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ABSTRACT 

Acquisition of a host identifier (id) is the first and foremost network 
level activity initiated by a machine joining a network. It allows the machine 
to assume an identity in the network and build higher levels of abstraction 
that may be integrated with those on other machines. In order that the sys­
tem may work properly, host id's must satisfy certain properties such as 
umqueness. 

In recent years, distributed systems consisting of workstations connected 
by a high speed local area network have become popular. Hosts in such sys­

tems interact with one another more frequently and in a manner much more 
complex than is possible in the long haul network environment. The kernels 
in such systems are called upon to support various inter-host operations, 
requiring additional properities for host id's. This paper discusses the implica­
tions of these properties with respect to distributed kernel reliability. A new 
scheme to generate and manage host id's satisfying the various properties is 
also presented. The scheme is distributed and robust, and works even under 

network partitioning. 





Host identifier management in reliable distributed kernels 

I. Introduction 

In a distributed system consisting of a collection of interconnected machines, a host is an 

abstract entity associated with an instantiation of a machine. A host is bound to an identifier 

(id} which allows it to interact and integrate with other hosts in the system to build higher lev­

els of abstractions. So acquisition of a host identifier is the first and foremost· network level 

activity initiated by a machine joining the distributed system. 

In currently popular local area network (LAN) based distributed systems (typically con­

sisting of workstations) 10
, hosts interact with one another more frequently and in a manner 

much more complex than is possible in the long haul network environment. The kernels in such 

systems are called upon to support various inter-host operations, requiring various properties for 

host ids. Some of the properties such as uniqueness of the host id are mandatory and some are 

desirable. Whether a property is mandatory or desirable depends on the functionality required 

of the kernel. For example, robust failure recovery requires guaranteed non-reusability of the 

host id. As another example, multiple logical identifiers for a given machine may be used to 

achieve pre-emptable program migration across machines12
• Also, id generation and management 

should be distributed and robust for reliability reasons. 

Though some of the id management issues have been touched upon in several experimental 

systems and briefly mentioned in some papers4
•
6

•
13

•
18

, there has been no focussed attention to 

this layer of the distributed kernel in the open literature. Uniqueness of the host id is 

guaranteed in the schemes used in most of these systems. However, other properties are either 

not guaranteed or not supported for the sake of simplicity and efficiency in the generation and 

management of the ids and their contexts. In this paper, we first discuss the implications of 

these properties with respect to reliable LAN-based distributed systems. We then discuss vari­

ous techniques to generate and manage host id's satisfying the different properties. 

2. Properties of host id's 
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In the discussion that follows, the terms "host" and "site" are used interchangeably. 

2 . .l Uniqueness 

This property ensures that each host in the system has a unique id with which it may be 

addressed and accessed. In many systems, the host id is used to generate id's for higher level 

objects to guarantee system-wide uniqueness30• For example, in the V-Kernel13, each process is 

globally identified by the pair 

<host_id, local_pid> 

where <host_id> is the id of the host on which the process is created and <local_pid> is the id 

of the process which is locally unique within the host11• Other higher level objects are con­

structed in terms of these processes. For example, a file instance is characterised by 

<file_instance_id> = <file_client_id, file_worker_id>, 

and a network connection instance is specified by 

< connection_id> = < network_worker_id, network_client_id>. 

The uniqueness of these high level objects is guaranteed by that of the process id's which in 

turn depends on the uniqueness of the host id's. Issues such as non-determinism and security 

arising from the non-uniqueness of the id's are discussed elsewhere1
. 

2.2 Non-reusability 

Reusability of a host id refers to the reassignment of the id that was previously used by a 

site to its reincarnated version or to another site. This might cause state inconsistencies result­

ing in misdirected and misdelivered messages in certain situations, particularly in large distri­

buted systems. An anthropomorphic example is the reassignment of a telephone number 

recently used by an individual to another, resulting in misdirected calls. 

To analyse the implications, consider the following scenario (see Figure 1): let C 1 be a 

client process on host1 that logs onto a remote host through the TCP /IP (Transmission Control 

Protocol/Internet Protocol)8 Internet worker process T1net which runs on host2 and allocates a 

TCP port for the connection. Suppose the Internet server site suffered a momentary failure and 
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then came up within a short interval (we assume that the pre-failure state is completely lost as 

a result of machine failure), it is quite likely that 0 1 has not noticed the failure. Since the values 

of the <local_pid> field of process id's begin a fresh cycle, the <local_pid> previously used by 

T Inet before site failure could have been reassigned to another process, P New, say, in the reincar­

nated site. If the server host (host2) reuses the same host id after the failure, then PNew 

incorrectly becomes an eligible recipient of messages from -C1. Error may arise in two cases: 

Case 1. PNew is supporting a remote login connection for some other client 0 2 on host3• 

If PNew is waiting for messages specifically from 0 2, the message from C 1 is _queued up for 

PNew but may never be read. However, since PNew is alive and accessible, C1 thinks that 

the server is working on other messages. Recovery is possible by high level timeouts in 0 1 

whereby C 1 may abandon its end of the connection. If PNew is waiting for messages from 

non-specific processes (e.g., PNew could be supporting remote logins from multiple clients), 

the message from 0 1 is delivered to it. If PNew does not have adequate filtering and check­

ing mechanisms, the messages from 0 1 will confuse PNew which may discard valid messages 

from C 2, and may even forcibly close its on-going connection with 0 2• This anamoly is simi­

lar to the undetected packet misdelivery17 that arises due to clash of high level identifiers. 

Case 2. PNew is performing a completely different function. 

Since the process id of the message originator (C1) as well as the message contents are 

meaningless to PNew, PNew simply discards the message. To enable recovery by Ci, PNew 

may reply with an error message. 

Other types of anamolies may occur under different scenarios due to the inability to distin­

guish between executions on a machine prior to and after its failure. For example, undetected 

mis-pairing of peers may occur in TCP connections in UNIX 4.2 BSD where the internet host 

address component of the TCP socket address remains unchanged after machine failure18
• As 

another example, if a client crashes during a remote procedure call (RPO), its subsequent rein­

carnation might give rise to crash orphans21. 

