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Abstract 

In this paper we consider how various constructs 
used in functional programming can be efficiently 
translated to code for a Prolog engine (designed by 
Ltidemann) similar in spirit but not identical to the 
Warren machine. It turns out that this Prolog engine 
which contains a delay mechanism designed to 
permit co-routining and sound implementation of 
negation is sufficient to handle all common functional 
programming constructs; indeed, such a machine has 
about the same efficiency as a machine designed 
specifically for a functional programming language. 
This machine has been fully implemented. 

1. Introduction. 

There has been a considerable amount of literature 
devoted to the topic of combining functional 
programming and logic programming. We refer the 
reader to [DeGrLi86] for a collection of such work, 
and for the extensive bibliographies contained in the 
chapters of that book. The aspect of the endeavour 
that we wish to deal with in :this paper is not how the 
two programming paradigms should be combined, 
but how functional programming constructs can be 
efficiently realized in code for a Prolog engine. 

t Present address: Department of Computer Science, Bristol 
University, Bristol, England 

* Present address: IBM Canada Ltd., 1 Park Centre, 895 Don 
Mills Road, North York. Ontario, Canada M3C 1W3 

The proposals for combining the two paradigms 
have been roughly classified in [BoGi86] as being 
either functional plus logic or logic plus functional. 
In the former approach, invertibility, nondeterminism 
and unification are added to some higher order 
functional language; in the latter approach, first-order 
functions are added to a first-order logic with an 
equality theory. We do not take any position as to 
which approach is best, but since a logic machine 
already deals with unification, nondeterminism and 
invertibility, we have taken, from an implementation 
viewpoint, the logic plus functional approach. We 
believe that a language combining the paradigms can 
be executed on a Prolog engine (such as the Warren 
Abstract Machine, for example, or a different Prolog 
engine with a delaying and coroutining mechanism 
designed by Ludemann), and in fact, that a purely 
functional programming language can be executed on 
such a machine, without losing much of the 
efficiency which could be gained by execution on an 
abstract machine specifically designed for a 
functional programming language. 

In this paper we therefore address one of the open 
problems cited by [BoGi86], namely the kind of 
computational mechanism necessary to execute 
functional and logical programming constructs. 

The rest of the paper is organized as follows. We 
consider various parameters characterizing functional 
programming languages, and the kinds of constructs 
derived from these parameter settings (e.g. 
applicative order evaluation vs. normal order 
evaluation, etc.). We next describe the architecture 
necessary to support various functional constructs, 
and show that the abstract machine to support such 
constructs is ~ subset of a Prolog engine's 
architecture. Finally, we show how the full Prolog 
engine architecture - including a delay mechanism 
which can be used for coroutining as well as a sound 
treatment of negation - encompasses all that is 
necessary to deal with the most general functional 
constructs. 
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2. Functional Programming background. 

For illustrative purposes, we will use some of the 
syntax of SASL and HASL (see [Turn79], 
[Abra84]). 

2.1 Definitions and expressions. 

Function definitions are notated: 
f a11 al2 a1n = expr1 
f a21 a22 a2n = expr2 

amn = exprm 

This defines the m clauses of an n-ary function f. 

Expressions may be written as: 

expr where {definitions} 

The definitions may include function definitions, as 
well as definitions of the form: 
X = 1:x 
(a,b,c] = (1,2,3) 

etc. 

A definition such as: 

Sf g X = f X (g X) 

is a "syntactically sugared" version of the lambda 
expression: 

S = ~ f. ~ g. ~ X. f X (g X) 

2.2 Functional programming varieties. 

The syntax above may be interpreted in different 
ways to derive different programming languages. We 
consider some of the possible interpretations of the 
syntax and the effects of the interpretation on the 
implementation of the language being defined. 

2.2.1 Single argument vs. n-argument 
functions. 

Some functional programming languages have only 
single argument functions. The single argument and 
single result, however, may themselves be single 
argument functions. Thus, if f is defined as an n-ary 

function, it is implemented in such a way that in an 
evaluation: 

f arg1 arg2 ... argn 

the implicit evaluation is: 

( ... ( f arg1) arg2) ... 

where the result of ( f arg 1 ) is a function of a 

single argument, etc. SASL, HASL treat n-ary 
functions this way; LISP, Scheme, etc. do not. 

