
EFFICIENTLY IMPLEMENTING PURE PROLOG
or:

Not 11 YAWAM 11

by

Peter Ludemann

Technical Report 86-25

November 1986

Efficiently Implementing Pure Prolog

Abstract

or:

Not "YAWAM"t

Peter Ltidemann+

Department of Computer Science

University of British Columbia

Vancouver, B.C., Canada V6T 1W5

Copyright© 1986

High performance hardware and software implementations of

Prolog are now being developed by many people, using the

Warren Abstract Machine (or "WAM"). We have designed a

somewhat different machine which supports a more powerful

language than Prolog, featuring:

• efficiency similar to the W AM for sequential programs,

• tail recursion optimisation (TRO),

• sound negation,

• pseudo-parallelism (co--routining) with full backtracking,

• dynamic optimisation of clause order,

• efficient if-then-else ("shallow" backtracking),

• simple, regular instruction set designed for easily optimised

compilation,

• efficient memory utilisation,

• integrated object-oriented virtual memory,

• predicates as first-class objects.

Our design gives the programmer more flexibility in designing

programs than is provided by standard Prolog, yet it retains the

efficiency of more limited designs.

t Yet Another Warren Abstract Machine.

* Present address: IBM Canada Ltd., 1 Park Centre, 895 Don Mills Road.
North York, Ontario, Canada M3C 1 W3

Efficiently Implementing Pure Prolog

or:

Abstract

Not "YA WAM"t

Peter Ludemann+

Department of Computer Science

University of British Columbia

Vancouver, B.C., Canada V6T 1W5

Copyright © 1986

High performance hardware and software implementations of

Prolog are now being developed by many people, using the

Warren Abstract Machine (or "WAM") [Warr83]. We have

designed a somewhat different machine which supports a more

powerful language than Prolog, featuring:

• efficiency similar to the W AM for sequential programs,

• tail recursion optimisation {TRO) [Warr86],

• sound negation,

• pseudo-parallelism (co-routining) with full backtracking,

• dynamic optimisation of clause order,

• efficient if-then-else ("shallow" backtracking),

• simple, regular instruction set designed for easily optimised

compilation,

• efficient memory utilisation,

• integrated object-oriented virtual memory,

• predicates as first-class objects.

Our design gives the programmer more flexibility in

designing programs than is provided by standard Prolog, yet it

retains the efficiency of more limited designs.

Introduction

Warren's design for implementing logic programming

[Warr77], [Warr83], [TiWa84] and [GLL085] proves that logic

languages like Prolog can be executed as efficiently as other

symbol-oriented languages such as LISP [Tick86]. A number

of people have implemented WAM..in hardware ([DoPaDe84],

(Mill86] and others). While we applaud these achievements

(perhaps Fortran will be replaced by the 21st century!), we

believe that a more flexible and powerful logic programming

t Yet Another Warren Abstract Machine.

* Present address: IBM Canada Ltd., 1 Park Centre, 895 Don
Mills Road, North York, Ontario, Canada M3C 1W3

language than standard Prolog should be used. We will present

an alternate design which allows implementing a more

powerful language with similar efficiency.

Logic programming opens the exciting possibility of writing

programs declaratively, considering only the logic of the

programs and not the execution method. Prolog is a good step

in this direction but programmers often feel they must use its

"impure" non-logical constructs such as cut and var. By adding

flexibility to Prolog's strict left-to-right depth-first

computation rule, our design allows programs to be written in

a more natural manner, using only "pure" logical constructs.

These programs are often more efficient than equivalent

"impure" programs and they are much easier to understand.

''Pure" Prolog programs are indifferent to the order in which

clauses are tried [Lloy84]. If the implementation chooses to

execute clauses in some parallel fashion, it should be free to do

so. Programs written for such indeterminate implementations

are often clearer than those which depend on execution order. A
sequential solution of an exercise altributed toR.W. Hammi.ng
is given in [Dijk76]; a more elegant solution using co-routines

(degenerate parallelism) is given in Chapter 8 of [Hend80).

[Kowa79] pp. 114-118 has other examples. [DDH72] has more

general comments on why co-routines are desirable.

By freeing the implementation from left-to-right top-down

order, we not only allow clearer - and often more efficient -

programs but also provide sound implementation of negation,

if-then-else and setofas described in [Nais85b]. The necessary

control information can often be generated automatically as in
[Nais85a].

