
ADDITION REQUIREI\1ENTS FOR MATRIX AND
TRANSPOSED MATRIX PRODUCTS

Michael Kaminskif, David G. Kirkpatrick*,
and Nader H. BshoutyS

Technical Report 86-17

October 1986

Abstract

Let M be an sx t matrix and let MT be the transpose of M. Let x and y be t- and
s-dimensional indeterminate column vectors, respectively. We show that any linear
algorithm A that computes Mx has associated with it a natural dual linear algorithm
denoted AT that computes MTy. Furthermore, if M has no zero rows or columns then
the number of additions used by AT exceeds the number of additions used by A by
exactly s-t. In addition, a strong correspondence is established between linear algo
rithms that compute the product Mx and bilinear algorithms that compute the bilinear
form yTMx.

Key words. arithmetic complexity, linear forms, linear algorithms, matrix multiplica
tion, graphs of algorithms, bilinear forms, bilinear algorithms.

t Faculty of Computer Science, Technion• brae! In11titute rx Technology, Haifa 32000, Israel. A part of the paper
was written while the author was visiting Department of Computer Science of the University of Waterloo, where it was
supported by NSERC Grant No. A0254.

t Department of Computer Science, the UniverBity of British Columbia, Vancouver, B.C., Canada, V6T 1W6. This
research was supported in part by NSERC Grant No. AS688.

§ Faculty of Computer Science, Technion - Israel Institute of Technology, Haifa 82000, Israel.

- 2 -

1. Introduction

Many numerical computations involve evaluating the product of a given matrix by

a vector of indeterminates. Obviously, the number of arithmetical operations used in the

evaluation of such a product depends on the organization of the computation.

In this paper we study the complexity, specifically the number of additions, of

linear algorithms that compute a set of linear forms defined by a given matrix M. Our

central result establishes a kind of duality between algorithms that compute the set of

forms associated with M and algorithms that compute the set of forms associated with

MT, the transpose of M. This gives a tight relationship between the complexities of

these related computational tasks. This relationship leads to new upper bounds on the

complexity of matrix vector products when the coefficients of M are drawn from a small

set. It also permits simple derivations of lower bounds on the number of additions

necessary to evaluate certain sets of linear forms.

The duality result also implies a strong relationship between linear algorithms for

computing the matrix vector product Mx and bilinear algorithms for computing the bil

inear form yTMx. This correspondence is reminiscent of the correspondence between bil

inear algorithms for computing a set of bilinear forms and trilinear algorithms for com

puting a trilinear form defined by the corresponding three dimensional tensor (cf. [3]).

This paper is organized as follows. In Section 2, we give a graph theoretic

definition of linear algorithms. This definition suggests a natural notion of transposed

algorithms. Theorem 1 establishes a relationship between the computations of a linear

algorithms and its transpose. Section 3 explores some of the applications of Theorem 1

for bounding the arithmetic complexity of certain matrix vector products. Section 4

establishes the correspondence between linear algorithms for computing Mx and bilinear

- s -

algorithms for computing yTMx.

2. Linear algorithms and transposed linear algorithms

In their conventional definition (cf. [2,6,8]) linear algorithms are presented as a

sequence of elementary computation steps - a straight-line program. While this

definition is appealing because of its correspondence with low level programs, it imposes

more structure than is necessary on the underlying process, possibly disguising certain

fundamental attributes such as inherent symmetries. We choose to present linear algo

rithms as labeled directed acyclic graphs. The correspondence between our definition

and conventional definitions is straightforward; essentially all topological sortings of the

vertices of our directed acyclic graph algorithms give equivalent straight line programs.

One of the advantages of moving to a graph-theoretic definition is the natural way which

it permits (in fact, suggests) the definition of a transposed algorithm - literally, the origi

nal algorithm "run backwards".

Throughout this section R denotes an arbitrary communicative ring with additive

and multiplicative units O and 1, respectively.

Definition 1. A linear algorithm A over R is a triple (V,E,-") where

i) (V,E) is a directed acyclic graph with vertex set V and edge set E; and

ii) -":E-+R-{O}.

We denote by V1 (respectively, v°) the subset of V consisting of vertices of in

degree (respectively, out-degree) 0. V1 (respectively, v°) corresponds to the input

(respectively, output) vertices of algorithm A.