A guaranteed non-reusability of host ids and a high level filtering based on them will 

prevent such anamolies. In the example above (Figure 1), the kernel will fail any attempt by 0 1 

to interact with PNew with an error message NON_EXISTENT.J>ROCESS. In response to this 
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low level error message, C 1 may destroy its end of the connection. 

2.9 Independence fr om lhe unde rlying netwo rk 

Network-independent host identification may be characterised by two orthogonal features: 

(i) Network-independent syntactical representation of the host id. 

An analogy drawn from programming languages is the use of symbolic strings as 

variable names that are syntactically independent of their physical addresses in the 

program. 

(ii) Dynamic binding of the host id to the network address. 

This property ensures that the host id is resolved to the underlying network address 

only at the last moment (when a packet has to be launched), and that there is no 

static binding between host id's and the underlying network. An analogy, again 

drawn from programming languages, is the dynamic binding of variable names for 

queue and list data structures to memory locations at run-time. 

Property (i) deals with the syntactic structure of the host id, and may be easily provided by 

simple lexical mapping techniques. It allows a host to be addressed in a simple way and to 

retain the same name even when accessed from networks with different technology. This pro­

perty is not necessary for primitive kernels. Property (ii) deals with the dynamic, context­

dependent translation of the host id into the associated network address. The level of complex­

ity depends on a variety of factors such as the size of the network and the context used for 

translation. This property is mandatory for significant extensions to kernel functionalities, which 

are briefly described below: 

Host migration. Host migration refers to the transparent transfer of the various executions 

on a host from one physical machine to another with the latter assuming the role of the former. 

Host migration becomes a requirement when machines are to be taken in and out of a distri­

buted system for operational reasons transparent to other hosts in the system. We consider a 

simple scenario to illustrate the feature. Let M 1, M 2 , .. , M., .. , M be machines on the system 
_ l n 

with host id's H11H2, •• ,Hi,··,Hn respectively. Suppose Mi is to be taken out of the system for 

maintenance purposes. A new machine Mi' (identical to Mi) has to be introduced into the 
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system, and all executions on Mi are moved onto M/; then Mi is shutdown and removed. From 

this point onwards, M.' assumes the identity H. for all process level interactions. However the 
· I I 

underlying <network_address> used by Hi has changed. This calls for a dynamic binding of the 

host id to the associated network station address, and a network-independent syntactic 

representation of the host id. 

Network fault tolerance. One of the schemes to achieve fault tolerance from network 

failures is to provide multiple redundant transport media which may be of different but comple­

mentary technologies, such as the hybrid LAN, as the underlying communication backbone22• In 

such an architecture, the packet routing layer of the network selects the path the packet is to 

travel to its destination based on the current state of the network. In order to provide this 

elegantly and transparently to higher level software, the host id should be logically independent 

of the underlying network topology, architecture and/or the redundancy. Such an independence 

should be in terms of both the syntactic representation as well as dynamic binding of the host id 

to the appropriate network. 

foterconnect ed LA Ns . To provide a uniform distribution of objects across interconnected 

LANs, the host identification scheme should be uniform throughout the interconnected system. 

A transparency requirement is that the link level interconnection structure be invisible at the 

process abstraction layer. Since process id's are the only means of naming the communicants at 

this layer and host id's make up part of the process id's, any dependence of the host id's on the 

underlying network will violate the syntactic transparency requirement. For fixed topology 

interconnection, network-independent representation is adequate with the bindings between host 

id's and the network statically built into the kernel. To support flexible and dynamic intercon­

nection, the bindings should be dynamic as well. 

Kernel portability. The portability of the kernel across different LAN technologies with 

different addressing schemes and formats requires that host identification be independent of the 

underlying LAN technology. Violation of this requirement will impose network-dependent syn­

tactic structures into the kernel design, hampering its portability. However, the binding between 

~ost id's and the network may be static or dynamic. 
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Dynamic change of network addresses. It is necessary sometimes to dynamically reassign 

the station address of the network interface transparently without affecting the ongoing execu­

tions on the host. It may arise for troubleshooting network interfaces, for example. Most of the 

commercially available network interfaces such as the 3COM's Ethernet and Pronet's token ring 

interfaces provide this feature as an option for low level reconfiguration23•24. The process 

abstraction should be independent of such low level activities by making host identification 

independent of the network both in terms of syntactic representation and dynamic binding of 

host id's to the network. An example is the Address Resolution Protocol19 used in UNIX 4.2 

BSD implementations to bind the internet host addresses to Ethernet addresses. 

3. Some existing host identification schemes 

A simple scheme to generate host id's which is also efficient to use is the assignment of the 

network station address as the host id. In most of the commercially available network interfaces, 

the default station address (which is systemwide unique) is hardwired into the network inter­

face23•24. In other systems, the default station address is hardwired into the CPU system board, 

and the network interface initialises itself with this address on startup20
• In both types of 

hardware, the software may optionally change the station address for a variety of reasons. The 

station address currently being used is acessible to software from the network hardware regis­

ters. Thus host id generation is a simple matter of reading this address from the hardware. Since 

the host id is also the physical address of the station, the mapping is trivial. In other words, the 

context is statically built into the identification mechanism. As the station addresses are 

guaranteed to be systemwide unique, so are the host id's. However the scheme has the following 

disadvantages: 

(i) It does not provide non-reusability of the host id across machine failures, 

(ii) It does not provide independence from the underlying network both in terms of the syn­

tactic representation of the host id's as well as the static nature of the bindings between 

host id's and the network. This makes high level functionalities harder to accomplish31 

such as transparent host level reconfiguration. 
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In an extended model of the above scheme, each kernel maintains a table of network sta­

tion addresses of all the machines in the network. When a kernel comes up, it reads the 

hardware station address of the local network interface and searches the address table for a 

match. When a match is found, the index into the table is used as the host id for the machine. 

