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1. INTRODUCTION 

The degree constrained subgraph problem (or (g,f)-Jactor problem) specifies an arbi
trary graph1 H = ( V,E) and two functions g and f. V-+ N and asks whether there exists 
a subgraph G of H whose degree at each vertex v E V, denoted deg 0 ( v), satisfies 
g( v) $ deg0 ( v) $ J( v). Such a subgraph is called a (g,/)-factor of H. 

We consider the following generalization of the (gJ)-factor problem. We say that 
H = ( V,E),,g,/) is a capacitated graph if ( V,E) is a graph, >..:E-+ R+, and gJ V-+ R+, 
where g(v) $ .f(v), for all v E V. A paclcing 1r of His a function 1r:E-+ R satisfying 
0 $ 1r(e) $ >..(e), for all e EE, and :E 1r(e) $ fl:v) for all vEV. Since :E 1r(e)$fl:v) 

e:,11 e:111 

implies ,r( uv)~.f( v), for all vE V, we can assume without loss of generality that 
>..(uv) ~min {fl:u),Jtv)} for all uvEE. If >.(uv)=min {.f(u),.f(v)} for all uvEE we say that H 
has unconstrained edge capacities. Since :E ,r(e) $ :E >..(e), we can assume without loss 

e!:>11 eev 

of generality that J(v) $ :E >..(e). Thus2 J(V) $ 2>..(E). (For convenience we will some-
e:, 11 

times extend the domains of>.. and ,r, defining 1r(e) = >..(e) = O, for e ¢ E.) We define 
deg1rv = E 1r(e) and h,r(v) = min {g(v),deg1r1J}. A packing ,r is said to be deficient at 

e :, 11 

vertex v if degirv<g(v). The size of the packing ,r, denoted JJ,rJJ, is given by 
1!1rJJ = E h,r(v) . Note that JJ1rJJ$g(V). The degree constrained packing problem (or 

uEV 
(g,1) - packing problem) asks for a packing 1r of H that maximizes jJ1rJ j. The deficiency of 
a packing 1r is given by g(V)- jJ1rJj. A packing of deficiency O is said to be perfect. 

If >.., g, and / are all integer valued, we say that H is an integer capacitated graph. 
If in addition >..( e) = 1 for all e E E, we say that H is unit capacitated. Similarly, if 1r is 
integer valued (respectively, {0,1} - valued) we say that it is an integer (respectively, 
unit) packing. It should be clear that the graph H = ( V,E) admits a (g,/)-factor if and 
only if the unit capacitated graph H 1 = ( V,E,>..,g,/) admits a perfect unit packing. 

Amongst others, two special cases of the (g,/) - packing problem, which turn out to 
be equivalent for integer capacitated graphs, a.re singled out for special attention. In the 
first, which we call the (g</) - packing problem, the degree constraints g and / satisfy 
g(v) < f(v) , for every vE V. The second case is the bipartite (g,I) - packin,g problem, 
that is the (g,-f) - packing problem restricted to bipartite graphs. 

We study both the general and integer versions of the (g,1)-packing problem from a 
number of different viewpoints. First, in the spirit of Berge [6; 7, Chap. 8, Thm. 12], we 
present a characterization of maximum size (g,.1)-packings in terms of the absence of cer
tain very simple augmenting configurations. Our proof involves a new derivation of 
Lovasz's (g,/)-factor theorem using a slight extension of techniques introduced by Gallai 
[16]. 

1 Unless otherwise specified, it is assumed that graphs are undirected but may have loops and multiple edges. We 
denote a typical edge with endpoints tJ and W ae tJW. 

2 When Xis a set and/ a function defined on X, we let /(x)= JJ..x). 
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It turns out that the condition in Lovasz's (g,.f)-fa.ctor theorem can be simplified in 
some cases. This was already observed by Las Vergnas [24]. We obtain such a 
simplification in the case 

g(v) < J(v) or g(v) = J(v) = 1, 

for every v E V, or the graph H is bipartite. This subsumes the Las Vergnas condition 

g(v) =::; 1, 

for all v E V, and we obtain Las Vergnas' theorem as a corollary. This also generalizes 
the simplification in [20], which applies when 

g(v) < J( v), 

for all v E V, or the graph H is bipartite. However, the proof given in [20] is substan
tially simpler. 

In section 3, we set out in some detail the very close connection between the max
imization problems for network flows and (g,J)-packings. This generalizes some of the 
known equivalences between network flow and bipartite matching problems. In this way 
the extensive literature, including characterizations and algorithmic results, on network 
flows ca.n be reinterpreted in terms of certain degree constrained packings. Furthermore, 
this reveals some non-trivial equivalences between certain restricted (g,J)-packing prob
lems. 

Section 4 is concerned with the construction of an efficient algorithms for the 
integer (g,J)-packing problem. Using a variant of Gabow's algorithm [15] for finding 
(g,J)-factors with the maximum number of edges, we give an O(v'g(V)).(E)) upper bound 
for this problem. 

A unifying theme that runs through this paper is our use of what we have called 
maximum size as our optimization criterion in the study of degree constrained packings. 
In section 5 we mention some other criteria. In particular, we show that the problem of 
finding a (g,J)-packing that minimizes the number of deficient vertices is, in general, 
NP-hard. Thus, in contrast to our earlier results, we should expect neither polynomial 
algorithms nor simple duality theorems for this particular optimization criterion. 

A generalization of Hopcroft and Karp's bipartite matching algorithm [21] for the 
efficient construction of maximum size packings in integer capacitated bipartite graphs is 
given in the Appendix. 
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2. CHARACTERIZATIONS 
PACKINGS 

OF MAXIMUM (g,f)-

There is a rich history of characterization results for maximum (g,.f)-packings. This 
includes the well known existence theorems for 1-factors (i.e. {1,1)-factors), £-factors (i.e. 
(/,/) -factors), and (g,.1)-factors, due to Tutte [30], Tutte [31], and Lovasz [25] respectively, 
and the augmenting path theorems of Berge [5; 7, Chap. 8, Thm. 1] for matchings (i.e. 
(1,1)-packings) and (/,/)-packings (also called c-matchings [7)). The literature is marked 
by numerous simplified or alternative proofs, real and apparent generalizations, and 
unifications. We will restrict our discussion to only those results that bear directly on 
the results and techniques of this paper. 

In this section, we present a characterization, in the spirit of Berge [6; 7, Chap. 8, 
Thm. 12], of maximum (g,f) -packings in terms of the absence of certain augmenting 
configurations. We derive new proofs of the duality results of Lovasz [25] and Las Verg
nas [24]. 

Throughout this section H = ( V,E)..,g,/J denotes an arbitrary capacitated graph 
and 1r denotes some packing of H. An edge e E E with 1r( e) > 0 is said to be used by 1r. 
An edge e E E with 11'( e) < >.( e) is said to be TJ.nsaturated by 11'. Note that in general an 
edge may be both used and unsaturated. If X, Y s;; V we denote by >.(X, Y) (respectively 
1T(X, Y)) the expression E E >.(xy) (respectively E lJ 1r(xy)). 

2:EX11E Y 2:EX11E Y 

We will develop our characterizations for the two cases of general and unit capaci
tated graphs separately. In both cases augmenting configurations are based on the fami
liar notion of alternating paths. An alternating pathin H with respect to 1T is a sequence 
of not necessarily distinct vertices v0,v1, ... ,tlt E V where edge v.-v.-+l E E is unsaturated, 
when i is even , and used, when i is odd, for O $ i < t. We refer to t as the length of the 
path. 

2.1. General edge capacities 

An augmenting path Pin H with respect to ,r has one of the following two forms: 
i) P is an odd length alternating path starting at a vertex v0 with deg1r"D < g( v0) and 

ending at a vertex tit (not necessarily distinct from v0) with deg1rvt < !( vt); or 
ii) P is an even length alternating path sti1rting at a vertex v0 with deg,,,.v0 < g( v0) and 

ending at a vertex Vt with de 91rtlt > g( Vt). 

It should be clear that if H admits an augmenting path with respect to ,r then 11' is 
not a maximum packing of H. (11,rjj can be increased by increasing 1t'( vivi+1), for even i, 
and decreasing ,r( vivi+1), for odd i, along any augmenting path. Given such a path the 
maximum possible such augmentation is straightforward to compute, but is not relevant 
for our purposes here.) 

That the absence of augmenting paths is a sufficient as well as necessary condition 
for 1r to be a maximum packing is immediate from the proof of the following theorem. If 
S ~ V, define r(S) to be the set {vEV- SI >.(v, V- S) < g(v)}. 
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Theorem 2.1. If 11" is a mazimum size packing of H, then ll1rll equals the minimum over 
all sets S ~ V, of the expression 

g( V - r(S)) + >.(r(S), V - S) + l(S) 

Proof. Let 1r be an arbitrary packing of H and suppose that S ~ V. Let T = r(S). 
Then, 

$ E g( v) + E deg,rv 
t1(/. T t1ET 

$ g( V - T) + E E 1r( vw) + E E 1r( vw) 
11ETwEV-S 11ETwES 

$ g(V- T) + >.(T, V- S) + J(S). 

Hence the maximum of l11rll is at most the minimum of the expression cited. To prove 
their equality we shall find a packing ,r and a set S for which 

l11rll = g( V - r(S)) + >.(r(S), V - S) + l(S). 

Let 1r be any packing of H which admits no augmenting path. We define the sets R 
and S recursively. 
i) if deg,rv < g( v) then vER; 
ii) if vER, 1r( vw) < >.( vw), and deg,rw = J( w) then wES; and 
iii) if vES, 1r( vw) > 0, and deg,rw = g( w) then wER. 

Since ,r admits no augmenting path, it follows that RnS = t/>. In addition, 
a) if vES and 1r( vw) > 0, then wER 
b) if vER and 1r(vw) < >.(vw), then wES. 
Thus 

g(V- R) + >.(R, V- S) + l(S) 

=g(V-R)+ E E 1r(vw)+ E E1r(vw) 
t1eRwE V-S tlERwES 

= g( V - R) + E deg,rv 
t1eR 
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But vER implies either deg,rv < g( v) or deg1r" = g( v) and there exists a uES such 
1r(uv)>O. Hence, using (b) above, A(tJ,V-S)<g(tJ) for all tJER, (i.e. R~r(S)). 
Furthermore, if tJE V - (RuS) then deg1rv ~ g( tJ) and 1r( tJw) = 0 for all wES. Hence, 
A( v, V - S) ;?: g( tJ) for all tJE V - (RuS). Thus R = r(S). 

Nate that the expression minimized in Theorem 2.1 may also be written as8 

g(V) - E [g(tJ) .:.A(tJ,V-S)] + J(S). 
11 E V-S 

[I 

Corollary 2.2. If H is a capacitated graph with unconstrained edge capacities and 1r is a 
maximum size packing of H1 then i11rll equals the minimum over all S ~ V of the expres
sion g(V - r(S)) + f(S). Furthermore, r(S) forms an independent set in H. 

Proof. Since the edge capacities of Hare unconstrained, it follows from the definition of 
r(S) that the elements of r(S) are isolated vertices in H - S. Hence A(r(S), V - S) = 0. 

[I 

Note. When H has unconstrained edge capacities, Corollary 2 .2 implies that H has a 
perfect packing if and only if J(S) ;?: g(r(S)) for every Sf V. This is equivalent to 
Theorem 2 of [8]. 

Corollary 2.3. A packing ll1rli of His maximum if and only if H admits no augmenting 
path with respect to 1r. 