Negation

"Standard" Prolog implements of negation unsoundly.

Negation as failure [Clar78] requires that the terms be all

ground. This is not enforced by the usual implementation:

not (Test) : - call (Test), ! , fail.
not(Test).

Considez the list membership predicate:

member(X, x._,.
member (X, .Rst) · - member (X, Rst) .

Thequoy

?- X=4, not member(X, [1,2,3])

correctly succeeds but the logically equivalent

not member (X, [1, 2, 3]), X=4

fails. We can remedy this by having not delay until its

arguments are sufficiently instantiated. That is, not
provisionally succeeds and is retried later when the variable

which caused the delay becomes instantiated.

A similar difficulty exists with memberl which succeeds

when the first element in a list is found:

memberl(X, x._) :- !.
memberl(X, Y.Rst) :- memberl(X, Rst).

The query

X=2, memberl(X, [1,2,3])

correctly succeeds but the logically equivalent

memberl(X, [1,2,3]), X=2

incorrectly fails because the cut ("! ") removes too many

backtrack points. The solution herehere is to define memberl

using an if-then-else which delays until the test is sufficiently

instantiated:

memberl(X, Y.Rst) :
if X=Y then true

else memberl(X, Rst) endif

The call to memberl provisionally succeeds with the test

X-=1 delayed until x becomes instantiated: X=2. The resumed

test fails and execution backtracks to the else. This tail

recursively calls memberl which again provisionally succeeds

with the test X=2 delayed until x becomes instantiated. The

next goal, X=2, instantiates x, the backtrack point for the else
is removed and the whole query succeeds.

Our original motivation for implementing delays was to

provide sound implementation of negation and if-then-else.
Delays also allow the extensions to Prolog, including first

order quantifiers, described in [L1To84] and they allow co

routining with backtracking. The result is a very flexible

design which permits a variety of programming styles. To take

advantage of our design, an extended Prolog must be used -
but its description is beyond the scope of this paper.

In our implementation, deterministic predicates are not

slowed by the more sophisticated delaying and backtracking

features. Depending on the problem, the machine is well suited

to purely deterministic predicates and to complex genente-and
test predicates using co-routines and backtracking. 3

3 As a test of the usefulness, the program for solving a logic
puzzle were changed so that the test predicates were initially
delayed and woken up as the solution became instantiated.
This removed so many permutations that execution time
dropped from 65 minutes to 40 seconds.

Efficiently Implementing Pure Prolog page 2

The basic sequential inference engine

We describe first the basic sequential engine and then the

features which allow backtracking and delaying.

The machine has 32 registers,4 a single execution stack for

saving status and registers across calls, a reset stack and a
backtrack stack. There is no separate push down stack for

unification and deallocation because we use the Deutsch

Schorr-Waite algorithm [Knut73] which traverses lists by

reversing pointers using special tags which are not nonnally

visible. All objects are first class citizens and are tagged:

• uninstantiated (or not ground) logical variable,

• reference (pointer) to another object which is automatically

dereferenced whenever it is accessed,
• integer or floating point number,

• string,

• nil (denoted [J),

• list element (pointers to two objects, denoted Hd • T 1 or

[Hd I Tl]),

• paged out object with pointer into backing store5 which is

automatically paged in when accessed,

• code segment,
• "thunk" [lnge61] (code pointer with environment),

• cut point.

We use structure copying - implementation is simpler than

structure sharing and efficiency is about the same [Mell82].

Each object is identified solely by its address which remains

constant throughout the object's lifetime. Each object fits in a

fixed si:re cell which is 10 to 16 bytes (depending on the base

machine) containing:
• tag,

• flags,

• up to two pointers (or a double precision floating point

number),

• reference count

We use reference counting because its overhead seems to be

about the same as for a marking garbage collect and it allows

reclaiming memory soonez (Prolog programs seldom produce

circular lists). We could easily use a marking garbage collector'

instead.

4 [AuHo82] notes that with 16 registers, about half the
programs need register spill code; with 32, less than 5%
need spill code.

5 Data in backing store never point to data in primary store.
There is no space for a full description; [Gold83] has more
details on a similar virtual memory system based on objects.

