The Bit Complexity
of Randomized Leader Election on a Ring

Karl Abrahamson *
Andrew Adler +
Rachel Gelbart =

Lisa Higham *

David Kirkpatrick *

Technical Report 86-3
February 1986

* Department of Computer Science / + Department of Mathematics
University of British Columbia
Vancouver, B.C., Canada, V8T 1W5.

Abstract

The inherent bit complexity of leader election on asynchronous unidirectional rings of pro-
cessors is examined under various assumptions about global knowledge of the ring. I processors
have unique identities with a maximum of m bhits, then the expected number of communication
bits suflicient to elect a leader with probability 1, on a ring of (unknown) size n is O (am). If the
ring size is known to within a multiple of 2, then the expected number of communication bits
sufficient to elect a leader with probability 1 is O (n logn).

These upper bounds are complemented by lower bounds on the communication complexity
of a related problem called solitude verification that reduces to leader election in O (n) bits. If
processors have unique identitics chosen [rom a sufficiently large universe of size s, then the aver-
age, over all choices of identities, of the communication complexity of verifying solitude is
n logs) bits. When the ring size is known only approximately, then Q(n logn) bits are required
for solitude verification. The lower bounds address the complexity of certiflying solitude. This is
modelled by the best case behaviour of non-deterministic solitude verification algorithms.

7T

The Blt Complexity of Randomized Leader Election on a Ring

Karl Abrahamson *, Andrew Adler 4, Rachel Gelbart ¢, Lisa Higham *, David Kirkpatrick *

* Department of Computer Science / + Department of Mathematics

University of British Columbia, Vancouver, B.C., Canada

1. Introduction

Studies in the complexity of distributed computation typically ask two questions. i) What is
the complexity, under some chosen measure(s), of a chosen problem or family of problems, on dis-
tributed networks formalized in a chosen model? (The model might include both the network
topology and assumptions about the processors and their interprocessor communication.) ii) How
is this complexity affected by changes in the model? This paper addresses these questions for the
problem of electing a leader using randomized distributed algorithms running on asynchronous
unidirectional rings of processors, where the measure of complexity is the expected number of bits

transmitted.

lLeader election results in a unique processor, from among a specified subset of the proces-
sors, entering a distinguished final state. This problem is one of a small number of problems
which are fundamecntal in that their solutions form the building blocks of many more involved
distributed computations. Earlier work in the study of distributed computation has established
the importance of the ring topology as a test-bed for the design and analysis of distributed algo-
rithms. It is the chosen model here because it is a simple topology which exhibits many impor-

tant attributes of distributed computations.

A unidirectional ring can be viewed as a sequence P,...,P, _,; of processors where each pro-

cessor P, sends messages to P,,, and receives messages from P, (subscripts are implicitly

reduced modulo n). A number of variants of this basic model are distinguished by supplementary
properties. Communication between processors is either synchronous or asynchronous. Processors
may be indistinguishable or may have distinct identifiers. Processors may or may not know the
size of the ring at the start of computation. The complexity, measured by the number of com-
munication messages, of leader election on models with various combinations of these properties

has been well studied.

On an asynchronous unidirectional ring of processors with distinct identifiers, a leader can
be clected by a deterministic algorithm, which operates using pairwise comparisons of processor
identifiers, using O (n log n) messages each of O (m) bits [DKR,Pe|, where m is the number of
bits in the largest processor identifier. If interprocessor communication is synchronous aad
identifiers are drawn from some known countable universe, then O (n) messages suffice to elect a
leader in the worst case [FL]. On the other hand, in the asynchronous case, if the universe of
identifiers is unbounded, any deterministic leader election algorithm must exchange Q(n log n)
messages (of arbitrary length) in the worst case [B,PKR] or average case [PKR], even if bidirec-
tional communication is possible. Even if the ring size n is known to all processors and messages
are transmitted synchronously, algorithms which are restricted to operate either on the basis of
comparisons of processor identifiers or within a bounded number of rounds, must transmit

Q(n log n) messages in the worst case [FL].

If processors are not endowed with distinct identifiers then, as was first observed by Angluin
[A], deterministic algorithms are unable to elect leaders, even if n is known to all processors. Itai
and Rodch [IR] propose the use of randomized algorithms to skirt this limitation. They present a
randomized algorithm that clects a leader in an asynchronous ring of known size n using
O (n log n) expected messages of O (log n) bits each. The lower bound resuits of [Pa] show that
even il processors have distinct identifiers drawn from some suffliciently large universe, the
expected number of messages (of arbitrary length) communicated by a randomized leader election
algorithm is Q(n log n). However, O (n) expected messages suffice for randomized leader clec-
tion on a synchronous ring without identitiers [[R], provided the ring size n is known to all pro-

CE8K0rs.

In this paper, it is shown that with respect to bit complexity, the algorithms cited above for
asynchronous rings are not optimal. The relationship between leader election and two subprob-
lems, called attrition and solitude verification, is explored in section 2. Eflicient reductions are
established which motivate the development of procedures for these two subproblems (section 3)

and lower bounds for solitude verification (section 4).

It follows from the results of section 3 that when each processor in a unidirectional ring of n
processors, has a distinct m-bit identifier, it is possible to elect a leader by a randomized algo-
rithm using O (mn) expected bits of communication. In addition, when the processors are indis-
tinguishable but each knows the ring size n to within a factor of 2, then it is possible to elect a

leader by a randomized algorithm using O (n log n) expected bits of communication.

These upper bounds are complemented by the lower bounds of section 4. It follows from
the results of that section that when processors have unique identifiers drawn from a sufficiently
large universe of size s then any algorithm must transmit Q(n log s) bits to elect a leader, even
in the best case. If processors are indistinguishable but each knows the ring size only to within
some interval of size A, then any algorithm must transmit Q(n log A) bits to elect a leader, even
in the best case.

The lower bounds are proved for successful computations of algorithms in a very general
model. Algorithms may be non-deterministic and non-uniform and may deadlock. Moreover
computations nced only terminate in the weak non-distributive sense. An algorithm terminates
distributively if whenever processors enter a decision state the decision is irrevocable, that is it
will not change in light of subsequent messages received. The weaker non-distributive termina-
tion relers to the situation in which the cessation of message traflic is not necessarily detectable

by individual processors and all decisions are predicated on this undetectable condition.

The upper and lower bounds are tight to within constant factors, except when the ring size
is known to lie within some relatively small interval. This gap is reminiscent of earlier results
concerning knowledge of ring size [FL]. The special case when the ring size is known exactly is

the subject of a companion paper [AAHIKK]]. Avnother direction for investigation is uncertain

leader election, that is probabilistic leader election that terminates correctly with probability
greater than 1 — ¢ for some fixed € > 0. A second companion paper, [AAH!Q], considers this
problem on rings of indistinguishable processors. Pachl, [Pa], studies the problem when processors
have distinct identifiers. Some of these results together with an overview of the results of the

present paper are briefly described in section 5.