[I 

Our augmenting paths have obvious similarities with the augmenting paths that 
arise in the characterization of maximum flows incapacitated networks [14]. We note in 
Remark 3.16 that Theorem 2.1 is equivalent to the well-known max-flow min-cut 
theorem of Ford and Fulkerson and we suggest an easy derivation of the latter from the 
former. 

2.2. Integer edge capacities 

If H = ( V,E,A,g,I) is an integer capacitated graph then we denote by fI the unit 
capacitated graph formed from H by replacing ea.ch edge e E E by A( e) copies of itself 
each with capacity 1. 

Remark 2.4. It should be clear that the maximum integer packing of Hand the max
imum unit packing of fI have the same size. As a result characterizations and algo
rithms for maximum packings in unit capacitated graphs translate directly into charac
terizations and algorithms for maximxum packings in integer capacitated graphs. 

s X.:. y denotes the expression min {X - y, O}. 
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Suppose therefore that H is a unit capacitated graph and that ,r is a unit packing 
in H. We refer to those edges e E E for which 1r( e) = 1 as dark edges and denote them as 
o = = = = = o. Edges e E E with ,r(e) = 0 are referred to as light edges and are 
denoted as o - - - - - o. The vertex label <g (respectively, </, g, I, f = g) denotes a 
vertex" with deg1rv < g(v) (respectively, </(v), =g(v), =J(v), =J(v) = g(v)). 

Note that we can associate with a unit packing ,r the subgraph of H formed by the 
dark edges. In this way, we can interpret results about unit (g,J)-packings as results 
about (g,J)-factors. 

An augmenting path in H with respect to ,r is an elementary path4 of one of the fol
lowing three forms: 

<g I g " I >g 
i) o - - - - [-o = = = = = o-] - - - - o = = = = = o , 

<g I g " <I 
ii) o - - - - [-o = = = = = o-] - - - - o, 

where the endpoints are distinct, and 
<g I= g I = g " < f - 1 

iii) o - - - - [-o = = = = = o - ] - - - - o, 
where the endpoints are identical, 

p q ,, 

where o - - - - [-o = = = = =o -] - - - - o is defined recursively as o - - - - - o or 
p q p q ,, 

o - - - - - o = = = = = o - - - - [-o = = = = = o -] - - - - o. We note that if H is 
bipartite or if g( v) < J( v), for all "E V, then augmenting paths of type iii are impossible 
and if/= g then paths of type i are impossible. 

As before, it should be clear that if H admits an augmenting path P with respect to 
,r then ,r is not a maximum packing of H. In this case an augmentation of ,r, increasing 
11,rl\ by at least one, is achieved by taking the symmetric difference of ,r (viewed as the 
set of edges with ,r( e) = 1) and the edges of P. It is an immediate consequence of the 
proof of the following theorem that the absence of augmenting paths is also a sufficient 
condition for ,r to be a maximum packing of H. The theorem was first proved by L. 
Lovasz [25] using another method. Tutte (32] has also given a different proof. As far as 
we know ours is the first proof of this result which uses augmenting paths explicitly. 
(Special cases of Lovasz' theorem have also been proved by augmenting path techniques 
[1 ],[2],[17],[18],[20],[22] .) 

As a preliminary to our proof of Lovasz' theorem we recall some of the basic termi
nology and results on augmenting paths (cf. [7],[16],[33]}. Let ,r be any unit packing of 
H that admits no augmenting path. Following Berge [7] we assign colours to the vertices 
of H in the following way: 
i) if there exists an even length elementary alternating path to a vertex w from aver

tex "with deg1rv < g( v) then w is coloured black; 
ii) if there exists an odd length elementary alternating path to a vertex w from a ver

tex " with deg1rv < g( v) then w is coloured white; and 
iii) if there exist both even and odd length elementary alternating paths to a vertex w 

from a vertex " with deg1rv < g( v) then w is coloured grey. 

' A path P is elementary if no ed~ appears more than once on P. 



- 8 -

It is immediate from the definitions that, 
i) if an edge e joins two white vertices, then e is light; 
ii) if an edge e joins two black vertices, then e is dark; 
iii) grey vertices are adjacent only to coloured vertices; 
iv) if an edge e joins an uncoloured vertex to a white vertex, then e is light; and 
v) if an edge e joins an uncoloured vertex to a black vertex, then e is dark. 

Furthermore, by the assumption that 1r admits no augmenting path, we have: 
i) all black vertices 11 have deg'11'11 $ g( 11); 
ii) all white vertices 11 have deg'11'11 = I( 11) ; 
iii) all grey vertices 11 have g( 11) = I( 11); and 
iv) all uncoloured vertices 11 have g( 11) $ deg'11'11 $ I( 11). 

Let Black fl' (respectively, White '11'> Grey 1r) denote the set of black (respectively, 
white, grey) vertices of H. Let C be any grey component - i.e. a connected component of 
H jGrey ,r It is a direct consequence of [7,16] that C is of one of the following three 
types: 
type A - C has a unique vertex 11 with deg1r11 = g( 11) - 1. All other vertices w E C have 
deg1rw = g( w). All edges joining C to white vertices are light and all edges joining C to 
black vertices are dark. 

type B - All vertices w E C have deg1rw = g( w). All but exactly one edge joining C to 
white vertices are light and all edges joining C to black vertices are dark . . 

type C - All vertices w E C have deg1rw = g( w). All edges joining C to white vertices are 
light and all but exactly one edge joining C to black vertices are dark. 

Note that every grey component has size greater than one and if v E Grey 1r then 

11 1s type A 

11 is type B 

11 is type C 

~ g(11). 

Furthermore if C is any grey component, then 

J( C)+).( C,Black 1r) = 1 + I.: I.: 1r( 11w)+2 I.: I.: 1r( 11w). 
11EC wEC IIEC wEBlack. 

= 2(mod 2) 

Let S and T be disjoint subsets of V. Let E(H,S,T) denote the set of connected 
components C of H - (5\.J T) with the property that /(z) = g(z) for all z E C and 
1(0) + ).(C,T) = l(mod2). 
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Theorem 2.5. If His integer capacitated and ,r is a maximum size integer packi.ng of H, 
then I J1rl I equals the minimum, over all pairs of disjoint sets S, T of the ezpression 

g(V- T) + /(S) + A(V- S,T) - IE(H,S,T)I, 

Proof. By Remark 2.4 it suffices to prove the result for unit capacitated graphs. Let ,r 

be an arbitrary unit packing of H. Suppose S,T ~ V are disjoint and 3 = S(H,S,T). 
Then, 

ll1rii = I: h,..( v) 
11EV 

$ I: h,..( v) + I: deg,..v 
11 (:. T 11ET 

$g(V-T)- I: I:(/(v)-h,r(v))+ I:deg,..v 
CEE11EC 11ET 

= g(V- T) + /(S) + A(V-S,T) 

$ g(V- T) + J(S) + A(V- S,T) 

$ g(V- T) + J(S) + A(V-S,T) - I: 1, 
CEE 

since at least one of the sums is non-zero, 

= g(V - T) + J(S) + A(V- S,T) - IS(H,S,T)I, 

Hence the maximum of ll1rll is at most the minimum of the expression cited. To prove 
equality, let ,r be any unit packing of H that admits no augmenting path and let 
S=White,.. and T=Black,... It follows from the definitions that every component of 



- 10 -

HIGrey 1r belongs to B(H,S,T). Hence, 

IB(H,S,T)I ~ IBA(H,S,T)I + IBB(H,S,T)I + IBc(H,S,T)I ' 

where 8..4.(H,S,T) (respectively, BB(H,S,T), Bc{H,S,T)) denotes the set of components of 
HIGrey 1r of type A (respectively, type B, type C). Thus, 

1171"11 = hAV- T) + :E deg1r11 
11ET 

=hiV-T)+ :E :E1r(11w)+ :E :E 1r(11w) 
11ETwES 11ETwEV-S 

= g(V- T)-IBA(H,S,T)I + f(S)-IEB(H,S,T)I + >.(V-S,T)-IEc(H,S,T)I 

~ g(V- T) + /(S) + >.(V-S,T)-IB(H,S,T)I, 

[I 

Corollary 2.6. An integer packing ,r of H has maximum size if and only if iI admits no 
augmenting path with respect to 71". 

[I 

This statement is further quantified in lemma 4.1 below. 

Lovasz's condition in Theorem 2.5 is quantified over two disjoint subsets Sand T of 
the vertices of H. In some cases the condition may be simplified, and stated in terms of 
only one subset S. A well known example of this kind of simplification occurs in Tutte's 
theorem for (1,1)-factors [30]; this was generalized by Las Vergnas to (g,.1)-factors with 
g(11) ~ 1, for all 11 E V. We now give such a simplification for the case when g(v) < l(v) 
or g(v) = l(v) = 1, for all v E V. Let H be any integer capacitated graph and let S ~ V. 
We denote by E '( H,S) the set of connected components C of H - S with I Cl ~ 3 and odd 
and g(v) = f(v) = 1, for all 11 EC. Recall that r(S) = {v EV- SI >.(11,V- S) < g(v)} . 

Theorem 2. 7. If ,r is a maximum size integer packing of the integer capacitated graph 
H with g( v) < J( v) or g( 11) = J( v) = 1, for all 11 E V, then 1l1rl I equals the minimum, over 
all S ~ V, of the expression 

g(V-r(S)) + f(S) + >.(V-S,r(S)) - IE'(H,S)J. 

Proof. As before it suffices to prove the result for unit capacitated graphs. 

Let ,r be an arbitrary unit packing of Hand suppose S ~ V. If CE E '(H,S) and 
11 EC then 9(11) = 1(11) = 1 and >.(11,V-S) > 0, and hence v ¢ r(S). It follows that 
>.(C,r(S)) = 0 and/(C) + >.(C,r(S)) = l(mod2), that is C E B(H,S,r(S)). Thus 
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ll1rll $ g( V-r(S)) + J(S) + A( V-S,r(S)) - IS '(H,S)I 

is an immediate consequence of Theorem 2.5. 

To establish equality, let 71" be any unit packing of H that admits no augmenting 
path. Let S=White'" T=Black"' and R=Grey ,.... First note that, with the additional 
assumptions on g and /, it follows that no edge of H joins any vertex in T to any vertex 
"ER. (Such a vertex would have deg"'"> 1). Hence, for each CE E(H,S,T), 
A(C,T) = 0 and so J(C) + A(C,T) = IOI- Thus E(H,S,T) ~ E1(H,S). Furthermore, for 
each "E T, A(v, V-S) = deg,...v - E A(vw) < q(v). That is, T ~ r(S). But, if" E r(S), 

wes 
then either " is isolated in H - S or g( v) > 1, that is "¢ R. It follows that r(S) ~ T, 
and hence T = r(S). So, by the proof of Theorem 2.5, 

ll1rll = g( V-r(S)) + J(S) + A( V-S,r(S)) - IE '(H,S)I, 

[I 
Note that the expression minimized in Theorem 2.7 can also be written as 

g( V) - E [g( 11) ..:. degH-s( v)] + J(S) - IE '(H,S) 1-
vev-s 

We now derive the simplification due to Las Vergnas [24]: 

Corollary 2.8. If 1r is a maximum size integer packing of the integer capacitated graph 
H with g( v) E {0,1}, for all v E V, then ll1rll equals the minimum, over all S ~ V, of the 
expression 

g( V-Is) + J(S) - IS '(H,S)I, 

where ls denotes the set of isolated vertices in H - S. 