Let I V1j=t and I v°j=s and suppose that ,8:{l, ... ,t}-+ V1 and ,:{l, ... ,s}-+ v0 are arbi

trary bijections (i.e. indexings of V1 and v°, respectively). Hereafter, we take ,8 and I to

- 4 -

be fixed for A. However, different choices for fJ and , amount to nothing more than

renamings (or reorderings) of inputs and outputs.

Let X=(x1, ...) denote a sequence of distinct indeterminates over R. Denote by

R{X} the set of linear forms in the indeterminates X with coefficients from R. xi

Definition £. Let A=(V,E,>.) be a linear algorithm over R. With each vertex vE V we

can associate an element /(v)ER{X}, called the linear form associated with v} as follows:

Definition 9. A sequence vi, .. ,,vk, describes a path in the algorithm A=(V,E,>.) if

The path v1, .. ,,vt is said to connect vertex v1 to vertex Vt· The weight of path P=v1, ... ,vt,

denoted w(P), is given by

t=l
w(P) =

otherwise.

Let PA(v,w) denote the set of all paths connecting vertex v to vertex w in algorithm A.

If P=vi, ... ,vt, then pT denotes the sequence vt,···,v1.

Paths and their associated weights allow us to give an alternative characterization

of the linear form associated with an arbitrary vertex in an algorithm A.

Lemma 1. Let A=(V,E,>.) be a linear algorithm over R with I V11=t. For each vertex

- 6 -

Proof Straightforward induction on the depth of 11, i.e. the length of the longest path

connecting a vertex in V1 to v.

[I

Definition 4. We say that algorithm A=(V,E,>.) computes a set of forms {/1, ... ,fa}~R{X}

if for each /i there exists a tEv° such that /i=/(_11). Suppose that JV1J=t and Jv0J=s.

We denote by FA. the vector (g1, ... ,g,) T, where g1-!(_,y(J)) (i.e. 9; is the linear form associ

ated with the jth output vertex of A). The matrix associated with algorithm A, denoted

Lemma 2. The (i,J) th en try of MA. is given by

M .(iJ' = 1:: w(P).
n J PEP A(,B(i),-,(1))

Proof. This is immediate from Lemma 1.

[I

Definition S. Let A=(V1,E1,>.1) be any linear algorithm over R. We denote by AT the

linear algorithm over R obtained from A by reversing all of the edges in E. More for-

ma.lly, where and

for all (w,v)EE1. We refer to AT as the transpose of algorithm

A.

It should be clear that V~= vf and ~= V{. Suppose that /32 and , 2 are chosen so

that (32=,1 and , 2=(31 (i.e. the input vertices of AT are indexed in the same way as the

- 6 -

output vertices of A, and vice versa). Then we have the following correspondence

between a linear algorithm and its transpose and their associated matrices.

Theorem 1. Let A be any linear algorithm over R. Then MA~(MA) T_

Proof Since PEP A(~1(i),')'1(.1)) if and only if pTEP A-r{~2(1),"12(i)), it follows from Lemma

2 that MA(i,1)=MA-z{j,i) for all ij.

[I

3. Multiplying a vector by a matrix and its transpose

Theorem 1 expresses a kind of duality between computations of a linear algorithm

and its transpose. In this section, we explore some of the implications of this duality in

studying the complexity of matrix vector products.

Definition 6. If A=(V,E,>.) is a linear algorithm define a(A) and e(A) as

a(A)=/E/-/ V)+/ V1
/ and e(A)=/{eEE/>.(e)#:1}/. a(A) (respectively, €(A)) gives the

number of additions (respectively, scalar multiplications) used by algorithm A.

Note.

1. If {g1, ... ,g,}~R{X} and A is a linear algorithm that computes {g1, ... ,g,} then there

exists a linear algorithm A' with a(A')$a(A) and e(A').:5€(A) for which

FAr=(g1,, .. ,g,) T_

2. If A is a linear algorithm with I V1/=t and I v°/=s then a(A 7)=a(A)+s-t and

e(A 7)=e(A).

Definition 7. Let G=(g1, ... ,g,f where g,ER{X}, 1.:5i.:5s, (i.e. G is a vector of s linear

forms over R). We define,

- 'T -

µ(G)=min{a(A)jF,4.=G}.

Thus, any linear algorithm A for which F,4.=G uses at leastµ(G) additions.

Theorem i. Let M be a.n sx t matrix over R without zero rows or columns. Then,

Proof. Suppose algorithm A computes· Mxt. Then without loss of generality, MA=M.