2.2.2 Normal vs. applicative order 
evaluation. 

In applicative order evaluation, arguments are 
evaluated before evaluation of the function body; in 
normal order evaluation, the leftmost reduction 
(evaluation) is always performed until the normal 
form ( or sometimes just head normal form) of the 
original expression, if it exists, is obtained. Normal 
order evaluation will eventually obtain the normal 
form (if it exists) whereas applicative order 
evaluation may not: if an argument's value is not 
needed in the body of the function, evaluation of the 
argument is not necessary; if the evaluation results in 
an infinite loop, it is disastrous. Related to normal 
order evaluation is "evaluation by need" which can 
be used to prevent repeated evaluations of the same 
expression: once the value of an expression is 
evaluated as in normal order, its value is kept for 
efficiency's sake and used in place of a repeated 
notrmal order of the same expression. 

2.2.3 Lazy vs. eager evaluation. 

Lazy evaluation delays evaluations until they are 
needed, whereas eager evaluation proceeds even 
though values might not be needed. One effect of 
lazy evaluation is to permit programming with 
"infinite" structures such as: 

X = 1:x 

With lazy evaluation, an expression such as hd x 
yields the value 1, the tail of the list not being 
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evaluated. SASL and HASL provide lazy evaluation; 
LISP, generally, does not, but permits the 
construction of mechanisms for lazy evaluation. 

2.2.4 Lexical scoping vs. dynamic scoping. 

In a language where functions are first class 
objects, a function must be applied in the correct 
environment, binding free variables in the function 
body. The data structure consisting of the function 
body and an environment is called a closure or a 
thunk [Inge61]. In pure functional programming . 
languages, the closure is formed at definition time: 
this is called lexical scoping. Other less pure 
functional languages form a closure at evaluation 
time: this is known as dynamic scoping. Pure 
functional programming requires lexical scoping and 
is used in such languages as SASL, HASL, and 
Scheme. Many varieties of LISP, however, use 
dynamic scoping which leads to serious semantic 
problems, chiefly a kind of destructive assignment 

2.3 Mechanical evaluation of functional 
programming constructs. 

The earliest programming language with a strong 
functional flavor was McCarthy's LISP. An 
evaluator (interpreter) for a functional subset of LISP 
was defined in LISP. LISP, however, was not 
purely functional, allowing destructive assignment, 
go to's, etc. Several years after LISP was 
introduced, Landin described an interpreter for 
Church's lambda notation, the interpreter being 
specified by means of an abstract machine which 
may be regarded ~ canonical [Land66]. 

Landin's SECD machine consists of four 
components: 
S - stack 
E - environment 
C- control 
D - the dump, a stack to save states 

The stack is used to save intermediate results in a 
computation, the environment is used to bind 
variables in a >.-expression, the control is a >.­
expression being evaluated, and the dump is a stack 
which saves earlier states of the machine for later 
restoration. 

The original SECD machine adopted the strategy of 
applying functions to evaluated arguments, hence, 
was initially suitable for programming languages 
using applicative order. Some lambda expressions, 
therefore, which could be evaluated only with normal 
order evaluation; applicative order would result in 
non-terminating computations. 

The "procrastinating" SECD machine, a 
modification of the original SECD machine allowed 
the postponement of evaluation of arguments until 
their values became necessary. In a purely functional 
setting, this is equivalent to normal order 
evaluation.The evaluation of an expression can be 

carried out once, and this value saved if the value of 
the expression is needed again - the above mentioned 
evaluation by need. (See [Burg75]) 

Another major technique for evaluating functional 
programming constructs was introduced by Turner in 
an implementation of SASL. The primitive 
operations of SASL are application of a function to a 
single argument, and the pairing or construction of 
lists. In this technique, variables are removed from 
lambda expressions yielding expressions containing 
only combinators and global names referring either to 
library or user-defined functions (from which 
variables of course have been removed). Evaluation 
of an expression then is accomplished by a 
combinator machine: a machine whose instructions 
correspond to the three fundamental combinators S, 
Kand I, and to additional combinators which are not 
strictly necessary but are introduced to reduce, the 
size of the generated combinator machine code. The 
leftmost possible reduction is performed to yield an 
expression's head normal form. Normal order 
evaluation and "lazy" evaluation of lists fall out from 
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this and the definition of the combinator expressions. 
Furthermore, SASL introduced a limited kind of 
unification, extended later in Abramson's HASL 
which was specified in Prolog. 

