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Abstract 

Let M be an sx t matrix and let MT be the transpose of M. Let x and y be t- and 
s-dimensional indeterminate column vectors, respectively. We show that any linear 
algorithm A that computes Mx has associated with it a natural dual linear algorithm 
denoted AT that computes MTy. Furthermore, if M has no zero rows or columns then 
the number of additions used by AT exceeds the number of additions used by A by 
exactly s-t. In addition, a strong correspondence is established between linear algo
rithms that compute the product Mx and bilinear algorithms that compute the bilinear 
form yTMx. 
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1. Introduction 

Many numerical computations involve evaluating the product of a given matrix by 

a vector of indeterminates. Obviously, the number of arithmetical operations used in the 

evaluation of such a product depends on the organization of the computation. 

In this paper we study the complexity, specifically the number of additions, of 

linear algorithms that compute a set of linear forms defined by a given matrix M. Our 

central result establishes a kind of duality between algorithms that compute the set of 

forms associated with M and algorithms that compute the set of forms associated with 

MT, the transpose of M. This gives a tight relationship between the complexities of 

these related computational tasks. This relationship leads to new upper bounds on the 

complexity of matrix vector products when the coefficients of M are drawn from a small 

set. It also permits simple derivations of lower bounds on the number of additions 

necessary to evaluate certain sets of linear forms. 

The duality result also implies a strong relationship between linear algorithms for 

computing the matrix vector product Mx and bilinear algorithms for computing the bil

inear form yTMx. This correspondence is reminiscent of the correspondence between bil

inear algorithms for computing a set of bilinear forms and trilinear algorithms for com

puting a trilinear form defined by the corresponding three dimensional tensor ( cf. [3]). 

This paper is organized as follows. In Section 2, we give a graph theoretic 

definition of linear algorithms. This definition suggests a natural notion of transposed 

algorithms. Theorem 1 establishes a relationship between the computations of a linear 

algorithms and its transpose. Section 3 explores some of the applications of Theorem 1 

for bounding the arithmetic complexity of certain matrix vector products. Section 4 

establishes the correspondence between linear algorithms for computing Mx and bilinear 
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algorithms for computing yTMx. 

2. Linear algorithms and transposed linear algorithms 

In their conventional definition ( cf. [2,6,8]) linear algorithms are presented as a 

sequence of elementary computation steps - a straight-line program. While this 

definition is appealing because of its correspondence with low level programs, it imposes 

more structure than is necessary on the underlying process, possibly disguising certain 

fundamental attributes such as inherent symmetries. We choose to present linear algo

rithms as labeled directed acyclic graphs. The correspondence between our definition 

and conventional definitions is straightforward; essentially all topological sortings of the 

vertices of our directed acyclic graph algorithms give equivalent straight line programs. 

One of the advantages of moving to a graph-theoretic definition is the natural way which 

it permits (in fact, suggests) the definition of a transposed algorithm - literally, the origi

nal algorithm "run backwards". 

Throughout this section R denotes an arbitrary communicative ring with additive 

and multiplicative units O and 1, respectively. 

Definition 1. A linear algorithm A over R is a triple ( V,E,-") where 

i) ( V,E) is a directed acyclic graph with vertex set V and edge set E; and 

ii) -":E-+R-{O}. 

We denote by V1 (respectively, v°) the subset of V consisting of vertices of in

degree (respectively, out-degree) 0. V1 (respectively, v°) corresponds to the input 

(respectively, output) vertices of algorithm A. 

Let I V1j=t and I v°j=s and suppose that ,8:{l, ... ,t}-+ V1 and ,:{l, ... ,s}-+ v0 are arbi

trary bijections (i.e. indexings of V1 and v°, respectively). Hereafter, we take ,8 and I to 
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be fixed for A. However, different choices for fJ and , amount to nothing more than 

renamings (or reorderings) of inputs and outputs. 