2. Leader Election, Attrition and Solitude Verification

This section scts out a general framework for the study of leader clection on rings. Two
fundamental problems are introduced and their relationship to leader election is established. This

relationship motivates the algorithms and lower bound results of the next two sections.

Leader election requires that a single processor be chosen from among some non-empty sub-
set of processors called candidates. Initially each candidate is a contender. Intuitively, a leader
election algorithm must i) eliminate all but one contender by converting some of the contenders
to non-contenders, and ii) confirm that only one contender remains. This separation was pointed
out and cxploited carlier by Itai and Rodeh [IR]. These subtasks are called attrition and solitude
verification respectively. More formally, a procedure solves the alfrilion problem if, when ini-
tiated by every candidate, it eventually takes all but exactly one of these candidates into a per-
manent state of non-contention. Typically an attrition procedure does not terminate but rather
enters an infinite loop in which the remaining contender continues to send messages to itsell. An
algorithm solves the seolitude verification problem if, when initiated by a set of processors, it even-
tually terminates with an initiator in state “yes" if and only if it was the sole initiator. The
stronger sofilude deleetion problem requires, in addition, that all initiators be left in state “‘no” if
there was more than one initiator.

Both attrition and solitude detection can be reduced to leader election with O (n) bits of

communication on rings of size n. For the attrition reduction, a leader is elected from among

the attrition contenders. [For the solitude verification reduction, the processors wishing to detect

their solitude first use O (n) bits to alert the whole ring to contend for leadership.’ Once a leader
is clected, it is easy to see how to solve attrition (no additional communication) or to detect soli-
tude (an additional O (n) bits of communication). Hence, non-linear lower bounds on the com-
plexity of either attrition or solitude verification translate to lower bounds on the complexity of
leader election. Conversely, attrition and solitude verification can be interleaved to solve leader
clection by annotating attrition messages with solitude verification messages. Whenever a con-
tender enters a state of non-contention, it forwards a solitude verification restart message to alert
remaining contenders that they were not previously alone. When attrition has reduced the set of
contenders to one, solitude veriflication will proceed unintercepted, eventually verifying that only
one contender, the “leader,’”’ remains. [f the solitude verification algorithm terminates distribu-

tively, so does the resulting leader election algorithm.

The elliciency of the leader election algorithm described above depends not only on the
efliciency of the attrition and solitude verification procedures from which it is constructed, but
also on the cost of interleaving. If solitude verification is conservalive in the sense that every
message 1s bounded in length by some fixed constant number of bits, then annotated attrition
nitessages are at worst a constant factor longer than unannctated messages. So the cost of prema-
ture attempts to verify solitude is dominated by the cost of attrition. The only remaining cost
attributable to interleaving involves the transmission of restart messages. In general this cost can
also be subsumed by the cost of attrition. This is shown in the next section for the attrition pro-
cedure used in this paper. That section describes a randomized attrition procedure, two different
conservative solitude verification algorithms, (cach exploiting different possible properties of the
ring of processors), and an interleaving strategy that combines the procedures to yield eflicient

leader election algorithms.

! The reduction outlined bere is from solitude verification to a version of leader election in which all processors are
candidates for leadership lno fact, this can be generalized Lo a reduction to an arbitrary set of candidates as is shown in

section 4.2

3. Procedures for Attrition and Solitude Verification

The previous section argues that leader election can be efficiently reduced to attrition and
solitude verification. This section describes and analyses eflicient procedures for these two sub-
problems. The attrition procedure is randomized but completely general in that it makes no
assumptions about the host ring. Two solitude verification algorithms are described which exploit
different assumptions about the ring, specifically the existence ofl distinct identifiers or at least
partial knowledge of the ring size. Both solitude verification algorithms are deterministic and ter-

minate distributively.

3.1. The Attrition Procedure

3.1.1. Informazal description

The attrition procedure is initiated by all candidates for leadership. The number of candi-
dates is denoted by ¢. The candidates are the initial contenders; all other processors are non-
contenders. The procedure uses coin tosses to eliminate some contenders while ensuring that it is
not possible for all contenders to be eliminated. A non-contender never converts to a contender,
but behaves entirely passively — simply forwarding any messages received. Contenders create
messages which are propagated to the next contender. Since contenders (respectively non-
contenders) have active (respectively passive) roles in the algorithm, they are referred to as active
(passive) processors in the following description.

Like the randomized attrition procedure of [IR], the procedure here can be thought of as
proceeding in phases. llowever, these phases are implicit only. They are not enforced by

counters, but will be justified in the subsequent analysis of the procedure.

At the beginning of each phase, each active processor tosses an unbiased coin yielding & or
t, sends the outcome to its successor, and waits to receive a message from its predecessor. Sup-
pose an active processor, P, sends and reccives the same coin toss. It is possible that this is true

for every active processor, so no decision can be taken by P. P continues alternately to send

and receive coin tosses, remaining in the same phase, until P receives a message different from
what it most recently sent. Suppose P eventually sends ¢ and receives A. Tlen some other
aclive processor, @, must have sent & and received . If only one of P and @ becomes passive,
the possibility of fosing all active processors is avoided. The convention used is that sending ¢
and receiving A changes an aclive processor (o passive in the next phase, while the opposite
results in a processor remaining active in the next phase. Once any active processor has decided
its state (active or passive) for the next phase, it sends a * message to signal the end of its phase.
Any undecided processor, @, that receives a * message while waiting for a coin flip becomes pas-
sive in the next phase, since it is assured that there will remain at least one active processor. @
forwards the *# message to announce that it has ended its phase. * micssages conlinue to be for-

warded until received by a decided processor (which has already propagated a * message).

These ideas are formalized in the transition diagram of figure 1. The notation “x/y" is read

TIx
Hix

[Figure 1. The Attrition Procedure

“rececive z, then send y'". X is used where no reception or transmission is to occur. Each proces-

sor begins at START. The transition leaving state FLIP is chosen by an unbiased coin toss.

3.1.2. Formal description and correctness

This section establishes the following properties of the attrition algorithmn of figure 1:
1. There is always at least one active processor. (A processor is active if it is in any state other
than P-GATE or PASS).
2. The attrition procedure cannot deadlock.

The number of active processors never increases and eventually decreases to one.

Sl

Some definitions are introduced to facilitate the proofs. Let each processor P, mzintain an
internal phase counter, p,. p, is initialized to 0 and incremented cach time P, enters a gate
stale. When p, = £k, P, is in phase k. The following variables are defined relative to an arhi-

trary computation of the attrition process:

s,(j) = the 7" message sent by P, while p, = k.

r,(j) = the j* message received by P, while p, = k.

ql(fj} = the state of P, irnmediately after P, sends its 7™ message of phase k.
git) = the state of P, immediately before P, receives its j* message of phase & .

