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INTRODUCTION 

Shape analysis is a generic term used to identify methods that determine the form 

and the spatial arrangement of objects in the world. Vision and touch are the two sen­

sory modalities used for shape analysis in human perception. Of the two, vision has 

received the most attention in artificial intelligence. Several articles survey work in the 

field (1,2,3). Textbooks are available for further study (4,5,6). Shape analysis based on 

touch and active range sensing is an emerging area of importance in robotics (7). 

This article is about shape analysis in computational vision. Computational vision 

is the study of systems that produce descriptions of a world from images of that world. 

The purpose is to represent those aspects of the world that are required to carry out 

some task. For most tasks, shape is a necessary component of the description produced. 

Here, the term representation is used to identify a formalism, or language, for encoding 

a general class of shapes. The term description is restricted to mean a specific expres­

sion in the formalism that identifies an instance of a particular shape or class of shapes 

in the representation. 

In a general purpose vision system, the mapping from signal input to final shape 

description is too complex to be treated as a function in a single representation. Shape 

analysis requires many levels of intermediate representation. Identifying those levels 

and establishing the constraints that operate both within and between levels is the fun­

damental challenge of computational vision research. Each level of representation must 

consider both the processes that derive the representation and the processes that com­

pute with the representation. At the level of the signal, one deals with descriptions that 

can be derived directly from the image. This leads initially to representations for the 
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two-dimensional shape of image patterns. Interpreting image properties as scene proper­

ties leads to representations for the visible surfaces in the scene. Finally, recognition of 

distinct objects and their spatial arrangement requires representations for three­

dimensional shapes that are independent of viewpoint. 

Over the past two decades, there has been considerable growth in the theoretical 

base for computational vision. One major trend has been towards a concentration on 

topics corresponding to identifiable modules in human perception (8). This has led to 

the development of three-dimensional vision systems including: shape from stereo (9,10), 

shape from contour (11,12,13,14,15), shape from motion (16) and optical flow(l 7) and 

shape from texture (11,18). 

Computational vision distinguishs these three levels of representation: 2-D shape, 

visible surfaces, and 3-D shape. Unfortunately, there is no general agreement on what 

are the right representations to use at each of these levels. There is some agreement on 

necessary criteria these shape representations must satisfy. 

CRITERIA FOR SHAPE REPRESENTATION 

Several authors suggest nece.s_s_a_:r_y criteria that genera}.._purpose shape rcpresenta~ 

tions must satisfy (3,19,20,21). No single representation proposed to date satisfies all of 

the criteria. Nevertheless, the criteria provide a useful framework to discuss representa­

tions that have been proposed. The criteria are as follows: 

• The representation of shape must be computable using only local support. The ability 

to derive the representation from the input data is the minimal requirement. Local 

support further stipulates tha~ the representation can be computed locally. This is 
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required to deal with occlusion and to perform detailed inspection. It is also of practi­

cal importance since processes that derive the representation can then be implemented 

efficiently. 

• The representation of shape must be stable. That is, small changes in the input 

should cause only small changes in the result. Images are subject to noise. Thus, sta­

bility is an important criterion for processes that derive initial descriptions from an 

image. Stability is also an important criterion for subsequent levels of representation 

because, without stability, it is difficult to define an effective measure of similarity to 

compare descriptions. 

• The representation of shape must be rich in the sense of information preserving. 

Images are two-dimensional, while objects are three-dimensional. Image projection 

loses information. An image defines an equivalence class, usually infinite, of worlds 

that project to the identical image. A representation is rich if it does not arbitrarily 

restrict or extend this equivalence class. Rich representations are needed to describe a 

large class of objects, including objects that may never have been seen before. 

• The representation must describe shape at multiple scales. Representations at multi­

ple scales are useful for several reasons. First, representations at multiple scales 

suppress detail until it is required. Descriptions at a coarse scale relate to overall 

shape. Detail emerging at finer scales includes features that are more local. A 

pinhole in a metal casting is not significant when the task is to identify the part. But, 

it is critical when the task is to inspect the part for defects. Second, objects must be 
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representable at different levels of detail. This can be accomplished using a hierarchi­

cal representation of shape that also takes into account the difference in object 

appearance owing to scale. For example, a forest is made up of individual trees. A 

forest can be represented hierarchically as a particular spatial arrangement and 

species composition of individual trees. At a coarser scale, the forest must still be 

represented as a forest, even when the individual trees are no longer discernible. 