2.4 Functional programming via logic 
programming. 

Functional programming languages may be 
evaluated by logic programs either by interpretation 
of functional expressions or by compilation of 
functional programs to logic program goals to be 
solved. The former technique was used by [Abra84] 
to specify HASL (an extension of Turner's SASL) in 
Prolog; the latter technique was used by [BoGi86] to 
illustrate how various functional programming 
constructs could be represented as Prolog goals to be 
solved. Other aspects of the implementation of 
functional programming extensions of logic 
programming may be found in [DeGrLi86]. 

Since functional programming constructs can be 
compiled to Prolog, and since Prolog itself may be 
compiled, it is possible to stop at this stage and 
consider the problem of implementing functional 
programming constructs in a logic programming 
language as being solved. However, more efficient 
handling of functional programming constructs is 
still possible if one compiles them not into Prolog but 
directly into code for a Prolog engine. In the 
remainder of this paper we discuss this, in the 
process gaining just about as much efficiency as 
would be possible by compiling functional 
programming . constructs to an abstract machine 
designed specifically for functional pro gram 
evaluations. 

3. Basic Sequential Inference Machine 

We will describe the machine in two stages. The 
basis for the design is a fairly conventional (von 
Neuman) register design with a single stack. We then 
show how constructs for lazy evaluation and 

combinators fit naturally into the design. The 
machine also supports full Prolog-like backtracking 
(described in an appendix). Some simplifications 
have been made in this presentation - a more detailed 
description of the machine, including justification of 
design decisions, is in [Li.ide86]. 

3.1 Structure of the Inference Machine 

Every object in the machine is a first class citizen 
with a tag: 
• integer or floating point number, 
• string, 
• nil (denoted 0), 
• list element (pointers to two objects, denoted 

Hd. Tl or [Hd I Tl]), 

• uninstantiated (or not ground) logical variable, 
• reference (pointer) to another object which is 

automatically dereferenced whenever it is accessed, 
• code segment, 
• "thunk" [Inge61] (code pointer with environment). 

We use structure copying rather than structure 
sharing since its implementation is simpler than 
structure sharing and efficiency is about the same 
[Mell82]. 

Each object is identified solely by its address which 
remains constant throughout its lifetime. New cells 
are allocated from the free list. Because all the cells 
are the same size,3 this is as efficient as allocating 
and deallocating on a stack (and we do not need to 
distinguish between "local" and "global" variables as 
inWAM). 

Each of the 32 registers contains either an object 
address or is flagged as being empty. When an n­

ary predicate ((n--1)-ary function) is called, the caller 
must put the arguments in registers O through n-1 
and save its registers on the execution stack. The 
called predicate must ensure that on return all 
registers are empty - the caller can then pop the 

3 String objects point into a separate string area which is 
divided into segments and is compacted in a manner similar to 
Smalltalk-80's LOOM (large object oriented memory) 
[Gold83]. 
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saved registers. "Freeing a register" simply means 
flagging the register as empty. 

The machine's status is kept in registers: 
pc: program counter containing the code segment 

and offset of the next instruction. 

cpc: continuation program counter containing the 
code segment and offset of the next instruction to 

be executed after a return instruction. 
toes: top of execution stack pointer. 

In instructions, each register is annotated: 
v: contains a value, 
n· empty; possibly requiring the allocation of a new 

object, 

f contains a value which is emptied after use. 

x: is empty and the value is unneeded (v+f). 

With these annotations, the e q, e q Ls t and 
s wAVNL instructions can copy values, test for 
equality and unify. Functional programing languages 
use logical variables only for filling in return values, 
so unifications with logical variables will always 
succeed (there is no need for a "trail"). 

Eq r1, r2 unifies two registers. It can also be used 
to move or copy registers: 
eq nl, f2 moves register 2 into register 1; 
eq n3, v4 puts a copy of register 4 into register 3; 
eq n5, ' [] ' loads register 5 with nil. 

E q skip is like e q except that it skips the 
following instruction if the equality test succeeds ( eq 
fails to the most recent choice point - see appendix 
for details). If the equality test fails, any f 

annotations are ignored. 