The context for a host id is obtained by using the id as an index into the station address table 

to fetch the corresponding station address for launching packets. The V-System13 originally 

used this approach for generating and managing host id's on an Ethernet LAN. The scheme 

guarantees uniqueness of the id and retains an efficient structure for implementation. Though 

the syntactic representation of the id is independent of the underlying network, the binding 

between the two levels of identifiers is static, precluding host level reconfiguration. To overcome 

this limitation and to support program migration, the new scheme requires the machine joining 

the network to use a dynamic id assignment protocol whereby it generates a tentative id using 

random numbers and follows it up with a mandatory check for id clashes to avoid picking an id 

currently being used by some other host 14
• However, neither techniques guarantee non­

reusability across machine failures. 

Some message-,passing models use incarnation id's to guarantee the non-reusability of the 

host id's across host crashes4
•
5

• In this scheme, a host id is represented by 

<incarnation_id, host_id> 

where <incarnation_id> is used to identify the particular incarnation of the kernel. It is usually 

stored in some stable local storage25 (i.e., disk), and is guaranteed to be unique across machine 

failures. Thus every process created on a machine has the machine's incarnation id as part of 

its process id ( <host_id> is presumeably managed by a static assignment scheme). Reincarna­

tion numbers are used in a slightly different way in RPC protocols2 to guard against undetected 

inconsistency in the client's cache due to server failure and its subsequent reincarnation. A 

server uses reincarnation numbers based on time stamps as part of the interface it exports to 

clients. The client presents this reincarnation number in every RPC request to the server which 

validates the request based on its local reincarnation number. When a request is rejected due to 

mismatch of the reincarnation numbers, the client's run-time system rebinds the interface it 

imports by contacting a binding agent. Schemes based on reincarnation id's suffer from the 
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following limitations: 

(i) Two orthogonal techniques are needed, one to provide non-reusability of the id, and the 

other to provide independence from the network. 

(ii) In systems consisting of diskless workstations, the <incarnation_id> is to be stored 

across the network on a remote stable storage. The code id based version identification 

scheme used by the boot server in the UNIVERSE system to detect remote system 

crashes26 uses this approach. The disadvantage of this approach is the single-point 

failure of the remote repository of incarnation id's. 

Several centralised dynamic schemes to assign station addresses have recently been pro­

posed16•28 that may be extended to guarantee non-reusability of such addresses. Besides being 

vulnerable to single point failures, most attempt to solve the address assignment problem in iso­

lation from high level issues. The centralised addresss manager in one scheme16 asynchronously 

and periodically probes all stations in the network to ascertain they are alive and reclaim 

unused addresses. We observe that the asynchronous protocols are not really needed when the 

address management issues are tackled from an operating system point of view since protocols 

to detect such low level inconsistencies may instead be integrated into the IPC mechanisms. 

4. An w model of host identification 

We first describe a unified, robust and distributed approach for the dynamic allocation of 

host id's that satisfies the various properties discussed earlier. We then present a scheme for the 

dynamic binding of host id's to the network. A broadcast capability in the underlying LAN is 

assumed. For simplicity, a single LAN case is presented; however, the scheme is adaptable to 

other LAN architectures such as interconnected LANs. Also, our model resorts to repeated 

broadcast rather than reliable broadcast in all broadcast-based protocols since any reliability 

mechanism built into such protocols imposes severe penalty on efficiency3
. 

J.1 An overview of the scheme 
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The kernel on each machine may be considered as a server process. The collection of these 

kernels constitutes a well-known server group27 KRNL_GRP; the group is statically bound to 

the broadcast address of the underlying network. Then, in terms of the distributed server 

model6, a kernel process that gets instantiated on a new machine integrates into KRNL_GRP 

through the following logically distinct phases - i) a name resolution phase that allows the ker­

nel to locate KRNL_GRP, ii) a subscription phase that allows the kernel to broadcast messages 

to KRNL_GRP and to receive messages addressed to its network addresss (because it does not 

have a host id yet) as well as those addressed to KRNL_GRP, and iii) a state acquisition phase 

by which the kernel acquires its host id from other members of KRNL_GRP in the system so 

that it can logically merge into the system. The completion of the first two phases is made 

implicit by hard-wiring the membership in KRNL_GRP into the local instantiation of the kernel 

as it is brought up on a machine. The protocols employed by the kernel for the third phase 

(host id acquisition) are dependent on the constraints, namely, network independence and non­

reusability of host id's imposed by the kernel functionalities described earlier. We now give an 

abstract description of how the third phase is carried out. 

The global name space for host id's consists of a range of unsigned numbers between 

MIN_ID and MAX_ID which are the lowest and the highest values respectively of host id 

allowed in the system. Every machine joining the system is assigned an id from this name space. 

The id allocation is based on the chronological order of the times at which machines join the 

system. Thus a machine joining at time tj is allocated an id whose numerical value is greater 

than that of a machine that joined at an earlier time ti ( tj > tJ The system maintains a distri­

buted state variable <highest_host_id> which represents the highest host id that has been 

assigned from the global name space. The acquisition of a host id by a kernel may then be 

abstracted as ' reading' this variable, using the next higher value as the new host id, and 

'incrementing' this variable. Since the variable is distributed, the 'read' and the 'write' 

operations on it must encapsulate mechanisms to guard against inconsistencies that may arise 

due to message losses, machine and network failures. This abstraction fits into Cheriton's model 

of problem-oriented shared memory29 in which the 'fetch' (read) and the 'store' (write) opera­

tions defined on a memory depend on the consistency constraints imposed by the particular 

problem on the memory. In terms of this model, the protocols we describe in the following 
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sections are in fact a problem-oriented realization of the 'fetch' and the 'store' operations on 

the distributed state variable <highest_host_id>. 

Section 5 deals with id generation, section 6 describes the id resolution scheme, and section 

7 discusses how the scheme handles the problems of network partitioning. 

5. Generation of host id's 

The procedural realization of the distributed state variable contains an instance of this 

variable maintained by each host in the system. This instance represents the host's knowledge 

of the highest host id across the entire system, and is updated by broadcast messages from a 

joining machine. Each host thus maintains a state-pair 

<self_id, highest_host_id>. 

where <self_id> is the id of the host and <highest_host_id> represents the local instance of the 

distributed state variable maintained by the host. Then for any host, 

(MIN_ID $ self_id $ highest_host_id :::; MAX_ID). 