Third, in the presence of noise, there is an inherent trade-off between the detectability 

of an image feature and its precise localization in space. By working at multiple 

scales, it is possible to optimize this trade-off dynamically, as required. Fourth, a 

coarse to fine analysis can introduce significant computational speed-up in methods 

for shape analysis requiring search or convergence. Fifth, to be useful, a representa­

tion should be storage efficient. Representations at multiple scales are needed to be 

both storage efficient and rich. 

• The representation must define an ob;'ect-based semantics for shape description and 

segmentation. In general, comparison of two-dimensional shape descriptions fails 

because there is no stable similarity measure to use. Large changes in shape descrip­

t1on follow from miricfr changes iii e1Uier tlie spa.Hal configuration of the ob}ects in the 

world, the viewpoint, or the illumination. Shape analysis requires representations in 

which three-dimensional shape is explicit so that spatial relationships between surfaces 

can be computed easily. This is necessary to segment complex shapes into simpler 

components, to predict how objects will appear, and to deal with occlusion. 

• The representation of shape must correspond to human performance on the task. 
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Earlier, it was noted that an image defines an equivalence class of worlds that project 

to the identical image. Similarly, a representation defines equivalence classes of 

images that produce identical descriptions in the representation. Human perception 

also defines equivalence classes of worlds/images that produce identical perceptions. 

A representation of shape corresponds to human performance on some task if two con­

ditions are satisfied. First, images that produce distinct descriptions in the represen­

tation are perceived as distinct in the task. Second, images that produce identical 

descriptions in the representation are perceived as identical in the task. A correspon­

dence to human performance is difficult to achieve, in part because much remains to 

be understood about human perception. Nevertheless, developing this correspondence 

is a major motivating factor for current work in computational vision. 

THE C01\1PUTATIONAL TASK 

The computational task is to determine the three-dimensional shape of objects from 

their two-dimensional projection onto images. The principal shape analysis methods 

studied in computational vision are: shape from contour, shape from stereo, shape from 

shading, shape from texture, and shape from motion. Although each method differs 

considerably in precise detail, all share a common characterization as computational 

tasks. The steps embodied in a shape analysis method are: 

• Identify the visual task. This involves picking a task domain and a class of locally 

computable image features for the domain that provide cues to three-dimensional 

shape. 
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• Derive mathematical equations that describe how the world determines the image. The 

equations are based on the laws of optics and, in general, consider both geometry and 

radiometry. The equations determine the mapping from scene to image. Shape 

analysis, however, requires a solution to the inverse problem. That is, it must deter­

mine the mapping from image to scene. 

• Demonstrate that the inverse problem is underconstrained. It is usually straightfor­

ward to demonstrate that the problem is locally underconstrained. In general, the 

problem is also globally underconstrained although this can be more difficult to 

demonstrate. 

• Identify additional constraints that lead to a unique solution to the inverse problem. 

Image features determine equivalence classes of possible scene features. Conceptually, 

a unique solution is obtained when a metric is applied to the equivalence classes to 

select a single preferred solution. Vision has been termed a conservative process (22). 

The metric is often expressed as a performance index designed to achieve smooth, reg­

ular, or minimal energy solutions. Identifying a suitable performance index is not a 

trivia! matter. There_ are ma.ny_.possible measures-to-consider -for-a--given- -v-is-ual----task 

Some degree of mathematical rigor is generally required to demonstrate that a partic­

ular choice does, in fact, lead to a unique solution. Finally, even when existence of a 

unique solution is established, it is still necessary to develop an algorithm to deter­

mine the solution. 

• Show that the solution thus obtained agrees with human perception. Whatever the 
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metric, the correct physical solution cannot be obtained in all cases. Human percep­

tion does not always correspond to the correct physical solution either. One level of 

agreement with human perception is to demonstrate that the computed solution 

agrees with human perception for the chosen visual task. At a second level, one also 

compares known algorithms for computing the solution to plausible mechanisms for 

biological implementation. 

SHAPE FROM SHADING 

A smooth opaque object produces an image with spatially varying brightness even 

if the object is illuminated evenly and is made of a material with uniform optical proper­

ties. Shading in an image provides essential information about object shape. Methods 

have been developed to determine shape from shading. These methods are based on an 

image irradiance equation formulated to determine image brightness as a function of 

surface orientation. The image irradiance equation cannot be directly inverted because 

surface orientation has two degrees of freedom and image brightness has only one. 

Additional information is required to reconstruct the visible surface. Many different 

constraints have been used in shape from shading methods. Here, two are considered. 

First, one can impose an overall smoothness metric on the desired solution, using loca­

tions in the image where surface orientation is determined locally as initial conditions. 