Let X=(x1, ... ) denote a sequence of distinct indeterminates over R. Denote by 

R{X} the set of linear forms in the indeterminates X with coefficients from R. xi 

Definition £. Let A=( V,E,>.) be a linear algorithm over R. With each vertex vE V we 

can associate an element /( v)ER{X}, called the linear form associated with v} as follows: 

Definition 9. A sequence vi, .. ,,vk, describes a path in the algorithm A=( V,E,>.) if 

The path v1, .. ,,vt is said to connect vertex v1 to vertex Vt· The weight of path P=v1, ... ,vt, 

denoted w(P), is given by 

t=l 
w(P) = 

otherwise. 

Let PA( v,w) denote the set of all paths connecting vertex v to vertex w in algorithm A. 

If P=vi, ... ,vt, then pT denotes the sequence vt,···,v1. 

Paths and their associated weights allow us to give an alternative characterization 

of the linear form associated with an arbitrary vertex in an algorithm A. 

Lemma 1. Let A=( V,E,>.) be a linear algorithm over R with I V11=t. For each vertex 
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Proof Straightforward induction on the depth of 11, i.e. the length of the longest path 

connecting a vertex in V1 to v. 

[I 

Definition 4. We say that algorithm A=(V,E,>.) computes a set of forms {/1, ... ,fa}~R{X} 

if for each /i there exists a tEv° such that /i=/(_11). Suppose that JV1J=t and Jv0J=s. 

We denote by FA. the vector (g1, ... ,g,) T, where g1-!(_,y(J)) (i.e. 9; is the linear form associ

ated with the jth output vertex of A). The matrix associated with algorithm A, denoted 

Lemma 2. The ( i,J) th en try of MA. is given by 

M .(iJ' = 1:: w(P). 
n J PEP A(,B(i),-,(1)) 

Proof. This is immediate from Lemma 1. 

[ I 

Definition S. Let A=( V1,E1,>.1) be any linear algorithm over R. We denote by AT the 

linear algorithm over R obtained from A by reversing all of the edges in E. More for-

ma.lly, where and 

for all (w,v)EE1. We refer to AT as the transpose of algorithm 

A. 

It should be clear that V~= vf and ~= V{. Suppose that /32 and , 2 are chosen so 

that (32=,1 and , 2=(31 (i.e. the input vertices of AT are indexed in the same way as the 
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output vertices of A, and vice versa). Then we have the following correspondence 

between a linear algorithm and its transpose and their associated matrices. 

Theorem 1. Let A be any linear algorithm over R. Then MA~(MA) T_ 

Proof Since PEP A(~1(i),')'1(.1)) if and only if pTEP A-r{~2(1),"12(i)), it follows from Lemma 

2 that MA(i,1)=MA-z{j,i) for all ij. 

[I 

3. Multiplying a vector by a matrix and its transpose 

Theorem 1 expresses a kind of duality between computations of a linear algorithm 

and its transpose. In this section, we explore some of the implications of this duality in 

studying the complexity of matrix vector products. 

Definition 6. If A=( V,E,>.) is a linear algorithm define a(A) and e(A) as 

a(A)=/E/-/ V)+/ V1
/ and e(A)=/{eEE/>.(e)#:1}/. a(A) (respectively, €(A)) gives the 

number of additions (respectively, scalar multiplications) used by algorithm A. 

Note. 

1. If {g1, ... ,g,}~R{X} and A is a linear algorithm that computes {g1, ... ,g,} then there 

exists a linear algorithm A' with a(A')$a(A) and e(A').:5€(A) for which 

FAr=(g1,, .. ,g,) T_ 

2. If A is a linear algorithm with I V1/=t and I v°/=s then a(A 7)=a(A)+s-t and 

e(A 7)=e(A). 

Definition 7. Let G=(g1, ... ,g,f where g,ER{X}, 1.:5i.:5s, (i.e. G is a vector of s linear 

forms over R). We define, 



- 'T -

µ( G)=min{a(A)jF,4.=G}. 

Thus, any linear algorithm A for which F,4.=G uses at leastµ( G) additions. 