Id generation is done in three stages (see Figure 2 for the finite state machine (FSM) representa­

tion of the protocol): 

5.1 Step.l: Acquiring a tentative id 

When a new machine wishes to join the system, it first acquires a tentative id from other 

hosts in the system to be used as a bid in the system for use as its <host_id>. To do so, it 

broadcasts one or more search messages looking for the highest host id that has been assigned so 

far (note that this may be different from the highest active host id). During id acquisition, a 

machine uses its network address as the key which may be used by other hosts to reach it. The 

machine specifies two integers <ldJangel> and <ldJange2> in the search message 

REQUEST_HOST_ID(Id_rangel, ld_range2). These integers satisfy the following condition, 

(0 $ ld_rangel $ ldJange2 $ (MAX_ID-MIN_ID)). 
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The message requires all hosts with 

(highest_host_id - Id_range2) ~ self_id ~ (highest_host_id - Id_rangel) 

to send their respective local values of the state variable <highest_host_id> to the broadcasting 

machine. The latter may then filter the highest id from among the replies to be used to generate 

the tentative host id. <ld_rangel> and <ld_range2> may be thought of as specifying a polling 

window that qualifies a selected set of hosts to respond to a particular search message (see Fig­

ure 3) . The size of this window is 

[<Id_range2> - <ld_rangel> +1], 

and the range of the host id space polled is 

{(highest_host_id - Id_range2), (highest_host_id - ld_rangel)} 

In the simplest scheme, the joining machine initially starts with Id_rangel=0 and 

ld_range2=0 implying a window of size l. On receiving this message, the host whose <self_id> 

equals <highest_host_id> responds with its value of <highest_host_id>. The initial search mes­

sage may go unanswered if the machine that wishes to join is the first one in the system, or if 

none of the hosts have their <self_id> equal to the <highest_host_id> ( the latter is possible if 

the host holding the <highest_host_id> as <self_id> has failed). Failure to get any response 

results in the machine rebroadcasting the search message with a different polling window until 

the entire host id space (MAX_ID - MIN_ID) is polled or sufficient number of responses are 

received, whichever occurs earlier. If there is no response even after polling the entire host id 

space, the machine assumes that it is the first one joining the system, and takes on MIN_ID as 

the tentative id. The polling window is a control parameter of the protocol. A typical choice is 

to increase the window size logarithmically and slide it along the host id space. The range of id 

space covered by each window should be mutually exclusive to avoid receiving a reply more 

than once. (See Appendix B for detailed discussion). 

Having thus obtained the highest host id that has been assigned so far in the system, the 

new machine then takes the next higher id as the tentative id. Note that the protocol strives to 

avoid id clashes during generation of tentative id's. 
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5.1.1 Guarding against message losses. The broadcast protocols that are integrated into the 

id generation mechanism do not guarantee reliable message delivery. Messages may be lost due 

to i) buffer overflow at the other active hosts in the system which may lead to inconsistencies in 

the respective local instances of <highest_host_id>, and ii) the inability of the network interface 

at the joining machine to handle back-to-back reply packets27 which may result in the machine 

choosing an id with insufficient information. Due to this inherent unreliability, the selected ten­

tative id may be incorrect. 

As an illustration, consider an example with three hosts Hi, H2 and H3 in the system. Let 

8, 9 and 10 be their respective host id's, with 10 being the highest host id in the system. Let the 

state-pair maintained by each of the hosts be denoted by H1--t{8,10}, H2--t{9,10} and 

H3--+{10,10}, i.e., the initial state is consistent. The following illustrates typical error situations 

when a new machine attempts to join the system: 

Case 1. More than one host think they are holding the highest host id in the system. 

This error situation may arise as follows: suppose a new machine (host H4) joined the sys­

tem, assuming a host id of 11. As soon as the id was acquired, H4 broadcast this informa­

tion to the other hosts. If only H1 and H2 heard the message, then the updated state entries 

are H1--+{8,11}, H2--t{9,11}, H3--+{10,10} and Hc~{ll,11}. Thus both hosts H3 and H4 

believe they are holding the highest host id. When a new machine attempts to join the sys­

tem by broadcasting an initial search message with <ld_rangel> = <ld_range2> = 0, both 

H3 and H4 respond with their local values of <highest_host_id>, namely, 10 and 11. 

Case 2. The <highest_host_id> value received by a joining machine is not the highest 

host id that has been allocated. 

Suppose two new machines joined the system, and subsequently failed independently. Sup­

pose further that H1 and H2 heard the host id allocation messages but H3 did not. Then the 

updated state entries are H1--t{8,12}, H2--t{9,12}, H3--t{l0,10}. When another new machine 

attempts to join the system and searches the system with a window of size 1, H3 responds 

with the value 10 as the highest host id when the true highest hoot id is 12. 

As another example, consider hosts Hi, H2 and H3 with state-pairs H1--+{8,10}, H2-+{9,10} 

and H3-+{10,ll} in a dynamic state of the system. When a new machine probes the system 
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with a window of size 2'.:2, all the hosts respond to the probe with their respective 

<highest_host_id> values. However, the sequence in which their responses arrive at the joining 

machine is non-deterministic. Suppose the response from H3 is discarded due to buffer overflow. 

Then the joining machine assumes 10 as the highest host id that has been assigned in the sys­

tem whereas the true highest host id is 11. 

The id generation protocol should guard itself against such inconsistencies. A solution to 

the problem manifests in two steps: 

(i) Field a certain number of replies by polling over a certain range of the_ host id space 

before selection of the highest host id from among the replies received. The number of 

replies received and the range of the host id space polled so far also form control parame­

ters of the protocol. See appendix-B for a discussion on the choice of these parameters. 

(ii) Resort to a clash resolution protocol as described in the following sections. 

5.2 Step2: Resolvinq id clashes 

After acqumng a tentative <host_id>, the machine broadcasts an 

IS _THERE_OBJECTION message containing the tentative id. Any host whose id either clashes 

with or is higher than that in the message raises an objection by replying with an OBJECTION 

message. If an objection to the bid is received indicating that the id has already been assigned, 

the machine recompiles another tentative id and rechecks for objections. When there is no objec­

tion from other hosts after a certain number of broadcast-based probe messages, the machine 

acquires the id. 