But, by theorem 1, M,4.~(MA) T and hence algorithm AT computes MTx,. Since M has

no zero rows or columns, it follows that I V1l=t and I i'°j=s. Hence, a(A 7)=a(A)+s-t.

It follows that µ(MTx,)5:µ(Mxt)+s-t, and by symmetry µ(Mx,)5:µ(MTx,)+t-s.

[I

Savage [7] points out that conventional algorithms for matrix vector products can

be improved when the coefficient set of the matrix is small. Specifically,

Theorem 9. (Savage)

Let M be an sx t matrix over R with at most r distinct coefficients. Then

As a corollary to theorem 2 and theorem 3, we have the following extension of

theorem 3.

Corollary 1. Let M be an sx t matrix over R with at most r distinct coefficients. Then

- 8 -

O(st/log,s) s'?, t'?, log,s

O(r~ t<log,s
µ(Mxt)~ 0(st/ log,t) t'?,s"?,log,t

O(t) s<log,t

Proof If s'2:_t apply theorem 3 directly. Otherwise, apply theorem 3 to the computation

of MTx, and convert the result using theorem 2.

[I

Note. The improvements in number of additions provided by the bound of Corollary 1

do not come at the expense of an increase in the number of scalar multiplications.

Indeed, Savage's algorithm uses tr scalar multiplications and the algorithm implicit in

Corollary 1 uses min{ sr,tr} scalar multiplications.

Corollary 1, in turn, provides a new variant of Kronrod's algorithm [l] for Boolean

matrix products.

Corollary 2. Let P and Q be sx t and tx u Boolean matrices. The product PQ can be

computed in 0(stu) additions, provided s,u"?,log2t, and O(tu) addi
max{log2s,log2t,log2 u}

tions, otherwise.

Theorem 2 can also be used to simplify certain lower bound arguments.

Corollary 9. (cf. [2, p. 14])

If Mis a lxt matrix over R-{O} then µ(Mxt)=t-1

Proof MT is a tx 1 matrix and hence µ(MTx 1)=0. The result follows from Theorem 2.

11

- 9 -

Corollary 4. ([5]) Let M be a 2xt matrix over R-{O} such that any two columns of M

are linearly independent. Then any linear algorithm that computes Mxt requires 2t-2

additions.

Proof Obviously MTx2 requires t additions, smce to obtain a linear form which 1s

independent from any already computed requires an addition.

[I

Note. Both Corollary 3 and Corollary 4 are known to hold for more general families of

algorithms. (cf. [2,5]) .

Corollary 4 can be generalized as follows. Let R be a principal ideal ring. Define

an equivalence relation ~ on R2 by u~v if and only if the vectors u and v are linearly

independent .

Corollary 5. If M is a 2 x t matrix without zero rows or columns and r is the number of

equivalence classes (under ~) of the columns of M not containing a zero element then

any linear algorithm that computes Mxt requires r+t...:2 additions.

4. Bilinear algorithms and bilinear forms

In this section we describe some of the implications of the results of section 3 for

the computation of bilinear forms using bilinear algorithms.

Definition 8. A bilinear algorithm (cf. [3]) B over Risa triple (A 1,A 2,A3) where

i) A,=(Vi,Ei,).i) is a linear algorithm over R, l:'.Si:'.S3; and

ii) I vfl=I vfl=I v{1.

Suppose I V{l=t, I V'l=s and I V{l=r. Bis said to compute the set of bilinear form!

- 10 -

where · denotes outer (componentwise) product.

Definition 9. The set of coefficients {mi;t}, 1it, 1js, 1k r, is degenerate if there

exists an i such that mi;t=O, 1js, 1kr, or there exists a j such that mi;>.:=0, 1it,

1kr, or there exists a k such that mi;t=O, 1it, 1js.

Theorem 4. Suppose that { mi;>.:} is a non-degenerate set of coefficients and that the set of

t I

bilinear forms { E E mi;>.:ZiY;}k=l, ... ,r can be computed by a bilinear algorithm in a addi
i=li=l

t r , r

tions. Then the dual sets { E E mi;J.:Ziz,}i=l, ... ,s and { E E mijkYiZ>.,}i=l, ... ,t can be com-
~lk=l ~lk=l

puted by bilinear algorithms in a+r-s and a+r-t additions respectively.

t '
Proof. It 1s easy to confirm that if { E E m,;J.:ZiY;}k=l, ... r is computed by the bilinear

i=lj=l

t r , r

algorithm (A 1,A 2,A 3) then { E E m,;J.:ZiZ>.:}i=l, ... ,s (respectively, { .E E m,:;>.:Y;z,1:}i=l, ... ,t)
~lk=l 3=lk=l

is computed by the bilinear algorithm (A 1,Af,Af) {respectively (Af,A 2,Ai)). The result

follows from Theorem 2.