EqLst fl, n2, n3 tests for register 1 containing a 

list element (or, if register 1 contains a logical 

variable, instantiates it to a list element) with the head 

being put into register 2 and the tail into register :3; 
register 1 is then emptied. EqLst f0, n0, nl is 

valid; it replaces register Oby the list element's head 
(the tail is put into register 1). 

SwAVNL r 1, rHd, rT 1 jumps to one of the 

following four instructions depending on whether the 

register contains an atom, a variable (not needed for 
functional programming), nil, or a list element In the 

case of a list element, the head and tail are put into 

the indicated registers. Other switch instructions exist 
for multi-way branching on strings or numbers but 

we will ignore them because they can be emulated by 
sequences of eqSkips. 

Push r and pop r are used to push and pop 
registers on the execution stack before and after a call 
instruction. 

The call instruction assumes that the argument 

registers are already loaded; cpc is pushed onto the 
execution stack, pc is copied into cpc and pc is set to 

the first instruction in the new code segment. 

Return does the inverse of call by copying cpc 

into pc and popping the execution stack into cpc (all 

the registers must already be empty when a return 
is executed). 

Using cpc this way allows the lastCall 

instruction for tail recursion optimisation (TRO) to be 
like a goto [Warr77]. 

3.2 Sample code 

Here is how a function p which produces a new list 
by applying the function q to each element of a list 
may be written in SASL or HASL: 
p [] = [] 
p (Hd:Tl) = (q Hd) : (p Tl) 

In Prolog, this is: 
p([], []) :- !. 
p(Hd.Tl, HdX.TlX) ·-

q (Hd, HdX), ! , p (Tl, TlX) . 

The cuts (!) are necessary to make this 
deterministic. In general, an n-ary function can be 
turned into an (n+l)-ary predicate by adding one 

parameter to hold the result. This extt'.a parameter 
must always be i.mtialised as an uninstantiated logical 

variable before a call and the called predicate must 
always instantiate it before returning. 
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Here is our code (comparable W AM code is in a 
separate Technical Report): 

s~AVNL f0,n0,n2 % switch on parmO 
builtin "error" % invalid parm 
builtin "error" % can't be variable 
goto nil % parmO=[] 

1st: % parmO-Hd.Tl 
eqLst fl,nl,n3 % parml:-HdX.TlX 

push f2 
push f3 
call 'q/2' 

pop nl 
pop nO 
lastCallSelf 

nil: 

% (can't fail) 
% save Tl 
% save TlX 
% q(Hd,HdX): regs O, 1 
% are already set 
% argl:=restore TlX 
% argO:=restore Tl 
% p(Tl,TlX) 

eq fl,'[]' % result:=[] 
return 

The 1 as t ca 11 s e 1 f instruction has the same 
meaning as goto O (the different opcode helps in 
debugging). This is a tail recursive call - recursion 
has been turned into iteration. 

The code can also be written in a purely functional 
way (see appendix). The functional code is not tail 
recursive because of the "cons", so much more stack 

is needed. Typically, using predicates instead of 
functions results in about the same number of 

machine instructions. The slight amount of extra 

execution time required by using logical variables is 
more than compensated by the better opportunities 
for detecting tail recursion oprimi:zation (TRO). 

Without loss of generality, we can use deterministic 
predicates instead of functions. When we say that a 
predicate returns a value we mean that the last 
parameter gets instantiated to the value returned by 
the equivalent function. 

So far, we have treated functions as if they were 
compiled into Prolog. This : can introduce large 

inefficiencies because of the more general nature of 

unification and the possibility of backtracking. The 
eqSkip instruction is used to avoid creating choice 

points. For example: 

p [] = [] 
p ( 'a' :rst) = 'x' (p rst) 

p ('b':rst) = 'y' 

is compiled to: 
swAVNL 
builtin 
builtin 
goto 

1st: 

f0,n2,n0 
"error" 
"error" 
nil 

eqSkip f2, 'a' 
goto else 

(p rst) 

% switch on parmO 
% invalid parm 
% can't be variable 
% parmO=[] 
% parmO-hd. rst 
% test hd - 'a' 

eqLst fl, 'x',nl % result := 'x' 
lastCallSelf % p(rst) 

else: 
eqSkip f2, 'b' 
builtin "error" 
eqLst fl, 'y',nl 
lastCallSelf 

nil: 
eq fl,'[]' 

return 

% test hd = 'b' 
% else: invalid parm 
% result ·- 'y' : 
% p(rst) 

% result := [] 

A boolean functions returns either t rue or 
false, so calling a boolean function and testing the 

result can be done in a similar fashion - there is no 

need to create choice points. 