Proof. In light of Theorem 2.7, it suffices to note that if g( v) =l for all "E V, then for 
any set S ~ V, r(S) ~ ls, and g(Irr(S)) = 0. 

[I 

In [20] we give a simple proof (together with applications) of the following: 

Corollary 2.9. If 1r is a mazimum size integer packing of the integer capacitated graph 
H, where H is bipartite or has g( v) < J( v) for aU "E V, then ll1rll equals the minimum, 
over all sets S ~ V, of the expression 

g(V) - E [g(v)..:. degH-s(v)] + J(S). 
•EV-S 

Proof. In the case that g( v) < J( v), for all " E V, the result follows directly from 
Theorem 2.7. When His bipartite the proof is similar to that of Theorem 2.1 and will 
not be repeated here. 

[I 

Note. Comparing Theorem 2.7 and its corollaries with Theorem 2.5 (Lovasz's theorem), 
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we note that the simplification in these special cases is due to the fact that the set T can 
be fixed as r( S). 

It follows from Theorem 2.1 and Corollary 2.9 that if the integer capacitated graph 
H is bipartite or if g( 11) < J( 11) for all 11 E V, then there exists a maximum size packing 
that is an integer packing. 
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3. (g,f)-PACKING AND NETWORK FLOW PROBLEMS. 

In this section we explore the close connection between the maximization problems 
for network flows and (g,/)-packings. Specifically, we show that a number of variants of 
the (g,1) -packing problem are equivalent to the well-studied maximum flow problem. As 
a byproduct, we describe upper bounds for variants of (g,1)-packing based on efficient 
network flow algorithms. In section 4, we consider other algorithms for integer (g,/)
packings. 

3.1. Definitions and notation 
As in the preceding section, H = ( V,E,>.,g,/) denotes a capacitated graph and ,r 

denotes an arbitrary packing of H. We say that N = (X,A,c) is a network if (X,A) is a 
directed graph with two distinguished vertices, a source s and a sink, and c:A -+ R+. 
We call c( a) the capacity of arc a. (For convenience we define c( a) = 0 for a ¢ A and, 
as usual, we abbreviate c((x,y)) by c(x,y).) Vertices in X1 = X - {s,t} are said to be 
int-ernal vertices of N. 

A flow in the network N is a function e:A -+ R satisfying O ~ e( a) ~ c( a), for all 
a E A, and e(X,x) = e( x,X) for all Z E X1. The value of the flow e, denoted I €I, is 
defined to be the flow out of s, namely e(s,X). The maximum flow problem asks for a 
flow € in N that maximizes 1€1. 

The arc capacities constrain from above the flow that can pass through an arbi
trary vertex x. We define the vertex capacity of x, denoted C(x), to be 

{ 
min{c(X,x),c(x,X)} x E X1 

C(x) = min{c(X,t),c(s,X)} x E {s,t}. 

Note that C(X) ~ 2c(A). It should also be clear that e(x,X) ~ C(x), for all x E X1. A 
network is said to be of type 2 (cf. [13]) if c( a) = 1 for all a E A and C(x) = 1 for all 
xE Xr, 

We will also be interested in the case where networks have non-zero lower bounds 
b(a) on the permissible flow through edges a E A. In this case a feasible flow e is defined 
to be a flow which satisfies e( a) ~ b( a), for all a E A. These lower bounds constrain 
from below the permissible flow through vertices in the obvious way. We define the ver
tex demand of x, denoted B(x) as 

{ 
max{ b(X,x),b(x,X)} xEX1 

B(x) = max{b(X,t),b(s,X)} xE{s,t} 

In our discussions of the relative and absolute complexity of packing and network 
flow problems we adopt the (familiar) assumption of a unit-charged random access 
machine as an underlying model of computation. On this model it is natural to define 
IEI as the size of a capacitated graph H;:::; (V,E,>..,g,I) and define IAI as the size of the 
network N = (X,A). It should be noted that these definitions are based on the (possibly 
unrealistic) assumption that edge capacities can each be represented in one memory 
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location. On a logarithmically charged model, we might redefine size as :E (l+log>.(e)) 
eEE 

and :E (1 +loge( a)) respectively. The results of this section are independent of these 
aEA 

considerations. Our reductions are all linear in that that take instances of one problem 
A of size n into instances of another problem B of size O(n) and transform a solution to 
problem B back to a solution to problem A in 0( n) time. Here size can be defined in 
either of the ways above (or in any reasonably variant of these). We will say that two 
problems are linearly equivalent if there exist linear reductions taking each to the other. 

3.2. Bipartite (f,f)-packing and network flow 

In this section, we consider the very close connection between the maximum flow 
problem and the bipartite (!,/)-packing problem, that is the special case of bipartite pack
ing in which g( v) = J{_ v), for all 1J E V. The results here are all in the spirit of the folk
lore on this topic. We review them here simply to set the stage for the more general 
reductions that follow. 

Let H = ( V,E,')..,f,f) be a capacitated bipartite graph with bipartition V = Uu W. 
Consider the network N = (X,A,c) constructed from Has follows: 

X={v'lvE V}u{s,t} 

A= {(s,u')iu E U} U {(w 1,t)lw E W} U {(u',w')luw EE} 

and c(s,u') = J{_u), c(w',t) = J(w), and c(u',w') = >.(uw). 

Note that !XI = I VI + 2, !Al = I VI + IEI, c(A) = J{_ V) + >.(E) ~ 3>.(E) and 
C(X) ~ 2/{_V). Furthermore, if His integer capacitated then so is N. 

Lemma 3.1. H admits a packing 1r of size z if and only if N admits a flow e of value 
z/2. 

Proof. Let 1r be a packing of H. Then N admits a flow e of size ll1rll/2 by assigning: 
e(u',w') = 1r(uw), e(s,u') = :E 1r(uw), and e(w,t) = I: 1r(uw). The inverse of the same 

wEW uEU 
transformation translates a fl.ow e in N to a packing 1f' of H of size exactly 21 el. 

[I 

Let N = (X,A,c) be any network. Consider the capacitated bipartite graph 
H = ( V,E,>.,1,/) constructed from N as follows: 

V = {z;,a,Zoutlz E X1} U {B0 ut,tin}, 
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.X(z0 utYin) = c(z,y), for a.11 (z,y) EA. 

Note that I VI = 2IXJ - 2, IEJ = IAI + IXI - 2, .I( V) ~ 2C(X), and 
.X(E) ~ c(A) + C(X) ~ 3c(A). Furthermore, if N is integer capa.citated then so is H. 

Lemma 3.2. N admits a flow e of value z if and only if H admits a packing 1r of size 
.I( V) + 2 ( z - C( s)) . 

Proof. Let e be a flow in N and let 1r be the packing of H given by 

1r(z0 utY;) = e(z,y), for (z,y) E A, a.nd 

Then ll1rll = 21e1 + 2C(X1) = l(V) + 2(1e1 - C(s)). Note that the packing 1r saturates all 
of the vertices of H except possibly Bout a.nd tin· Any such packing is said to be a normal 
packing of H. To prove the converse we observe that if 1r is any normal packing of H 
then the inverse of the transformation above yields a flow e satisfying 
ll1rll = /(V) + 2(1e1 - C(s)). Thus it suffices to show that for any packing 1r of H there is 
a normal packing 1r I with ll1r 'II ~ ll1rll• 

Let 1r I be a packing, among packings of size at least ll1rll, that maximizes the total 
assignment to edges of the form XfoXout· Suppose that some vertex X;n is not saturated; 
the case when a vertex Xout is not saturated is handled by a symmetric argument. By 
the maximality of 1r I we know that Z0 ut must be saturated. Since /(z;n) = /(zout) it fol
lows that 1r( ZoutYin) > 0 for some XoutYin E E with z =/=- y. Let 
A= min{/(z;n) - deg,,zin> 1r(zoutYin)}. Then the pa.eking 1r 1 defined by 

{ 

1r( e) + A e = ZinXout 

7r 1( e) = 1r( e) - A e = Z0 utYin 

1r( e) otherwise 

has i11r 'II = i11rll and a greater total assignment to edges of the form Z;nZout, contradicting 
the maximality of ,r. 

[I 

The reductions of Lemmas 3.1 and 3.2 combine to demonstrate the following. 
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Theorem 3.3. The maximum flow problem on capacitated {respectively, integer capaci
tated) networks is linearly equivalent to the bipartite (/,/)-packing problem on capacitated 
(respectively, integer capacitated) graphs. 

[I 

Motivated by Theorem 3.3, we observe that the upper bound of Even and Tarjan 
[13] on the complexity of finding maximum flows in type 2 networks is easily generalized 
to the following. 

Theorem 3.4. FJ any integer network N = (X,A), Dinic 's algorithm finds a maximum 
flow in at most 0( C( X) c( A)) steps. 

Proof. Each edge a E A can be replaced by c( a) edges each of capacity 1. The result
ing unit capacitated network has a total of c(A) edges. A maximum flow of value Min 
this network can be decompoased into M edge disjoint directed paths from s to t (plus 
some directed cycles). A given vertex x sits on at most C(x) of these paths. If the shor
test of these paths has length l then M(l + 1) ~ C(X) or l < C(X)/ M. 

The remainder of the proof is completely analogous to Theorem 3 of [13]. 
[I 

Corollary 3.5. There exists an O(✓J(V)>.(.E)) algorithm for finding a maximum integer 
packing of the capacitated bipartite graph H = ( V,E,>.,f,/). 

[I 

Remark 3.6. This is the same bound achieved by Gabow [15] for finding a (O,..f)-factor 
with the maximum number of edges (equivalently, an (/,/)-packing of maximum size), 
even when the graph is not restricted to being bipartite. In this generality, however, 
Gabow's algorithm depends on a non-trivial reduction to general matching and the 
(inherent) complications of blossoms. 

The transformations above are easily modified to accommodate lower as well as 
upper bounds on the edge capacities of a network. In this more general setting we must 
be concerned with the question of feasibility as well as optimality of flows. Let 
N = (X,A,c,b) be any network with both lower and upper bounds on the capacity of its 
edges. We will assume, with no loss of generality, that ( s,t) ¢ A. 

Consider the capacitated bipartite graph HF= ( V,E,>.,1,/) constructed from N as 
follows: 
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J(x0 ut) = C(x) - b(x,X), for z EX- {t}, 

/(z;n) = C(x) - (X,z), for z E X - { s}, 

Lemma 3. 7. N admits a .feasible flow if and only if HF admits a perfect packing. 

Proof. Suppose that e is a feasible flow in N. In particular, b(z,y) :::; e(x,y) :::; c(x,y) for 
all (z,y) E A. Let ,r be the packing of HF given by , 

Then 

1r(z0 utYin) = e(x,y) - b(x,y), for (z,y) EA, 

degwZout = ,r(zoutZin) + E1r(xoutYin) 
I/EX 

= ( C(x) - e(x,X)) + (e(x,X) - b(x,X)) 

degwZin = ,r(xoutX;,J + :E1r(YoutZin) 
I/EX 

= ( C(x) - e(X,x)) + (e(X,z) - b(X,z)) 

for z E Xr, and by exactly the same arguments (reading t;n for B;n and Bout for tout) 
degtr8out = J(s0 ut) and deg,,t;n = J(t;n)- Hence ll1rli = /( V), that is 11" is a perfect packing 
of HF. 
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Conversely, if HF admits a perfect packing ,r then consider the function e given by 
e(x,y) = ,r(zoutYin) + b(x,y) for all (z,y) E .A. Clearly b(z,y) ~ e(x,y) ~ c(x,y). Further
more, for every z E X1 

e(X,z) = ~ ,r(YoutZin) + b(X,z) 
11EX 

= e(x,X). 