It P, does not reccive (send) j messages in phase £, then r,(j] and y,("j) (s,(_*}) and q,(jjj are
undefined. Note that the state variables are parameterized by messages sent and received, not by

transitions made. For example, if qI(_f,) = [N, then q,(.';}_l = HEADS.

The following lemma establishes that * messages effectively delimit phase boundaries.

Lemma 8.1: s;(j) = r,{ﬂd.

Proof: Since messages sent by P, are exactly those received by P; 4, it suflices to show that P,
and P, ,, agree on phase boundaries. Notice from figure 1 that P, ,, enters a gate (a phase boun-

dary) precisely when it receives a * message. But P,, having sent the * message, cannot send any

-10 -

further message without first passing through a gate. Nor can P, enter a gate without sending 2

* message. []
The follewing lemma is immediate from figure 1. It points out that within a phase, as long as a
processor is undecided, its communication alternates between output and input messages.

Lemma 8.2: Il P, is active in phase & and q,(f,) is defined, then q‘{j} - g,(.f.)«

It follows from lemma 3.1 that cach phase can be considered ir isolation. Consider an arbi-
trary phase & with m >1 active processors. Since passive processors merely forward messages,
they can be ignored lor the following lemmas, and the ring assumed to have only m processors,
PP 4o In the remainder of this subsection, the superscript, (k), is omitted, and variables are

assumed o describe the k™ phase.

The next lemina establishes that the processors cannot all become passive.

Lemma 8.8: If ¢, , = OUT, then there exists w and ¢ such that ¢, , = IN.

Proof: Choose the smallest ¢ such that s, , = *, over all processors P,. Let P, be some proces-
sor for which ¢ is mirimized. Now either ¢, , = IN or g, ; = OUT. In the first case nothing
remains to be proved. In the second case, it follows that ¢, , , = TAILS, s, ,, =1, and
ro -1 = h. Let C be the class of [-messages which were the (i—l]”' messages sent by some pro-
cessor. P, sends a message of class C, but does not receive one, since ry ,_; = 9,3 ,.4 = h.
Since there can be at most n messages in class C, and all are eventually delivered, some proces-
sor, P, , must receive a class ¢ message without sending one. The transition from OUT to OUT
cannot correspond to the reception of a class C message, by the minimality of i. The transition
from TAILS to FLIP pairs the :fllbsorption of one message in C' with the production of one on the
previous transition. The only remaining transitions compatible with receiving a {-message lead to

state IN. Therefore P,, must be in state IN after receiving its ** message, and hence qu,: = IN.

8|

-11 -

The saflety properties of the attrition procedure follow from lemma 3.3 and the next lemma.
At any point during the execution, let N (*) be the number of * messages awaiting delivery. Let

N (OUT) and N (IN) be the number of processors in states OUT and IN respectively.

Lemma 8.4: N(¥) = N(IN) + N (OUT) at every point during the execution.

Proof: The equation holds initially and is preserved by every transition. []

Corollary 8.5: If any processor reaches phase k +1, then some processor is active in phase k£ +1.

Proof: In order for any processor to reach a gate, some processor much reach IN or OUT. By
lemma 3.3, somne processor P, , reaches IN. As long as P, remains at IN, there is an undelivered
* message, which must move around the ring, eventually reaching P, and causing P, to enter

the active gate. [

Corollary 3.6: The attrition procedure cannot deadlock.

The next lemma leads to a bound on the number of phases in any computation of the attri-

tion procedure.

Lemma 8.7: Suppose ¢, , = IN. Let y be the first number in the list z-1,z-2,... (counting
modulo m), such that ¢, , = IN. (Such a y must exist since z occurs in the list.) Then there is

a w€(y+1,y+2,..,2-1} such that ¢, , E{OUT,P-GATE}.

Proof: 1If ¢, , = IN, then r,"”,_t =8;4,a=2"¢. S0 ¢;_y,1=9:4,;1= TAILS. Suppose

fro1,,-1 7 L. After receiving r. , 4, P;_; moves from TAILS to either OUT or P-GATE, and

w = z -1 satisfies the lemma.

Suppose, instead, that r, ;, ;= (. Then g, 5; = TAILS. Again, if r; 5, ; 7% t, then
w = -2 satisficd the lemma. Otherwise the search continues through z-3,z-4,...,y +1 until a

w is found such that ¢, , , = TAILS and r, , , 5 ¢. Such a w must exist since:
gy, =IN = ¢, =HEADS = s, ,, =& = r4,q0=5h

so some first non-{ message r, , must be encountered among ry_y; 1,7z 9, 1,7y 41,,-1- That

-12 -

w satisties the lemma. []

Carollary 8.8: At least half of the active processors at phase £ are passive at phase k +1.

FProof: Lemma 3.7 associates with each processor P, which remains active, a distinct processor

P, which becomes passive. The same P, is not associated with two different PIl and P, _since

Gu.; 4w, € {OUT,P-GATE} implies j =;' . [1

Corollary 8.9: There are at most llog cJ phases during which more than one processor is active,

where ¢ is the number of candidates for leadership.

Il there remain more than one active processor in phase [, then with probability one, at
least two of them will eventually produce opposite coin flips, thus resulting in a transition to
phase k£ +1. This observation, together with corollary 3.9 ensures that the final requirement for

correctness is satisfied.

3.1.3. Complexity anzalysis

Recall that the last phase of the attrition procedure, when only one active processor
remains, is an infinite loop broken by the intervention of the solitude verification algorithm.
Therefore the complexity of concern for the attrition procedure is the expected number of bits
sent, up to but not including the last phase. Corollary 3.9 establishes that there can be at most

llog ¢]+1 phases. It remains to bound the expected number of messages sent per phase.

The following random variables over computations are needed:

if only one processor is active in phase
0Ok, orif phase £ is not reached
M) — i . -
¥ m il more than one processor is active in
phase k, and processor P, sends m

messages during phase k.

M,{” is defined for both active and passive processors, z, and for all integers £ > 1.

. 1 .
Lemma 8.00: Pr(M) > m) < 28m

Preof: The lemma is trivial if & is grcater than or equal to the number of the last phase. There-
fore suppose that there are two or more active processors in phase k. It is suflicient to consider
the active processors only, since each passive processor sends the same number of messages as its
nearest active predecessor.