Numbers, nils and list elements fit entirely within these

cells. Strings, code segment cells and thunks contain pointers

into a separate area which is divided into segments and is

compacted in a manner similar to Smalltalk-80's LOOM (large

object oriented memory) [Gold83].

Although new strings can be created by concatenate or

substring operations, most strings are constants which are

known when the code is loaded. The loader ensures that only

one copy is kept of each such constant string - two constant

strings are equal if and only if they are at the same address.

Dynamically created strings require full character by character

comparison.

For simplicity, we treat functors as lists (as in micro-Prolog

[ClMcC84]) so that, for example, f (a, b) = [f, a, b] .

Functors and lists are distinguished by a flag in the head

element. (We could instead store the functor as a single

element in the string area. Analysis of the trade-offs are beyond

the scope of this paper.)

New cells are allocated from the free list. Because all the

cells are the same size, this is as efficient as allocating and

deallocating on a stack. We do not distinguish between "local"

and "global" variables as in W AM. In W AM code about half

to three-quarters of all memory references are to the global

stack (extrapolated from [Tick86] and [Mats85]). Because we

keep local variables entirely in registers, we can get similar

performance without the complication of shadow registers (a

hardware implementation would probably also cache the cells

pointed by the registers). W AM's global stack is not a true

stack - it requires garbage collection during deterministic

computations because it is popped only on backtracking.

Additional complications arise with delaying (described later)

in W AM, everything in the local environment must be

globalised when a predicate delays. In summary, a machine free

list allocation instead of stack allocation can be just as

efficient - and much simpler to use.

Each of the registers contains either an object address or is

flagged as being empty. When an n-ary predicate is called, the

caller must put the arguments in registers O through n-1 and

save its registers on the execution stack. The called predicate

must ensure that on return all registers are ~pty - the caller

can then pop the saved registers. "Freeing a register" simply

means flagging the register as empty - if reference counting is

used, the reference count is decremented.

The machine's status is kept in registers:

pc: program counter contains the code segment and offset of

the next instruction.

Efficiently Implementing Pure Prolog page 3

cpc: continuation program counter contains the code segment

and offset of the next instruction to be executed after a

return instruction.

toes: top of execution stack.

tobs: top of backtrack stack.

tors: top of reset stack.

In instructions, each register is annotated:

v: contains a value,

n: empty, possibly requiring the allocation of a new object,

f contains a value which is emptied after use.

x: is empty and the value is unneeded (v+/).

If reference counting is used, these annotations mark where

reference counts are decremented. If reference counting is not

used, registers must still be flagged as empty to minimise the

amount of information stored when choice points or "thunks"

area-eated.

Each code segment has a vector of up to 128 constant object

addresses. Most instructions allow c annotations to indicate

that the operand is the index of an entry in the constants'

vector.

Eq r 1 , r 2 unifies two registers. It can also be used to move

or copy registers:

eq n 1, f 2 moves register 2 into register 1;

eq n3, v4 puts a copy of register 4 into register 3;

eq nS , ' [] ' loads register 5 with nil.

EqSkip is like eq except that it skips the following

instruction if the equality test succeeds (eq fails to the most

recent choice point - described later). If the equality test fails,

any / annotations are ignored. Failure does not undo

instantiations caused by unification so there will usually be

some tests before eqSkip to ensure that the operands are not

variables.

EqLst r 1 , rHdr rTl does unification for a list element.

EqLs t f 1, n2, n3 tests for register 1 containing (the address

of) a list element (or, if it is a logical variable, instantiates it

to a list element) with the head being put in register 2 and the

tail in register 3; register; 1 is then emptied. E q Ls t
f O , n O , n 1 is valid - it replaces register O by the list

element's head (the lail goes mto register 1).

SwAVNL r1, rHdr rTl jumps to one of the following four

instructions depending on whether the register contains an

atom, a variable, nil or a list element. In the case of a list

element, the head and tail are put into the indicated registers. If
the register is a variable, any/ annotation is ignored. As with

eqSkip, instantiations caused by unification are not undone

on failure. Other switch instructions exist for multi-way
branching on strings or numbers but we will not describe them
because they can be emulated by sequences of eqSkips.

Push rand pop rare used to push and pop registers on the
execution stack before and after a call instruction.

