,,.,, ·······•• .. ,,,,,

:••tt,,,, ...

I I I:_ ,_
word:Beethoven :

If t I le I I I I 11:,,
: 11 1 :

It ltt I tj111
f

If .. I I I I I I I It I I I I I I I I I I I• I• I• I I I I I It I• I I I •
I I I I It I I

__ _,_,.;..•'-.:r-word:write :
11110""

rwor d: whicl:.

71

sem8 l�lset: (composelO composell�
agent obj.:sch-rel: :

,__ __ _.lset: (PS MS; AS)

\ \
.: (composelO Beethoven PS):
.: (composell Beethoven MS):

. �{c
ompose12 Beethoven AS) �

obJ i__--::�d:�v------..._. : I sem? I rword: by
►�,-s-e_m_l_ rword: sonata

._ __ ___. lset: (bylO byll byl2) lset: (PS MS AS)
agent s ch-rel:

(bylO PS Beethoven)
(byll MS Beethoven)
(byl2 AS Beethoven) PS The-Pathetique-Sonata

MS The-Moonlight-Sonata
AS The-Appassionata :

I l • 1 t I I I I It I I I 1 1 I I I I 1 t O I I I I I I 1 1 I I I I I It t I Io I 11 It I I I I•-

.-------�, rword:Beethoven
semS .__ __ _. lset: (Beethoven)

Figure 4.3: Representation for 'which three sonatas were written by Beethoven'

CHAPTER 4. DISCUSSION OF EXAMPLES 72

when the input word 'sonatas' is scanned and a link is made between 'semO' and 'seml'. The

node, 'sem8', representing the verb 'write' is built after the words 'were written' are scanned.

Its label set contains all writing events initially which are represented by schema relations. It is

refined to those writing events that have Beethoven as the agent after the prepositional phrase

has been scanned and a link is made between 'sem8' and 'sem7'. The node, 'sem7', has its label

set refined to those fabricated labels whose schema relations have Beethoven as an agent when

the link between 'sem7' and 'sem5' is made. When all the grammar constituents of 's2-7', the

sentence derived syntactic schema, have completed to it, the link between 'sem8' and 'seml'

is made. The label set of 'seml' is then refined to only those sonatas written by Beethoven.

Since 'seml' is a component of 'semO', the constraint propagation process causes the label set of

'semO' which now contains all the sonatas in the KB to be further refined to the same sonatas

that are listed in the label set of 'seml '. This actually provides the answer to the question.

The la.st example, illustrated in Figure 4.4 and 4.5, is also a complete sentence. The sentence

is 'who composed the Messiah in Dublin'. It is chosen to demonstrate how multiple PT and NCG

representations are generated for a sentence which has multiple parses or interpretations. In

this case, the ambiguity lies in the attachment of the prepositional phrase to either the noun or

the verb. Two diagrams are drawn separately for this example for clarity reasons although some

nodes in the two PTs and NCGs are actually shared. The two interpretations yield different

syntactic as well as semantic structures. In both diagrams, a box is drawn around the semantic

nodes representing the prepositional phrase to help identify the two p088ible attachments of

those nodes to the rest of the NCG. The semantic nodes, 'sem13' and 'sem12', have (temp

CHAPTER 4. DISCUSSION OF EXAMPLES 73

locn) shown as a case slot to be filled by 'semlO' in the diagram. This actually means that

'semlO' should fill either the temporal or the locative case of the preposition 'in' within the two

different possible NCGs of Figures 4.4 and 4.5 respectively. 'sem12' also has a case slot shown

as event(obj) which is actually a combination of two cases. This means that 'sem14' should

fill the 'obj' slot of the fabricated label 'composel' which itself fills the event slot of 'in2' in

'seml2'.

word:who

v0-2

s1-6

11ord: Messia� 11orci:ln

subnplB-6

npr6-6

word:Dublin

Figure 4.4: A representation for 'who composed the Messiah in Dublin'

At the beginning of the parsing process, there are multiple active syntactic nodes for the

syntactic category s. After the word 'who' has been scanned from the input, only two sets of

predictions that involve an interrogative sentence are retained. The semantic node, 'seml6',

is then built and has the label set, (composer), which represents all the people in the KB

CHAPTER 4. DISCUSSION OF EXAMPLES

word:who

v0-2

sl-1-6
• •,,, , •• t,, • • • • • lset: (Handel)

I I I I I • ' I •••• � t ' '

······
.... ,,.... '•• U,J,..t--''----

••••••••••••
0 6 t 1 1 It It I ,.,.,,.,j 'T' I

cmd,who

vp - ,,,,,,,
�

ent 1111,,,.
seml?

rword:compose
lset: (compose3)

word:Messiah

.. ,,
'••···

,,,
Messiah in2)

·••,,,
·······················

'••···

o

l

j ���;::s
l
e:3

sem14 rword:Messiah
lset: (Messiah)

ppsl-6

prepl-5
word:in

'• '• ,,

npr6-6

'••

word:Dublin

event (obj)

'• 1 I sem12 I rword: in •· lset: in2
temp loln) sch-re l:

lin2 compose!
1733 Leipzig)

•••� 101 rword:Dublin
,,, sem lset: (Dublin)

Figure 4.5: A second representation for 'who composed the Messiah in Dublin'

74

CHAPTER 4. DISCUSSION OF EXAMPLES 75

intensionally. One set of predictions for an interrogative sentence predict a np to follow the

question word, and the other set predicts a vp to follow. When the word 'composed' is scanned,

the syntactic nodes involved with the incorrect prediction of a np are garbage collected. The

correct prediction of a vp thus causes 'seml5' to be built to represent the verb, 'compose',

with a label set of all composing events. Multiple vp syntactic nodes are active at this point

to indicate the different possible verb phrases that may exist. 'vp0-6' and 'vpl-6' in the two

diagrams respectively are two of these possible predicted syntactic nodes for representing a vp.

Next, 'Messiah' is scanned from the input and a semantic node representing it is built.

At this point, there is still only one NCG, with three unconnected semantic nodes repre

senting the words, 'who', 'compose' and 'Messiah', respectively. Since a np may or may not

contain a prepositional phrase, there are two branches of predictions involved. One branch

completes the np to its vp parent, and the other is involved in further predictions of prepo

sitional phrases attached to a noun phrase. The np that completes has two parents, 'vp0-6'

and 'vpl-6'; therefore, multiple parses are possible and the NCG representation is split at this

point. Copies of semantic nodes are made to allow for the splitting. The link between the

semantic node representing 'Messiah' and the semantic node representing 'compose' is made in

both NCGs. As the interpretation process continues and the prepositional phrase is scanned,

semantic nodes are built to represent the pp. The completion of the pp semantic structure

would cause a copy of it to be made since it has two parents, one is a np and the other is a vp.