That is € is a feasible flow in N. 
[ I 

Suppose that we modify the construction of HF by making ,\(souttin) = 0. Call the 
resulting capacitated bipartite graph Hmax. 

Lemma 3.8. N admits a maximum flow e of value z if and only if Hmax admits a max
imum packing ,r of size J( V) - 2( C( s) - z). 

Proof. Let e be a maximum feasible flow in N and define ,r to be the packing of Hmax 
given by 

1r(xoutYin) = e(x,y) - b(x,y), for (z,y) E .A, 

Then deg,rX0 ut = J(zout) and degwZin = /(zin) for every z E X1 a.sin Lemma 3.7. Further
more, 
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= e(X,t) - b(X,t) 

Similarly, deg.,IJout = J(sout) - C(s) - lei), Hence, ll1rll = /( V) - 2C(s) - 1e1). 
Conversely, we know that there exists a maximum size packing ,r of Hmax in which 

all vertices except possibly S 0 ut and t;n are saturated and 
degff'tin - deg.,IJ0 ut = b(s,X) - b(X,t). Such a packing is constructed by starting with any 
perfect packing of HF (cf. Lemma 3.7) in which 1r(s0 utt;n) has been set to O and improving 
to optimality by a sequence of augmentations ( all of which start at Bout and end at t;ni 
cf. Section 2.1). This packing suggests the function e where e(z,y) = 1r(zoutYin) + b(z,y) 
for all (z,y) E A. Clearly, b(z,y) ~ e(z,y) ~ c(z,y) for all (z,y) E A and, as in Lemma 
3.7, e(X,z) = e(z,X), for all z E X1. That is, e is a feasible flow in N. Furthermore, 

21el = E(s,X) + E(X,t) 

= (deg-x8out + b(s,X)) + (deg1rtin + b(X,t)) 

[I 

Suppose that we modify the construction of HF by adding two new vertices s;n and 
tout with /( B;n) = J(,,.tout) = C( s) - B( s) and setting .X( 80 ut8;n) = .X(touttin) = C( s) - B( s) 
and ..\(souttin) = 0. Call the resulting capacitated bipartite graph Hmin· 

Lemma 3.9. N admits a minimum flow e of value z if and only if Hrrnn admits a max
imum packing ,r of size J( V) + 2(B(s) - z). 

Proof. Let e be a maximum feasible flow in N and define ,r to be the packing of Hmin 
given by 

1r(z0 utYin) = e(z,y) - b(z,y), for (z,y) E A, 
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Then deg1r11 = I( 11) as before, for every 11 E V - { S;11,tout}- Furthermore, 

deg~in = ,r( Sout8in) 

Similarly, deg.,rlout = /(tout) + B(t) - 1e1. Hence, ll1rll = /( V) + 2B(s) - 1e1). 
Conversely, we know that there exists a maximum size packing ,r of Hrrun in which 

deg1r11 = I( 11) for all 11 E V - { s;11,tout}- Such a packing is constructed by starting with 
any perfect packing of HF in which ,r( S 0 utsin) and ,r( t0 utt;11) have been set to ,r( Soutt;11) and 
,r( s0 utt;11) has been set to 0. This packing can be improved to optimality by a sequence of 
augmentations all of which start at s;11 and terminate at t0 ut (cf. Section 2.1). The result
ing packing suggests the function e where e(x,y) = 1r(xoutYin) + b(x,y) for all (z,y) E A. 
Clearly, b(x,y) ~ e(x,y) ~ c(x,y) for all (x,y) E A and, as before, E(X,x) = E(z,X), for all 
x E X 1. That is, E is a feasible flow in N. Furthermore, 

2lel = e(s,X) + €(X,t) 

= C(s) - deg~in + C(t) - deg.,rl0 ut 

= /( V) - ll1rll + 2B( s) 

[I 

Lemmas 3.7 through 3.9 combine to prove the following. 

Theorem 3.10. The feasibility problem for flows in capacitated {respectively, integer 
capacitated} networks with edge demands and capacities is linearly reducible to the per
fect bipartite (/,/)-packing problem on capacitated (respectively, integer capacitated} 
graphs. Furth ermore, the problem of maximizing or minimizing the feasible flow in capa
citated (respectively, integer capacitated} networks with edge demands and capacities is 
linearly reducible to the biparti'.te (/,/) -packing problem on capacitated (respectively, 
integer capacitated} graphs. 
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3.3. Bipartite (g,f')-packing and network flow 

Let H = ( V,E,>..,g,f) be a capacitated bipartite graph with bipartition V = UU W. 
Consider the network N = (X,A,c) constructed from Has follows: 

X= {u,uluEU} u {w,wlwEW} u {s,t}, 

A = {(s,u),(ii,u),(ii,t)luE U} u {(s,w),( w,w),( w,t)lwE W} 

u {(u,w),(w,u)luwEE} 

and 

c(s,u) = c(u,t) = g(u), c(s,w) = c(w,t) = g(w), 

c(ii,u) = /{u) - g(u), c(w,w) = Aw) - g(w), and 

c( u,w) = c( w,u) = >..( uw). 

Note that IXI = 21 VJ + 2, IAI = 31 VJ + 21.EI, c(A) = 21{ V) + 2>..(E) ~ 6>..(E), and 
C(X) ~ 2/{ V) + 2g( V) ~ 41{ V). Furthermore, if His integer capacitated then so is N. 

Lemma 3.11. H admits a packing ,r of size z if and only if N admits a flow e of value z. 

Proof. Let 1r be a packing of H. Then N admits a flow e of value ll1rll by assigning 
e(u,w) = e(w,u) = 1r(uw), e(s,u) = e(u,t) = h,..(u), e(s,w) = e(w,t) = h,..(w), 
e(u,u) = deg,..- h,..(u), and e(w,w) = deg,..w- h,..(w). 

Conversely, let e be any flow m N. We know that 
lei= e(s,u) + e(s,w) = e(u,t) + e(w,t). Assume, without loss of generality, that 
e( s, u) + e( w,t) 2'. I e1. Then, the packing 'Ir defined by ,r( uw) = e( u, w) has the property 
that h,..(u) 2: e(s,u) and h,..(w) 2'. e(w,t) and hence i11rll 2: lei. 

[I 

Remark 3.12. The transformation of Lemma 3.11 provides a linear reduction from the 
(integer) bipartite (g,/)-packing problem to the (i~eger) network flow problem. It fol
lows, from Theorem 3.4, that there exists an 0( A V)>..(E)) algorithm for the integer 
bipartite (g,J)-packing problem. In light of Theorem 3.3, it also follows that the integer 
bipartite (g,J)-packing problem is linearly reducible to the integer bipartite (/,/)-packing 
problem. Gabow [15] provides another such transformation that holds even for the non
bipartite varients of these problems. Using this he is able to derive a O(JJ{V)>..(E)) 
upper bound for the integer (g,/)-packing problem (cf. Remark 3.6). We look more 
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carefully at this problem in the section 4 and observe that this upper bound can be 
tightened when g( V) is o(/(V)). 

3.3.2. Network flow to bipartite (g<f)-packing 

Let N = (X,A,c) be any capacitated network. Consider the capacitated bipartite 
graph H = ( V,E,>.,g,I) constructed from N as follows: 

V = {xin,Xoutlx E X1} U {sout,tin}, 

>.(xout!lin) = c(x,y), for all (x,y) EA. 

Note that IV]= 2IXI - 2, IEI = IAI + !XI - 2, g(v)</(v), for all tEV, J(V):::; 20(X), and 
>.(E) :::; c(A) + O(X) :::; 3c(A). Furthermore, if N is integer capacitated then so is H. 

Lemma 3.13. N admits a flow e of value z if and only if B admits a packing ,r of size 
g(V) + z - O(s). 

Proof. Let e be a flow in N and let 1r be the packing of H given by 
,r(xoutYin) = e(x,y), for (x,y) E A, and 1r(xjnXout) = >.(xin,Xout) - e(x,x), for XE X1, Then 

111r11 = 1e1 + 2ocx1) - 1x11 

= g( V) + 1€1 - O(s). 

For the converse note that the packing 1r saturates all of the vertices of H except 
possibly tin· In fact (using essentially the same argument as in the proof of Lemma 3.2) 
it is easily shown that any packing 1r of H can be converted to a packing 1r' with this 
property and ll1r 'II ~ ll1rll• By our choice of degree bounds g and /, we note that for 
every vertex XE X1 we have deg1r,Xin ~ deg1r,Xout· If we define e '(x,y) = ,r(xout!lin) it is 

clear that e1(X,x) ~ e1(x,X), for all x E X1. The edges (z,y) EA with €'(:z:,y) > 0 define 
a subgraph of N that we can assume to be acyclic (otherwise the value of e' can be 
reduced on some directed cycles without changing the value of e '(X,t) until the resulting 
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subgraph is acyclic). Thus while e' is not necessarily a legal flow function it is easily 
transformed into a flow function e with lel = ll1rll - g(V) + C(s). 

[I 

Remark 3.14. The transformation of Lemma 3.13 provides a linear reduction of the 
(integer) network flow problem to the (integer) bipartite (g</)-packing problem. Thus 
these problems along with the (integer) bipartite (/,/)-packing problem and the (integer) 
bipartite (g,J)-packing problem are linearly equivalent (cf. Remark 3.12 and also Corol
lary 3.18). 

3.4. Non-bipartite vs. bipartite (g,f)-packing 

In the presence of general (i.e. non-integer) capacities the non-bipartite and bipar
tite (g,/)-packing problems are linearly equivalent. 

Let H = ( V,E,>..,g,I) be any capacitated graph. Consider the capacitated bipartite 
graph H 1 = ( V 1,E 1,>.. 1,g 1,/1) constructed from Has follows: 

V 1 = { v,vlv E V}, 

E 1 = { vw,wvlvw E E}, 

g'(v) = g'(v) = g(v), 

/'(v) = /'(v) = .1(11), and 

Lemma 3.15. H admits a packing ,r of size z if and only if H 1 admits a packing ,r I of 
size t z. 

Proof. If ,r is a packing of H then the packing ,r I given by ,r '( vw) = ,r '( wv) = ,r( vw) 
has size 2 I I ,r I I. Conversely, if ,r ' 18 

,r( 11w) = ( ,r '( vw) + ,r '( wv) )/2 is a 
deg1rv = (deg v + deg v"/2 and so 

1r' 1r' ') 

any packing of H I then ,r given by 
packing of H. Furthermore, 
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h,..( v) = min {g( v), deg1rv} 

= min {2g( v), deg v + deg v}/2 
1r' 1r' 

= (h ,(v) + h ,(v))/2. 
'II" 'II" 

[I 

Remark 3.16. In light of Lemma 3.15 and Remark 3.12, we note that the (g,J)-packing 
problem is equivalent to the network flow problem. Thus Theorem 2.1 is seen to be 
equivalent to the well-known max-flow min-cut theorem [14]. In fact using the reduction 
of Lemma 3.13 it is straightforward to derive the max-flow min-cut theorem from 
Theorem 2.1. 

If we assume that H is an integer capacitated graph and that, in addition, 
g( v) < I( v) for all v E V, then Lemma 3.15 can be strengthened to the following. 

Lemma 3.17. If g( v) < I( v) for all v E V then H admits an integer packing 1r of size z if 
and only if H I admits an integer packing 1r' of size £ z. 