The call instruction assumes that the argument registers
are already loaded; cpc is pushed onto the execution stack, pc is
copied into cpc and pc is set to the first instruction in the code
segment. Return does the inverse by copying cpc into pc and
popping the execution stack into cpc (all the registers should

be empty when a return is executed). Using cpc this way
allows the 1 as t ca 11 instruction for tail recursion
optimisation (TR.O) to function like a goto.

The builtin number instruction is used to extend the

instruction set for arithmetic, string manipulation, i/o, etc. A

builtin is like a call except that the register usage may
be more idiosyncratic - a built in may succeed, fail or
delay.

As a (not very useful) example:

p([], []).

p(a.Rst, x.0utRst) ·- p(Rst, 0utRst).
p(b.Rst, y.0utRst) ·- p(Rst, 0utRst).

is compiled to:

swAVNL f0,n2,n0 % switch on parrnO
builtin "error" % invalid parrn
goto var % variable
goto nil % parrnO= []

1st: % parrnO=Hd.Rst
eqSkip f2, 'a' % test Hd = 'a'
goto else
eqLst fl, 'x', nl % 'x' .0utRst
lastCallSelf % p(Rst, 0utRst)

else:
eqSkip f2, 'b' % test Hd = 'b'
builtin "error" % else: invalid parrn
eqLst fl, 'y',nl % 'y' .0utRst
lastCallSelf % p(Rst, 0utRst)

nil:
eq ·f 1, ' [] ' % result :-= []
return

var:
builtin "error" % for now, an error

The la~tCallSelf instruction has the same meaning as
goto O (the different opcode helps in debugging). This is a

tail recursive call - recursion has been turned into iteration.
The code for handling a variable for the first parameter has
been left out. The above code implements a deterministic

predicate - if backtracking code were added, it would not affect
the efficiency of the deterministic code.

Efficiently Implementing Pure Prolog page 4

Backtracking

The backtrack (choice point) stack and reset stack ("trail") are

used to implement backtracking. The backtrack stack could be

included with the execution stack (as in W AM) - we have
separated it for ease of explanation.

When unification instantiates a value cell which is older than
the top choice frame, the cell's address is put on the reset

stack. If the cell is newer, backtracking will simply free it, so
there is no need to record it. The age number of an
uninstantiated variable is the depth of the choice stack when

the variable was created, so an entry is pushed onto the reset
stack only if the cell's age number is less than the depth of the
choice stack (a similar technique is used in W AM except that

the relative positions on the stack are used rather than age
numbers - global stack cells are considered to be older than
local s~ck cells). Deterministic predicates will not create reset
stack entries because such predicates do not create choice
points.

Wherever backtracking is desired, choice points must be
created on the backtrack stack using the mkCh ("make choice
point") instruction. Each choice point frame contains sufficient
information to reset the machine to the state it was in when
the mkCh was executed:

contents of all non~mpty registers,
value of cpc,
top of the execution and reset stacks,
failure instruction address.

When failure occurs, by a unification failing or by an
explicit fail instruction, all registers are emptied and the top

choice point frame is used to fill the registers. The reset and
execution stacks are popped to what they were when the choice
point was created. As the reset stack is popped, its entries are
used to reset objects to uninstantiated. Execution then resumes
at the failure instruction address.

For implementing if-then-else, the mkChAt instruction
saves the tobs value in a register. A subsequent cutAt ("hard

cut") pops the choice stack (and reset stack) back to the
designated choice point; a rmChAt ("soft cut") changes the
failure address to point to a fa i 1 instruction (if the choice

point is at the top of the backtrack stack, the choice point is
removed instead).

When backtracking occurs, the execution stack must be
restored to what it was when the choice entry was made. This
means that a return instruction may not pop the execution
stack if a choice entry needs it - the choice entry "protects" the

entry in the execution stack [GLL085]. The top of execution

stack value in the top choice point frame is used to determine

whether or not the execution stack can be popped. Each entry

in the execution stack has a back pointer to the previous

frame, skipping frames which are protected by the choice

stack. If only deterministic predicates are executed, nothing is

put onto the choice stack and the execution stack grows and

shrinks just like the execution stack in a conventional machine

(Algol, Pascal, etc.).