The link between 'sem15' and 'seml3' in Figure 4.4 is made at this point. The link between

'sem14' and 'sem12' for the other NCG in Figure 4.5 is also made at the same time. Input has

CHAPTER 4. DISCUSSION OF EXAMPLES 76

now been exhausted and both vp syntactic nodes complete to their parents. Since two parses

exist, the syntactic node for s is copied, each having a different vp syntactic node as its child.

The semantic node for the question word 'who' is also copied at this point. One copy is linked

to 'sem15' in one NCG, and the other is linked to 'sem17' in the other NCG. In both cases, the

label set of the semantic node representing 'who' is refined from the label set, (composer),

which represents all composers intensionally to just (Handel). This yields the answer to the

question. Generally, multiple parses do not have to yield the same answer.

Chapter 5

Conclusions and Future Directions

In this chapter, the merits of the schema and constraint-based approach to understanding

English sentences a.re reviewed. In addition, possible extensions to the system are mentioned.

Traditional approaches to understanding English sentences have followed the linear paradigm

that involves three phases in the analysis of a sentence. First, the input sentence is parsed by

a syntactic parser to form a parse tree, then a semantic analyser takes the parse tree as input

and produces a database query in a prespecified formal language. Lastly, this query is analysed

by an evaluator which finds the answer from the given database. This approach is still adopted

by many researchers in logic program.ming as described in section 2.2 .. The major drawback of

this approach is in its inability to deal with ambiguities efficiently. If there are multiple possible

parses for a sentence, then one must be selected to allow the processing to continue. In the

event that this parse is incorrect as discovered later by the semantic analyser or the database

evaluator, it is necessary for the system to back up and find another parse. A reliance on auto

matic backtracking makes this approach highly inefficient because of the thrashing behaviour

of backtracking [Mackworth, 1977a]. Similarly, if the ambiguity exists in words having multiple

77

CHAPTER 5. CONCLUSIONS AND FUTURE DIRECTIONS 78

senses, then one word sense must be chosen for each ambiguous word, and again backtracking

is utilized if the wrong word senses have been chosen first.

Our approach handles both structural and word sense ambiguities much more gracefully

and efficiently. All possible parses are explored in parallel and thus no backtracking is ever

needed. Multiple word senses are all incorporated in the label set of a semantic schema. The

inappropriate senses that do not satisfy all the existing constraints are removed through the

application of network consistency. This approach remains non-committal to any of the am

biguous parse tree structures and word senses until enough evidence is found to decide on the

correct interpretations. Although all parses and word senses are processed in parallel, Earley's

algorithm is still efficient. It is the sharing of structures in both the PT and the NCG that

makes this parallel approach feasible. In addition, label sets represent objects of the world

intensionally, thus making this approach efficient.

This thesis indicates that this non-committal approach of taking into account all parses

and all word senses until input evidence says otherwise is more plausible than the traditional

selective processing and backtracking approach. The traditior:ral approach involves a three-pass

process whereas the schema and constraint-based approach is a one-pass, non-deterministic

process where syntactic and semantic interpretations are carried out in parallel. In fact, this

one-pass versus three-pass processing is part of a long standing argument in the linguistics

field about whether semantics affect parsing. (Flores d' Arcais & Schreuder, 1983) give a brief

history on this issue and is summarised below.

· In the past, computing a structural description for a sentence was considered to be vital

CHAPTER 5. CONCLUSIONS AND FUTURE DIRECTIONS 79

to the understanding of a sentence, and syntax was the main concern. Semantics were consid

ered by linguists to be computed using a syntactic representation. This forms the basis of the

three-pass processing approach. However, there has been an increasing interest in the relation

ships of grammatical representations to meaning structures, and models of sentence processing

where semantics affect parsing became popular. In spite of this, linguists themselves are not

unanimous as to whether semantics processing should be separated or intermingled with syn

tactic processing. Also, it is still an issue in psycholinguistics as to whether syntactic analysis

of sentences constitutes a separate and autonomous stage in their perception. AB Fodor says,

"linguistic form recognition can't be context-driven because context doesn't determine form",

and he knows of no convincing psychological evidence "that syntactic parsing is ever guided by

the subject's appreciation of semantic context or of 'real world' background" !Fodor, 1983]. It

is evident; however, from the point of view of efficiency in sentence processing, that semantic

information be brought in as soon as possible in order to limit search.

Thus, this thesis takes a middle ground approach which splits the difference between strictly

autonomous parsers and contextually driven ones. Our system builds the syntactic and semantic

representations in parallel under the guidance of composition rules which contain grammatical

constituents as well as syntactic and semantic predicates. The interpretation process is never

driven by the semantic predicates, but if the semantic constraints are not satisfied, a possible

parse under prediction by the grammar rules can be aborted. Therefore, although semantic

information is never actually used to predict syntactic structures, it is introduced as soon as

possible to help the system to narrow down its search for the correct parse. Fodor mentions in

CHAPTER 5. CONCLUSIONS AND FUTURE DIRECTIONS 80

[Fodor, 1983] that all the results on context effects in parsing that he knows of are compatible

with this approach, and he believes that an approach of this flavour will prove ultimately to be

valid.

A one-pass, non-deterministic approach is appropriate for resolving sentence ambiguities.

However, predicting and carrying all possible parses and interpretations simultaneously can

be inefficient in terms of space. There is a space and time tradeoff involved. This approach

tries to limit hypotheses on syntactic and semantic representations by eliminating and garbage

collecting the inappropriate predictions as soon as possible. The application of syntactic and

semantic constraints with the use of network consistency ensures that incorrect hypotheses

are eliminated as soon as input evidence precludes their existence. This process is known as

specialization in Havens' theory of schema labelling [Havens, 1985]. Havens' theory also stresses

the importance of combining the knowledge of composition with the specialization process. Our

system follows this approach.

The knowledge of composition in our system exists in the schema knowledge base where

the composition rules guide the interpretation process. Specialization is seen in the application

of network consistency in refining the hypotheses to produce the final interpretation. The use

of consistency techniques without knowledge of composition is inefficient as noted earlier. In a

similar manner, a schema approach with knowledge of composition but without specialization

is also inefficient. A schema approach may provide hypotheses to the composition of a sentence;

however, it needs to search for the correct hypothesis. Backtracking may be utilized but it is

highly inefficient. On the other hand, network consistency techniques are shown to be more

CHAPTER 5. CONCLUSIONS AND FUTURE DIRECTIONS 81

efficient. Thus, combining the schema approach with network consistency techniques is a natural

thing to do. In particular, we have chosen arc consistency for the specialization process because

it is achievable in time linear in the number of constraints (Mackworth & Freuder, 1984]. In

addition, the fact that our domain can be structured hierarchically has allowed us to utilize an

implicit form of hierarchical arc consistency [Mackworth et al., 1985] which can be more efficient

than arc consistency. Also, all the possible labels in each domain need not be represented

explicitly but can be represented implicitly by one or more abstract labels. This intensional

representation of label sets yields efficiency. The organization of these labels in a hierarchy has

also given the system deductive power which is present in any semantic network formalism.