Proof. As shown in the proof of Lemma 3.15 integer packings of H translate directly to 
integer packings of HI and integer packings of HI to half-integer packings of H. So it 
suffices to argue that among maximum size half-integer packings of H there exists an 
integer packing. 

Let 1r be any half-integer packing of H and let 1r * be a half-integer packing of H of 
size at least ll1rll that minimizes the number of non-integer edge assignments. Consider 
the set J of edges of H which are given fractional values of 1r*. If vw E J then, without 
loss of generality, deg1r-'v ~ g( v) and deg,r•W = I( w). (If both deg,,-v < I( v) and 
deg1r•w < J( w) then 1r • ( vw) can be increased by 1/2. H both deg1r ,v > g( v) and 
deg1r•W > g( w) then 1r '( vw) can be decreased by 1/2.) Hence, as g( v) < I( v) for all v E V, 
the subgraph induced by J is bipartite. Furthermore, in this subgraph all vertices of odd 
degree must have deg1r•V < g( v). Thus, by a straightforward Eulerian path type argu
ment, the edges of J can be decomposed into a set of even cycles and even length paths 
joining vertices with deg1r.v < g( v). If we alternately add and subtract 1/2 to the edges 
of either such configuration we construct a pa.eking with smaller J, a contradiction. 
Hence J = </>; that is 1r I is integer. 

[I 
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Corollary 3.18. The integer (g<f)-packing problem and the integer bipartite (g<f)
packing problem are linearly equivalent. 

Proof. It suffices to observe that the reduction described in the proof of Lemma 3.17 
can be implemented in O(IEI) steps by a straightforward depth-first search. 

[I 

Remark 3.19. It follows from Remarks 3.14 and 3.16 that the (g,1)-packing problem is 
linearly reducible to the (g</)-packing problem. Furthermore, the integer bipartite 
(g,.f)-packing problem is linearly reducible to the integer bipartite (g</)-packing problem. 
In light of Corollary 3.18, we should not expect a linear reduction from the integer (g,/)
packing problem to the integer (g</)-packing problem for non-bipartite graphs. Such a 
reduction would yield an algorithm for the integer (g,J)-packing problem that avoids the 
complications of blossoms. 

i 
Figure 3.1 summarizes the reductions of this section. We denote by A --+ B the 

fact that problem A is linearly reducible to problem B (using the construction in Lemma 
or Theorem i). Double arrows indicate that the reductions preserve integrality. 

FIGURE 3.1 HERE 

Using essentially the same transformations as described in Lemmas 3.15 and 3.17, 
Anstee [3] presents a two-phase solution of integer (g,/)-factor problem. His first phase 
solves what he calls the directed (g,/)-factor problem using a direct reduction to the 
maximum flow problem. The second phase - transforming a directed (g,/)-factor to an 
undirected (g,/)-factor - is a matching-type problem. As Anstee points out [3, Corollary 
6.2], the second phase is trivial in the event that g<f This is just another way of stat
ing the fact that the integer (g</)-packing problem is linearly reducible to the maximum 
flow problem. 

There is another approach, like that of Anstee [3], to the integer (g,/)-factor prob
lem which first solves a maximum flow problem and then a matching-type problem. If 
H = ( V,E,).,g,I) is an integer capacitated graph, then consider the integer capacitated 
graph F = ( V,E,).,g-,1) where g-( v) = min{g( v),J( v)-1}, for all v E V. Obviously F is 
an instance of the (g</)-packing problem and its solution can be found by reduction to 
the maximum flow problem. If F does not admit a perfect packing then neither does H. 
Alternatively a maximum size packing of H can be constructed from a perfect packing of 
F by matching-type augmentations. 
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4. ALGORITHMS FOR INTEGER (g,f)-P ACKINGS 

The results of the previous section, specifically Lemmas 3.11 and 3.15, combine to 
show that in looking for efficient algorithms for the general (g,/)-packing problem one 
need go no further than the rather extensive literature on efficient algorithms for finding 
maximum flows in networks. In particular, by the maximum-fl.ow algorithm of Sleator 
and Tarjan (cf. [291), we know that the general (g,J)-packing problem can be solved in 
O(I VIIE1 log I Vj) time. Furthermore, these same results, together with Remark 3.12, 
demonstrate an O(min (I VIIEI log J VJ,v' /( V)>.(E))) upper bound on the complexity of the 
integer bipartite (g,1)-packing problem. 

In this section we look more carefully at the integer (g,/)-packing problem. We 
demonstrate an O(v' g( V)>..(E)) time solution. (In Appendix 1, we describe an alternative 
approach - essentially a generalization of Hopcroft and Karp's bipartite matching algo
rithm - that is possible when the underlying graph is bipartite). Note that, by Remark 
2.3, it suffices to prove our bound for unit capacitated graphs. Hereafter all capacitated 
graphs will be unit capacitated (i.e. ). = 1) and whenever we refer to packings it should 
be understood that we mean unit packings, i.e. essentially subgraphs. 

Let H = ( V,E,>.,g,/) denote an arbitrary unit capacitated graph. If ,r and p are 
packings of H then S(,r ,p) denotes the set of edges { eEEJ1r( e)+p( e) = l}. 

4.1. The case g = f 
First, we consider the case of (/,/)-packings. Here, by a direct generalization of [21] 

we have: 

Lemma 4.1. Suppose ,r and p are packings of H and ll1rll < IIPII- Then there exist 
(IIPII - IJ1rll)/2 edge disjoint augmenting paths in H with respect to ,r using edges of 
S(1r,p) only. 

Proof. S(1r,p) obviously has a partition into alternating paths. Decompose S(1r,p) into 
a minimal set S of alternating paths. By minimality, no two paths start ( or end) at the 
same vertex with edges of opposite type. Hence, if a path starts or ends at a vertex 11 
with an edge of p then deg1r11 < degpv ~ /(11). Thus every path in S that starts and ends 
with an edge of p must contain as a subpath an augmenting path with respect to ,r. 

But, by straightforward counting, at least (IJPIJ-Jl1rlJ)/2 paths in S must start and end 
with an edge of p. 

[I 

If Pis an augmenting path with respect to the packing ,r, we denote by Aug(1r;P) 
the result of augmenting ,r along P. Similarly, if S is any edge disjoint set of augmenting 
paths with respect to the packing ,r, then Aug(1r;S) denotes the result of augmenting ,r 

along all of the paths in S. 
[I 
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Lemma 4.2. If 1r is any packing of H, Pis a shortest augmenting path with respect to 1r 
in H, and P 1 is any augmenting path with respect to A ug(1r;P), then 

IP'I ~ IPI + 21Pn P'I• 

Proof. Straightforward modification of Theorem 2 in [21]. 

[ I 

As observed by Gabow [15] these lemmas imply that a packing of maximum size in 
H J ( V,E,A,/,/) can be found by starting with the empty packing p0 and applying 
0( f( V)) augmentation phases each of which finds, and augments along, a maximal edge 
disjoint set of minimum length augmenting paths with respect to the current packing. 
(cf. Algorithm A below) 

Algorithm A 
p+-po 
while p is not a maximum packing do begin 

/next phase/ 
find a maximal set S of minimum length edge 

disjoint augmenting paths 
p+-A ug(p;S) end 

report p 

Ga bow completes his demonstration of an O(v' f( V)I~) upper bound for the (/,/)-packing 
problem by proving that each phase can be implemented in O(IEI) steps. 

Lemma 4.3. [15] If 1r is any packing in H then a maximal edge disjoint set of minimum 
length augmenting paths with respect to 1r can be found in O(IEI) steps. 

[I 

Gabow's proof uses a non-trivial reduction to the problem of finding a maximal 
edge disjoint set of minimum length augmenting paths with respect to a matching in an 
associated graph (and thereafter the results of [27]). Gabow's reduction employs what 
he calls sparse substitutes. The reduction preserves bipartiteness and so it could, in 
principle, exploit the relative simplicity of Hopcroft and Karp's bipartite matching algo
rithm [21] in the case where His bipartite. However, it should be noted that when His 
bipartite Gabow's reduction can be avoided by a direct (and simple) generalization of a 
phase of Hopcroft and Karp's bipartite matching algorithm (see Appendix). 

4.2. The case g ¢ f 
Suppose now that g ¢ f. Gabow [15] observed that the problem of finding a 

(g,/)-factor of H with the maximum number of edges can be reduced to two instances (no 
larger than the original) of the special case of the same problem in which g = 0. This 
special case is precisely the (/,/)-packing problem. Thus, the results above provide an 
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0( VJ( V) jEj) algorithm for finding a (g,/J-factor of H with the maximum number of 
edges. The first of the two subproblems addresses the question of feasibility ( does there 
exist a (g,/J-fa.ctor) and the solution described by Gabow can be interpreted as an 
O{'V/(V)[Ej) algorithm for the (g,.1)-packing problem. The reader should recall that this 
is precisely the same upper bound that we get for the integer bipartite (g,/J-packing 
problem using a reduction to the maximum flow problem. (cf. Remark 3.12) AB we 
shall show, this bound can be tightened in the case that g( V) is o(J( V)). 

We start by recalling Gabow's reduction of the (g,/J-packing problem to the (/,/)
packing problem. As before, let H = ( V,E,>.,g,f) be a unit capacitated graph. We 
denote by H* the unit capacitated graph ( V*,E*,>. *,g *,/*) where 

V*= {v,vl 11E V} 

E* = {vw,vw 1 11w EE} u o 

g*(v) = g*(v) = f*(v) = f*(v) = 1(11), for each 11 E V, 

and 0, the set of cross edges of H*, contains, for each 11 E V, precisely J( 11) - g( 11) copies 
of the edge vv. 

H* with the cross edges remoyed (a1_1,d degree constraints ignored) can be_ viewe~ as 
the union of two copies, call then H and H, of H. We will sometimes refer to H and H as 
the two sides of H. We say that vertices v and ;; and edges vw and vw are reflections of 
one another in H*. If G is any subgraph of H* then the reflection of G, denoted r( G), is 
the graph whose vertices (respectively edges) are the reflections of the vertices (respec
tively edges) of G. 

Let 1r be any packing of H. We denote by 1r* the packing of H* defined by 
1r*(vw) = 1r*(vw) = 1r(11w), for all 11W EE and 1r*(v11) = 1 for exactly 
1(11) - max{g(11),deg1r11} copies of the edge vv, for all 11 E V. We say that a packing p of 
H * is symmetric if p = 1r * for some packing 1r of H ( and in this case we denote 1r by p). 

Property 4.4. {a) There ezists a mazimum size packing of H* which .is symmetric. 
{b} I/1r1 and 1r2 are any two packings of H, then Jl1r1 *II - ll1r2*ll = 2(Jl1r1Jl - ll1r2JI), 

Proof. Every packing p of H * gives rise to two symmetric packings p1 and p2, with 
IIP1ll+IIP2ll = 2jjpjj, formed by reflecting the packing induced by p on each of the two 
sides of H*. Property (b) is immediate from the definitions. 

[I 

By property 4.4 a maximum size symmetric packing p of H* induces a maximum 
size packing 'j, of H. 

We wish to exploit the fact that finding a maximum packing in a capacitated graph 
of the form H* is not an arbitrary instance of the (/,/)-packing problem. As before, we 
will search for augmenting paths in phases where each phase identifies a maximal set of 
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edge disjoint minimum length paths and successive phases identify paths of progressively 
greater length. However, we will impose the added restriction that each set of minimum 
length paths preserves the symmetry of the initial packing. A set of paths H* is sym
metric if it is closed under reflection, that is the reflection of every path in the set also 
belongs to the set. 