3.3 Thunks, lazy evaluation and higher 
order functions 

A thunk contains the address of an n-ary predicate 

and the values of the first m arguments (m5n). The 
thunk can be considered as an (n-m)-ary predicate. 
When the thunk is called, the first n-m registers are 

moved into registers m through n-1 and registers 0 
through (n-m }-1 are loaded with the values in the 

thunk. 

In applicative order, the code for p 1 us ( 1, 2 , z ) 

is: 
eq no, '1' 
eq nl, '2' 
push n2 % z 
call 'plus/3' 
pop nz % z 

In normal order, the code is transformed to 

compute 
z where { 

z=p1(2), 
pl=pluss(l), 
pluss=>.x>.y. x+y } 
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Plus 1 2 is reduced to pl 2 (with pl(x) = >.x{x+l}) 

and finally to 3. 

On our machine, we compile the functional 

expression 

z=pl (2) where pl=pluss (1) 

to the predicate calls 
?- pluss(l,Pl), 

P1(2,Z). 

which then becomes: 

eq fO, '1' % argument 
push nl % Pl 
call 'pluss/2' 
pop n2 % Pl 
eq nO, '2' % argument 
push nl % z 
callThunk f2/2 % call P1(2,Z) 
pop nz % z 

P luss is a 1-ary function (2-ary predicate) plus: 

pluss(X,Z) :- thunk(plus(X)/2,Z). 

which is compiled to: 
rnkThunk fl,1, 'plus/2' % Z:=thunk( ... ) 
return 

MkThunk fl, 1, 'plus/2' means that register 1 
is unified to a thunk pointing to p 1 us / 2, the first 
argument already having been set in register 0. 
MkThunk is like a call, so it frees all the arguments 
(in this case, register O is marked as empty after its 
value is saved in the thunk). The third operand to 
mk Thunk may be a register so that we can make a 
thunk from a thunk. MkThunk turn atomic objects 
can be made into thunks by using the "=" predicate 
(defined X=X). 

Whenever an eq, eqSkip, eqLst or swAVNL 

instruction requires a value, the thunk is "woken up" 
and evaluated. The non-empty registers are put into a 
new thunk (pointing to the current instruction) which 
is pushed onto the execution stack. This "suspends" 
the currently executing predicate (unification is 
repeatable, so we do not need to store any other 
information to aid in restarting the suspended 
instruction). The registers are then loaded from the 
woken thunk and execution proceeds within it until 

its last return instruction is reached. Normally, 
when a return is executed, the top element on the 
stack is a code segment but in this case it is a thunk 
so the registers are restored from the thunk (recall 
that all the registers must be empty before a return) 
and execution resumes where it was earlier 
suspended. 

Because a thunk saves the registers, pure normal 
order execution does not need to push and pop 
registers on the execution stack. But the mkThunk 

and call Thunk instructions are quite expensive, so 
using thunks and normal order evaluation is less 
efficient than applicative order evaluation. There is, 
however, a compensating optimisation possible. 
Rather than using a logical variable to return the 
value of a predicate (with the associated push and 
pop), the value can be returned directly in a register: 

eq fO, '1' % argument 
call 'pluss/2' % result in reg 31 
eq nO, '2' % argument 
callThunk f31/2 
eq nz, f31 % z"' result 

A simple (not very useful) example of delayed 
evaluation: 

intsFrorn mi = rn: (intsFrorn (rn+i) i) 

which returns a list of every ith integer starting at m. 
We can sum all the even integers up ton by: 
sumLirn (x:r) n = if x > n 

then 0 
else x + (surnLirn r n) 

sumEven n • surnLirn (intsFrom 2 2) n 

At each step of sumLim, a new list element (x: r) 

is required. This wakes up the int sF rom thunk 
which makes a list element containing the next 
number and a thunk for generating the next list 
element. Eventually sumLim reaches the limit n and 
no more elements are needed. · 