Logic is known to be a descriptively adequate formalism in that it is precise and is good

for specification. However, logic programming based on the use of PROLOG usually relies

on the automatic backtracking mechanism of PROLOG for control, and does not provide the

structure for efficient computation. We have already mentioned the advantage of our approach

in terms of efficiency. In addition, the composition rules in our syntactic schemata are precise

and transparent as well. Although procedural linguistic knowledge is embedded in those rules to

provide some control, it is not obscure as in the case of ATN (Augmented Transition Network).

Also, our formalism lends itself rather well to the relaxation of some syntactic constraints. Any

syntactic constraints can be removed from the composition rules without affecting the actions of

the system if such relaxation is deemed desirable. This is possible since the syntactic constraints

are not incorporated within procedures in the system. Relaxation of syntactic constraints allows

the system to be more flexible, and to tolerate some grammatical errors in a sentence as humans

CHAPTER 5. CONCLUSIONS AND FUTURE DIRECTIONS

often do.

82

Our adoption of Earley's context-free parsing algorithm is quite efficient in that subtrees

that belong to more than one parse trees may be shared without redundancy in representation.

However, this sharing only occurs if the subtree to be shared is predicted by the common lines

of analysis in the same state set. Therefore, redundancy in the creation of similar subtree

structures may still occur if a subtree created in one state set is predicted again in a later state

set. An improvement can be made by adopting a similar context-free parsing algorithm by

Tomita [Tomita, 1985) which claims to be more efficient in its representation of all parse trees

in what he calls a shared-packed forest where the above problem does not arise.

Our system which only has a simple grammar, deals with a limited number of grammatical

constructs, and works on a small domain. Thus, there is much room for development. The

modularity of schemata allows ease of expansion as syntactic schemata can easily be added to

provide a larger grammar with its added constraints. The difficulties lie in determining the

semantic significance of more complex grammatical constructs such as adverbs, and how they

should interact with other semantic entities in the sentence. Relationships between grammatical

constructs in the semantic sense must be determined before the system can know how to build

a NCG to represent them. It is beyond the scope of this thesis to determine the semantics

of all grammatical constructs as linguists are still researching this topic. However, it suffices

to say that improvements can be made to the current system with our existing knowledge of

semantics. For example, determiners can be dealt with in a more thorough manner with the

addition of scoping on the quantifiers and the utilization of fuzzy logic and sets. The system

CHAPTER 5. CONCLUSIONS AND FUTURE DIRECTIONS 83

can also be extended to provide answers to questions instead of just outputting the syntactic

and semantic representations. This involves selecting the consistent labels from the semantic

nodes of the final NCG representation and producing a coherent answer from them with the

addition of a sentence generation component.

Perhaps a most important enhancement to the system would �e to allow additional facts to

be added which would constitute a form of learning. This system will reject a sentence that is

not supported by the given facts in the database. All or some of the label sets of the semantic

nodes in the NCG will become empty to reflect this situation. However, the system may be

altered to add the appropriate labels to the empty label sets for certain semantic entities such

that rejection of the sentence would not occur. Once the representation is built, the knowledge

base can be updated accordingly to reflect the new additions. For example, we present the

sentence 'John is a composer' to the system where such a fact does not currently exist in

the database. During the interpretation process of the system, a semantic node representing

'composer' will be built and it will have an abstract label representing all the composers in

the database in its label set. When the system tries to link the semantic node representing

'John' to the one representing 'composer', consistency checking is performed. We will find that

'John' is not in the list of composers represented l:iy the abstract label under the semantic node

of 'composer' thus causing the abstract label to be deleted. At this point, the system should

notify the user of this fact and ask whether the user desires to have 'John' be added to the

list of composers. If the answer is in the affirmative, the label 'John' should be inserted in

the now empty label set of the semantic node representing 'composer', and later be added to

CHAPTER 5. CONCLUSIONS AND FUTURE DIRECTIONS 84

the label set of the word schema for 'composer' in the knowledge base to make it a permanent

fact. In this case, the system knows about the verb 'is' and thus is capable of establishing the

representational structures to allow for the addition of a given fact. Thus, it is essential that

the system knows about the relationships between semantic entities before addition of facts can

occur. Therefore, if a new fact contains a new verb not known to the system, it would not be

possible for the system to perform such automatic additions to the knowledge base.

The approach introduced by this thesis could eventually be adapted to the understanding

of stories and conversations as well. In these cases, more abstract schemata will exist in the

knowledge base besides the simple word schemata. For example, schemata such as scripts

and plans that represent situations will be needed. However, this approach would not require

backtracking to search for the correct script to apply just as it would not use backtracking to

search for the appropriate word sense when a word is ambiguous. Instead, all possible scripts

would be processed in parallel and the system would refine on the appropriate ones when enough

evidence is given in the input to decide on the correct ones. For example, let us consider the

sentence 'John and Mary were walking down the aisle.' A standard approach is to select a

script to apply to this situation [Schank & Abelson, 1977]. Assume that the system has chosen

the 'marriage script'. However, if the next sentence is 'John took a can of apple juice off the

shelf', then the system needs to backtrack and select the 'supermarket script' instead. In our

approach, the system would not commit itself to either of the two scripts mentioned above after

seeing the first sentence but would keep both of them around since they are both consistent with

the information given in the sentence. When it sees the second sentence, enough constraints

CHAPTER 5. CONCLUSIONS AND FUTURE DIRECTIONS 85

then exist to refine the interpretation to the 'supermarket script' and only at this point would

the script be applied.

In summary, the schema and constraint-based approach to understanding natural language

as introduced in this thesis has some merit. It can hand-Je ambiguity more effectively than the

traditional linear approach V:ithout utilising backtracking. It utilises semantics to aid parsing to

increase efficiency and yet does not let semantics determine syntactic form. Thus, the approach

is in middle ground concerning the issue of whether semantics affect parsing. Although the

interpretation process of all parses is performed in parallel, inefficiency is avoided because

intensional label sets are used and the constraint propagation process plus the knowledge of

composition help to eliminate incorrect interpretations as early as possible. In addition, garbage

collection is incorporated to give space efficiency. Lastly, extensions to the system are possible

and it has the potential to develop into a story or conversation understanding system without

sacrificing efficiency.

Bibliography

[Aho & Ullman, 1972]

[Alon & Havens, 1985]

[Bar-Hillel, 1960]

[Barr & Feigenbaum, 1981]

[Bartlett, 1932]

[Bobrow, 1968]

[Bobrow et al., 1977]

[Bobrow & Norman, 1975]

Aho, A. V. and Ullman, J. D. 1972. The Theory of Pars

ing, Translation and Compiling. Englewood Cliffs, N. J.:
Prentice-Hall.