5.S StepS: Offlcia.lisat£on of the id 

After affirming there is no objection to the id, the kernel initialises its local instance of 

<highest_host_id> to the acquired id. It then announces its entry into the system by broadcast­

ing its <host_id> value in an OFFICIAL_HOST_ID message, and thus becomes an official host. 

Each host which receives this message updates its local value of the state variable 

<highest_host_id>. The joining host waits for a predetermined short period of time before 

engaging in inter-host activities to ensure the other hosts have time to receive and process the 
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message . 

The host id's thus generated are independent of the network, and with a high degree of 

probability, guaranteed to be unique and non-reusable. The code skeleton to implement the 

scheme is given in appendix-A. 

5. J Collision resolution 

A collision occurs when two or more machines try to establish their host id's at the same 

time (i.e., one or more machines have initiated procedures to acquire their tentative id's before a 

machine has completed officialising its host id). This is the case for example when a machine 

sending the IS_THERE_OBJECTION message receives one from another machine. If a joining 

machine detects a collision during the acquisition of tentative id, the protocol requires that it 

backs off for a random interval of time and tries again. If it detects a collision after it has 

acquired a tentative id but before officialised it, it sends a DEFER_HOST_ID message to the 

colliding machine advising the latter to back off as before. The back-off method is similar to the 

CSMA/CD technique used in Ethernet to resolve collisions7 but applied to a higher level prob­

lem. 

Collisions arising due to more than one machine trying to join the system independently at 

the same time are rare and usually resolvable in a few (1 or 2) retries (see section 5.5 for simula­

tion results). However, a single external event such as an electrical power bump may cause a 

large number of machines to fail, and when they come up as the power is restored and scramble 

for a host id to join the system, they may collide with one another repeatedly causing a collision 

surge. This surge may lead to a situation where most of the machines are unable to join the sys­

tem because of the congestion experienced in accessing the <highest_host_id> state variable. 

A mechanism to control this congestion may be built into two stages of the id acquisition 

protocol: 

• 

A machine, on power up, resorts to collision atJoidance by waiting for a random interval of 

time before initiating the protocol. The wait time may range between, say, 0 to 200 msecs 

in steps given by the local clock resolution C-10 msecs). Because of the induced randomness 
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in the waiting time before the machine initiates the protocol, the technique eases (but does 

not eliminate) a posssible congestion due ~o a collision surge if one is in the .offing. However, 

since the machine is not aware of a possible collision surge apriori, the technique increases 

the delay in acquiring an id in the normal case when there is no surge, but such an 

increased delay due to the initial wait time may still be within acceptable limits {see section 

5.5 for simulation results) . 

As discussed earlier, when a machine experiences a collision, it backs off for a random inter­

val of time, and tries to access the variable again. Because of collision surge, a machine may 

be unable to acquire an id even after a maximum number (MAX_BCKOFF) of retries (say 

- 5). Then as part of the recovery, the machine temporarily suspends its attempt to join 

and passively listens to on-going attempts by other machines (by tuning onto the network's 

broadcast address) until a few machines are able to join the system or a time out occurs, 

whichever is earlier. Then it again tries to acquire the id as before. To minimise the possi­

bility of lock-step collisions, the back-off interval as well as MAX_BCKOFF are randomly 

chosen by the machine . 

5.5 Simulated behaviour of the host i"d generation scheme 

The protocol behaviour has been studied under a simulated dynamic environment in which 

a varying number of machines join the system, operate for a while and exit. The aim of the 

study was to assess how well the protocol enforces the properties discussed in section 2. Net­

work independence is a qualitative parameter that is implicit in the binding mechanisms, and 

hence was not part of the study. The quantitative parameters were the probability with which 

the uniqueness and the non-reusability of the host id's were violated. 

5.5.1 Simulation parameters. The controllable parameters were the number of machines in 

the system, their failure rates and the message loss probability. The simulated environment con­

sisted of i) 20 machines, and ii) 100 machines in the system. Mean running time of the machines 

was 15 minutes with a variance of 10 minutes. Mean machine down time was 10 minutes with a 

variance of 9 minutes. {These values are not meant to be realistic, but are designed to test the 
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robustness of the scheme under strenuous conditions to provide 'worst-case' results.) The mes­

sages IS_THERE_OBJECTION and OFFICIAL_HOST_ID were broadcast twice, the second one 

after a 100-millisecond (ms) wait. Message transmission time (including propagation delay) was 

assumed to be 2 ms whereas message processing time at a host (excluding queue wait time) was 

taken to be 4 ms { these are approximated from measured values on a network of SUN worksta­

tions (model 2) supported by TCP/IP on top of Ethernet). The number of effective replies used 

by a joining machine to make a decision (Nreplies in appendix-B) was taken to be 4. 

5.5.2 Simulat1on results. A total of 50,000 samples (i.e., 50,000 host id generations) were 

taken for each simulation run. Each run was repeated many times to increase the statistical 

accuracy. The results are summarized in Table 1. We also found that the effect of channel errors 

on the performance of the protocol was found to be negligible with simulated packet error rates 

of 10-3 and 10-4 (in a LAN environment, packet error rates rarely exceed 10-4) 9. The probabil­

ity of reusing an id as a function of the message loss probability is given by the graph in Figure 

4 (both for 100 machines and for 20 machines in the system). Note that when the message loss 

probability is below 0.6 when there are 100 machines in the system (0.5 for the case of 20 

machines), the probability of a host acquiring an id that has been used before is practically zero. 

Systems where the message loss probability exceeds 0.3 are really too noisy to be usable anyway, 

and are rare in LAN environments. Also, increasing the number of repeated broadcasts from two 

to some higher value will lower the probability of acquiring a host id that has been used before. 

It is interesting to observe that the probability of acquiring a host id that has been allo­

cated before (whether being used currently or not) decreases as the number of active hosts in 

the system increases. This is because the probability of losing the state ( <highest_host_id>) due 

to the failure of all the machines that hold the correct value of the state or choosing an incorrect 

state value from among the replies decreases as the number of hosts in the system increases. 