Nai'.vely translating this, to producer-consumer co­
routines: 
intsFrorn(M, I, M.L) :- M2 is M + I, 

intsFrom(M2, I, L). 
surnLim(X?.R, N, 0) ·- X > N. 
surnLim(X?.R, N, S) •- sumLim(R, N, S2), 
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Sis X + S. 
sumEven(N, S) ·- sumLim(L, N, S), 

intsFrom(2, 2, L). 

where the ? notations mean that the predicate must 
delay until the value is instantiated. A delay is 
implemented by using a swAVNL or varGoto 

instruction to detect that a value is uninstantiated - a 
de 1 a y r instruction suspends the predicate by 
saving a thunk with all the non-empty registers on 
the delay list associated with the variable and then 
executing a return. When the variable becomes 
instantiated, all associated delayed predicates are 
made eligible for resumption ( the current predicate is 
suspended and all the delayed predicates are pushed 
onto the execution stack except for the oldest which 
is resumed). 

The above program has a subtle error. SumLim is 
first started and immediately delays on L. 

IntsFrom is then entered - it instantiates the first 
element of L. This wakens sumLim (and suspends 
intsFrom) which calls itself and then delays on the 
next element of L. Eventually, sumLim terminates 
but intsFrom continues generating elements in the 
list even though they are not needed. Here is a 
correct version 
intsBetween(M, N, I, M.L) :- MS N, 

M2 is M + I, 
intsBetween(M2, N, I, L). 

intsBetween(M, N, I, []) :- M > N. 
sum([]?, 0). 
sum(X?.R, S) :- sum(R S2), Sis X + S. 
sumEven(N, S) :- sum(L, S), 

intsBetween(2, N, 2, L). 

This should not be taken to mean that thunks are 
more powerful than delayed predicates. In some 
cases, delayed predicates are easier to use because 
they allow more than one predicate to delay on a 
single variable. Predicates also backtrack. 

The main difference between the two concepts is in 
how they handle an "infinite" list. For the 
computation to terminate, the list must be made 
finite. Thunks do this by eventually leaving the tail 

uncomputed; delayed predicates eventually instantiate 
the tail to nil. In both cases, the list need not actually 
exist (it is, after all, just a communication channel) -
reference counting (if used) ensures that only the 
current element exists, all other elements being 
deallocated as soon as they are finished with. 

3.4 Equality: is and= 

Standard Prolog has a simple syntactic equality 
theory given by the predicate"=" (defined X=X). 

Another kind of equality is provided by the builtin 
predicate is. This can be considered to be defined: 
Xis Y ·- atomic(X), X=Y. 
Xis F :- F ~ .. Fname.FArgs, 

isArgs(FArgs, FAx), 
append(Fname.FAx, [X],FL2), 
F2 = .. FL2, 
call(F2). 

isArgs ( [] , [] ) . 
isArgs(H.T, H2.T2) :-

·- "Z:=X+Y". +(X,Y,Z) 
-(X,Y,Z) ·- "Z :=X-Y". 

etc. 

H2 is H, 
isArgs(T, T2). 
% builtin predicate 

The predicates is, +, - , etc. delay if any of their 
parameters are not sufficiently instantiated. 

The first clause is a slight extension of the usual 
definition (removing the "only numbers" restriction). 
The second clause expects the right-hand parameter 
to be of the form F (Al, A2, ... ,An): it evaluates 
arguments Al through An (recursively using is) to 
produce B 1 through Bn, then computes X by calling 
F ( B 1 , B 2 , ... , B n , X) • If we assume that ca 11, 

= . . , +, - , etc. are defined by an inf'mite number of 
rules, is is definable in first-order logic. 

This definition of is gives a kind of semantic 
equality. For convenience, let us introduce the 
notation p ( {F} )" to mean Fv is F, p (Fv) ( {F} 

is pronounced "evaluate F"). Using this for factorial: 
f(O, 1). 
f(N, (N*f((N-1})}. 

The second clause is an abbreviation for: 
f(N, NF) :- NF is N*F, Nsub is N-1, 
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f(Nsub, F). 

This definition depends on arithmetic predicates 
delaying when their arguments are insufficiently 
instantiated. Although tail recursive, it is much less 
efficient than the non tail recursive version because 
of the overhead of processing the delays. 