The lemma is proved by induction on m. The case m = 2 is trivial. If, in phase £k, P,

reaches state FLIP s times, then P, sends s +1 messages. But whenever P, reaches FLIP, there
is a probability of at least -% that it will not return to FLIP in the same phase, since its coin toss

is random relative to that of its nearest active predecessor. The induction follows immediately.

a
Corollary 8.11: E(M,*)) < 3.

Corollary 8.12: The expected number of bits communicated by the attrition procedure up to the

last phase is at most 6n |log c].

n-1
Proof: The total number of messages sent up to the last phase is given by I tE M), By
=0 k>1

corollaries 3.9 and 3.11 this has an expected value of at most 3n |log ¢]. Since there are only 3
distinct messages used, each can be encoded in 2 bits yielding an expected bit complexity of at

most 6n [log c]. [

3.1.4. Interleaving properties

The attrition procedure lends itsell naturally to being interleaved with a solitude verification
algorithm. Attrition messages can simply be annotated with solitude verification messages. The
* messages which serve to delimit phase boundaries are interpreted as solitude verification restart
signals. The interleaved algorithm proceeds exactly like attrition until the last phase, at which
point the absence of * messages allows solitude verification to run to completicn. This is summar-

ized by:

- T4 =

Thcorem 8.18: Any conservative solitude verification algorithm of complexity f (n) can be com-

bined with the attrition procedure to yield a leader election algorithm of complexity

O(nlogec + [(n)).

3.2. Solitude Veriflcation Algorithms

In the absence of any information about the ring, solitude verification with certainty is
impossible. Therefore solitude verification algorithms must use specific ring information to verify
that there is a sole active processor. Two cases are considered here.

1. Each processor P, has a distinct identifier I,, consisting of a string such that if z 7w, then
I, is not a prefix of [, .

2. Each processor knows the size of the ring to within a factor of two.

These assumptions are as weak as possible in the sense that if processors identitics can
appear at most twice or the size of the ring is not known to within a factor of 2, solitude
verification remains impossible. Though solitude verification is all that is required for leader elec-

tion, the algorithms are, in fact, solitude detection algorithms.

3.2.1. Solitude detection with distinct identifiers

Suppose each processor, P, has a distinct identifier, /;, which is not the prefix of any other
identifier in the ring. Processer P, uses an internal string variable J; which is initialized to the
empty string. Fach initiator alternately sends the j® bit of its own identifier and receives the
7™ bit of its nearest active predecessor, which it appends to J;. Thus P; builds up in J; the
identifier of its ncarest active predecessor. If [, contains m bits then after receipt of at most m
bits P, can declare, by comparing J, and I,, whether or not it is alone. Because no identifier is

a prefix of any other identifier, P; can never falsely claim solitude.

Theorem 8.14: If processors have distinct m bit identifiers, then conservative and deterministic

solitude detection can be achieved with distributive termination using at most O (mn) bits.

=15 =

3.2.2. Solitude detection when the size of the ring Is known approximately

Suppose that distinct identifiers are not available, but each processor knows the size n of
the ring. In this case, a non-conservative algorithm for determining solitude has each initiator
send a counter which is incremented and forwarded by each passive processor until it reaches an
initiator, P,. By comparing the received counter with n, P, knows whether or not it is alone.
This algorithm can be transformed into a conservative solitude detection algorithm without any

increase in bit communication complexity.

Each processor P, , whether active or passive, maintains a counter ¢, initialized to 0. Let
d, > 0 denote the distance from P, to its nearest active predecessor. The algorithm maintains

the invariant:

if 7, has recetved j bits then ¢; = d; mod 27,

Then if P, reaches a state where ¢, =n, there must be n -1 passive processors preceding
P, ,so P, can conclude that it is the sole initiator. It remains to describe the strategy necessary

to maintain the invariant.

Initiators first send 0. Thereafter, all processors alternately send and receive bits. If P; is
passive, then P, is required to send the 7™ low order bit of d, as its ™ message. Initiators con-
tinue to send 0. Suppose a processor, P,, has the lowest order j bits of dy in ¢,. A simple
inductive argument shows that when P, receives its (j+1)* message (by assumption the (j +1)*
bit of d, — 1), it can compute the first (j+1) bits of d, and thus can update the value of ¢, to

satisly ¢, = d, mod 2/.

In the previous algorithm, it was assumed that n is known exactly. Suppose instead, that
each processor knows a quantity N, such that N <n <2N-1. Then there can be ot most one
gap of length N or more between neighbouring active processors. Thus any gap of less than N
confirms non-solitude and any processor detecting a gap of N or more can determine solitude by
initiating a single checking round. (For the purposes of leader election, it is sufficient for any
active processor that detects a gap of N or more to declare itsell the leader, since it has

confidence that no other processor can do the same). Thus, the algorithm can be used when n is

s B

known to within a lactor of less:-than two.

Theorem 8.15: If cach processor knows a value N such that the ring size n satisfies

N < n < 2N -1, then conservative and deterministic solitude detection can be achieved using at

most O (n log n) bits. []

3.3. Time Complexity of the Leader Election Algorithm

As is usual for randomized algorithms for asynchronous models, the fime complezily of an
algorithm is the expected number of unit time intervals before the algorithm terminates, under
the assumption that messages travel each communication link in unit time, local processing is

instantaneous, and the algorithm proceeds with maximum possible synchrony.

The time complexity of [DKR] is O(n). Our leader election algorithm, as described,
requires O (n log n) time steps even for just the final phase, when verification bits are sent and
received one at a time by the sole remaining active processor. [t therefore might appear that the
algorithm achieves an improvement by a factor of O({log n) in bits, only at the expense of an
additional factor of O (log n) in time over other leader election algorithms. But a slight altera-
tion in the attrition algorithm reduces the time complexity of the final phase from O (n log n) to
alinost linear. Suppose that the i™ message of a phase of attrition contains a package of f (7)
annotated coin flips rather than a single coin flip as previously described. Let
J()=1and f(i)=2/ (1) for i>1. The probability that a processor sends at least k pack-
ages of coin flips in a given phase is no more than 2/ W+ +/ (-1 Hepce the expected number

of coin flip bits sent by an arbitrary processor in a given phase is no more than

S = 5 ' — 0(1). So the expected number of annotated
X g Wt G LT G (1). So the expected number of annota

coin flip bits sent by a processor in a phase is also constant. With this packaging, in the final
phase of leader election, the remaining active processor will initiate only O (log *n) messages
which propagate around the ring. O(n log’ n) time steps are required to confirm solitude when

ring size is known without any increase in communication bit complexity. Similar packaging

- 17 -

yields O (n log® m) time steps when identificrs of length m are used to confirm solitude.