Second, one can use multiple images in a technique known as photometric stereo. The 

development given here originated with Horn (23) and includes extensions described in 

(24,25,26). 
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The Image Irradiance Equation 

Image formation is modeled by an image irradiance equation. To standardize the 

geometry, consider objects to be defined in a left-handed Cartesian coordinate system 

with the viewing direction aligned with the negative Z-axis. The equation for a visible 

surface can be given explicitly as z = J(x,y). In general, optical systems perform a per­

spective projection defined with respect to the focal point of the lens. If the size of the 

objects is small compared to the viewing distance, then the orthographic projection is 

obtained, as illustrated in Figure 1. In an orthographic projection, all rays from object 

to image are parallel because the focal point is at infinity. Thus, surface point (x,y,z) 

projects to image point (u,v). Without loss of generality, let u=x and v=y. The ortho­

graphic projection, defined here, simply discards the z coordinate of each visible surface 

point (x,y,z). 

There are several ways to specify direction in the coordinate system of Figure 1. 

Consider points on the unit sphere centered at the origin, called the Gaussian Sphere 

after Hilbert and Cohn-Vossen (27). Each point on the Gaussian sphere identifies the 

unit vector formed by joining the origin to that point. Thus, standard spherical coordi­

nates can be used to specify the full range of directions. Now, the direction of a viewer 

facing surface normal at any point on the visible surface z = J(x,y) can be found by tak­

ing the cross product of any two vectors lying in the tangent plane, provided they are 

not parallel to each other. Two such vectors are [1,0,-p) and [0,1,-q] where 

p = 8/(x,y)/ax is the slope in X direction and q = 8/(x,y)/By is the slope in the Y direc­

tion. Their cross product is the vector [p,q,-1]. The quantity (p,q) is called the gradient 

of z = f(x,y) and gradient space is the two-dimensional space of all such gradients (p,q). 
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Gradient space corresponds to the projection of points on the viewer facing hemisphere 

of the Gaussian sphere from the origin to the plane z = -1. Because of this, the gra­

dient space has one drawback. Points where a surface smoothly disappears from view 

form what Marr (28) called an occluding contour. Points on an occluding contour have 

surface normals on the Gaussian sphere that intersect the plane z = 0. These points 

project to infinity in the gradient space. Another projection of the Gaussian sphere can 

be used instead. Points on the Gaussian sphere can be projected to the plane z = -1 

from the point (0,0,1) rather than from the origin. This is a stereographic projection. 

Stereographic coordinates will be denoted as (l,g) to avoid confusion with the gradient 

(p,q). In stereographic coordinates, points on an occluding contour lie on the circle 

f + g2 = 4. Equations for transforming between spherical coordinates, the gradient, 

and stereographic coordinates can be found in (6,25). 

Two directions are required to specify the local geometry of the. incident and the 

reflected ray. A total of four parameters are required because each direction has two 

degrees of freedom. Often, however, one considers materials whose reflectance charac­

teristics are invariant with respect to rotation about the surface normal. For surfaces 

that are isotropic in this way, only three parameters are required. Figure 1 illustrates 

one way to define the incident and the reflected ray in terms of three angles i, e, and g. 

This choice has one advantage over other possibilities. For a distant viewer and distant 

light source, the phase angle g is constant, independent of the surface normal. 

The amount of light reflected by a surface element depends on its optical proper­

ties, on its microstructure, and on the spectral and spatial distribution of the illumina­

tion. The reflectance properties of a surface material are described by its bidirectional 
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reflectance distribution function (BRDF). The BRDF was introduced as a unified nota­

tion for the specification of reflectance in terms of the incident and the reflected beam 

geometry {29). The BRDF identifies an intrinsic property of a surface material. It 

determines how bright the surface will appear when viewed from a given direction and 

illuminated from another. 

The surface normal relates surface geometry to brightness because it determines the 

angles i, e, and g of Figure 1. For a constant scene irradiance and viewer geometry, the 

image irradiance measured from a given surface material varies only with the surface 

orientation. A reflectance map determines image irradiance as a function of surface 

orientation (23). When the gradient is used to represent surface orientation, the 

reflectance map is denoted by R(p,q). When stereographic coordinates are used, it is 

denoted by R(f,g). A reflectance map is a uniform representation for specifying the 

reflectance properties of a surface material for a particular light source distribution and 

viewer geometry. A reflectance map can be derived analytically for a given BRDF and 

light source distribution (30). More commonly, a reflectance map is measured empiri­

cally. A calibration object of known shape is used to determine image brightness as a 

fun__c.tion of _Ru dace orientation, -'F-he reflectance map obtained tms way -canoe-usea-fo 

analyze other objects made of the same material and viewed under identical conditions 

of illumination. The empirical approach has the advantage of automatically correcting 

for the transfer characteristics of the imaging device. 