3.5 Combinators 

The implementation described so far corresponds to 
a lazy SECD machine [Hend80]. But it can also be 
used as a combinator machine [Turn79]. Thunks and 
code segments, being "first class" objects, can be 
passed as arguments and be returned as values. 

A thunk is evaluated only when required by 
unification or by a builtin. When a thunk is 
evaluated, it may return a structure containing 
another thunk which itself requires evaluation when 
its value is needed. 

The traditional combinators can be restated as 
predicates. Given the definitions: 
I = >.x.x 
K = >.x >.y.x 
S = >.f >.g >.x. (f x) (g x) 

we get the following predicate definitions (using 
thunk/2 as described earlier): 
comb_ I (F' F) . 
comb_ K(F,Z) :- thunk(comb_kk(F)/2,Z). 
comb_S(F,Z) :- thunk(comb_ss(F)/3,Z). 

with the auxilliary predicates: 
comb_ kk(X,Y,X). 
comb_ss(F,G,Z) :-

thunk(comb_sss(F,G)/4,Z). 
comb_ sss(F,G,X) :-

F(X,Zl) ·, G(X,Z2), Zl(Z2,Z). 

Here is a computation using predicates pluss (1-: 
ary addition) and succ (successor): 

a= S plus succ 3 

is compiled to the predicate definitions and calls 
pluss(X,Z) :- thunk(plus(X)/2, Z). 
succ(X,Z) :- z is X+l. 
?- comb_s(pluss,Al), Al(succ,A2), A2(3,A). 

resulting in: 

Al= thunk comb_ss: pannO=pluss 
A2= thunk comb_sss: parmO=pluss,parml=succ 
A= Z where pluss (3, Zl), succ (3, Z2), Zl (Z2, Z) 

leading to: Zl= thunk plus: pann0=3 
Z2-= 4 

and finally (when evaluation of z is forced all the way): 
Z = A = 7 

When code is written using the combinators K, I 
and S, the predicate calls to pred_K, pred_I and 
pred_S lookjust like normal predicate calls. When 
they are executed, the returned values are thunks 
which can be handled like any other objects. They 
will be evaluated only when• needed and only as 
much as needed, possibly returning structures 
containing other thunks. 

This definition of combinators requires that thunks 
be created only for the basic combinators K, I and S 
and of course for any other combinators (such as B, 
C, etc.) which are introduced to control the size of 
the compiled code (from which variables have been 
removed). All other definitions are done without 
reference to thunks. 

The combinator machine uses a subset of the 
inference machine's instructions in a small number of 
ways, so a number of optimisations are possible. 
Call instructions invariably have two arguments, so 
the "load arguments, push new variable for result, 
call, pop result" sequence can be optimised into one 
instruction. By adding these optimisations to the 
machine, the programmer is given the flexibility of 
efficiently using either the lambda machine or the 
combinator machine models of functional 
computation - or mixing them - as the problem 
requires. 

In Turner's combinator machine, combinator 
reduction occurs in-place. Turner observed that when 
an expression occurs within a function, it will only 
be evaluated once, the first time it is needed. Because 
logical variables share, we get the same effect with 
our predicate translations of combinators. In the 
combinator machine, values do not actually get 
replaced -rather, new values are computed and the 
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replaced - rather, new values are computed and the 
old values are abandonded (and eventually garbage 
collected). 

4. Conclusions 

We have described a new logic inference machine 
which can efficiently implement functional 
programming. It can directly execute functional 
constructs or execute deterministic predicates which 
are equivalent to functional constructs. The latter is 
often preferable because it offers more scope for tail 
recursion optimization. 

The machine has been implemented and runs at 
about the same speed as other logic inference 
machines (such as W AM implementations). 
Functional programs run efficiently because they are 
compiled to a true functional subset of the inference 
machine - there is no overhead for creating 
unnecessary choice points as would happen if we 
simply translated from functional constructs to 
Prolog. 

Having designed a machine which can efficiently 
handle both functional and logic programs, the 
problem remains of designing a single integrated 
programming language which can talce advantage of 
the many possibilities offered. 
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Appendix: backtracking 

The deterministic inference machine is easily 

extended to allow backtracking by adding two stacks: 

a backtrack (choice point) stack and a reset stack 
("trail"). The backtrack stack can be embedded in the 
execution stack as in W AM; we have separated the 
stacks for simplicity of explanation. 