It remains to analyse the expected time for attrition up to the last phase. Let a round be
one single exchange of coin tosses for all active processors on the ring. It can be shown that there
are O (log n) rounds expected through the duration of attrition. By analysing the time for each
such round separately and summing, a ceiling on the expected time for attrition (up to the last
phase) results. The effects of overlapping rounds and packaging only serve to reduce the expected
time. DBut the time required for an isolated round is propcrtional to the longest gap between
active processors in that round. It can be shown that the expected length of the longest gap

th

between active processors in the ¢ round is no more than 2'. Thus the expected time for all

O(log n)
rounds, even assuming no overlap, is bounded by k- 2' == O (n) steps. Combining these

1=l

results for attrition and solitude verification yields:

Theorem 8.16: The leader election algorithm which results from combining the attrition pro-
cedure of section 3.1 and the solitude verification algorithm of section 3.2.1 (section 3.2.2), can be
adapted to have time complexity O (n log® m) (O (n log® n)) without any increase in the order

of the communication complexity.

4. Lower Bounds on the Complexity of Solitude Verlflcation

This section provides lower bounds on the number of bits of communication required for sol-
itude verification. Two cases, paralleling those considered in section 3.2, are studied. In each
case lower bounds are developed which show that the algorithms discussed earlier are essentially

oplimal.

The lower bounds apply even to non-deterministic distributed algorithms. In order to facili-
tate the proofs, a formal model of non-deterministic algorithms and their computations is first
presented in subsection 4.1. In subsection 4.2, the solitude verification and leader election prob-

lems are defined in terms of the formal model. That section also contains an O (n) reduction

- 18 -

from solitude verification to leader election within the model, implying that even the general
non-deterministic lower bounds for solitude verification translate to the same lower bounds for
leader election. Techniques and tools commmon to the proofs are grouped together in subsection
4.3. Subsections 4.4, and 4.5 study respectively, the cases where processors have distinct

identifiers, and processors know the approximate size of the ring.

4.1. Model of Computation

A labelled ring is a unidirectional n-ring of processors Py,...,P°,_; where each processor has
associated with it a (not necessarily unique) label from ID X ({initiator,non-initiator} where ID
denotes some fixed universe of identifiers. Various assumptions about the universe ID refiect the
degree to which processors are distinct. The second label field is used to distinguish processors

that initiate a computation from those that only participate in response to other initiators.

A history is a finite sequence of bits each of which is marked as either an input or an output
bit. Each marked bit is a {communication) event. A history is inilialing (non-initiating) if and
only if its first communication event is an output (input).

Let H; be the set of all initiating histories, and My Ue the set of all non-initiating his-
tories. A (non-delerministic) process P is a pair (H,f) where H C [, |UJ Hy and [is a func-
tion f:H — {yes,no}. Given h € H, f (k) is the final state of & in P. A process
P = (H,f) is iniliating if H is a subset of F; and non-initiating if H is a subset of Hy . Intui-
tively, a process provides a choice of histories that describe possible input-output behaviour of a
processor.

A (distributed] algorithm o« is a mapping from labels to processes that assigns initiating
processes to initiators and non-initiating processes to non-initiators. In this way it is ensured that
indistinguishable processors (processors with ideatical labels), receive the same process.

Let P, == (1, ,f,) denote the process assigned to processor P, by distributed algorithm « in
a labelled n-ring R = Py, P,,....,P,_;. The sequence C = hy,hy,....h,_, defines a computation of

aonf ifh € H , for0<i<n-l.

-39 -

Given a computation C = hgy,hy,...,h,_;, the communication events that make up history
h, can be partially partitioned, relative to C', in a natural way into communication infervals.
The 0* communication interval of history h, is the empty string. If A; is initiating, then the
k™, k>1, communication interval in A, is the largest interval of events following the (k-1)%
interval whose sequence of input communication events matches the sequence of output communi-
cation events in the (.l*:—l]Sf communication interval of &,_;. If A; is non-initiating, then the ES,
k >1, communication interval of &, is the largest interval of events following the (k-1)* interval
whose scquence of input communication events matches the sequence of output communication
events in the k" communication interval of h,_y. If there is at least one initiator, the communi-
cation intervals of non-initiators are well defined. Those communication events which are
assigned to a communication interval are realizable. A history is realizable if all of its communi-
cation evenls are rcalizable. Note that realizable events and realizable histories are defined rela-
tive to a computation. k, \C denotes the initial subsequence of #; that is realizable relative to C
and is referred to as a truncaled history. h,\\C denotes the partition of &\ C into communica-

tion intervals and is referred to as a scheduled history.

If the full history, &, , is realizable relative to € then the computation C leaves processor

P, in state f, (k,), (the final state of &, in P,), otherwise C' leaves P; in state undecided.

The computation C is weakly decisive if for some i, 0<i<n-1, & \C = bh,, that is, il
some history in the computation is realizable. C 1is decisive il for every i, 0<i<n-l,

h,\C = h,, that is, every history in the computation is realizable.

Let W, (D) be the set of weakly decisive (decisive) computations of an algorithm « on a
ring ft . Let T be a predicate defined on computations of «. « solves the problem corresponding
to T on R with distributive termination if and only if \Jfwe€W T (w). a solves the problem
corresponding to T on R with non-distributive termination if and only if \/d €D ,T (d). These
formal definitions of distributive and non-distributive termination capture the corresponding
informal notions. Notice that distributive termination of an algorithm « is a stronger requirement

than non-distributive termination of a because for distributive termination a condition must be

-20-

met by every weakly decisive computation of a, whereas for non-distributive termination, the
condition need only lhold for fully decisive computations. A decision reached by a processor, P,,
in a computation of a distributively terminating algorithm is final. It cannot be subsequently
changed by reccipt of messages from processors that have not terminated. In the formal model,
this corresponds to the fact that il a non-deterministically chosen history 4, is fully realized, then
P,'s state, [(k,), is final. P, cannot detect that other histories were not realized. On the other
hand, when a decision is reached by a processor, P;, in a computation of a non-distributively ter-
minating algorithim, the decision is only necessarily final if P, receives no further messages. In
the formal model, this correspends to all non-deterministically chosen histories being [lully real-

ized. Only decisive computations are used in the proofs of this paper. Thus the results are true
even for non-distributively terminating algorithms.?
The (communication] complezity of a computation € = hy,...,h,_; of algorithm « on
n-1
labelled n-ring R is defined as EOI h;\C| where |k \C| is the length of A;\C (that is the
I
number of realizable communication events in %,). The complexity of a computation is the

number of bits that could be sent and received until the communication either becomes incon-

sistent or terminates.