Alon, A. and Havens, W. 1985. Recognizing VLSI circuits
from mask artwork by schema labelling. Tech. Report 85-
1, Dept. of Computer Science, Univ. of British Columbia,
Vancouver, Canada.

Bar-Hillel, Y. 1960. The present status of automatic trans
lation of languages. In F. L. Alt (Ed.), Advances in Com

puters (Vol. 1). New York: Academic Press, 91-163.

Barr, A. and Feigenbaum, E. A. 1981. The Handbook of

Artificial Intelligence {Vol. 1). Los Altos, CA.: William
Kaufman, Inc.

Bartlett, F. C. 1932. Remembering. Cambridge, England:
Cambridge University Press.

Bobrow, D. G. 1968. Natural language input for a com
puter problem-solving system. In M. Minsky (Ed.), Se

mantic Information Processing. Cambridge, Mass.: MIT
Press, 146-226.

Bobrow, D. G., Kaplan, R. M., Kay, M., Norman, D. A.,
Thompson, H. and Winograd, T. 1977. GUS, a frame
driven dialogue system. Artificial Intelligence, 8:155-173.

Bobrow, D. G. and Norman, D. A. 1975. Some princi
ples of memory schemata. In D. G. Bobrow and D. A.
Collins (Eds.), Representation and Understanding. New
York: Academic Press, 131-149.

86

BIBLIOGRAPHY

[Bobrow & Raphael, 197 4]

[Bobrow & Winograd, 1977]

[Brachman, 1978]

[Brachman, 1979]

[Brachman, 1982]

[Brachman, 1983]

[Brachman et al., 1983a]

[Brachman et al., 1983b]

[Brachman et al., 1985]

[Brachman & Levesque, 1982]

[Brachman & Schmolze, 1985]

[Bult, 1986]

87

Bobrow1 D. G. and Raphael, B. 1974. New programming

languages for artificial intelligence research. Computing

SurtJey, 6(3): 153-174.

Bobrow, D. G. and Winograd, T. 1977. An overview of
KRL, a knowledge representation language. CognititJe Sci

ence, 1:3-46.

Brachman, R. J. 1978. A structural paradigm for repre
senting knowledge. Report No. 3605, Bolt, Beranek and
Newman, Inc., Cambridge, Mass.

Brachman, R. J. 1979. On the epistemological status of se
mantic networks. In N. V. Findler (Ed.), .AssociatitJe Net
works. New York: Academic Press, 3-50.

Brachman, R. J. 1982. What IS-A is and isn't. Proc. Cana

dian Society for Computational Studies of Intelligence.

May 1982, 212-221.

Brachman, R. J. 1983. What IS-A is and isn't, an analysis
of taxonomic links in semantic networks. IEEE Computer,
16(10): 30-36.

Brachman, R. J.
1

Fikes, R. E. and Levesque, H. J. 1983a.
Krypton: integrating terminology and assertion. AAAI-
89, 31-35.

Brachman, R. J., Fikes, R. E. and Levesque, H.J. 1983b.
Krypton: a functional approach to knowledge representa
tion. IEEE Computer, 16(10): 67-73.

Brachman, R. J.; Gilbert, V. P. and Levesque, H.J. 1985.
An essential hybrid reasoning system: knowledge and sym
bol level accounts of KRYPTON. JJCAI-85, 532-539.

Brachman, R. J. and Levesque, H.J. 1982. Competence in
knowledge representation. AA.AJ-8£, 189-192.

Brachman, R. J. and Schmolze, J. G. An overview of the
KL-ONE knowledge representation system. Cognitive Sci

ence, 9(2): 171-216.

Bult, T. P. 1986. Schema labelling applied to hand-printed
Chinese character recognition. M.Sc. Thesis, Dept. of

BIBLIOGRAPHY 88

Computer Science, Univ. of British Columbia, Vancouver,
Canada (in preparation).

[Carbonell, 1970] Carbonell, J. R. 1970. AI in CAI: an artificial intelligence
approach to computer-assisted instruction. IEEE Transac

tions on Man-Machine Systems, MMS-11: 190-202.

[Colmerauer, 1978] Colmerauer, A. 1978. Metamorphosis grammars. In L.
Bole (Ed.), Natural Language Communication with Com

puters. Berlin: Springer-Verlag, 133-189.

[Cullingford, 1978] Cullingford, R. E. 1978. Script application: computer un
derstanding of newspaper stories. Research Report 116,
Dept. of Computer Science, Yale University.

[Dahl, 1981] Dahl, V. 1981. Translating Spanish into logic through
logic. AJCL, 7(3): 149-164.

[Dahl, 1983] Dahl, V. 1983. Logic programming as a representation of
knowledge. IEEE Computer, 16(10): 61-65.

[Dahl & McCord, 1983] Dahl, V. and McCord, M. C. 1983. Treating coordination
in logic grammars. AJCL, 9(2): 69-91.

[Earley, 1970] Earley, J. 1970. An efficient context-free parsing algorithm.
Communications of ACM, 6(8): 94-102.

[Fikes & Kehler, 1985] Fikes, R. and Kehler T. 1985. The role of frame-based
representation in reasoning. Communications of the A CM,
28(9): 904-920.

[Fillmore, 1968] Fillmore, C. 1968. The case for case. In E. Bach and R. T.
Harms (Eds.), Universals in Linguistic Theory. Chicago:
Holt, Rinehart a_nd Winston, 1-90.

[Flores d'Arcais & Schreuder, 1983] Flores d'Arcais, G. B. and Schreuder, R. 1983. The pro
cess of language understanding: a few issues in contempo
rary psycholinguistics. In G. B. Flores d'Arcais and R. J.
Ja.rvella (Eds.), The Process of Language Understanding.

New York: Wiley and Sons, 1-41.

[Fodor, 1983] 1983. Fodor, J. A. 1983. The Modularity of Mind. Cam
bridge, Massachusetts: MIT Press.

[Freuder, 1978] Freuder, E. C. 1978. Synthesizing constraint expressions.
Communications of ACM, 21(11): 958-966.

BIBLIOGRAPHY

[Green et al., 1963]

[Green, 1969]

[Grosz, 1977]

[Havens, 1983]

[Havens, 1985]

[Havens & Mackworth, 1983]

[Hayes, 1977]

[Hayes, 1981]

[Hayes, 1977]

[Hendrix, 1975]

[Hendrix, 1979]

[Hewitt, 1972]

[Kehler & Clemenson, 1984]

89

Green, B. F., Jr., Wolf, A. K., Chomsky, C. and Laughery,
K. 1963. BASEBALL: An automatic question answerer. In
E. A. Feigenbaum and J. Feldman (Eds.), Computers and

Thought. New York: McGraw-Hill, 207-216.

Green, C. C. 1969. The application of theorem-proving to
question-answering systems. IJCAI-69, 219-237.

Grosz, B. J. 1977. The representation and use of focus in
a system for understanding dialogue. IJCAI-77, 67-76.