When unification instantiates a value cell which is 
older than the top choice frame, the cell's address is 

put on the reset stack (if the cell is newer, 

backtracking would simply free it, so there is no 
need to record it). The age number of an 

uninstantiated variable is the depth of the choice stack 

when the variable was created, so an entry is pushed 
onto the reset stack only if the cell's age number is 
less than the depth of the choice stack.1 Deterministic 

predicates will not create reset stack entries because 
such predicates do not create choice points. 

Wherever backtracking is possible, choice points 
must be created on the backtrack stack using the 
mkCh instruction. Each choice point frame contains 
sufficient information to reset the machine to the state 
it was in when the mkCh was executed: 

values of all non-empty registers, 

value of cpc, 
top of the execution stack and reset stacks, 
failure instruction address. 

When failure occurs, by a unification failing or by 
an explicit fail instruction, all registers are emptied 
and the top choice point frame is used to fill the 
registers. The reset and execution stacks are popped 

to what they ~ere when the choice point was created. 
As the reset stack is popped, its entries are used to 

reset objects to uninstantiated. Ex~cution then 

resumes at the failure instruction address. 

When backtracking occurs, the execution stack 

must be restored to what it was when the choice 

1 A similar technique is used in W AM except that the relative 
positions on the stack are used rather than age numbers -
"global'' cells are considered to be older than "local" cells. 

entry was made. This means that a return instruction 
may not pop the execution stack if a choice entry 

needs it- the choice entry "protects" the entry in the 

execution stack [GLL085]. The toes value in the top 
choice point frame is used to determine whether or 
not the execution stack can be popped. Each entry in 
the execution stack has a back pointer to the previous 
frame, skipping frames which are protected by the 
choice Stack. If only deterministic predicates are 
executed, nothing is put onto the choice stack and the 
execution stack grows and shrinks just like the 
execution stack in a conventional machine (Algol, 

Pascal, etc.). 

When a predicate delays it must also be recorded on 

the reset stack so that it can be removed from the 
delay list upon backtracking - when a delayed 
predicate is woken, it is recorded a second time on 

the reset stack so that backtracking can put it back on 
the delay list. An optimisation similar to TRO is 
performed: if no choice point has been created since 
the original delay entry was created, both entries are 
removed from the reset stack (shuffling the stack 
down if necessary). 

Deterministic predicates run slightly slower on the 
full backtracking machine than on a purely 

deterministic machine. There are three overheads: 

• making choice points rather than just branching to a 
failure address for if-then-else (that is, using the 

mkCh instruction instead of switch instructions). 
• testing whether or not an instantiation should push 

an entry onto the reset stack (for deterministic 

execution, nothing will ever be pushed). 

• recording delay information on the reset stack. 
The first item can be avoided by a smart compiler. 

We can avoid recording delay information on the 

reset stack by having a "set deterministic mode" 

instruction which causes such information to be not 

recorded. 



Appendix: pure functional code 

For comparison, here is the pure function version 
of the function p which applies q to each element of 
a list. The result is returned in register 1 which is not 

pre-initialised to be a logical variable (actually, 

register O should be used to make higher order 
functions easier to implement - doing this would 

require more machine instructions for moving values 
into the correct registers): 

swAVNL f0,n0,n2 % switch on parmO 
builtin "error" % invalid parm 
builtin "error" % can't be variable 
goto nil % parmO= [] 

1st: % parmO=Hd.Tl 
push f2 % save Tl 

% argO: already set 
call 'q/1' % regl :•q(Hd) 
pop no % restore Tl 
push fl % save q(Hd) 
call 'p/1' % rl:-=p(Tl) 
pop n2 % restore q (Hd) 
eqLst n0,f2,fl % result:=q(Hd) .p(Tl) 

% (can't fail) 
return 

nil: 
eq nl,'[]' % result:= [] 
return 

This code is one instruction longer than the code 
which uses logical variables (because of the return 

instruction). The functional version builds the return 
value more efficiently using eqLst no, f2, fl -

the predicate version does it by e qL st f 1 , n 1 , n 3 
and then filling in the head and tail. Thus, the TRO in 

the predicate has a price: slightly slower construction 
of the result and one extra level of indirection (using 
"reference" objects). 