4.2. The Problems

A weak version of leader election requires that at most one processor be lelt, at termination,
in 2 distinguished final state. IFormally, the weak leader election predicate, L, is defined over
cemputations by: L (C) = (there exists at most one A, in C such that k, is initiating, and
h\C = h, and [,(h,) = yes). A weak version of solitude verification requires that if any initia-
tor is left in a distinguished final state at termination, then that initiator is the only initiator of
the computation. [Formally, the weak solitude verification predicate, V', is defined over computa-
tions by: V(C)= (If there exists A4, in C such that k, is initiating and A, \C = A, and

S (h,) = yes, then h, is the ounly initiating history in C'). Thus, using the definitions of the

®I'lie distinction hetween the two Lypes of termiaation is required for [AAHKI|.

-21-

previous subsection, an algorithm a solves the weak leader election (weak solitude verification)
problem on a ring R, with non-distributive termination if and only il, for every decisive computa-

tion C of @on R, L(C){ V(C))is true.

Notice that an algorithm has to meet only a rather weak requirement in order that it be
said to solve one of the problems. [For example, deadlocking computations are tolerated. This
only serves to strengthen the lower bound results that follow. Conclusions are drawn about the
number of bits that must be transmitted in any computation of an algorithm which succeeds in
verifying solitude, (2 successful computation), even if the algorithm solves the problem in only
this weak sense. A successful solitude verification computation has exactly one initiating history,
h,, and k, is realized and has final state yes. A successful leader clection computation has exactly

one of the initiators left in final state yes.

Section 2 contains a description of how a randomized, distributively terminating algorithm
for electing a leader from among all processors on the ring can be converted, using an additional
O (n) bits of communication, to an algorithm for solitude detection (and hence solitude
verification). In fact this O (n) reduction holds even for the non-deterministic, non-distributively
terminating model, and for the weak versions ol the two problems. Initiators, wishing to deter-
mine their solitude, alert the ring by propagating a wake-up message. All processors, having been
alerted, non-deterministically choose whether or not to be candidates for leadership, and run the
weak leader election algorithm. A candidate remaining in contention guesses if and when the
leader election algorithm terminates with itsell as leader. At this timne the elected leader circu-
lates n single constant length message to determine whether one or more than one original initia-
tor was present. A final round announces the result. Because the portion of this algerithm [ol-
lowing leader election is deterministic, the reduction converts successful computations of leader
clection to correct and decisive computations of solitude dctection. Unsuccessful leader election
can happen if either no processor chose to he a candidate or if the weak leader election algorithm
left all processors in a nan-leader state. But in both of these cases the corresponding solitude
detection computation deadlocks, satislying weak solitude verification. [Finally, il a candidate

guesses erroneansly that it is the sole remaining contender before weak leader election has

-22.

terminated (non-distributively), then eventually the leader election algorithm must correct this
error. So the resulting solitude verification computation is also eventually alerted to the error, and
correctly achieves non-distributive termination. Thus non-linear lower bounds for computations
that verify solitude translate to lower bounds for computations that elect a leader even for this
general model. Notice that non-determinism allows this reduction to hold for the general version
of leader clection when a leader is elected from ¢ candidates rather than from the fixed
configuration of all processors on the ring. Thus the lower bounds for solitude verification imply

lower bounds for a best case configuration of candidates for leadership.

4.3. Tools

In the lower bound results that follow, two techniques are used to create mew rings and
{weakly) decisive computations on them from existing ones. Let C = hg,h,,...,h,_; be 2 compu-
tation of some algorithm @ on the ring R = P, Py,...,P,_,. Suppose that A, \\C = h;\\C and
h,.1,...,h, contains no initiators. Consider the new sequence C' = ho,...,h ,h;4y,...,h,_, formed
by removing A, 4,...,h, from C. Then C' is a computation of a on
R'" =Py, PP, ,.,P,y' where P, ' has the same label as P;. In addition, if C is a
(weakly) decisive computation of @ on R then C' is a (weakly) decisive computation of « on
R'. This process of forming C'' on R’ from € on R when A \\C = h \\C while retaining
all initiators is referred to as collapsing.

lLet C,= hg,....,hh, , and Co=1{,,.. 1., be computations of an algorithm « on the two
rings £y = Po....Pq. and By = Qy,....Qr1. Suppose that h, \\C, = [, \\C- for some i and
7. Consider the sequence C' = hq...,hy b gyl il oreidy B p1sees g formed by combining
c, and C.. Then c’ is a computation of « on
R' =Py ,...P' Q41" s @nt' Q0"+ Q; " Pigt’ 1oes Py’ where Pr' (Qg') has the same
label as P, (Qy). Also, if Cy or C,is a weakly decisive computation of @ on R, or R, respec-
tively, then €' is a weakly decisive computation of & on R'. Il both €', and C, are decisive
computations of a on 2| and R, respectively, then C' is a decisive computation of a on 7 /.

This process of forming C' on ' by combining ¢, on £, and C, on f2, is referred tv as

T

splicing. The special case of splicing a computation to itselfl is called doubling.

In a computation C = hgy,h,,....,h,_;, it may happen that a scheduled history has only
input bits in some communication interval before its last. This corresponds to P, acting as a
temporary sink absorbing bits before the end of the computation but not sending any on. As a
result, successors of P, may have some empty communication intervals. However, if therc are &
initiators, there can be at most £ -1 sinks. In particular, il a computation has only one initiator,
then each communication interval of each scheduled history must contain output bits until com-
putation ccases. Therefore, when there is one initiator, £, \\C is encoded in 3 | 4, \C| bits by
using 2 extra bits per communication event — one to describe the type of event and one to
denote communication interval boundaries. | 5, \\C | denoies the length of this encoding. The
fact that | A, \\C | = 3| h,\C| when there is one initiator is used frequently, and it is summar-

ized in the following lemma.

Lemma f.1: Let C = hghk,,...,h,, be a computation with exactly one initiator. Then each
scheduled history of ¢ can be encoded so that its length is 3 times the length of the correspond-

ing truncated listory.
The proofs to follow take advantage of the fact that any collection of k distinct binary

i“:#’ bits for £ >3. The following lemma is also needed.

strings contain at least

Fi

Lemma §.2: Let € = hg,hy,....,h, 4 be 2 computation with exactly one initiator. If the complex-
ity of C is less than em log m, with m <n, then there exist i and j, 0<j-i <m™° such that

hANC =h, \\C.

Proof: Let ¢ = h\\C,A \\C,....h, ,\\C, be the sequence, in the standard encoding, of the
scheduled histories corresponding to €. Let k£ be the maximum integer such that every subse-

quence of € containing k scheduled histories has cach scheduled history distinct. The encoding

k log & ..
_:)’g__ bits.

of a subsequence of £ distinet sclieduled histories must contain a total of at least

-

But C can be decomposed into [n /2!;] disjoint subsequences each with at least & scheduled his-

tories. Since the complexity of C is less than e¢m log m, at least one of these subsequences must

%7%%?3 < 2ck log m realizable communication events and hence can be
n

have less than
; . k log k 12¢
encoded by at most 3-2¢k log m bits. Hence, —3 < 32ck logm. Thus k<m'® [

The lower bound arguments both have similar structure. It is assumed that an algorithm «
exists that solves solitude verification on a ring R with non-distributive termination and that «
has a successful computation C with small communication complexity. It follows, by some com-
bination of collapsing and splicing, that C can be transformed into a decisive computation C'' of
@ on a different ring 2 ', in which more than one initiator terminates in state yes. Thus « does

nol solve solitude verification on 2 1.