It turns out that simple instructions improve performance,

even for software interpreters. Therefore, a call is a number of

instructions:

link
push
call

% toes skips over protected frames
% one push for each saved value

pop % one pop for each saved value
unlink % reset toes below protected frames

Similarly, make choice point is coded:

pushB . . . % one pushB for each non-empty register
mkCh 1.abel. % push the failure address, toes, tors

1.abel:
popB ... % one popB for each saved register

where the pushB and popB instructions push and pop on the

backtrack stack.

Deterministic predicates run slightly slower on the full

backtracking machine than on a purely deterministic machine.

There are fom ovemeads:

• making choice points rather than just branching to a failure

address for if-then-else.

• 1 ink and u n 1 i n k instructions are not needed for

deterministic execution.

• testing whether or not an instantiation should push an entry

onto the reset stack (for deterministic execution, nothing will

ever be pushed).

• recording delay information on the reset stack (described

below).

The first two items can be avoided by a smart compiler,

using the switch instructions. When backtracking is needed for

if-then-else, some optimisations of push and pushB

instructions are possible. We can avoid recording delay

infonnation on the reset stack by having a "set deterministic

mode" instruction so that backtracking information is not

recaded.

Efficiently Implementing Pure Prolog page 5

Delays

A delay is implemented by using a swAVNL or varGoto

instruction to detect that a value is uninstantiated - a delay

r, offset instruction then suspends the predicate by saving

a thunk (with all the non~mpty registers) on the delay list

associated with the variable and executing a return. When

the variable becomes instantiated, all associated delayed

predicates are made eligible for resumption - the current

predicate is suspended and all the delayed predicates are pushed

onto the execution stack except for the oldest which is resumed

at the where its offset indicated.

Because logic programs do not always distinguish between

input and output parameters, the programmer may wfsh a delay

until one of a number of variables becomes instantiated

(append is such a predicate). Delayer instructions may

precede a delay instruction. These just add information to the

delay list entry which is finished by the delay instruction.

And-delays are done by delaying on the variables, one by one,

in any sequence.6 For sound negation and proper evaluation of

setof, another instruction is provided which delays if it

(recmsively) finds an uninstantiated variable not in a specified

list.

When a predicate delays it must also be recorded on the reset

stack so that it can be removed from the delay list upon

backtracking - when a delayed predicate is woken, it is recorded

a second time on the reset stack so that backtracking can put it

back on the delay list. An optimisation similar to TRO is

performed: if no choice point has been created since the

original delay entry was created, both entries are removed from

the reset stack (shuffling the stack down if necessary).

Delayed predicates are useful for producer-consumer co

routining. Here is a simple example:

coroutine - consume(L), produce(L).
produce(Hd.Tl) • makeOne(Hd),

produce(Tl).
consume(Hd?.Tl) :- % "?" means delay on Hd

u:,eOne(Hd),
consume(Tl).

consume:([]?) • % stop at end of list

6 Or~lays are not strictly necessary - Prolog-11 [Colm82)
does: •.
freeze(X, Control=c),

freeze(Y, Control-cl,

freeze(Control, pred(•••)).

Unfortunately, this leaves unexecuted predicates lying
around.
Similarly, and-delays are done by:
freeze(X, freeze(Y, pred(..•))).

Consume immediately delays on L. Produce then starts
and continues with makeOne which instantiates Hd, wakens

consume and suspends makeOne. UseOne then executes,

followed by a tail recursive call to consume which delays on

the uninstantiated tail of the list - this returns to the suspended

produce and the cycle continues. This example is an infinite

loop. Normally, produce would have some additional

control parameters so that eventually [) would be generated to

terminate the list L.

The list L needs to exist just one element at a time because

it is used solely as a communication channel. If reference

counting is used, the list cells are freed as soon as they are

accessed and so the entire list never exists, just the current

element.

Weak delays: dynamic reordering of clauses

The ancestor predicate is inefficient if the first argument is

uninstantiated:

ancestor(Ancestor, Descendent) :
parent(Ancestor, Descendent).

ancestor(Ancestor, Descendent) ·
parent(Ancestor, Z),
ancestor(Z, Descendent).

?- ancestor(X, george).