Havens, W. 1983. Recognition mechanisms for schema
based knowledge representations. Int. Journal of Comput

ers and Mathematics 9, no.1. Pergamon Press: 185-199.

Havens, W. 1985. A theory of schema labelling. Computa

tional Intelligence, 1(3):127-139.

Havens, W. and Mackworth, A. K. 1983. Representing
knowledge of the visual world. IEEE Computer, 16(10):
90-98.

Hayes, Pat J. 1977. In defence of logic. /JCAI-77, 559-565.

Hayes, Pat J. 1981. The logic of frames. In B. L. Webber
and N. J. Nilsson, Readings in Artificial Intelligence. Palo
Alto: Tioga Pub. Co., 451-458.

Hayes, Philip J. 1977. On semantic nets, frames and asso
ciations. IJCAI-77, 99-107.

Hendrix, G. G. 1975. Expanding the utility of semantic
networks through partitioning. /JCAI-75, 115-121.

Hendrix, G. G. 1979. Encoding knowledge in partitioned
networks. In N. V. Findler (Ed.), Associative Networks.
New York: Academic Press, 51-92.

Hewitt, C. 1972. Description and theoretical analysis (us
ing schemata) of PLANNER, a language for proving the
orems and manipulating models in a robot. Report No.
TR-258, AI Lab., M.I.T., Cambridge, MA.

Kehler, T. P. and Clemenson, G. D. 1984. An application
development system for expert systems. System Software,

3(1): 212-224.

BIBLIOGRAPHY

[Levesque & My lopoulos, 1979]

[Lindsay, 1963]

[Mackworth, 1977a]

[Mackworth, 1977b]

[Mackworth & Freuder, 1984]

[Mackworth & Havens, 1981]

[Mackworth et al., 1985]

[McAllester, 1980]

[McAllester, 1982]

[McCarthy, 1977]

[McCord, 1982]

[Minsky, 1975]

90

Levesque, H. and My lopoulos, J. 1979. A procedural se
mantics for semantic networks. In N. V. Findler (Ed.),
Associative Networks. New York: Academic Press, 93-120.

Lindsay, R. K. 1963. Inferential memory as the basis of ma
chines which understand natural language. In E. A. Feigen

baum and J. Feldman (Eds.), Computers and Thought.

New York: McGraw-Hill, 217-233.

Mackworth, A. K. 1977a. Consistency in networks of rela
tions. Artificial Intelligence, 8: 99-118.

Mackworth, A. K. 1977b. On reading sketch maps. IJCAI-

77, 598-606.

Mackworth, A. K. and Freuder, E. C. 1984. T he complex
ity of some polynomial network consistency algorithms for
constraint satisfaction problems. Artificial Intelligence, 25:
5-74.

Mackworth, A. K. and Havens, W. 1981. Structuring do
main knowledge for visual perception. IJCAI-81

,,
625-627.

Mackworth, A. K., Mulder, J. A. and Havens, W. S. 1985.
Hierarchical arc consistency: exploiting structured do
mains in constraint satisfaction problems. Tech. Report 85-
7, Dept. of Computer Science, Univ. of British Columbia,
Vancouver, Canada.

McAllester, D. A. 1980. An outlook on truth maintenance.
AI Memo 551, AI Lab., M.I.T., Cambridge, MA.

McAllester, D. A. 1982. Reasoning utility package user's

manual AI Memo 667, AI Lab., M.I.T., Cambridge, MA.

McCarthy, J. 1977. Epistemological problems of Artificial
Intelligence. IJCAI- 77, 1038-1044.

McCord, M. C. 1982. Using slots and modifiers in logic
grammars· for natural language. A rtifi,cial Intelligence,

18(3): 327-367.

Minsky, M. 1975. A framework for representing knowledge.
In P. Winston (Ed.), The Psychology of Computer Vision.

New York: McGraw-Hill, 211-277.

BIBLIOGRAPHY

[Montanari, 197 4]

[Mulder, 1985]

[Pereira, 1981]

[Pereira & Warren, 1980]

[Quillian, 1968]

[Quillian, 1969]

[Raphael, 1968]

[Rumelhart & Norman, 1973]

[Rumelhart & Ortony, 1976]

[Schank, 1975]

[Schank & Abelson, 1977]

91

Montanari, U. 1974. Network of constraints: fundamental
properties and applications in picture processing. Informa

tion Science, 7: 95-132.

Mulder, J. 1985. Using discrimination graphs to represent
visual knowledge. Tech. Report 85-14, Dept. of Computer
Science, Univ. of British Columbia, Vancouver, Canada.

Pereira, F. 1981. Extraposition grammars. AJCL, 7:243-
256.

Pereira, F. and Warren, D. 1980. Definite clause grammars
for language analysis - a survey of the formalism and a
comparison with augmented transition networks. Artificial

Intelligence, 13(3): 231-278.

Quillian, R. 1968. Semantic memory. In M. Minsky (Ed.),
Semantic Information Processing. MIT Press, 227-270.

Quillian, R. 1969. The teachable language comprehender:
a simulation program and the theory of language. Com

munications of the A CM, 12: 459-476.

Raphael, B. 1968. SIR: A computer program for semantic
information retrieval. In M. Minsky (Ed.), Semantic Infor

mation Processing. Cambridge, Mass.: MIT Press, 33-145.

Rumelhart, D. E. and Norman, D. 1973. Active semantic
networks as a model of human memory. /JCAI-79, 450-
457.

Rumelhart, D. E. and Ortony, A. 1976. The representation
of knowledge in memory. TR-55, Centre for Human Info.
Processing, Dept. of Psych., Univ. of Calif. at San Diego,
La.Jolla, CA.

Schank, R. C. 1975. The structure of episodes in memory.
In D. G. Bobrow and D. A. Collins (Eds.), Representation

and Understanding. New York: Academic Press, 237-272.

Schank, R. C. and Abelson, R. P. 1977. Scripts, Plans,

Goals, and Understanding. Hillsdale, N. J.: Lawrence Erl
baum Associates.

BIBLIOGRAPHY

!Schank et al., 1975]

!Schubert, 1976]

[Schubert et al., 1979]

!Shapiro, 1971]

[Shapiro, 1979]

[Shapiro, 1982]

[Simmons, 1973]

[Simmons & Slocum, 1972]

[Tomita, 1985]

[Vilain, 1985]

[Walker, 1978]

[Waltz, 1972]

92

Schank, R., and Yale AI Project. 1975. SAM - a story un
derstander. Research Report 43, Dept. of Computer Sci
ence, Yale University.

Schubert, L. K. 1976. Extending the expressive power of
semantic networks. Artificial Inttlligtnce, 7(2): 163-198.

Schubaert, L. K., Goebel, R. G. and Cercone, N. J. 1979.
The structure and organization of a semantic net for com
prehension and inference. In N. V. F indler (Ed.), Associa
tive Networks. New York: Academic Press, 121-175.