Image formation can thus be described by a single equation called the image irradi­

ance equation. If the gradient is used to represent surface orientation, the image irradi­

ance equation becomes 
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E(x,y) = R(p,q) 

where E(x,y) is the image irradiance at image point (x,y) and R(p,q) is the reflectance 

map value at the corresponding gradient (p,q). Shape from shading methods reconstruct 

a surface z = /(_x,y) to satisfy the image irradiance equation. 

Shape from Shading and Occluding Contour 

An object's boundary provides additional information that can be used to establish 

initial conditions. Parts of the boundary may correspond to sharp edges on the surface, 

as with polyhedra. Other parts correspond to places where the surface curves around 

smoothly. The latter defines an occluding contour, as we have seen. At an occluding 

contour, surface orientation is determined locally (12,25,28). In an orthographic projec­

tion, a normal to the silhouette in the image plane is also a normal to the surface at the 

corresponding point on the occluding contour. 

Ikeuchi and Horn (25) developed an iterative algorithm to determine surface orien­

tation using the image irradiance equation and a smoothness criterion as constraints. 

Surface orientation at occluding contours is the main source of initial conditions 

although information from singular points, specular points and self-shadow boundaries 

can also be included. The stereographic projection is used to represent surface orienta­

tion. 

Consider the continuous case. The goal is to find functions f(x,y) and g(x,y) that 

make error in the image irradiance equation small, while keeping the solution surface as 

smooth as possible. Departure from smoothness is given by 
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where fz, / 11, gz and g11 are the first partial derivative of/ and g with respect to x and y. 

Error in the image irradiance equation is given by 

J J (E(x,y) - R(l,g))2 dxdy 

The problem is to minimize the combined error term e defined by 

e = J J [(fz + /;) + (~ + ~) + .\(E(x,y) - R(/,g)) 2
] dxdy 

Error in the image irradiance equation is weighted by .\ compared to departure from 

smoothness. If the reflectance map is known accurately and if the brightness measure­

ments are precise then .\ can be made large. On the other hand, if .\ is small then a 

smooth surface is determined despite noise and uncertainties about reflectance and 

illumination. 

Minimization of an integral of the form 

ff F(/,g,fz,f 11,g,,,g,;) dxdy 

subject to suitable boundary conditions is a problem in the calculus of variations. The 

function Fis called the performance index. In general, the existence and uniqueness of a 

solution to problems in the calculus of variations cannot be taken for granted. Careful 

consideration must also be given to specification of boundary conditions. Correct formu­

lation of a problem requires specifying a performam:e index that guarantees the 

existence of a solution and that provides the tightest set of natural boundary conditions 

that is consistent with the given data. Much of the early work in shape analysis omit­

ted formal analysis of these problems. Recently, formulations of variational principles, 

called regularization in the Soviet literature (31), have been developed that guarantee 

the existence, uniqueness, and stability of the solution. Variational principles are 

increasingly being applied to problems in computational vision, both retroactively to 
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In a discrete formulation, the local departure from smoothness is given by 

8·. = .,, Ui+1,; - h) 2 + (/i,;+1 - /i,;) 2 + (gi+i,; - gi,;) 2 + (gi,;+1 - gi,;) 2 

4 

The local error in the image irradiance is given by 

r•. = (E· . - R('· · g• ·)) 2 .,, .,, ""' .,, 
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where Ei,; is the measured brightness at image point ( i,i) and (h,;,9i,;) is the correspond-

ing surface orientation in stereographic coordinates. The problem is to minimize the 

error term e given by 

e = EE (si,; + .\ ri,;) 
i ; 

where .\ is a free parameter as in the continuous case. 

The solution method requires that this last equation be differentiated with respect 

to /i,; and gi,j· For a minimum, the partial derivatives are all set to zero resulting in a 

large, sparse set of linear equations. These equations are solved using an iterative 

method and the set of values for /i,j and gi,j determine the solution surface. 

Empirical results indicate that the method is both stable and robust. It works well 

when all information is precise. It continues to work reasonably well even when the 

reflectance map is only a crude approximation. One problem with this straightforward 

implementation is that convergence can be very slow. On a fine grid, the locations at 

which initial conditions are specified can be widely separated. The global minimum is 

achieved by iteratively propagating constraints across the network. A multiresolution 

algorithm for this formulation of shape from shading has been developed (26), based on 

multigrid relaxation methods of numerical analysis. Empirical results with the 
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multiresolution implementation suggest that order-of-magnitude gains in efficiency are 

possible. 