In the second clause, parent with two uninstantiated

variables will repeatedly generate all parent relations by

backtracking. Changing parent to delay until both

parameters are instantiated would prevent this and give

efficient execution but would also cause ancestor to delay
permanently if it is called with two uninstantiated variables or

if it computes ancestors beyond grandparents. We have a

associate "cost", proportionate to the size of the predicate's

solution space, with each delay instruction. For example, if
we have 100 parent-child relationships, an average of2 parents

per child and 3 children per parent, the code would be:

varGoto r0, §1
varGoto rl, §2

§ 0 : code for both r() and r 1 instantiated.
return

§1: varGoto rl, §3
delayCost 2 % delay parmO, cos~2
delay r0, §la % resume at next instr

§la: notvarGoto r0, §0 % parmO possibly var
code for r() uninstantiated and r 1 instantiated.

§2: delayCost 3 % delay parml, co~3
delay rl, §2a

§2a: notvarGoto rl, §0
code for r() instantiated and r 1 uninstantiated.

§3: delayCost 100 % delay pannl,

Efficiently Implementing Pure Prolog page 6

delayer
delay

§3a: varGoto

rl % or parm2, cost=lOO
r0, §3a
r0, §2

notvarGoto rl, §0
code for r 1 uninstantiated and r 1 uninstantiated.

As before, the machine resumes clauses when their

arguments are sufficiently instantiated. If all predicates are

blocked, the least expensive one is resumed. The machine

thereby dynamically decides the least expensive way to

continue a non-deterministic computation.

ParalJelism

Some parallel designs have retained standard Prolog with full

backtracking [HeNa86]. The intent is to retain the semantics of

"standard" Prolog, speeding execution when parallelism can be

exploited. As our design provides full "pure" Prolog with co

routining, it can easily be used in such a parallel machine -

the co-routining predicates could transparently be executed on a

fully parallel machine.

In contrast, guarded Hom clause languages (such as GHC

[Ueda85], Concurrent Prolog [Shap83] and Parlog [C1Gr84])

have abolished backtracking - GHC has even discriminated

against user predicates by not allowing them in guards.

Standard Prolog can be implemented in such languages - but

that can be said of even Fortran. Rather, we have the equation

(attribution uncertain):

flat, safe, concurrent guarded Horn clauses = Occam +
logical variable.

We believe that the indeterminicity of the guards - which has

caused much semantic difficulty - is not a very valuable

feature because the guards are usually mutually exclusive and

can be transformed into an equally fast (or faster!) sequence of

if-then-elses. The valuable feature of these languages is their

ability to execute predicates in parallel, communicating via

shared logical variables.

Although there are some problems which can benefit

enonnously from parallel execution, many parallel programs

are really disguised co-routining programs because critical

sections must execute sequentially. Typically, such programs
look like: ·

server
initialise
loop

wait for message
process message
send reply

endloop

requester

send request

wait for reply

process reply

This is a producer-consumer co-routine, using message

passing instead of co-routine calls. No matter how much

parallelism is available, the speed of the two processes is

limited by the slower of the two.

Environments on the execution stack

Warren observed that passing arguments in registers rather

than in stack frames has two advantages: tail recursion

optimisation can be easily performed and stack frames do not

need to be created for unit clauses. However, his design keeps

local variables in the stack. We have chosen to keep local

variables in registers and to copy them to the execution stack

only when they must be preserved across calls.

At first glance, our design appears less efficient. Although

there are certainly cases where one or the other design is better,

we believe that in for "typical" programs [Mats85]. the two

designs are similar in efficiency. In practice, only a few

registers need to be saved around a call. In W AM code these

registers would have to be loaded from the local or global stack

anyway, so the number of executed instructions and amount of

stack references are about the same (see sample code in the

appendix).

The push/pop around a call in our design does not only save

values over predicate calls; it also puts values into the correct

registers. This simplifies compiler design because register

allocation need only -consider where the registers are needed

between two adjacent calls - the compiler is fewer than 400

lines of Prolog (which took 4 days to write and debug). 7 The

compiler seldom has to move the contents of one register to

another, in WAM, instructions like put_pval are quite

common.

Our design allows treating predicates as first class objects

(discussed in a separate Technical Report). This is somewhat

tricker in W AM because of the need to preserve and restore the

state of the current stack frame. Additionally, we can delay and

resume a predicate at any instruction whereas W AM is more

difficult to delay after an environment (stack frame) has been

allocated. Because we do not distinguish between local and

:global values, we do not need to globalise variables when a

delay is made.