Shapiro, S. C. 1971. A net structure for semantic informa
tion storage, deduction and ·retrieval. IJCAI-11, 512-523.

Shapiro, S. C. 1979. The SNePs semantic network process
ing system. In N. V. Findler (Ed.), Associative Networks.
New York: Academic Press, 179-203.

Shapiro, S. C. 1982. Generalized augmented transition net
work grammars for generation from semantic networks.
AJCL, 8(1): 12-25.

Simmons, R. 1973. Semantic networks: their computation
and use for understanding English sentences. In Schank R.
C. and Colby K. M. (Eds.), Computer Models of Thought

and Language. San Francisco: Freeman.

Simmons, R. and Slocum, J. 1972. Generating English dis
courses from semantic networks. Communications of the

ACM, 15(10): 891-905.

Tomita, M. 1985. An efficient context-free parsing algo
rithm for natural languages. IJCAI-85, 756-763.

Vilain, M. 1985. The restricted language architecture of a
hybrid representation system. IJCAI-85, 547-551.

Walker, D. E. (Ed.) 1978. Understanding Spoken Lan

guage. New York: North Holland.

Waltz, D. E. 1972. Generating semantic descriptions of
scenes with shadows. Tech. Report MAC AI-TR-271, MIT,
Cambridge, MA.

BIBLIOGRAPHY

[Warren & Pereira, 1982]

[Weaver, 1949]

[Weizenbaum, 1966]

[Wilensky, 1978]

[Winograd, 1972]

[Winograd, 1975]

[Winograd, 1980]

[Winograd, 1983]

[Woods, 1968]

[Woods, 1970]

[Woods, 1975]

93

Warren, D. and Pereira, F. 1982. An efficient easily adapt
able system for interpreting natural language queries.
AJCL, 8(3-4): 110-119.

Weaver, W. 1949. Translation. In W. N. Locke and A.
D. Booth (Eds.), Mo.chine Tro.nslo.tion of Lo.nguo.ges. New
York: Technology Press of MIT and Wiley and Sons
(1955), 15-23.

Weizenbaum, J. 1966. ELIZA - A computer program for
the study of natural language communication between
man and machine. Communications of the A CM, 9: 36-
45.

Wilensky, R. 1978. Understanding goal-based stories. Re
search Report No. 140., Dept. of Computer Science, Yale
University.

Winograd, T. 1972. Understanding Natural Language. New
York: Academic Press.

Winograd, T. 1975. Frame representations and the declar
ative/procedural controversy. In D. G. Bobrow and A.
Collins (Eds.), Representation and Understanding. New
York: Academic Press, 185-210.

Winograd, T. 1980. What does it mean to understand lan
guage? Cognitive Science, 4:209-241.

Winograd, T. 1983. Language as a Cognitive Process Vol.

1: Syntax. Reading, Mass.: Addison-Wesley.

Woods, W. A. 1968. Procedural semantics for a question
answering machine. Fo.ll Joint Computer Conference, 33:
457-471.

Woods, W. A. 1970. Transition network grammars for
natural language analysis. Commuinication of the A CM,

13(10): 591-606.

Woods, W. A. 1975. What's in a link: Foundations for
semantic networks. In D. G. Bobrow and A. Collins (Eds.),
Representation and Understanding. New York: Academic
Press, 35-82.

BIBLIOGRAPHY

[Woods et al., 1972}

[Woods et al., 1976]

94

Woods, W. A., Kaplan, R., and Nash-Webber, B. 1972.
The lunar sciences natural language information system:
Final report. BBN Report No. 2378, Bolt, Beranek and
Newman, Inc., Cambridge, Mass.

Woods, W. A., et al. 1976. Speech understanding systems:
Final report. BBN Report No. 3438, Bolt, Beranek and
Newman, Inc., Cambridge, Mass.

Appendix

The appendix contains the listing of the KB. The first section is a list of all the model

syntactic schemata and the second section is a list of all the model semantic schemata. The

syntax and semantics of these schemata are explained in Section 3.2.

Listing of model syntactic schemata:

(s ((*dot np vp (nvagree np vp) (sp vp np agent) (sp np vp agent)

(checknum vp))

(*dot qword (build qword) vp (nvagree qword vp (iftrans)) (setptr)

(sp qword vp ((in (temp locn))(who agent)(where mod)

(when mod)(what obj)))

(checknum vp))

(*dot qword (rwordis (which what)) np (sp qword np) vp
(nvagree np vp (ifnosubj)) (sp vp np (depends))

(sp np vp (rdepends)) (checknum vp))
(*dot auxv np (nvagree np auxv) vp (vvagree auxv vp)

(sp vp np agent) (sp np vp agent) (checknum vp))

(*dot auxv (rwordis (be)) np (nvagree np auxv) comps

(nvagree comps auxv) (sp np comps) (sp comps np)

(checknum np) (checknum comps))))

(np ((*dot det subnp (dnagree det subnp) (setptr))

(*dot subnp (setptr))))

(subnp ((*dot npr (isnotposs) (build))

(*dot n (isnotposs) (build))
(*dot npr (isnotposs) (build) pps.

(sp subnp pps ((in event) (compose obj))))
(*dot mods n (isnotposs) (build) (sp subnp mods ((of obj))))

(*dot n (isnotposs) (build) pps
(sp subnp pps ((from agent) (by obj) (of obj))))

(*dot mods n (isnotposs) (build) (sp aubnp mods ((of obj)))

pps (sp subnp pps ((from agent)(by obj)(of obj))))))

(vp ((•dot v (hasfeature (trans)) (build) np (sp vp np obj))

(*dot v (hasfeature (trans)) (build) np (sp vp np obj) pps
(sp vp pps mod))

95

(•dot v (hasfeature (intrans)) (build))

(•dot v (hasfeature (intrans)) (build) pps (sp vp pps mod)

(sp pps vp ((in event)(of obj))))

(•dot v (hasfeature (cop)) (gparhasno (auxv)) comps

(nvagree comps v) (setptr))
(•dot auxv (gparhasno (auxv)) v (vvagree auxv v) (build) comps

(nvagree comps auxv (ifcop))

(sp vp comps ((in mod)(by agent)))

(sp comps vp ((in event)(of obj)(by obj))))
(•dot auxv (gparhas (qword)) np (nvagree np auxv) v

(vvagree auxv v) (build) (sp vp np agent))))

(comps ((•dot pps (setptr))

(•dot adj (build))

(•dot np (setptr))))

(mods ((•dot nmods (setptr3) adjs (setptr))

_ (•dot nmods (setptr3))

(•dot adjs (setptr))))

(nmods ((•dot nposs nmods (sp (schild nmods) nposs obj) (setptr3))

(•dot nposs (setptr3))))

(adjs ((•dot adj (build) adjs (setptr))

(•dot adj (build})))

(nposs ((•dot n (isposs) (build n) (build nposs of) (sp nposs n agent))