4.4. Distinct Identifiers
The objective of this subsection is to characterize the complexity of algorithms that solve
the solitude verification problem on rings of processors with distinct identifiers chosen (otherwise

arbitrarily) from a set 1D of size s. Let « be any algorithm that sclves weak solitude verification

2 ' — . . < 8 y . :
on all n-rings with distinct identiliers chosen from ID. There are (ﬂ) possible identifier sets for

o

such an n-ring. Suppose thal for cach of these sets, there is at least one permutation of the
identifier set, such that for an n-ring labelled with this permutation and with exactly one initia-
tor, P, o has some successful computation. a is then said to non-trivially solve solitude

verilication for n-rings with identifiers chosen from ID.

Theerem §.3: Let « be any algorithm that non-trivially solves the weak solitude verification prob-

lemn on rings of helwveen N and 2V processors with distinct identifiers chosen from a universe ID

of size s > 2N. Then the average, over all (i,} identifier sets L of size N, of the minimum
4

communication complexity of successful computations of @ on any ring # with label set L is

QN log (s [2N)).

Proof: Let L be any subset of [D of size n=N and let R be aring of n processors, with exactly

- 25«

one initiator and with distinct identifiers chosen from L. Let C = hgyhy,...,hy_; be a computa-

o
tion on R. C is a cheap computalion il it has complexity less than n—loﬂ:;—&L If a cheap C

exists, the ring /' and the identifier set I are also said to be cheap. If C is cheap, then at least

one of the truncated histories ho\C,h\C,...,h, ;\ C must have length less than [= log (33 2N).

Choose any such truncated history and call it the cheap (truncated) history associated with C
and indirectly associated with R and L. Now suppose that a has the property that for at least
one-half of the {.i) possible choices for L, there exists a cheap successful computation ¢f a and
therefore an associated cheap truncated history. Among all the partitions of ID into s /n subsets
of size n, at least one such partition must have among its subsets at least s /2n cheap identifier
sels. Therefore there exist s /21 disjoint, cheap labellings with corresponding cheap sucecessful
computatlions. But (here are fewer than 28! == 5 /2N = s [2n distinct cheap scheduled histories
in total. So some cheap scheduled history must be associated with successful computations of «
on two rings with disjoint sets of identifiers. [these computations are spliced at their common
history, the result is a decisive computation of « on a ring of size 2N, whose processors all have
distinet identifiers. However, this computation leaves two processors in the final state yes con-

tradicting the correctness of o, [

Corollary 4.4: liel « be an algorithm that meets the conditions of theorem 4.3. If the size s of
the universe 1D is Q(N ') for some €>0, then the average, over all identifier sets L of size NV, of
the minimum communication complexity of successful computations of @ on any R with label set

L is Q(N log s .

4,5. Ring Size Known Approximately

If ring size n is to be used to verify solitude, it must be known to within a factor of two.
The objective of this subsection is to characterize the complexity of computations that verify soli-

tude, as a function of processors’ uncertainty of ring size within this limit.

Theorem 4.5: Let « be any non-distributively terminating algorithm that solves the solitude

- %6 -

verification problem on the class of all rings of size n, where n €[N ,N+A| for some N and
0 < A < N. Then any successful computation of « on any ring in the class must have commun-

ication complexity QN log A).

Proof: Let R be any ring of n processors, N < n < N + A, exactly one of which, say Py, is an

initiator. Let € = hghq,...,h,_; be any successful computation of a on I confirming the soli-

log A
log N’

tude of P4 (So f o(ho) = yes.) Let ¢ = Suppose that the communication complexity of

C is less than (NlogA-2N) [/ 12 = (eNlogN -2N) [12. By lemma 4.2, there exist ¢ and j
such that 0< j-i <N‘=2A and h\\C = &, \\C. Consider the new computation
hgyoiyhy by gaye kg formed by removing S = b, 4y,...,h; and apply repeated coliapsing to each
subsequence /1y == hy,...,h, and Hy = h, ...k, separately until these subscquences cach is
composed of distinct scheduled histories. Let the resulting computation e
¢! =ho ol ' .. ke, where A\\C' = k\\C, {\\C' = K \\C, and
b \\C' = h,\\C. Since hy ,.,h' and by’ .. b, ' are sequences of distinct scheduled

histories, their combined communication complexity is at least,

(1 -|-I}lt;'g{!’+l] . (m—L-1) {?_g(m_i_” which is at least -gllog {’—;1-] Thus their combined
:]) “

‘M - - - - .
length m must not exceed 5 since otherwise, the assumption on the complexity of C is

violated. Thercfore €' can be doubled to form a new computation, C'', of @ on a ring ' of
size 2m < N processors. But since the subsequence §, which was originally removed, has length
g < A, there exists & such that N < 2m+ks <N + A. Thus k copies of § can be spliced
into C'', after either scheduled history identical to A, \\C, forming a new decisive computation
of « on a ring of size n' € [N,N + A] which contains 2 scheduled histories identical to hg.
Thus 2 processors conclude solitude, contradicting the correctness of « for rings of size
n €{N,N+4A. O

It can be shown that theorem 4.5 holds even if the algorithm « is required to work correctly

only on the class of rings in which processors have identifiers, and no processor identifier appears

more than twice. If all processor identifiers are known to be distinct then the results are different,

-27 -

as was shown in section 4.4.

5. Conclusions

5.1. Technical Results

The inherent communication complexity, measured in terms of the expected number of bits,
of clecting a leader in a ring of processors has been identified to within constant factors for two
cases. When all processors know the ring size to be within some interval [Ny, N,] and all proces-
sors have distinct identifiers drawn from some set of size s > N, | where ¢>0 , then for all n
satisfying N, <n <N, /2 , the average, aver all n-rings, of the expected bit complexity of ran-
domized leader election is ©(n log s) . On the other hand, if the ring size is known to be in
some interval [N, N,]| where Ny +N, ‘<N, < 2N, , for some ¢<0 , and processor identifiers are
not necessarily distinct then, for all n satislying N, <n <N, , the expected bit complexity of ran-

domized leader election is ©(n log n) .