7 Exclusive of code for handling delays and for detecting
deterministic predicates (we use a slightly different method
than that in [DeWa86]; in essence, we detect if-then-else
situations).

Efficiently Implementing Pure Prolog page 7

Conclusion

We have explored a variation on the popular W AM

implementation of a logic engine. We retain WAM's

efficiency, yet we can implement a more powerful language

than standard Prolog, providing sound negation and co

routining. Our design is also suitable for functional

programming [AbLu86].

We have implemented the logic engine (except for virtual

memory), including an optimising compiler, and have attained

performance comparable to other W AM implementations (we

prefer not to give KLIPS figures because we feel that they are

almost meaningless). Our compiler is a short, simple program

because our logic engine's instructions lend themselves to easy

compilation.

We do not think that our design is the last word in logic

engines. We hope that it will inspire others to explore more

deviations from current designs.

Acknowledgments

This research has been partially funded by an SUR grant

from IBM Canada Ltd.

References

[AbLu86] Abramson, H. and Ludemann, P.: Compiling
Functional Programming Constructs to a Logic Engine,
Technical Report 86-24, Dept of Computer Science,

University of British Columbia. Submitted to the Fourth

International Logic Programming Conference.

[AuHo82] Auslander, M. and Hopkins, M: An Overview of
the PL.8 Compiler in Proceedings of the SIGPLAN '82
Symposium on Compiler Construction.

[Clar78] Clark, K.L.: Negation as failure. In Logic and
Databases, Gallaire, H. and Minker, J. (ed.), Plenum Press.

[C1Gr84] Clark, K.L. and Gregory, S.: PARLOG: Parallel
Programming in Logic. Research report DCO 84/4, Dept. of

Computing, Imperial College, London. See also ACM
Transactions on Programming ~guages and Systems 8(1)

pp. 1-49 (January 1986).

[CIMcC84] Clark, K.L. and McCabe, F.G.: micro
PROWG: Programming in Logic, Prentice-Hall.

[Colm82] Colmerauer, A.: PROWG-11 Manuel de Riference
et Modele Theorique, Groupe Intelligence Artificielle, Univ.

d' Aix-Marseille II, 1982.

[DDH72] Dahl, 0-J., Dijkstra, E.W and Hoare, C.A.R.:

Structured Programming, Academic Press.

[DeWa86] Debray, S.K. and Warren, D.S.: Detection and

Optimization of Functional Computations in Prolog. Third

International Conference on Logic Programming, Springer

Verlag.

[Dijk76] Dijkstra, E.W.: A Discipline of Programming,

Prentice-Hall.

[DoPaDe84] Dobry, T.P., Patt, Y.N. and Despain, A.M.:
Design decisions influencing the microarchitecture for a

Prolog machine, Micro 17 Proceedings, October 1984.

[GLLO85] Gabriel, Lindholm, Lusk, Overbeek: A Tutorial

on the Warren Abstract Machine/or Computational Logic.

Argonne National Laboratory Report ANL-84-84.

[Gold83] Goldberg, A.: Smalltalk-80: The Language and its

Implementation, Addison-Wesley.

[Hend80] Henderson, P.: Functional Programming:

Application and Implementation. Prentice-Hall.

[HeNa86] Hermenegildo, M.V., Nasr, R.I.: Efficient

Management of Backtracking in AND-Parallelism. Third

International Conference on Logic Programming, Springer

Verlag.

[lnge61] Ingennan, P.Z.: Thunks - A way of compiling

procedure statements with some comments on procedure

declarations, Comm. A.C.M. 4, 1, pp. 55-58.

[Knut73] Knuth, D.E.: The Art of Computer Programming,

Volme 1: Fundamental Algorithms. pp. 417-420. Addison

Wesley.

[Kras83] Krasner, G. (ed.): Smalltalk-80: Bits of History,

Words of Advice, Addison-Wesley.

[Kowa79] Kowalski, R.: Logic for Problem Solving.

Elsevier North Holland.

[Lloy84] Lloyd, J.W.: Foundations of Logic Programming

(pp. 45-47), Springer-Verlag.

[LITo84] Lloyd,J.W. and Topor, R.W.: Making Prolog

more Expressive in The Journal of Logic Programming, 4
(184).