(•dot npr (isposs) (build npr) (build nposs of)

(sp nposs npr agent))))

(pps ((•dot pp (setptr3) pps (setptr))

(•dot pp (setptr3))))

(pp ((•dot prep (build) np (sp pp np ((from locn)(by agent)

(in (temp locn))(of agent))))))

(qword ((•dot •term)))

(auxv ((•dot •term)))

(v ((•dot •term)))

(det ((•dot •term)))

(adj ((•dot •term)))

(npr ((•dot •term)))

(n ((•dot •term)))

(prep ((•dot •term)))

Listing of model semantic schemata:

(composer n s (Bach Handel Haydn Mozart Beethoven Chopin Berlioz

Tchaikovsky Verdi))

(Bach npr * (Bach))

96

(Handel npr • (Handel))

(Haydn npr * (Haydn))

(Mozart npr • (Mozart))

(Beethoven npr • (Beethoven))

(Chopin npr • (Chopin))

(Berlioz npr • (Berlioz))

(Tchaikovsky npr * (Tchaikovsky))

(Verdi npr • (Verdi))

(Leopold npr • (Leopold))

(music n • (voe-music ins-music))

(voe-music pn • (oratorio opera mass))

(ins-music pn • (ballet symphony concerto key-music pro-music))

(key-music pn * (sonata polonaise waltz Well-Tempered-Clavier))

(pro-music pn • (overture-fantasy))

(oratorio n s (Messiah The-Creation))

(opera n s (Giulio-Cesare Don-Giovanni La-Traviata Aida Otello

Falstaff))

(mass n es (Mass-in-B-minor))

(ballet n s (The-Nutcracker))

(symphony n es (The-Surprise-Symphony Symphony-no.40-in-G-minor

The-Fifth-Symphony Symphonie-Fantastique))

(concerto n s (The-Emperor-Concerto))

(sonata n s (The-Pathetique-Sonata The-Moonlight-Sonata

The-Appassionata))

(polonaise n s (Polonaise-in-A-flat))

(waltz n s (Valse-Brilliante))

(overture-fantasy n es (Romeo-and-Juliet))

(Well-Tempered-Clavier npr • (Well-Tempered-Clavier))

(Messiah npr • (Messiah))

(The-Creation npr • (The-Creation))

(Giulio-Cesare npr • (Giulio-Cesare))

(Don-Giovanni npr * (Don-Giovanni))

(La-Traviata npr • (La-Traviata))

(Aida npr * (Aida))

(Otello npr * (Otello))

(Falstaff npr * (Falstaff))

(Mass-in-B-minor npr • (Mass-in-B-minor))

(The-Nutcracker npr * (The-Nutcracker))

(The-Surprise-Symphony npr • (The-Surprise-Symphony))

(Symphony-no.40-in-G-minor npr • (Symphony-no.40-in-G-minor))

97

(The-Fifth-Symphony npr * (The-Fifth-Symphony))
(Symphonie-Fantastique npr * (Symphonie-Fantastique))

(The-Emperor-Concerto npr * (The-Emperor-Concerto))
(The-Pathetique-Sonata npr * (The-Pathetique-Sonata))
(The-Moonlight-Sonata npr * (The-Moonlight-Sonata))
(The-Appassionata npr * (The-Appassionata))

(Polonaise-in-A-flat npr * (Polonaise-in-A-flat))

(Valse-Brilliante npr * (Valse-Brilliante))

(Romeo-and-Juliet npr * (Romeo-and-Juliet))

(father n s (Leopold))

(date n s (birthday dday cday))
(birthday n s (116861 117191 117321 117661 117701 118031 118101

I 1813 I I 18401))

(dday pn * CI 1760 I I 176Q I I 1787 I I 17Q1 I l 180Q I I 1827 I I 1849 I I 1869 I

118931 119011))

(cday pn * (117331 117421))

(type n s (oratorio opera mass ballet symphony concerto sonata
polonaise waltz overture-fantasy))

(place n s (birthplace dplace cplace))
(birthplace n s (Eisenach Halle Rohrau Salzburg Augsburg Bonn Warsaw

Grenoble Votkinsk Busseto))
(dplace pn * (Leipzig London Vienna Salzburg Paris St-Petersburg

Milan))

(cplace pn * (Leipzig Dublin))
(116851 npr * (116861))

(117191 npr * (I 1719 I))

(117321 npr * (11732))

(117661 npr * (1766))

(17701 npr * (1770))

(18031 npr * (1803))

(18101 npr * (1810))

(18131 npr * (1813))

(18401 npr * (1840))

(17601 npr * (1760))

(17691 npr * (176Q))

(17871 npr * (1787))

(17911 npr * (1791))

C 180QI npr * (1800))

(18271 npr * (1827))

C 1840 I npr * (1849))

98

(118691 npr * (118691))
(118931 npr * (118931))

(110011 npr * (l1Q011))
(117331 npr * (117331))
(117421 npr * (117421))
(Eisenach npr * (Eisenach))
(Halle npr * (Halle))
(Rohrau npr * (Rohrau))
(Salzburg npr • (Salzburg))
(Augsburg npr * (Augsburg))
(Bonn npr * (Bonn))
(Warsaw npr * (Warsaw))

(Grenoble npr * (Grenoble))
(Votkinsk npr * (Votkinsk))
(Busseto npr * (Busseto))
(Leipzig npr * (Leipzig))
(London npr * (London))
(Vienna npr * (Vienna))
(Paris npr * (Paris))
(St-Petersburg npr * (St-Petersburg))
(Milan npr * (Milan))
(Dublin npr * (Dublin))
(vocal adj* (oratorio opera mass))

(instrumental adj * (ballet symphony concerto sonata polonaise waltz
overture-fantasy Well-Tempered-Clavier))

(keyboard adj * (key-music))
(program adj* (pro-music))
(famous adj * (music composer))
(dead adj * (composer))

(who qword • (composer))
(when qword * (date))
(where qword * (place))
(which qword * (composer music father date place))
(what qword * (composer music father date place))

(the det (the (number any)))

(a det * (equal-num 1))
(one det * (equal-num 1))
(two det (two (number pl)) (equal-num 2))
(three det (three (number pl)) (equal-num 3))

99

(some det (some (number pl)) (morethan 1))

(from prep* (froml from2 from3 from4 from6 from6 from7 fromB from9
fromlO)

(label locn agent)
((froml Eisenach Bach) (from2 Halle Handel)

(from3 Rohrau Haydn) (from4 Salzburg Mozart)
(from6 Augsburg Leopold) (from6 Bonn Beethoven)
(from7 Warsaw Chopin) (fromB Grenoble Berlioz)
(from9 Votkinsk Tchaikovsky) (fromlO Busseto Verdi)))

(by prep* (byl by2 by3 by4 by6 by6 by7 byB byQ bylO byll by12 by13
by14 by16 by16 by17 bylB by19 by20 by21 by22)