Photometric Stereo 

Another approach to shape from shading uses multiple images to provide additional 

constraint. These images are taken from the same viewing direction, but under different 

conditions of illumination. This technique is called photometric stereo (33). It allows 

one to determine surface orientation locally without smoothness assumptions. 

Suppose two images Ea(x,y) and E6(x,y) are obtained by varying the direction of 

illumination. Since there is no change in the imaging geometry, each picture element 

(x,y) in the two images corresponds to the same object point and hence to the same gra­

dient (p,q). This means that one does not have the problem of first identifying 

corresponding points in multiple views, as happens in binocular stereo. The effect of 

varying the direction of illumination is to change the reflectance map R(p,q) that 

characterizes the imaging situation. 

Let the reflectance maps for the two imaging situations be Ra(p,q) and Rb(p,q) 

respectively. Suppose a p-0int (~Yo) has measured intensities E 0 (x0,y0) ·- ~-rr-7md­

E6(x0,y0) = {J. One obtains two equations in the two unknowns p and q Ra(p,q) = ex 

and R6(p,q) = {J. There may be more than one solution because the equations are gen­

erally nonlinear. Additional information, such as a third image, can be used to deter­

mine the correct solution. 

The multiple images required for photometric stereo can be obtained by moving a 

single light source, by using multiple sources individually calibrated or by rotating the 
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object and imaging device together to simulate the movement of a single light source. 

An equivalent to photometric stereo can also be achieved in a single view by using mul­

tiple sources that can be separated by color. 

Photometric stereo is easy to implement. The stereo computation, after an initial 

calibration step, is purely local and may be implemented by table lookup, allowing real 

time performance. Photometric stereo is a practical scheme for environments, such as 

industrial inspection, where the illumination can be controlled. It has been used as the 

basis for a prototype system to solve the industrial bin-of-parts problem (34). 

The gradients computed at neighboring image points may vary considerably due to 

measurement errors. A smoothness constraint can be used to improve the results of 

photometric stereo (6). Using a performance index similar to the one discussed above, 

the problem is to minimize the error term e defined by 

e = ff [(/; + /;) + (~ + g!) + E-Xi(Ei(x,y) - Ri(/,g)) 2
] dxdy 

i 

where Ei(x,y) is the ith image and Ri(f,g) is the corresponding reflectance map. The .X; 

weigh the errors in the image irradiance equations relative to the departure from 

smoothness. They may be different if the measurements from the images are not 

equally reliable. 

Photometric stereo is complementary to binocular stereo. Binocular stereo allows 

the accurate determination of distance to the surface. Photometric stereo determines 

surface orientation. Binocular stereo works well on rough surfaces with discontinuities 

in surface orientation. Photometric stereo is best when surfaces are smooth with few 

discontinuities. Binocular stereo works well on textured surfaces with discontinuities in 
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surface reflectance. Photometric stereo is best when surfaces have uniform optical pro­

perties. Photometric stereo has some distinct advantages. There is no difficulty identi­

fying corresponding points in two images because the images are obtained from the same 

point of view. Determining correspondence is the major computational task of binocular 

stereo. In certain circumstances, surface reflectance can also be found because the effect 

of surface orientation on image brightness can be removed. Binocular stereo does not 

provide this capability. In some applications, a description of object shape based on 

surface orientation is preferable to a description based on range. 

2-D SHAPE 

In two-dimensional shape analysis, all descriptions are given in terms of image pro­

perties alone. It is assumed that there is a direct correspondence between image 

features and requirements of the task. For some tasks, the world is essentially two­

dimensional and free of complications that arise from image projection. Examples 

include optical character recognition (OCR), inspection of printed circuit boards and 

VLSI layout, and microscopic blood cell image analysis. In some robotics tasks, the 

three-dimensional objects are confined to a small number of stable configurations that 

can be characterized by the object silhouette. Shape analysis for these tasks typically 

takes as input a binary image and is based either on object regions or on the object's 

bounding contour. 

Global Shape Properties of Binary Images 

Some global properties of regions in a binary image can be computed using only 

local support. Two examples are the metric properties perimeter (P) and area (A). The 
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ratio 
4;A is used as a measure of compactness. The factor of 41r in the numerator nor­

malizes the ratio to one for a circle, the plane figure that encloses the most area for a 

given perimeter. The compactness ratio is less than one for all other regions. Perime­

ter, area and the compactness ratio are invariant under translation and rotation. The 

compactness ratio is invariant also to changes in scale, provided that the computation of 

perimeter and area is stable as image resolution changes. 

In general, topological properties cannot be computed using only local support. 