Theorem i. Let M be a.n sx t matrix over R without zero rows or columns. Then, 

Proof. Suppose algorithm A computes· Mxt. Then without loss of generality, MA=M. 

But, by theorem 1, M,4.~(MA) T and hence algorithm AT computes MTx,. Since M has 

no zero rows or columns, it follows that I V1l=t and I i'°j=s. Hence, a(A 7)=a(A)+s-t. 

It follows that µ(MTx,)5:µ(Mxt)+s-t, and by symmetry µ(Mx,)5:µ(MTx,)+t-s. 

[I 

Savage [7] points out that conventional algorithms for matrix vector products can 

be improved when the coefficient set of the matrix is small. Specifically, 

Theorem 9. (Savage) 

Let M be an sx t matrix over R with at most r distinct coefficients. Then 

As a corollary to theorem 2 and theorem 3, we have the following extension of 

theorem 3. 

Corollary 1. Let M be an sx t matrix over R with at most r distinct coefficients. Then 
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O(st/log,s) s'?, t'?, log,s 

O(r~ t<log,s 
µ(Mxt)~ 0( st/ log,t) t'?,s"?,log,t 

O(t) s<log,t 

Proof If s'2:_t apply theorem 3 directly. Otherwise, apply theorem 3 to the computation 

of MTx, and convert the result using theorem 2. 

[I 

Note. The improvements in number of additions provided by the bound of Corollary 1 

do not come at the expense of an increase in the number of scalar multiplications. 

Indeed, Savage's algorithm uses tr scalar multiplications and the algorithm implicit in 

Corollary 1 uses min{ sr,tr} scalar multiplications. 

Corollary 1, in turn, provides a new variant of Kronrod's algorithm [l] for Boolean 

matrix products. 

Corollary 2. Let P and Q be sx t and tx u Boolean matrices. The product PQ can be 

computed in 0( stu ) additions, provided s,u"?,log2t, and O(tu) addi
max{log2s,log2t,log2 u} 

tions, otherwise. 

Theorem 2 can also be used to simplify certain lower bound arguments. 

Corollary 9. ( cf. [2, p. 14]) 

If Mis a lxt matrix over R-{O} then µ(Mxt)=t-1 

Proof MT is a tx 1 matrix and hence µ(MTx 1)=0. The result follows from Theorem 2. 

11 
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Corollary 4. ([5]) Let M be a 2xt matrix over R-{O} such that any two columns of M 

are linearly independent. Then any linear algorithm that computes Mxt requires 2t-2 

additions. 

Proof Obviously MTx2 requires t additions, smce to obtain a linear form which 1s 

independent from any already computed requires an addition. 

[I 

Note. Both Corollary 3 and Corollary 4 are known to hold for more general families of 

algorithms. (cf. [2,5]) . 

Corollary 4 can be generalized as follows. Let R be a principal ideal ring. Define 

an equivalence relation ~ on R2 by u~v if and only if the vectors u and v are linearly 

independent . 

Corollary 5. If M is a 2 x t matrix without zero rows or columns and r is the number of 

equivalence classes ( under ~) of the columns of M not containing a zero element then 

any linear algorithm that computes Mxt requires r+t...:2 additions. 

4. Bilinear algorithms and bilinear forms 

In this section we describe some of the implications of the results of section 3 for 

the computation of bilinear forms using bilinear algorithms. 

Definition 8. A bilinear algorithm (cf. [3]) B over Risa triple (A 1,A 2,A3) where 

i) A,=( Vi,Ei,).i) is a linear algorithm over R, l:'.Si:'.S3; and 

ii) I vfl=I vfl=I v{1. 

Suppose I V{l=t, I V'l=s and I V{l=r. Bis said to compute the set of bilinear form! 



- 10 -

where · denotes outer ( componentwise) product. 

Definition 9. The set of coefficients {mi;t}, 1$i$t, 1$j$s, 1$k$ r, is degenerate if there 

exists an i such that mi;t=O, 1$j$s, 1$k$r, or there exists a j such that mi;>.:=0, 1$i$t, 

1$k$r, or there exists a k such that mi;t=O, 1$i$t, 1$j$s. 