This adds weight to the protocol since the larger the network, the more important it is to 

guarantee the host id properties discussed in section 2. Our simulation results show that the 

probability of any of these properties being violated is practically zero for typical networks of 10 

or more machines. The number of message exchanges required to acquire an id are within rea­

sonable limits. More importantly, the CPU cycles a joining machine consumes on an active host 

in the system is low (between 10 to 20 msecs on a SUN-2 workstation). This is due, in part, to 
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the fact that an active host does not maintain any state information pertaining to a joining 

machine. 

6. Dynamic resolution of the host id's 

Each kernel maintains a mapping of the form 

< host_id>-t <network_address> 

in its internal cache. Such a mapping information is fundamental to every message transaction 

since the physical launching of the packet requires the destination station address. 

A cache entry may be in one of two states, namely i) SEARCHING, indicating that a 

search has been issued for the host with identifier <host_id> and <network_address> is not yet 

valid, and ii) VALID, indicating it is a valid entry as known to the host. The cache may be 

updated when machines join or exit from the system, and during IPC activities. This distributed 

cache forms the basic context for the identification mechanism. 

Due to limitations on cache size, the cache on each host may describe only a subset of the 

other hosts in the system. An anthropomorhic example is the caching of selected telephone 

numbers in a phone book which may represent only a subset of the entire telephone directory. 

Ideally, the mapping entries in all the caches should be consistent for correct global behaviour of 

the system. However, practical achievement of global consistency of the distributed cache is very 

difficult. Thus localised corrective measures on detecting cache inconsistencies are needed to 

keep the system operational. 

A host that has just acquired its host id broadcasts the id and its <network_address> m 

the OFFICIAL_SITE_ID message. Other hosts may cache this information subject to their 

cache constraints. Hosts which have an inconsistent entry for this <host_id> update it with the 

new mapping. To invalidate a <host_id>-t<network_address> mapping (for scheduled shut­

down of a host, for example), the kernel broadcasts a HOST_ID_INVALID message. However, 

because of possible message losses, host crashes and network partitioning, inconsistent mapping 

information may still exist. 
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When an IPC is initiated, the host abstraction layer must translate the host id into the 

corresponding network address in order to launch the packet. The kernel searches its internal 

cache for an entry pertaining to the given host id. Two possible error conditions may arise: 

Case 1. No entry for the given host is found in the cache. 

The kernel allocates a cache entry for the host, sets its state to SEARCHING, and makes a 

broadcast-based search across the system for the host. If the host exists and receives the 

message, it responds with its <host_id>-+<network_address> mapping information. This 

entry is cached, the cache state updated to VALID, and the IPC message launched. The 

IPC operation fails if no reply to the search message is received. 

Case 2. The entry in the cache is not up-to-date. 

The IPC message is sent to the associated network station address. However, the entry 

may be inconsistent if the host has failed, migrated or is shut down. If the machine was 

down and has since been brought up or if a different host has migrated onto this machine, 

the new host responds with a I_AM_NOT_THE_HOST error message to enable the sender 

to detect the inconsistency. (Note that a reincarnated host is logically equivalent to a 

different host listening on the same network address). Otherwise, the sending host detects 

the inconsistency by the lack of any response. In either case, the kernel makes a broadcast­

based search to locate the host. If the host exists on the network, it responds with its net­

wor~ address. The kernel then dispatches the IPC message at this address. If there is no 

response to the search, the kernel fails the IPC operation, and deletes the cache entry. 

Cache management techniques and related issues such as cache size, cache update policy 

and the implications on the efficiency of message-passing are interesting problems but do not 

directly concern us and are not discussed here. 

6.1 Over flow of the host id space 

The dynamic nature of machines joining and exiting from the system tends to fragment the 

host id space over a period of time. Due to the finite host id addresss space and because succes­

sively larger id's are allocated, overflow of the host id space will eventually occur. When this 

happens, either the host id address space is allowed to wrap around and recycle or no new id is 
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issued. As the former method violates the non-reusability property, we choose the latter, requir­

ing manual intervention of the system manager to reset all machines in the system. Practically 

though this should never happen. When the highest host id in the system exceeds a threshold 

close to MAX_ID, a warning message can be issued. This allows the system manager to schedule 

a shut-down of the system (which may coincide with the next regular maintenance if possible) 

to reset the host id's. For larger systems where shutting down the entire system is undesirable 

or impractical, the host id space should be chosen large enough to reduce the probability of 

overflow. Suppose a 24-bit host id space is used. Even on a large scale system where, say, 1000 

workstations are brought up and down on an average each day, the system reset ·cycle is of the 

order of 45 years. 

The scheme enables detection of the id overflow condition by the inability of a new 

machine to join the system for want of a host id. On overflow detection, the corrective measure 

requires manual resetting of the entire system. This is unlike conventional schemes where id's 

begin to recycle silently without any warning, violating the non-reusability property. 

1. N etwork p a rtitioning 

Any dynamic id assignment scheme is susceptible to failure when the network partitions 

into two or more fragments some of which subsequently remerge. This is due to the fact that for 

each fragment, only partial information about the global state of the host id space is available 

to the id assignment protocol, leading to an uncoordinated allocation of id's in the various frag­

ments. We illustrate the problem with a simple scenario. Consider a network that partitions 

into two fragments NetA and Net8 . Any dynamic assignment scheme within NetA and NetB 

guarantees the uniqueness property only within each fragment. It is therefore possible for some 

of the hosts in NetA and Net8 to have the same id's, i.e., a host id may be bound one-to-many 

to logical hosts. When NetA and Net8 remerge, the high level issues that arise due to multiple 

hosts possessing the same id's are quite complex and very often non-deterministic. The severity 

of the problem depends on the time duration for which the network remained partitioned and 

the frequency with which machines joined and exit from the system. 
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1.1 Recoveru procedure 

Inconsistencies that anse when the partitioned fragments of a network remerge come to 

light mostly during an IPC across the erstwhile fragments. We consider the following scenario 

involving two partitions NetA and Net8 illustrated in Figure 5. Let A2 and B2 be hosts in NetA 

and Net8 respectively that possess the same host id hid· Let A1 and B1 be hosts in NetA and 