The one exception is the topological property known as Euler number. The Euler 

number E of a binary image is the number of connected objects minus the number of 

holes. Sometimes it is known a priori that the image contains exactly one object. In 

this case, the Euler number E can be used to compute the number of holes. 

The center of area and the direction of the principal axes are features derived when 

the position and orientation of an object are needed. A complete theory exists for 

binary images (6). Special purpose hardware is commercially available for binary image 

analysis. This hardware typically combines elementary binary image processing for 

smoothing, thinning, and noise suppression with the computation of the global features 

described above. Unfortunately, when objects overlap, the global features computed for 

the visible portions bear little relation to those that would be computed for the whole 

object. It is impossible to recognize occluded objects using only global features. 

Other Representations of 2-D Shape 

Other representations of two-dimensional shape are discussed in ( 4;chapter 8). 

Here, three are briefly described: the Hough transform, the symmetric axis transform, 
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and smoothed local symmetries. 

The generalized Hough transform (35) is one approach to finding instances of 

occluded shapes. Object shape is expressed parametrically. Local features add their 

vote to all locations in an accumulator array of parameter values consistent with the 

evidence provided by the feature. The final tally of votes determines the values of the 

parameters and hence the shape. Sufficient evidence can be accumulated even if part of 

the shape is occluded. 

The symmetric axis transform (SAT), also called the medial axis transform, can be 

defined as the locus of centers of maximal disks that touch at least two points on the 

bounding contour of an object (36). The SAT is information preserving but it is not 

stable because it is very sensitive to small perturbations in the bounding contour. In 

many cases, the SAT produces unintuitive descriptions. 

Recently, the smoothed local symmetries (SLS) representation has been developed 

to. overcome deficiencies in the SAT in two ways. First, the representation redefines 

symmetry to be a local property. The precise details are not described here but can be 

found in (19,37). Potential axes of the shape are the maximal smooth loci of the local 

symmetries. Second, any axis whose support region is wholly contained in the support 

region of another axis is deleted. The surviving axes are the smoothed local symmetries 

and arguably produce a more intuitive description than the SAT. Smoothed local sym­

metries are an attempt to produce descriptions that can deal with subobjects at a 

variety of scales, rather than at a single level. 
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VISIBLE SURF ACES 

Descriptions at the level of visible surfaces make object properties explicit in the 

retinocentric coordinate system defined by the viewing direction. Shape properties made 

explicit include range and surface orientation. Shape from stereo and shape from 

motion derive range. Shape from shading, shape from contour, and shape from texture 

derive surface orientation. Discontinuities in range and surface orientation are included 

if they are available from earlier segmentation processes. Most often, they are derived 

subsequently. The representation of visible surfaces is included in the intrinsic image 

idea of Barrow and Tenenbaum (38) and in the S 1/t-D sketch of Marr (8). Horn refers 

to a map of surface orientations as a needle diagram (39). 

Mackworth ( 40) popularized the use of gradient space to reason about visible sur­

faces when interpreting linedrawings of polyhedra. More recently, Draper (41) analyzed 

the gradient space representation for polyhedral scenes. Geometric properties of the 

gradient space under orthographic and perspective projection are summarized in (42). 

Studies of human perception demonstrate that image contours provide cues to three­

dimensional shape that apply in a more general setting ( 43). 

Skewed Symmetry 

Symmetry in a two-dimensional shape requires a straight line axis for which oppo­

site sides are reflective. That is, symmetrical properties occur along lines perpendicular 

to the axis of symmetry. Kanade (13) defined a generalization called skewed symmetry. 

Skewed symmetry in a two-dimensional shape requires symmetrical properties along 

lines not necessarily perpendicular to the axis, but at a fixed angle to it. Figure 2 illus-
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trates. 

Under orthographic projection, a three-dimensional planar surface with real sym­

metry appears as a twerdimensional shape with skewed symmetry. The converse, how­

ever, is not always true. Nevertheless, skewed symmetry in an image is often due to real 

symmetry in the scene. Kanade proposed the following assumption: 

A skewed symmetry depicts a real symmetry viewed from 

some unknown view angle. 

This assumption is transformed into constraints in the gradient space. It restricts 

the gradient (p,q) to lie on a hyperbola in gradient space determined by o: and (3. 

In the absence of global information, Kanade suggested that the minimum slant 

interpretation for the gradient is the surface orientation that is perceived. See (13) 

for details. 

The consequences of Kanade's skew symmetry assumption can be examined. 

First, when combined with other constraints, it can lead to a unique global solu­

tion for the orientation of each visible surface. The assumption provides a perfor­

mance index to select a preferred solution from an equivalence class of solutions. 