Theorem 4. Suppose that { mi;>.:} is a non-degenerate set of coefficients and that the set of 

t I 

bilinear forms { E E mi;>.:ZiY;}k=l, ... ,r can be computed by a bilinear algorithm in a addi
i=li=l 

t r , r 

tions. Then the dual sets { E E mi;J.:Ziz,}i=l, ... ,s and { E E mijkYiZ>.,}i=l, ... ,t can be com-
~lk=l ~lk=l 

puted by bilinear algorithms in a+r-s and a+r-t additions respectively. 

t ' 
Proof. It 1s easy to confirm that if { E E m,;J.:ZiY;}k=l, ... r is computed by the bilinear 

i=lj=l 

t r , r 

algorithm (A 1,A 2,A 3) then { E E m,;J.:ZiZ>.:}i=l, ... ,s (respectively, { .E E m,:;>.:Y;z,1:}i=l, ... ,t) 
~lk=l 3=lk=l 

is computed by the bilinear algorithm (A 1,Af,Af) {respectively (Af,A 2,Ai)). The result 

follows from Theorem 2. 

[I 

Note. The proof above also demonstrates that the numbers of non-scalar (respectively, 

scalar) multiplications required by these three dual sets are identical. See [3] for a more 

comprehensive treatment of non-scalar multiplications in this setting. 

Definition 10. A bilinear algorithm (Ai,A 2,A3) is elementary if MA
8
=(1,l, ... ,l) T_ An ele

mentary bilinear algorithm computes the single bilinear form (MA)',)T(MA
1
Xt), It is 

with no loss of generality that we assume that bilinear algorithms that compute a single 
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bilinear form are elementary. 

I Yfl=I V~I- The composition of A1 and A2, denoted A2 ° A1, is the linear algorithm 

formed from A1 and A2 by identifying the output vertices of A1 with the input vertices 

of A2 in a 1-1 fashion. It should be clear that MA A =MAMA. 
2 0 1 2 1 

Theorem 5. Let M be an BX t matrix over R. Let B=(A 1,A 2,A8) be any elementary bil

mear algorithm which computes the bilinear form y;Mxt. Then (A 2) T O A1 computes 

[I 

Theorem 5 demonstrates that any bilinear algorithm for computing the bilinear 

form y;Mxt can be transformed simply into a linear algorithm that computes Mxt. (In 

particular, a bilinar form y;Mxt can be evaluated optimally - among bilinear algorithms 

- by an algorithm that first computes Mxt). In fa.ct, many different bilinear algorithms 

will transform to the same linear algorithm. The converse of Theorem 5 also holds. 

That is, any linear algorithm that computes Mxt can be transformed into many different 

- but equally efficient - bilinear algorithms that compute y;Mxt. 

Theorem 6. Let M be an BX t matrix over R and suppose that algorithm A computes 

Mxt. Then if A=A2 ° Ai, the elementary bilinear algorithm B=(A 1,(A2f,A 8) computes 

the bilinear form y;Mxt. 
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Proof By definition M=MA A' 
~ o l 

Since 

(M(A:0T)T=MA
2

, by Theorem 1, the result follows from the definition of composition. 

[\ 

Note that if A is any linear algorithm then any cut of A, that is any minimal set of 

vertices of A that intersects any path connecting input and output vertices of A, defines 

two linear algorithms A1 and A2 (formed by edges on the input and output sides of the 

cut respectively) such that A=A 2 ° A 1. Thus, to each cut C of A there corresponds a 

distinct bilinear algorithm computing y;MAx,. The number of additions used by each 

such bilinear algorithm is 

=a(A)+s-1. 

Hence, the conventional ways of computing y;Mxe, by evaluating y;(Mxt) or (y;.M)xt, 

are just two of many equivalent (in terms of additions and scalar multiplications) possi

bilities. 

Note. Analogs of Theorems 4, 5 and 6 also hold for the computation of N-linear forms 

using multilinear algorithms ( cf. [4]). 
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