[I

Note. The proof above also demonstrates that the numbers of non-scalar (respectively,

scalar) multiplications required by these three dual sets are identical. See [3] for a more

comprehensive treatment of non-scalar multiplications in this setting.

Definition 10. A bilinear algorithm (Ai,A 2,A3) is elementary if MA
8
=(1,l, ... ,l) T_ An ele

mentary bilinear algorithm computes the single bilinear form (MA)',)T(MA
1
Xt), It is

with no loss of generality that we assume that bilinear algorithms that compute a single

- 11 -

bilinear form are elementary.

I Yfl=I V~I- The composition of A1 and A2, denoted A2 ° A1, is the linear algorithm

formed from A1 and A2 by identifying the output vertices of A1 with the input vertices

of A2 in a 1-1 fashion. It should be clear that MA A =MAMA.
2 0 1 2 1

Theorem 5. Let M be an BX t matrix over R. Let B=(A 1,A 2,A8) be any elementary bil

mear algorithm which computes the bilinear form y;Mxt. Then (A 2) T O A1 computes

[I

Theorem 5 demonstrates that any bilinear algorithm for computing the bilinear

form y;Mxt can be transformed simply into a linear algorithm that computes Mxt. (In

particular, a bilinar form y;Mxt can be evaluated optimally - among bilinear algorithms

- by an algorithm that first computes Mxt). In fa.ct, many different bilinear algorithms

will transform to the same linear algorithm. The converse of Theorem 5 also holds.

That is, any linear algorithm that computes Mxt can be transformed into many different

- but equally efficient - bilinear algorithms that compute y;Mxt.

Theorem 6. Let M be an BX t matrix over R and suppose that algorithm A computes

Mxt. Then if A=A2 ° Ai, the elementary bilinear algorithm B=(A 1,(A2f,A 8) computes

the bilinear form y;Mxt.

- 12 -

Proof By definition M=MA A'
~ o l

Since

(M(A:0T)T=MA
2

, by Theorem 1, the result follows from the definition of composition.

[\

Note that if A is any linear algorithm then any cut of A, that is any minimal set of

vertices of A that intersects any path connecting input and output vertices of A, defines

two linear algorithms A1 and A2 (formed by edges on the input and output sides of the

cut respectively) such that A=A 2 ° A 1. Thus, to each cut C of A there corresponds a

distinct bilinear algorithm computing y;MAx,. The number of additions used by each

such bilinear algorithm is

=a(A)+s-1.

Hence, the conventional ways of computing y;Mxe, by evaluating y;(Mxt) or (y;.M)xt,

are just two of many equivalent (in terms of additions and scalar multiplications) possi

bilities.

Note. Analogs of Theorems 4, 5 and 6 also hold for the computation of N-linear forms

using multilinear algorithms (cf. [4]).

- 13 -

References

[1] V.L. Arlazarov, E.A. Dinic, M.A. Kronrod and I.A. Faradzev, On economical con
struction of the transitive closure of an oriented graph) Soviet Math. Dokl., 11
(1970), pp. 1209-1210.

[2] A. Borodin, J .I. Munro, The Computational Complexity of Algebraic and Numeric
Problems, America} Elsevier Publishing Co., 1975.

[3] R. Brockett, D. Dobkin, On the .Optimal Evaluation of a Set of Bilinear Forms,
Linear Alg. Appl. 19 {1978), 207-235.

[4] D. Dobkin, On the optimal evaluation of a set of N-linear forms, Proc. 14th
Annual IEEE Symp. on Switching and Automata Theory (1973), 92-102.

[5] D.G. Kirkpatrick, On the additions necessary to compute certain functions. Proc.
4th Annual ACM Symp. on Theory of Computing {1972), 94-101.

[6] J. Morgenstern, The Linear Complexity of Computation, J. ACM 22 {1975), 184-
194.

[7] G.E. Savage, An algorithm for computation of linear forms, SIAM J. Comp. 3
(1974), 150-156.

[8] V. Strassen, Vermeidung von Divisionen, J. Reine Angew. Math. 264 {1973), 184~
202.