The solution determined necessarily describes all skew symmetries as oriented real 

symmetries. Second, no global solution may be obtained because the equivalence 

class of solutions may not include one in which all skew symmetries are oriented 

real symmetries. Third, the solution obtained may not be the physically correct 

one. Consider, for example, a scene containing a circular clock mounted on an 

otherwise blank wall. The projected shape of the clock will have skewed 



21 

symmetry, depending on the surface orientation (p,q) of the wall. If one assumes 

that the clock is circular, then local measurements are sufficient to determine the 

surface orientation of the wall. (There are two solutions of the form (p0,q0) and 

(-p0,-q0).) On the other hand, if the clock was elliptical, its projected shape would 

still have skewed symmetry. This time, the assumption that the clock was circular 

would lead to an incorrect determination of the surface orientation of the wall. 

Fourth, the solution may not agree with human perception. As pointed out in 

(14), an ellipse is usually perceived as a tilted circle even though an ellipse has real 

symmetry. 

Brady and Yuille (14) have recently proposed an extremum principle to esti­

mate surface orientation from two-dimensional contour. The principle selects the 

plane orientation that maximizes the compactness ratio 4;i_A introduced earlier. 

That is, of all true shapes that project to the observed shape, select the one that is 

the most compact. This is sufficient to determine the gradient (p,q) of the plane 

containing the true shape. Kanade's skew symmetry assumption is implied by this 

extremum principle. Skew symmetries are interpreted as oriented real symmetries. 

Only in special cases, however, does the solution correspond to the minimum slant 

interpretation. 

The Normalized Texture Property Map 

Texture is an important visual cue to the properties of a surface material. At 

the same time, texture gradient is a cue to surface orientation. Kender (18) 

developed the normalized texture property map (NTPM) to represent the local 
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properties of texture as a function of surface orientation. For convenience, suppose 

the gradient (p,q) is used to represent surface orientation, even though, as above, 

other choices are possible. The result is analogous to a reflectance map R(p,q). 

Local geometric features of the primitive texture elements, called texels, determine 

equations that the gradient must satisfy. For some textures, the problem is locally 

underconstrained and methods analogous to those for shape from shading would be 

required to determine a solution. Sometimes two or more independent local 

geometric features can be determined from each texel, each characterized by its 

own NTPM. Then, the situation is analogous to photometric stereo and surface 

orientation can be determined locally. There is a strong connection between the 

local geometric properties of texels and skew symmetry. This connection is 

explored in (44). 

3-D SHAPE 

Surface-based descriptions can be derived from an image without specific 

knowledge of the objects in view. But, surface-based descriptions are different 

from different viewpoints. It is impossible to derive three-dimensional shape 

descriptions from an image simply because much of the object is obscured from 

view. The task in three-dimensional shape description is to interpret descriptions 

derived from the image as instances of -existing knowledge structures. This is 

termed model-based vision (3). Model-based vision systems use models to predict 

what can be seen. This constrains the equivalence class of solutions to include 

only those solutions expressible within the knowledge base of the system. Some 
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model-based systems, such as ACRONYM and the EGI representation discussed 

below, model three-dimensional shapes in a viewpoint independent way. Many 

others include specific constraints that are viewpoint dependent. 

There are many representations for solid objects used, for example, in com­

puter graphics and in computer-aided design and manufacture (CAD/CAM) (45). 

In shape analysis, the representation is used to predict how the object will appear. 

This is necessary to generate an inverted index of possible object features 

corresponding to a given local image feature (46). With this additional stipulation, 

the number of three-dimensional shape representations used in computational 

vision is much more restricted. 

Generalized Cones 

Generalized cylinders were developed by Agin and Binford ( 47) as a represen­

tation of three-dimensional volumes that emphasizes elongation. A shape is 

described by sweeping a cross-section along an arbitrary three-dimensional curve, 

called the spine, expanding or contracting the cross-section according to a scaling 

function, called the sweeping rule. The cross-section need not be circular or at 

right angles to the spine, although these are simplifications often used in practice. 

This formulation predates but is similar to the generalized cones of Marr (28). 

Generalized cones are generalized cylinders whose spines are straight lines. 

Generalized cones satisfy many of the criteria for shape representation. There 

is a natural decomposition into a cross-section function and a spine function giving 

the representation local support. Minor perturbations do make the representation 
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unstable. But, in practice, description is preceded by some degree of smoothing to 

assure stability. The representation is rich and can be applied at multiple 

scales (20). The representation is object-based and does support a natural segmen­

tation of complex objects into simpler components. It has also been suggested that 

this representation corresponds to human perceptions for certain natural structures 

such as animals (20,46). Unfortunately, not all shapes are represented naturally 

using generalized cylinders. 