Algorithm B 
p+-po* 
while pis not a maximum packing do begin 

/next phase/ 
find a symmetric maximal set S of minimum 

length edge disjoint augmenting paths 
p+-Aug(p;S) end 

report p 

We first show that there is no loss of generality in restricting our attention to symmetric 
sets of disjoint augmenting paths. 

Lennna 4.5. If p is a symmetric packing of H* then there exists a symmetric maximal 
set of edge disjoint minimum length augmenting paths with respect to p in H*. 

Proof. Let S be a maximal symmetric set of edge disjoint minimum length augmenting 
paths with respect to p in H*. Suppose that Pis an augmenting path with respect to p, 
that Pis edge disjoint from all paths in S and that P has the same length as the paths 
in S. Suppose first that P contains no cross edge. Then, by the symmetry of S, r(P) is 
edge disjoint from all paths in SU {P}. Hence SU {P,r(P)} is a symmetric set of edge 
disjoint minimum length augmenting paths with respect to p, contradicting the maxi
mality of S. Alternatively, we can express P as the concatenation of paths P1, P2 and P3 

where P1 and P3 a.re maximal subpaths containing no cross edge and IP21 ~ 1. Suppose, 
without loss of generality, that IP1 j ~ jP3 j. Then the path P' formed by connecting P1 
and r(P1) by the appropriate cross edge is a symmetric augmenting path with respect to 
p of length 2IP1j + 1 ~ IPj. Since P 1 must be disjoint from a.11 of the paths in S, it fol
lows that SU {P'} is a. symmetric set of edge disjoint minimum length augmenting 
paths with respect to p, again contra.dieting the maximality of S. Thus no such path P 
can exist and S must be maximal even among non-symmetric sets of edge disjoint aug
menting paths with respect to p. 

[I 

We say that a path Pin H* is normal if it uses no cross edge or if {P} is symmetric 
(i.e. P = r(P)). Careful inspection of the proof of Lemma 4.5 reveals a somewhat 
stronger assertion namely, if p is a symmetric packing of H* then there exists a sym
metric maximal set of edge disjoint minimum length normal augmenting paths with 
respect to p in H *. 

It follows from Lemma 4.5 that, assuming we start with a symmetric packing of H*, 
we are guaranteed that the packing Pi formed after the i-th phase of Algorithm B is 
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symmetric. According to the following lemma our restriction to symmetric maximal sets 
of minimum length augmenting paths does not change the complexity of a single phase 
of the algorithm (cf. Lemma 4.3). 

Lemma 4.6. If ,r is any symmetric packing in H* then a symmetric maximal edge dis
joint set of minimum length normal augmenting paths with respect to ,r can be found in 
O(IE*I) steps. 

Proof. We use Gabow's reduction [15) of the problem of finding a maximal edge dis
joint set of minimum length augmenting paths with respect to ,r in H* to the problem of 
finding a maximal edge disjoint set of minimum length augmenting paths with respect to 
a matching Min an associated graph denoted H1/. We note that H1/ retains the sym
metric structure H* and that M retains the symmetry of ,r, Only minor modifications of 
the matching algorithm of [27) lead to an algorithm that discovers only symmetric sets of 
normal augmenting paths with respect to M in H1c * (in fact, the entire search can be 
confined to one of the two sides of H1c *). 

[I 

It remains to bound the number of phases required to find a maximum size sym
metric packing in H* using only symmetric sets of augmenting paths. Here (at last) we 
are able to turn the restriction to symmetric sets of augmenting paths to our advantage. 

Lemma 4.7. If p and 1r are symmetric packings of H* and IIPII > ll1rll then there exists 
a symmetric set S of (IIPII - ll1rll)/2 edge disjoint normal augmenting paths in H* with 
respect to 1r using edges of S(1r,p) only. 

Proof. It is easy to see that the edges of S(1r,p) can be partitioned into a minimal sym
metric collection S 1 of edge disjoint normal alternating paths. By a simple counting 
argument, at least p(E*) - 1r(E*) = (IIPIHl1rll)/2 of these paths must both start and end 
with an edge of p. By minimality and symmetry of S 1, if 11 is an endpoint of a pa.th end
ing with an edge of p then it is not the endpoint of a path ending with an edge of ,r, and 
hence deg1r11 < degP11::; /*(11). It follows that all paths in S 1 starting and ending with an 
edge of p must contain, as a subpath, a normal augmenting path with respect to 1r in 
H*. Again by the symmetry of S 1, we can find a symmetric set S of at least (IIPll-ll1rll)/2 
edge disjoint subpaths all of which are normal augmenting paths with respect to ,r in 
H*. 

[I 

Corollary 4.8. If p and ,r are symmetric packings of H* and IIPII ?: ll,rll then there 
exists a normal augmenting path P with respect to ,r in H*, using edges of S(,r,p) only, 
with IPI ::; 2t+3, where t = ,r(E*-C)/(IIPll-lln-11). 
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Proof. Suppose all paths in S have length at least 21 + 3. Then together they account 
for at least l(IIPll-lln-11)/2 non-cross edges of ,r. Since there are at most n-(E*-C) such 
edges in total, it follows that 

l $ 21r(E*-C)/(IIPll-ll1rll) 

= n-(E*-C)/(IIPll-11~11), 

by Property 4.4(b). 

[I 

Let p be any symmetric packing of H * and let p I be the packing formed from p by 
augmentation along the paths in some set of edge disjoint normal augmenting paths. 

Lemma 4.9. p'(E*-C) - p(E*-C) $ (IIP'II-IIPII), 

Proof. Each augmentation increases IIPII by 2 and p(E*-C) by at most 2. 
[I 

Let 1r0 denote the empty packing of H (i.e. 1r0(e) = O, for all e EE). 

Corollary 4.1 O. If p is a packing of H * formed from n-0 * by augmentation along paths in 
a sequence of symmetric sets of edge disjoint normal augmenting paths, then 
p(E*-C) $ 211.oll-

Proof. It suffices note that, by Property 4.4(b), IIPII - ll1ro*II = 2(11.oll - ll1roll) = 2llPll-
[I 

Lemma 4.11. Algorithm B uses O(~ phases suffices to find a. symmetric pa.eking p 

of maximum size in H*. 

Proof. Let Pi denote the packing formes!.....£y our algorithm after the i-th phase 

(Po = n-o*). Choose i so that llPj-111 < II.oil-Vil.oil $ IIP;II-
By Corollary 4.8 the paths discovered during the j-th phase all have length a.t most 

2Pi-1(E*-C)/~ + 3 

by Corollary 4.10 
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Hence, since path lengths increase with each phase, j < 4Jjjm Since 
IIPi+1II ~ II Pill + 1, for all i ~ O, there are less than svjjij" phases in total. 

[I 

Theorem 4.12. O(vjj;ffi.Ej) time suffices to construct a packing ,r of maximum size in 
H. 

Proof. By Lemmas 4.6 and 4.11, a maximum size symmetric packing p in H* can be 
constructed in O(\J'ooE*I) = O(-✓iiijj..&1) time. But, by property 4.4, p is a maximum 
size packing in H. 

[I 

Corollary 4.13. The integer (g,/)-packing problem can be solved in O(v g( V)>.(E)) 
time. 

Remark. For simplicity we have described our algorithm for (g,/)-packing as a variant 
of the first phase of Gabows edge maximum (g,/)-factor algorithm. This renders our ori
ginal problem first into an (/,/)-packing problem of a special form, and then into a 
matching problem. If our concern were for the most efficient implementation then it is 
clear that the overhead of these successive reductions could be reduced by interpreting 
our algorithm as a search for augmenting paths in the original constrained graph. 

This alternate view is particularly valuable when the original graph is bipartite. In 
this case, our (g,/)-packing algorithm can be rexpressed as a rather natural generalization 
of Hopcroft and Karp's bipartite matching algorithm. This means that the bipartite 
(g,/)-pack~g problem (and, in light of Corollary 3.17, the (g</)-packing problem) both 
admit 0( g(V)I.Ej) time algorithms that avoid the complexities of blossoming. In the 
appendix we describe this alternative approach in more detail. 
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5. OTHER OPTIMIZATION CRITERIA AND AN NP
COMPLETENESS RESULT 

Let H = ( V,E,>.,g,/) be a. unit ca.pa.cita.ted graph. The "unit version" of the prob
lem we have been studying, to maximize the size of a. unit pa.eking, is only one of several 
possible optimization problems concerned with degree-constrained subgraphs. For most 
of these problems the set of feasible solutions is the same, namely the set of alJ unit 
packings, or equivalently, the set of all unit (0,/)-factors. They differ in their choice of 
the objective function: 
( 1) maximize the size; cf. section 1 
(2) minimize the deficiency, [25]; since deficiency = g( V) - size, (2) is equivalent to (1). 
(3) maximize the number of edges, [12]; this problem is often referred to as the b-

matching problem [7,9]. Note that (3) is equivalent to the special case of (1) when 
g = /, i.e., that a unit (0,.t)-factor with maximum number of edges is a unit (/,/)
packing of maximum size and vice versa. 

( 4) maximize the number of edges among all unit (g,.t)-factors, [15,28]; this optimiza
tion problem has as its feasible set the set of all unit (g,J)-fa.ctors a.nd hence 
requires, as a first step, a method to find a unit (g,.t)-factor. Solving (1) finds a 
(g,/)-factor if one exists, and otherwise provides in some sense a unit; (0,/)-factor 
closest to being a. unit (g,/)-factor. 

(5) maximize the number of saturated vertices; this is another sense in which a unit 
(0,.t)-factor could be closest to a. unit (g,.t)-factor. (Recall that a vertex t1 is 
saturated by G if degGv ~ g( v).) 

Problems (1) - ( 4) all admit polynomial algorithms. The purpose of this section is 
to demonstrate the NP-completeness of the last va.rian t ( 5); specifically, we shall prove 
the NP-completeness of the following decision problem: 

THE MAXIMUM SATURATION PROBLEM 
INSTANCE: A unit capa.citated graph H = (V,E,>.,g,/) and an integer t ~ I Vj. 
QUESTION: Is there a unit packing ,r of H saturating at least t vertices? 

To prove our result we shall use the k-dimensional matching problem, well known 
to be NP-complete when k ~ 3: 

THE k-DWENSIONAL MATCIIlNG PROBLEM 
INSTANCE: A set P of l k-tuples l = <pi,p;, ... ,p,>, i = 1, ... ,l, with each 
p) E {1,2, ... ,n} = Zn. 
QUESTION: Is there a subset S ~ P of n k-tuples such that no two elements of S agree 
in any coordinate? 

Lemma 5 .1. The k-dimensional matching problem is polynomially reducible to the 
maximum saturation problem. 

Proof. We assume that k ~ 2. Let P = { <pLp;, ... ,p{ll ~ i ~ l,pj E Zn} be an instance 
of the k-dimensional matching problem. Let h be any integer, h ~ k. We shall 
transform P into an instance of the maximum saturation problem. We shall use many 
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copies of one simple graph M illustrated in Figure 5.1; to distinguish amongst the copies 
we shall use subscripts. Thus Ma is the unit capacitated graph (Va,Ea,).,g,I) where 

V { 1 h-1 1 k-1 t } a= qa,ra, ... ,ra ,8a, .. ·,8a , a , 

g(v)=k and l(v)=h, for all vE Va. 