NetB that have cached address entries for A2 and B2 respectively. Suppose NetA and Net8 rem­

erge. As long as the cached entries for hid in A1 and B1 are not deleted, the interaction of A1 

with A2 and that of B1 with B2 proceed correctly. The problem occurs if A1 deletes the cache 

entry for hid due to its internal cache management policy. When an IPC is initiated by a process 

on A 1 to a process on A2, the kernel on A1 allocates a cache entry for hid with the state set to 

SEARCHING, and generates a broadcast-based search for hid· Now both A2 and B2 respond to 

the message which may be the first available indication of the inconsistency. The scenario may 

be generalised to M hosts (A2 , B 2, .. ) possessing the same identifier. Recovery consists of two 

phases: 

7.1.1 Detection btJ the sender. In response to the host search message broadcast by Ai, all 

the hosts with id hid respond with their respective network addresses (NW AA2, NW A82 , .. ). Let 

A2 be the host whose response was first received by A1. The latter caches the entry, updates the 

state of the entry to VALID, and dispatches the IPC message at the address NW AA2. When the 

other responses to the search message are received, the cache in A1 may be in one of two states: 

(i) The previous entry {hid-+NWAA2} exists still, and is in the VALID state. 

(ii) No entry in the cache for hid· 

Both states indicate that the host is not searching for hid. The kernel detects the inconsistency 

and initiates recovery by broadcasting a REASSIGN_HOST_ID(hid) message. A1 then fails any 

on-going IPC with hid, and deletes any cached entry for hid· Thus the host that initiated the 

IPC also detects the inconsistency (i.e., detection at source) and initiates the recovery pro­

cedure. Note that recovery procedures (discussed below) may be integrated into the name bind­

ing mechanism since the latter is dynamic. 
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1.1.2 Recovery by clashing hosts: forced crash. On receiving the REASSIGN_HOST_ID(hid) 

message, each host in the system compares its host id against hid· In the case of a match, the 

kernel on that host initiates a reset procedure cleaning up its local executions, and then 

attempts to rejoin the system. Since a machine gets a guaranteed unique id on (re)joining the 

system, the issue of multiple hosts possessing the same id is eliminated. If the host id does not 

match with hid, the host searches its cache for the hid entry, and invalidate it if found. 

Effectively, such a forced crash is considered as a host failure at the process abstraction level. 

Since most IPC mechanisms have built-in structural elements to guard against host failures15, 

an on-going IPC with the processes on the host being reset will be terminated with an appropri­

ate error message with which high level applications may recover. Any IPC that may be 

directed to the host with its old host id will eventually be terminated by a lack of response or a 

I_AM_NOT_THE_HOST message from the reincarnated host since the same network address 

will still be used but under a different host id. 

7.1.9 R ecovery by clashing hosts: host ren aming. In this scheme, the kernel destroys the id 

associated with a clashing host, and rebinds the host to a new id. It is an involuntary activity at 

the process abstraction level. The implication is that the kernel no longer guarantees the con­

stancy of the process id over the life time of a process. The scheme requires mechanisms to han­

dle the following: i) acquisition of a new host id, ii) renaming all processes already created from 

the host since its incarnation, iii) handling the on-going message-passing activities the process is 

engaged i~ under its old name, iv) correcting all external references to the process, and v) han­

dling future message-passing activities onto the process under its old name. The approach 

imposes additional structural elements in the client-server interface of programs to handle issue 

(iv) (the others may be directly handled by the kernel). 

The advantage of the forced crash scheme is that it is simple to realise and does not 

require any additional mechanisms; however, it may degenerate into a harmful mechanism if it 

occurs too frequently. On the other hand, the technique based on host renaming imposes some 

normal case overhead in the form of checking for changed process id's and rebinding the refer­

ences. However, it does not cause destruction of the host which may be advantageous in some 

environments. 
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8. Conclusions 

We have discussed the mandatory and the desirable properties of host id's, and their impli­

cations in LAN-based distributed systems. A new scheme to generate and manage host id's 

satisfying the properties discussed has also been presented. The distributed scheme is robust 

against machine failures and message losses. Additional mechanisms to minimise the effects of 

network partitioning are also introduced. 

The scheme provides an integrated approach to the id allocation problem enforcing the 

required properties. It is distributed in that the state of the host id space is maintained by the 

participating machines themselves and does not rely on a centralized id generator or disk-like 

stable storage. The notion of a dynamic polling window which slides along the host id space as 

well as changes its size allows selective polling of the hosts in the system by a joining machine 

thus minimizing the number of responses needed to select a tentative host id. 

Some of the ideas encapsulated in the host id generation protocols, namely, collision detec­

tion and resolution, and the derivation of a consistent view of the distributed state variable 

from its potentially inconsistent instances, are applicable to other problems in distributed sys­

tems such as mutual exclusion and concurrency control. It is interesting to note, in this con­

text, that well-established network level concepts such as token passing and ring configurations 

are being adapted as standard interfaces for LAN-based Operating Systems to solve high level 

problems32
• 
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Table 1. Summary of simulation results 

Tota.I No. of ma.chines in the 20 100 
system 

Msg. loss prob. beyond which 0.5 0.6 
the prob. of reusing a.n id 
becomes non-zero 

Mean time for a. machine to 0.58 - 0.72 sec. 0.6 - 0.63 sec. 
join the system 

Mean No. of msgs. sent by a 5.8 - 7.5 5.5 - 6.1 
joining machine 

Mean No. of msgs. received 4.2 - 7.9 7.5 - 8.1 
by a joining machine 

Mean No. of msgs. put onto Decreases linearly with msg. Decreases linearly with msg. 
the network loss prob. loss prob. 