Brooks ( 48) used generalized cones to represent airplane shapes independent 

of viewpoint in a system called ACRONYM. ACRONYM uses part/whole graphs 

of generalized cones to predict the appearance of wide-bodied aircraft in aerial pho­

tographs. Projections of generalized cones are called ribbons. ACRONYM deter­

mines the viewpoint simultaneously with the interpretation of ribbons as projected 

generalized cones. 

The Extended Gaussian hnage 

The extended Gaussian image (EGI) of an object records the variation of sur­

face area. with surface orientation- (-49~ . T--he EGl--iB--inva.riant-to transhrtton ~ct -

can be normalized to be invariant also to scale. The EGI is typically represented 

as a function defined on the Gaussian sphere. Rotations are easy to deal with 

since an object and its EGI rotate together. The EGI is easy to derive from other 

representations of three-dimensional objects. 

The EGI uniquely represents convex objects and is thus information preserv­

ing for this class of objects. An iterative algorithm has been developed to recon-
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struct a convex polyhedron from its EGI (50). The EGI has also been applied to 

determine object attitude, that is the three-dimensional rotation required to bring 

a sample object into correspondence with a prototype. The visible hemisphere of a 

convex object's EGI can be computed from the visible surface description of sur­

face orientation. Conceptually, determining object identity corresponds to finding 

a prototype EGI with an identical hemisphere. Determining object attitude 

corresponds to matching the position and orientation of the visible hemisphere to 

the prototype EGL This approach has been applied to the industrial problem of 

picking parts out of a bin (34). The matching computation can be ill-conditioned. 

Recently, the mixed-volume function, introduced in (50), has been used as a simi­

larity measure for attitude determination. The result is more stable than direct 

EGI matching and can support efficient multiresolution attitude determina­

tion (51). 

CONCLUSIONS 

At first glance, shape analysis in computational vision can appear to be a col­

lection of ad hoc techniques. In many applications, the environment can be con­

trolled and the computational task can be structured so that a special-purpose 

vision system will succeed. Special-purpose systems represent an extremely limited 

repertoire of objects so that simple descriptions often are sufficient to distinguish 

between them. In contrast, as Binford (3;page 60) says, 0general vision requires 

strong description and weak classification.0 This article presents a coherent frame­

work for shape analysis in a general-purpose vision system based on: a thorough 
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understanding of image formation, a characterization of the computational task, 

criteria for representations of shape, and correspondence with human perception. 

These are the themes. But, much remains before they will be achieved in practice. 

Shape from shading was used as the major illustrative example. The methods 

described satisfy many of the criteria for representation of shape. Surface orienta­

tion is computable using local support. The methods based on variational formula­

tions are stable. The representation is rich because the orientation map produced 

is dense. Description at multiple scales has not explicitly been addressed. But, the 

choice of .X indirectly influences the level of detail considered. The generation of 

representations at multiple scales is an obvious application of the multigrid imple­

mentation approach. The final description is in terms of an intrinsic object pro­

perty. The visible surface orientation map can be extended to a full three­

dimensional representation through the EGI, although this is currently limited to 

simple objects. There is no claim that the shape from shading methods correspond 

to human performance. 

The prerequisite problem of how to segment an image to obtain a contour 

description has not be considered. This problem is generally considered separately 

as edge detection or region growing. Some argue that segmentation and shape 

analysis cannot be separated but are inherently part of the same problem. See, for 

example, (3,52). Segmentation issues arise again at a higher level. Initial 

representations for shape are typically dense. It is desirable to segment shape 

descriptions both to be more storage efficient and to provide symbolic descriptions 

to facilitate subsequent analysis. There are a myriad of segmentation schemes 
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proposed at each level of shape representation: 2-D shape, visible surfaces, and 3-D 

shape. Most address storage efficiency foremost but others deal with aspects 

related to symbolic description. This is an active area of ongoing research. 
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Figure 1. In an orthographic projection all rays from object surface to image are 
parallel. With appropriate scaling of the image plane, image coordinates (x,y) and 
surface coordinates (x,y) can be used interchangeably. The incident angle i is the 
angle between the incident ray and the surface normal. The emergent angle e is 
the angle between the emergent ray and the surface normal. The phase angle g is 
the angle between the incident and emergent rays. 
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Figure 2. Examples of skew symmetry. A skew symmetry defines two directions: 
the skewed transverse axis and the skewed symmetry axis. These directions are 
denoted a and /3 in the figure. 