FIGURE 5.1 HERE 

Let ,r be any packing of Ma. Since ta has degree k - 1 in Ma it can not possibly be 
saturated. Furthermore, since vertex r~ has degree k, it can be saturated only if all of its 
incident edges e have ,r( e) = 1. Thus at most deg1rqa such vertices are saturated. Hence 
,r saturates at most k+deg1rqa vertices in total. 

Now let Hp denote the unit capacitated graph formed by taking nk disjoint copies 
of Ma, a= <1,1>, ... ,<n,k>, and adding the vertices p1, ... ,p1 and the edges 
{(iq 01 la = <j,p}>,1 $ i $ l,1 $ j $ k}, with u(i) = k and l(i) = h, 1 $ i $ l. Since Hp 
can be constructed from P in polynomial time it suffices to show that P admits a k
dimensional matching if and only if HP admits a unit packing saturating at least 
n + nk(h + k - 1) vertices. 

Let {p\ .. ,/"} be a k-dimensional matching of P. Consider the packing ,r of Hp 
defined by ,r(l,q<d,p~) = 1, for i E {i1, ... ,in} and 1 $ d $ k, ,r(e) = 1, for e E Ea 

a E { <1,1>, ... ,<n,k> }, and ,r( e) = 0 elsewhere. It is easy to confirm that ,r saturates 
exactly n + nk( h + k - 1) vertices. 

Conversely, suppose that Hp admits a packing ,r saturating at least 
n + nk( h + k - 1) vertices. It follows that ,r saturates some number m ~ n of the ver
tices p1, ... ,P', Let d = :E ,r( e), where E* is the set of edges incident with the vertices 

eEE• 
{p1, ... ,p1

}. Then d 2'. mk. Partition E* into UE0c *, where Ea~ consists of those edges of 
a 

E* that are incident with qa, and let Za = :E ,r( e). Then :Eza = d and 
eEEa• a 

:E(z01 - 1) = d - nk. By the observation above, the number of saturated vertices in M01 is 
a 

at most k + h - 1 - (z01 - 1) and so the total number of saturated vertices is at most 

m + nk(h+k-1) - (d-kn) = n + nk(h+k-1) - (k-l)(m-n) - (d-km). 

It follows that m = n, d = mk, each vertex q01 is incident with exactly one edge 
e = (l,qa) for which ,r( e) -/=- 0, and for that edge e, ,r( e) = 1. Thus the saturated ver
tices among p1, ... ,p1 represent a k-dimensional matching of P. 

[I 
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Figure 5.1. The graph M. 
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The (g,/)-factor problem in which g=a and f=b for fixed integers a and b is some
times referred to as the [ a,b]-factor problem. 

Corollary 5.2. The maximum saturation problem is NP-complete even for [a,b]-factors, 
provided a 2'. 3 for all v E V. 

Proof. This follows immediately from the construction above and the fact that the k
dimensional matching problem is NP-complete for k 2'. 3. 

[I 

Remark 5.3. If g = 0 the maximum saturation problem is trivial (since all vertices are 
automatically saturated) and if g = 1 then a polynomial solution follows from the obser
vation that the maximum number of saturated vertices is precisely the size of the max
imum packing. The complexity of the only remaining case, when g = 2, remains an open 
question, even in the case of [2,b]-factors. 

[I 

Remark 5.4. Problems (1)-(4) relaxed to general (not necessarily unit or integer) pack
ings also admit polynomial solutions; for example, each can be formulated as a linear 
program of size polynomial in the size of the problem. However the maximum satura
tion problem (5) remains NP-complete also in the case when we only seek a (general) 
packing saturating at least t vertices. In fact, we have been careful to write the proof of 
Lemma 5.1 in such a way that it also applies to this situation. 
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APPENDIX: Finding maximum packings in bipartite graphs 

In this appendix we consider the problem of efficiently constructing packings of 
maximum size in integer capacitated bipartite graphs. As we noted in Remark 2.3, it 
suffices to consider the case of unit capacitated bipartite graphs. Throughout this sec
tion B = (VLuVR,E),,g,/) denotes an arbitrary unit capacitated bipartite graph and 1r0 
denotes the trivial packing of B (i.e. 1r0(e)=O, for all eEE). 

A.1. Algorithm overview 

A.1.1. Monotonicity of augmenting path lengths 

Following Hopcroft and Karp [21] we would like to show that if we use the strategy 
of augmenting along shortest available paths then the length of successive augmenting 
paths increases monotonically. Unfortunately, this is not the case in this new setting. 
Because of the more complex nature of our augmenting paths, specifically the variety of 
path endings, it is possible for a short path to be created as a result of an augmentation 
along a longer path. In the case of bipartite graphs this non-monotonicity, though still 
present, is easily circumvented. 

A.1.2. Two phase algorithm 

The high level structure of our bipartite packing algorithm differs from the bipar
tite matching algorithm of Hopcroft and Karp [21] in one important respect. Since aug
menting paths for matchings in bipartite graphs must start and end at deficient vertices 
in different sides of the graph, it is sufficient to search for augmenting paths starting 
from only one of the two sides. In the case of our more general packings augmenting 
paths may start and end on the same side and may end at non-deficient vertices. The 
first approach that suggests itself is to look simultaneously for augmenting paths with 
starting points in either side. For reasons similar to those discussed above, this forces us 
to either accept non-monotonicity in the lengths of augmenting paths or adopt an unna
tural definition of path length. It turns out to be more straightforward to search for 
paths in two phases each of which restricts attention to starting points in a single side. 
(It remains to be demonstrated, of course, that such an approach will not overlook any 
paths.) 

Our algorithm takes the following form: 

Algorithm left-right-maximum 

:7r - :7ro 
{phase A: find and augment along augmenting paths with starting points in Vd 

1r - left- maximum ( 1r ,H) 
{phase B: find and augment along augmenting paths with starting points in VR} 

1r - right-maximum (1r,H) 
report 1r 
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A.1.3. Algorithm correctness 

Note that the two phases of algorithm left-right-maximum are structurally identical 
- the only difference being the source of starting points for augmenting paths. With the 
following lemma we can focus our attention (as far as questions of correctness and 
efficiency are concerned) on the implementation of a. single phase. 

We say that an augmenting path that starts in VL (respectively VR) is a left 
(respective right) augmenting path. If B admits no left (respectively right) augmenting 
path with respect to the packing ,r then we say that ,r is a left (respectively right)
maximum pa.eking in B. 0 bviously, ,r is maximum if and only if it is both left- and 
right-maximum. 

Lemma A.1. Let 1r be any left-maximum packing in B and let P be any right augment
ing path with respect to 1r. Then 1r' = Aug(1r;P) is a left-maximum packing in B. 

Proof. Consider the following recursive assignment of colours to the vertices of B. 
i) if tJ E V and deg1rv < g( v), colour tJ black; 
ii) if tJ is black and 1r( vw) = 0, colour tJ white; and 
iii) if tJ is white and 1r( vw) = 1, colour tJ black. 

We claim that no vertex is coloured both black and white. Suppose to the contrary that 
vEV is assigned both colours. Then there exist alternating paths to v starting at 
deficient vertices in both VL and VR· The union of two such paths must be an alternat
ing path joining deficient vertices in VL and VR. But the latter must contain a.n aug
menting path starting in VL, contradicting the left-maximality of 1r. 

It follows that P must be vertex-disjoint from every alternating path starting from 
a deficient vertex in V L· Hence the augmentation of ,r a.long P does not change the set 
of alternating paths starting from deficient vertices in VL. In particular, the resulting 
packing in left-maximum. 

[I 

Corollary A.2. Assuming the phases A and B are correctly implemented the algorithm 
left-right-maximum finds a packing of maximum size in B. 

[I 

A.2. The existence of short augmenting paths 

Let 1r be a unit packing of B. We define i11ri1L to be E h,r(v). We start by proving 
11EVL 

a somewhat stronger version of Corollary 2.5 for unit capacitated bipartite graphs. Let 
,rand p be any two unit packings of B. Define 
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The packing ,r ~p is defined by 

(11" ~p)(e) = max{0,7r(e) - p(e)} . 

The packing p ~ is defined similarly. 

Lemma A.3. If IIPIIL > 1111"IIL then there exists a left augmenting path with respect to 11" 
in B, starting at a vertex in D(1r,p), using edges of S(1r,p) only, and having length at most 
2t + 2, where t = ll1rlld(IIPIIL - i11ri1L). 

Proof. Suppose that ,r and p provide a counterexample that mm1m1zes 
t = ll1rlld(IIPIIL -1111"IIL). Let D = D(,r,p), N = { vjp( uv) > 1r( uv) , for some u E D}, and 
M = {wl11"(vw) > p(vw), for some v EN}. Clearly, deg,rv < g(v), for all v ED. More
over, we can assume that deg,rv = f( v) for all v E N and deg,rw :$ g( w) for all w E M, 
since otherwise there is an obvious augmenting path of length at most 2 starting at a 
vertex in D. It follows that 

:$ 11,rllL + I:: deg,r ..,_,,v, since deg,rv = f( v) ~ degpv, for v E N 
11EN 

Hence we can assume that t ~ 1. 

Define ,r I and p I to be the following packings of B. 

if v E N, vw E E, and ,r( vw) > p( vw) 

otherwise 
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if ti E N, t1w E E, and ,r( t1w) < p( t1w) 
otherwise. 

(*) hp(u) - degpu $ h (u) - deg u, for u ED, 
pl P' 

(**) deg,rw $ g(w), for w EM, and 
(***) deg1rt1 ;::: degpt1 and deg t1 = deg t1, for t1 E N, 

,rl p I 

it follows that 

IIPIIL - IIP'IIL = E (hp(u) - h (u)) 
v.ED p I 

$ E (degpu - deg u), by(*) 
v.ED P' 

$ E (deg1rt1 - deg t1), by(***) 
11EN ,rl 

= E ( deg1rw - deg w) = E (h1r( w) - h ,( w)), by ( **) 
wE.M ,r I wE.M ,r 

Thus ll1r'IIL $ ll1rllL + IIP'IIL- IIPIIL• Furthermore, smce \,(t1) $ h1r 1(t1) $ h,r(t1), for 

ti ED, and \,(t1) $ hp(t1) $ h,r(t1) elsewhere, it follows that IIP'IIL $ ll1rllL• Thus 

ll1r'lld(IIP'IIL - ll1r 1IIL) $ ll1rlld(IIPIIL - ll1rllL) -1 = t-1. 

By the supposed minimality of the counterexample, it follows that B admits a left aug
menting path P I with respect to ,r 1, starting at a vertex w E D( ,r ',P 1) ~ M, using edges 
of S(1r',p') ~ S(1r,p), and having length at most 2t. It is easy to confirm that p, uses no 
vertex of DU N. Hence P' can be extended to a. left augmenting path P with respect to 
,r, of length at most t + 2, by adding, as a prefix, a pair of edges ut1 and t1w where 
u E D, t1 E N, ,r( ut1) < p( ut1) and ,r( t1w) > p( t1w). This contradicts our hypothesis and 
establishes the lemma.. 

[I 
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A.3. Algorithms for left-maximum packing 

We proceed to describe algorithms that implement phase A of algorithm left-right
maximum, that is find a left-maximum packing by a sequence of augmentations along 
left augmenting paths. (Algorithms for phase B follow by replacing left by right.) Our 
strategy is identical to that of the most efficient known algorithms for bipartite matching 
[21] and maximum flow [10,23,26]. Augmenting paths are discovered by depth-first 
search in a (breadth-first) labelled subgraph of the host graph B. 