(label obj agent)
((by1 Mass-in-B-minor Bach) (by2 Well-Tempered-Clavier Bach)

(by3 Messiah Handel) (by4 Giulio-Cesare Handel)
(by5 The-Surprise-Symphony Haydn) (by6 The-Creation Haydn)
(by7 Don-Giovanni Mozart) (by13 Symphony-no.40-in-G-minor Mozart)

(by9 The-Fifth-Symphony Beethoven)

(bylO The-Pathetique-Sonata Beethoven)

(by11 The-Moonlight-Sonata Beethoven)

(by12 The-Appassionata Beethoven)

(by13 The-Emperor-Concerto Beethoven)

(by14 Polonaise-in-A-flat Chopin) (by16 Valse-Brilliante Chopin)
(by16 Symphonie-Fantastique Berlioz)
(by17 Romeo-and-Juliet Tchaikovsky)
(by18 The-Nutcracker Tchaikovsky)
(by19 La-Traviata Verdi) (by20 Aida Verdi) (by21 Otello Verdi)
(by22 Falstaff Verdi)))

(in prep* (in1 in2 in3 in4 in5 in6 in7 in8 inQ inlO in11 in12 in13
in14 in16 in16 in17 in18 in19 in20 in21 in22)

(label event temp locn)
((in1 composel 117331 Leipzig) (in2 compose3 117421 Dublin)

(in3 born1 116851 Eisenach) (in4 born2 116851 Halle)
(in5 born3 117321 Rohrau) (in6 born4 117661 Salzburg)

(in7 born5 117191 Augsburg) (in8 born6 117701 Bonn)
(in9 born7 118101 Warsaw) (in10 bornB 118031 Grenoble)
(in11 born9 118401 Votkinsk) (in12 born10 118131 Busseto)
(in13 die1 117601 Leipzig) (in14 die2 117691 London)
(in16 die3 118091 Vienna) (in16 die4 117911 Vienna)
(in17 die6 117871 Salzburg) (in18 die6 118271 Vienna)
(in19 die7 118271 Vienna) (in20 die8 118691 Paris)

100

(in21 dieQ 118931 St-Petersburg) (in22 die10 119011 Milan)))
(of prep* (ofl of2 of3 of4 of6 of6 of7 of8 ofQ of10 of11 of12 of13

of14 of16 of16 of17 of18 of1Q of20 of21 of22 of23 of24

of26 of26 of27 of28 of2Q of30 of31 of32 of33)

(label obj agent)
((of1 Leopold Mozart)

(of2 Mass-in-B-minor Bach) (of3 Well-Tempered-Clavier Bach)

(of4 Messiah Handel) (of6 Giulio-Cesare Handel)

(of6 The-Surprise-Symphony Haydn) (of7 The-Creation Haydn)
(of8 Don-Giovanni Mozart) (of9 Symphony-no.40-in-G-minor Mozart)

(of10 The-Fifth-Symphony Beethoven)
(of11 The-Pathetique-Sonata Beethoven)

(of12 The-Moonlight-Sonata Beethoven)

(of13 The-Appassionata Beethoven)

(of14 The-Emperor-Concerto Beethoven)

(of16 Polonaise-in-A-flat Chopin)

(of16 Valse-Brilliante Chopin) (of17 Symphonie-Fantastique Berlioz)

(of18 Romeo-and-Juliet Tchaikovsky)
(of1Q The-Nutcracker Tchaikovsky)

(of20 La-Traviata Verdi) (of21 Aida Verdi)

(of22 Otello Verdi) (of23 Falstaff Verdi)

(of24 116851 Bach) (of26 116861 Handel) (of26 117321 Haydn)

(of27 117661 Mozart) (of28 117191 Leopold) (of2Q 117701 Beethoven)

(of30 118101 Chopin) (of31 118031 Berlioz) (of32 118401 Tchaikovsky)

(of33 118131 Verdi)))

(compose v s-d (trans)

(compose1 compose2 compose3 compose4 compose6 compose6

compose7 composes composeQ compose10 compose11 compose12

compose13 compose14 compose16 compose16 compose17

compose18 compose1Q compose20 compose21 compose22)

(label agent obj mod)

((compose1 Bach Mass-in-B-minor in1)

(compose2 Bach Well-Tempered-Clavier)

(compose3 Handel Messiah in2) (compose4 Handel Giulio-Cesare)

(compose6 Haydn The-Surprise-Symphony) (compose6 Haydn The-Creation)

(compose7 Mozart Don-Giovanni)

(composes Mozart Symphony-no.40-in-G-minor)

(composeQ Beethoven The-Fifth-Symphony)

(compose10 Beethoven The-Pathetique-Sonata)
(compose11 Beethoven The-Moonlight-Sonata)

101

(compose12 Beethoven The-Appassionata)

(compose13 Beethoven The-Emperor-Concerto)

(compose14 Chopin Polonaise-in-A-flat)

(compose16 Chopin Valse-Brilliante)

(compose16 Berlioz Symphonie-Fantastique)

(compose17 Tchaikovsky Romeo-and-Juliet)

(compose18 Tchaikovsky The-Nutcracker)

(compose19 Verdi La-Traviata) (compose20 Verdi Aida)

(compose21 Verdi Otello)

(compose22 Verdi Falstaff)))

(write v irr (trans) (compose))

(writes v (write (tns present) (pncode 3sg)))
(wrote v (write (tns past)))

(written v (write (pastpart)))

(born v (born (infin) (pastpart)) (intrans)

(born.1 born.2 born.3 born4 born6 born6 born7 born.8 bornO born10)

(label agent mod)

((born1 Bach in3) (born2 Handel in4) (born.3 Haydn in6)

(born4 Mozart in6) (born6 Leopold in7) (born6 Beethoven in8)

(born7 Chopin in9) (born8 Berlioz in10) (bornQ Tchaikovsky in11)

(born10 Verdi in12)))

(die v s-d (intrans) (diet die2 die3 die4 die6 die6 die7 die8 dieQ die10)

(label agent mod)

((diet Bach in13) (die2 Handel in14) (die3 Haydn in16)

(die4 Mozart in16) (die6 Leopold in17) (die6 Beethoven in18)

(die7 Chopin in19) (die8 Berlioz in20) (dieO Tchaikovsky in21)

(die10 Verdi in22)))

(be v irr)

(be auxv irr (cop))

(is auxv (be (tns present) (pncode 3sg)))

(are auxv (be (tns present) (pncode x13sg)))
(was auxv (be (tns past) (pncode 13sg)))

(were auxv (be (tns past) (pncode x13sg)))

(is v (be (tns present) (pncode 3sg)))
(are v (be (tns present) (pncode x13sg)))

(was v (be (tns past) (pncode 13sg)))
(were v (be (tns past) (pncode x13sg)))

(do auxv irr)

(does auxv (do (tns present) (pncode 3sg)))

(did auxv (do (tns past)))

102