14 for loss prob. = 0.1 20 for loss prob. = 0.1 
10.5 for loss prob.= 0.7 15 for loss prob. = 0.7 

Mean CPU cycles consumed Decreases linearly with msg. Decreases linearly with msg. 

on an active host by a join- loss prob. loss prob. 

ing machine 26 ms for loss prob. = 0.1 24 ms for loss prob. = 0.1 
11.5 ms for loss prob.= 0.7 9 ms for loss prob. = 0.7 

Collision prob. Decreases linearly with msg. Decreases linearly with msg. 
loss prob. loss prob. 
0.014 for loss prob. = 0.1 0.073 for loss prob. = 0.1 
0.008 for loss prob. = 0. 7 0.045 for loss prob. = 0.7 
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Appendix-A 

A.l Code skeleton executed by the kernel of a new site to acquire a tentative id from the net­

work: 

Kernel_init() /* kernel initialisation * / 
{ 

window _size = O; 

Id_range2 = O; 

tentative_id = O; 

for ( seq_no = O; Id_range2 <= (MAX_ID - MIN_ID); seq_no++ ) 

{ 
rebroadcast_count =0; 

do 

{ 
msg.type = REQUEST_HOST_ID; 

msg.station_adrs = <Network interface address of this site>; 

msg.brdcst_cnt = rebroadcast_count++; 

msg.seq_no = seq_no; 

msg.Id_rangel = Id_range2; 

Id_range2 += window _size; 

msg.Id_range2 = Id_range2; 

broadcast (msg ); 

<initiate TIMER>; 

for ( sender = receive ( msg, ANY _PID ) ; 

sender I= TIMER; sender = receive ( msg, ANY _PID ) ) 

/* Initially the kernel assigns a logical 

host id 'O' for all local processes * / 
if (sender== NETWORK_RECEIVER) 

<cache reply>; 

} 
while ( rebroadcast_count <= MAX_RETRIES ) 

if ( ( <enough # of replies recd.>) && 

{ 

( <enough range of if id space polled>) ) 

/* The kernel is confident to select highest id * / 

highest_id = get_highest_value ( <cache> }; 

tentative_id = ( highest_id + 1 ) mod MAX_ID_SPACE; 



break; 

} 
else 

window _size = generate_next_window(); 

/* Select next window by some algorithm * / 
} /* End of "for" loop * / 

If ( tentative_id == 0 ) /* No other host in the network * / 
tentative_id = MIN_ID; 

} /* End of "Kernel_init" * / 

A.2 The code skeleton executed by the kernel on other hosts is as follows: 

forever 

{ 
receive ( msg, NETWORK_RECEIVER ); 

{ 

} 

if ( msg.type == REQUEST_HOST_ID) 
if ( (self_id :s; (highest_host_id - msg.Id_rangel)) && 

( self_id ~ (highest_host_id - msg.Id_range2)) ) 

response_msg.host_id = highest_host_id; 

response_msg.type = HOST_ID_REPLY; 

response_msg.seq_no = msg.seq_no; 

response_msg.hdr .dstn_station_adrs = msg.station_adrs; 
response_msg.hdr.src_station_adrs = <this station address>; 

<dispatch response_msg to the broadcasting site>; 
<assemble the reply_msg for the NETWORK_RECEIVER>; 

if ( msg.type == OFFICIAL_SITE_ID ) 

{ 
highest_host_id = msg.host_id; 

<update mapping cache>; 

<assemble the reply_msg for the NETWORK_RECEIVER>; 

} 
<check for other message types> 

reply ( reply _msg, NETWORK_RECEIVER ); 

} /* end of "forever" loop * / 
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Appendix-B 

Control parameters of the host id generation protocol 

In the process of acquiring a tentative host id, the protocol must determine when to stop 

searching and select the tentative host id based on the replies to the REQUEST_HOST_ID 

message(s). This dec~ion depends on the number ~-f replies received as well as the range of host 

id cov~red by the search so far. Intuitively, the larger the number of replies and/or the larger 

the host id space polled, the higher the probability of selecting the correct highest host id in the 

network. These two parameters are highly inter-related, reflecting the dynamic state of the hosts 

in the network. A weighted combination of the two may be used to stop further search as fol­

lows: 

K1 *N replies + K2 *Rid ~ threshold .. ..... (B.1) 

where Nreplies is the total number of replies received so far, Rid is the range of the host id space 

covered so far, K1 , K 2 are weights associated with Nreplies and Rid respectively and threshold is a 

predetermined constant. Whenever the condition in (B.l) is satisfied, the highest host id among 

the replies received so far is taken to be the highest host id in the network. This is incremented 

by one to produce the tentative host id. 

Two. boundary conditions are needed to estimate K 1 and K 2. 

Boundary condition 1. When the machine attempting to join the network is the first 

one to do so, there will be no reply to any of its probes. Thus the 

entire id space (Rid_max = MAX_ID - MIN_ID) will have to be polled. 

1.e., Nreplies=0 and Rid=Rid_max· Applying this boundary condition to the limiting case of equa­

tion (B.l), we get 

threshold = K2 *Rid_max 

Hence equation (B.l) may be rewritten as 

...... .. (B.2) 

.. ....... (B.3) 
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Boundary condition 2. We assume that a machine needs D replies to make a decision 

in the first polling window itself. 

Then, Nreplies=D and Rid=D (the value of D is dependent on the size of the network but gen­

erally a small value not exceedi°ng IO would do). Applying this to (B.3) we get 

............ (B.4) 

since Rid_max>>D. 

Suppose D = 10 and half of the host id space is polled, i.e., Rid= Rid_mr0<. , then from (B.3) 
2 

and (B.4) Nreplies~5. In other words, when half of the host id space is covered, the protocol may 

choose the highest host id from among the replies if at least 5 replies have been received. 

Another control parameter is the size of the polling window used for each search. The size 

should be chosen such that the number of expected replies is neither too large (which causes 

unnecessary network traffic) nor too small (insufficient information to decide on a tentative host 

id). Note that for a given window size, the further the polling window is from the highest host 

id, the less the number of active host id's contained in it. This, together with the large range of 

allowable host id space, suggests the use of a logarithmically increasing function in selecting suc­

cessive window sizes so that the condition (B.1) can be satisfied within a reasonable number of 

searches. Thus, if 'm' searches have been completed so far, the equation specifying the window 

size (W m+l) for the next search may take the form 

for m=0, and 

........ (B.5) 

where K3 is a base parameter, say 10. One choice of the function 'f' may be 

Nm 
f(N~,W m) = [I-Min( ..;ep ,r11)] * K4 

m 

.. ..... ... (B.6) 

where K 4 is another base parameter (say 10) and r11 is a constant (0.0:::::;r11:::::;l.0). The latter puts a 

lower bound on the chosen window size. 