A.3.1. Assignment of vertex labels 

Given a unit packing 1r of B we define a breadth-first labelling l = l,r of 
V = VL U VR as follows: 
i) Initially l( v) = 0 for all vertices v E VL with deg1rv < g( v); all other vertices are 

unlabelled and all vertices are unscanned. 
ii) In general, having scanned vertices labelled <i, we proceed to scan each vertex v 

for which l( v) = i as follows: 
if i is odd 

then for each unlabelled w with 1r( vw) = 1 
do l( w) +- i + 1 

else for each unlabelled w with 1r( vw) = 0 
do l(w) +- i + 1 

iii) Repeat ii) until every labelled vertex has been scanned. 

Let V1 = { v E Vll,r( v) = i}. The depth of the packing 1r, denoted d,r, is the smallest 
integer d satisfying one of, 
i) dis odd and for some w E Vd, deg1rw < f(w); or 
ii) d is even and for some w E Vd, deg,rw > g( w). 
If no such integer exists then we define d,r = oo. 

It is an immediate consequence of the proceeding definitions that 

if lJ. v) = 0 

if O < lJ. v) < d1r and lJ. v) is odd 

if O < l,r( v) < d,r3nd l,r( v) is even. 

It should be clear that a straightforward breadth-first implementation of the label
ling procedure wi115, in time O(IEI), compute the labels l,r(v), the depth d10 the vertex 
sets Vi, 0 ~ i ~ d,r, and the edge sets 

{ 
{ wll,r( w) = lJ. v) + 1 and 1r( vw) > O} if l,r( v) is odd 

F[v] = {wllJ.w) = lJ.v) + 1 and 1r(vw) = O} if l,r(v) is even 

s We assume that I VI is 0( I El). Thie ie guaranteed if, for example, B has no isolated verticea. 
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for 11 satisfying O ~ IJ 11) < dr 

The vertices U Vi, together with the edges vw, 11 E U V,, w E F[11], form a lay-
~~~ ~k~ 

ered subgraph of B that we refer to as the core of B (with respect to the packing ,r). It 
is clear that d1r is finite if and only if B admits a left augmenting path with respect to 1r 

using edges of the core only. According to the following Lemma, the finiteness of d1r is a 
necessary and sufficient condition for the existence of any left augmenting path in B with 
respect to ,r (equivalently, the search for such augmenting paths may be restricted to the 
core of B). 

Lemma A.4. Let ,r be an packing of B. Then B admits a left augmenting path with 
respect to 1r if and only if d1r is finite. 

Proof. Sufficiency is clear from the definitions of depth and augmenting path. To 
prove necessity suppose that B admits a left augmenting path with respect to ,r, Let 
P = 110,111,, .. ,111; be any such path of minimum length. Since P is an alternating path, it 
follows from the labelling procedure that lJ vi) 5 i and l1r( 11i) = i mod 2, for O 5 i S le. 
In fact IJ vi) = i, for O 5 i 5 k, since otherwise P could be shortened by replacing 
110,111, ... ,11i with an alternating path oflength l1r( vi)- Thus d1r = k. 

[I 

Corollary A.5. A packing 1r is left-maximum if and only if d1r = oo . 
[ I 

A.3.2. High level description 

Lemma A.5 ( together with its proof) suggests that a search for left augmenting 
paths with respect to a packing 1r in B can be restricted to what we call I-paths, where I 
denotes some labelling of B. An l-path with respect to 1r is an augmenting path 
P = 110,111, .. ,,111: in which I( vi) = i, 0 S i S le. Note that the lemma suggests the choice 
I= I1r, but we will need to consider other possible labellings as well. 

If P1,P'J, ... ,Pt is a sequence of paths such that Pi is an I-path in B with respect to 
"'H, where ,r0 = ,r and ,ri = Aug(1ri_1;P,), for i ~ 1, then we refer to the sequence as an 
l-batch in B with respect to 1r. In addition we denote 1r i by Aug( ,r;P1,P2, ... ,P,), for i ~ 1. 
An I-batch is said to be maximal if it cannot be extended to a larger l-batch. By the 
nature of augmentations, it should be clear that all of the paths in an I-batch are edge
disjoint. 

It is an immediate consequence of Corollary A.6 that the following straightforward 
incremental algorithm constructs a left-maximum packing of B given an initial pa.eking 
11"o, 
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Algorithm incremental left-max 

,r +- ""o 
assign l,r labels to V 
while d,r < oo do begin 

P +- an l,r•path in B 
,r +- Aug(1r;P) 
assign l,r labels to Vend 

report ,r 

In fact, the algorithm is easily seen to run in O(g( VL)IEI) steps since the execution of the 
loop body is dominated by the cost of the labelling procedure and every augmentation 
increases the size of the pa.eking by at least 1. 

A more efficient algorithm for left-maximum packings is based on the idea (like 
that of Dinic [10] and successors [23,26] in connection with the maximum flow problem, 
and Hopcroft and Karp [21] and successors [27] in connection with the maximum match
ing problem) of finding augmenting paths in batches. Specifically, the l,r-paths identified 
in incremental left-max can be discovered in a. sequence of phases where a.11 of the paths 
discovered in any one phase are lir-pa.ths with respect to the same ,r (i.e., a.n lir-batch). 

Algorithm batched left-max 

,r +- ""o 
assign l = lir labels to V 
while d,r < oo do begin 

while there exist [-paths in B with respect to ,r do begin 
P +- an l-path in B 
,r +- Aug( 1r;P) end 

assign I = lir labels to Vend 
report ,r 

A.3 .3. Algorithm analysis 

The analysis of batched left-max is based on two considerations namely the worst 
case behaviour of the body of the outer loop (i.e. the cost of finding a.n I-batch) and the 
number of repetitions of this loop. Since a.11 paths in a batch a.re edge-disjoint a. straight
forward depth-first search (essentially identical to that used in Hopcroft and Karp's 
bipartite matching algorithm [21]) can be used to identify (and augment along) the 
paths in a maximal batch in O(IEI) steps. In the remainder of this section we develop 
an upper bound on the number of batches required to achieve a left-maximum pa.eking. 
As in the maximum flow [10] and maximum matching [21] problems, the key observation 
is that the length of augmenting paths in successive batches is strictly increasing. 

Lemma A.6. Let ,r be an packing of B, l = l,r and d,r < oo. Let P1,P2, ... ,Pt be an 1-
batch, ,r 1 = Aug(,r;P11 ... ,Pt), and 11 = l,r,· Then, 
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i) deg1rv = deg1r
1
v, when O < l( v) < d1r; and 

ii) l 1(v) ~ l(v),whenO~ l1(v) ~ dr 

Proof. Assertion i) is an immediate consequence of the fact that each Pi is an l-path 
and augmentations along l-paths do not change the degree (with respect to the current 
packing) of any of their interior vertices. 

To prove ii) suppose, to the contrary, that for some vertex v, I 1( v) ~ d1r and 
l 1(v) < l(v). Among all such vertices choose v so that l 1(v) is minimized. Clearly, 
l '( v) > 0 since augmentations never create new unsaturated vertices. Suppose that l 1( v) 
was assigned a value when vertex w was being scanned. Hence l 1(w) = l 1(v) - 1 and, by 
our minimality assumption, l 1(w) ~ l(w). Now either the edge wv belongs to some path 
Pi or ,r 1(wv) = ,r(wv). In either case we note that l(v) ~ l(w) + 1 ~ l 1(w) + 1 = l 1(v), 
contradicting our assumption. 

[I 

Lemma A.7. Let ,r be a packing of B with d1r < oo. Let P1,P2, ••• ,Pk be an l1r•batch in B 
with respect to ,rand ,r 1 = Aug(,r;P1, ... ,Pk). Then d1r

1 
~ d1r. Furthermore, if P1, ... ,Pk is a 

maximal l1r-batch then d > d1r. 
7rl 

Proof. Let I= I , 11 = l , d = d and d1 = d . If d1 = oo then there is nothing to 1r ,rl ,r, ,rl 

prove. Let P = v0, ... ,vd, be any /I-path with respect to ,r 1• 

Suppose that d1 < d. Then, by Lemma A.7, we have deg1rvd = deg vd, and 
I ,rl I 

l(vd,) ~ l 1(vd,). Since l(vd,) = l'(vd,) (mod 2), it follows immediately from the definition 

of depth that d ~ l(vd,) = d1, a contradiction. 

Suppose now that d1 = d. Then, by Lemma A.7, we know that l(vi) ~ l 1(vi), for 
0 ~ i ~ d, and deg1rvi = deg1r,1Ji, provided l( vi) < d. Suppose that l( vi) < 11( vi), for some 

i < d. Then, since l( vi) = 11( vi) (mod 2) for O ~ i ~ d, it follows from the labelling pro
cedure that l( vi+l) ~ I( vi) + 1 ~ l 1( vi) - 1 < l '( V;+i). It follows, by induction on i, that 
d ~ l( v d,) < I 1( v d,) = d 1, contradicting our hypothesis. Thus, l( v;) = l 1( vi), for O ~ i ~ d, 

that is Pis an l-path with respect to ,r. Hence Pi,P2, ... ,Pk is not a maximal l-batch. 
[I 

Corollary A.8. If ,r is a packing of B formed after i iterations of the outer loop of pro
cedure batched left-max then d1r > i. 

[I 

Lemma A.9. Algorithm batched left-max constructs a left-maximum packing ,r in B in 
O(IEl✓ll,rll) time. 
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Proof. It suffices to show that, given any initial packing 1r0, algorithm batched left-max 
constructs a left-maximum packing 1r in B using O(v'fl,iTij batches (i.e. iterations of the 
outer loop). 

Su~e that the size of the packing constructed by batched left-max exceeds 
1111"11 - v'l!,rll for the first time following the .-th batch (i = 0 if ll1roll exceeds this bound). 
By Coroll~A.2 the l-patha discovered during the i-th batch all have length at most 
2(111rll - v'!l1rll)/litif + 2 $ 2~ Hence, by Corollary A.9, i $ 2~ Since each 
subsequent batch increases the size of the current packing by at least 1, there are at 
most 3~ batches in total. 

[I 

A.4. The complexity of integer bipartite (g,.f)-packing 

Noting that l/1rll ~ g( V) for any packing 1r of B, it follows from the results of the 
preceeding section th✓t Algorithm left-right-maximum can be implemented to run in 
worst cast time O(I El g( V)). We summarize this in the following theorem. 

Theorem A.10. A maximum packing of an unit capacitated bipartite graph 
B = ( V,E,>..,g,f) (equivalently, a solution to the unit bipartite (g,f)-packing problem) can 
be found in worst-case time O(IE!v'g(V)). 

[I 

Corollary A.11. A solution to the unit (g<f}-packing problem can be found in worst
case time O(!EJ-J g(V)). 

Proof. Immediate from the Theorem and Corollary 3.17. 
[I 

In light of Remark 2.3, the results of Theorem A.10 and Corollary A.11 can be 
stated more generally as, 

Corollary A.12. The integer bipartite (g,/)-packing problem and the integers (g</)
packing problem can both be solved in worst;-case time O(>.(E)v' g( V)). 

Remark A.13. Recalling Remark 3.14, we note that Corollary A.12 provides another 
proof of Theorem 3.4, thus allowing a network problem to be solved in time 
O(v'C(X)a(A)) via our bipa~tite packing algorithm. We do not know if a network flow 
algorithm of complexity 0( C(X)c(A)) (such Js [10)) can be used to solve the integer 
bipartite (g,1)-packing problem in time O(>.(E) g( V)). 
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