[Mats85] Matsumoto, H.: A Static Analysis of Prolog

Programs, SIGPLAN Notices V20 #10, October 1985.

[Mell82] Mellish, C.S.: An Alternative to Structure Sharing

in the Implementation of a Prolog Interpreter. In Logic

Programming, Clark, KL. and Tilmlund, S-A. (ed.),

Academic Press.

Efficiently Implementing Pure Prolog page 8

[Mill86] Mills, J.W.: A high performance LOW RISC

machine/or logic programming, IEEE 1986 3rd International

Symposium on Logic Programming.

[Nais85a] Naish, L: Automating Control for Logic

Programs. The Journal of Logic Programming, Vol. 2,

Norn. 3, October 1985.

[Nais85b] Naish, L: Negation and Control in Prolog. Ph.D.

Thesis, University of Melbourne.

[Tick85] Tick, E.: Prolog Memory-Referencing Behavior.

Stanford University Technical Report No. 85-281

(September 1985).

[Tick86] Tick, E.: Memory performance of Lisp and Prolog

programs. Third International Conference on Logic

Programming, Springer-Verlag.

[TiWa84] Tick, E. and Warren, D.H.D.: Towards a Pipelined

Pro/og Processor. IEEE 1984 International Symposium on

Logic Programming.

[Ueda85] Ueda, K. Guarded Horn Clauses, ICOT Technical

Report 1R-103 (June 1983).

[Warr77] Warren, D.H.D.: Implementing Prolog -

Compiling Predicate Logic Programs. Technical Reports 39

and 40, Department of Artificial Intelligence, University of

Edinburgh.

[Warr83] Warren, D.H.D.: An Abstract Pro/og Instruction

Set. SRI Technical Note 309.

[Warr86] Warren, D.H.D.: Optimizing Tail Recursion in

Logic Programming and its Applications, van Caneghan, M.

and Warren, D.H.D (ed.), Ablex Publishing.

Appendix: comparison with WAM

In Prolog, here is a typical predicate which applies the

predicate q to each element of a list:

p([], []).

p(Hd.Tl, HdX.TlX) :-
q(Hd, HdX), p(Tl, TlX).

Here is our code:

swAVNL f0,n0,n2
fail % none of the 3 below
goto var % parmO is var
goto nil % parmO= []

% continue to 1st case
1st: % parmO=Hd.Tl

eqLst fl,nl,n3 % parml=HdX.TlX
push f2 % save Tl -
push f3 % save TlX
call 'q/2' % q(Hd, HdX): regs 0

% 1 are already set
pop nl % restore TlX
pop nO % restore Tl
lastCallSelf % p(Tl,TlX)

nil:
eq fl,'[]'
return

var:
pushB vO % make the choice
pushB vl % point by saving
pushV v2 % all active regs
mkCh else
eq fO,'[]' % parmO= []
goto nil

else:
popB n2 % restore the
popB nl % active regs
popB no % on failure
eqLst f0,n0,n2 % parmO=Hd.Tl
goto 1st

Here is the W AM code:

switch term var, nil, 1st
var:

try_me_else else
nil:

get_nil 1
proceed

else:
trust me else fail - -

1st:
allocate
get list 1
unify_ tvar 1

% create an environment.
% arg 1, in reg 1, is a list
% Hd is a temporary, put it in
% register 1; it'll be needed
% there for the call to q / 2.

and

unify_pvar 2 % Tl is a permanent, save it at
% displacement 2 in
% environment.

get_list 2 % arg 2, in reg 2, is a list.
unify_tvar 2 % same comment as for Hd.
unify_pvar 3 % T lX is a permanent, save it

% at displacement 3 in
% environment.

call q/2 % notice args are in proper
% positions

put_pval 2, 1 % move T 1 into register 1
put_pval 3, 2 % move T lX into register 2
deallocate % get rid of environment
execute p/2 % last call

Even though the W AM instructions are more complex than

ours, more of them are required (for deterministic append, the

difference is even more dramatic: our design has just 3
instructions in the inner loop). Both have about the same

number of memory and register references (in addition to call

frame allocation and deallocation.ours has 2 references to the
heap and 4 to the execution stack; W AM has 9 memory

references [Tick86]). It is difficult to draw any general

conclusions from this example; in general, W AM and our
design appear to have similar efficiency.