The results for leader election stem from bounds on the complexity of two more primitive
processes called atfrition and solitude verification. The identification of these subproblems and
the clarification of their relationship to leader election is one of the important contributions of
this paper. Eflicient conservative solitude verification algorithms that exploit known properties of
a ring can be combined with the randomized attrition procedure described in section 3.1 to pro-
vide new cflicient leader clection algorithms. Solitude verification is of equal interest for its role
in the proof of lower bounds for leader election. For all solitude verification computations of con-
cern there is only one initiator, -which considerably simplifies the analysis. This is reflected in the

strong lower bounds of section 4.

5.2. Related Issues

In addition to the specific technical contributions cited above the results of this paper shed

light on a number of important issues in distributed computing. These are summarized under

- 28 -

three general headings below.

5.2.1. Global knowledge of ring

Suppose that all precessors know that the ring size n lies in the interval [N;,N,| . If the
processors are indistinguisliable then deterministic leader election is impossible [A], even if
Ny=N, . Furthermore, if N, 22N, then even randornized algorithms cannot elect a leader
among indistinguishable processors with certainty. However, if N, <2N, , then randomized
leader election can be achieved in O (n log n) expected bits. If, in addition, N, +N,‘< N, , for
some ¢>0 , (i.e. the interval is not too small) then Q(n log n) bits are required to clect a leader
among indistinguishable processors.

On the other hand, even if Ny=1 and N, =oc0 , il processors have distinct identitics chosen
from a universe S of size s (which need not be known explicitly) then a leader can be elected with
O (n log s) expected bits. In fact, assuming N, >2N, and n <s/[2, Qn log(s/n)) bits are

required to elect a leader with distinct identities from S.

5.2.2. Type of algorithm

The leader election algorithms described in this paper are all randomized. In [act, the soli-
tude verification process is deterministic. The algorithms cannot deadlock. They all terminate
distributively with probability 1 and clect a leader (or detect solitude) with certainty. Finally,
with the exception of those modifications described in section 3.3, the algorithms are all conserva-

tive.

In contrast to the above, the lower bounds on solitude verification (and hence leader elec-
tion) are proved on a non-deterministic mode! of computation. The model admits algorithims that
may decadlock. Furthermore algorithms may communicate non-conservatively, may terminate
non-distributively, and may, in the case of solitude verification, tolerate errors when there is only
one initiator. The lower bounds state a minimum bit complexity of any computation that pro-

vides a certificate of solitude.

The juxtaposition of the algorithms and maodel of computation highlights a remarkable
insensitivity for the problems and complexity measure studied in this paper, to the details of the
underlying model of computation. This insensitivity is not preserved when the focus shifts to cer-

tain closely related preblems [AAINKLAATK2).

5.2.3. Type of analysis

The solitude verification algorithms are analysed with respect to the worst case number of
bits of communication. The lower bounds refer to the best case number of bils communicated by

computations of algorithms that cerlify solitude.

The bulk of carlier results on leader c¢lection a2re concerned with message complexity. Tle
leader election algorithms of this paper are competitive in this measure while improving upon ear-
lier results by a factor of logn in the number of bils transmitted. While the obvious implementa-
tion of the leader election algerithms of this paper ona synchronous model makes them somewhat
unattractive in terms of communication time, implementations exist, as described in section 3.3,
which for all practical purposes make the algorithms comparable with earlier algorithms in this

measure as well.

5.3. Extensions

The results of the present paper can be extended in two natural directions. First, the case
where the ring size n is known exactly — a situation where the upper and lower bounds of this
paper do not agree — can be explored in more detail. The solitude verification problem when n is
known exactly is examined in [AAIK1]. In this case number theoretic propertics of n can be
cxploited to improve upon the O (n log n) algorithm contained in this paper. With exact
knowledge of ring size, there is a distinction between the complexity of distributively and non-
distributively terminating versions of solitude verification. 6(n m) bits are necessary and
sullicient to achieve solitude verification with distributive termination. This becomes

O(n log log n) bits for non-distributive termination. The upper bounds in this case are achieved

- 30 -

by non-deadlocking, deterministic algorithms, and the lower bounds by the same general models
as used in this paper. The algorithms are non-conservative. If conservative solitude verification

is required then ©(n log n) bits are necessary and sufficient [AAHIK1).

This paper and its lirst companion paper are concerned with leader election and solitude
verification when cnough information is available to achieve certainty. When processor informa-
tion is insuflicient to confinn solitude with certainty, it is stili possible to solve these problems
probabilistically. [AAIK2] examines probabilistic solitude verification, that is, algorithms that

are correct with probability at least 1 — e. When there is no knowledge of ring size, the communi-
cation complexity of sclitude verification with non-distributive termination is ©(n log —) bits.
€

(Distributive termination with probability 1 — € of correctness is impossible.) When ring size is

known to be less than a bound N, then distributive termination can be achieved with complexity
N Vg e ; .) . :

O (n log — + nlog —) bits. A matching lower bound is shown for rings of actual size no
n €

larger than g—

=

=@

6. References

[A]

AAHK1]

[AAIIK2)

(8]

[DKR]

(Fu]

[1R]

[Pa]

[Pe]

[PKR]

D. Angluin, Local and {lobal Propertics in Networks of Processors, Proceedings of the
Twelfth Aunuval ACM Symposium on Theory of Coniputing {1980), 12p.82-93.

IK. Abrahamson, A. Adler, L. Higham, D. Kirkpatrick, Solitude Verificalion on Rings of
Inown Size, in preparation, Ul of British Columbia.

K. Abrakamson, A. Adler, L. Higham, D. Kirkpatrick, Probabilistic Solitude
Verificalion on Ringz, in preparation, U. of Britizh Columbia.

J. Burns, A Formal Model for Message Passing Systems, TR-C1, lndiana Universit,y:.
September 1980,

D.Dolev, M. Klawe and k. Rodeh, An Ofn log n) Unidirectional Distributed Algorithm
for Extreme Finding tn a Cirele, J. Algorithms 3,3 (Sept. 1082}, pp.245-260.

G. Fredrickson and N. Lynch, The Impact of Synchronous Communication on the Prob-
lem of lecting e Leader in a Ring, Proceedings of the Sixteenth Annual ACM Sympo-

sium on Theory of Computing (1984), pp.493-503.

A. Itai and M Rodeh, Symmetry Breeking tn Distributed Networks, Proceedings of the
22nd Annual IEEE Symposium on Foundations of Computer Science (1981), pp.150-158.
J. Pachl, A Lower Bound for Probabilistic Distributed Algorithms, Research Report CS-
85-25 (August 1985), University of Waterloo. Watctioo, Canada.

G. Pcterson, An Ofn log n) Unidirectional Algorithm for the Circular Eztrema Problem,
Trans. Prog. Lang. Sys. 4,4 (1982), pp.758-762.

J. Paciil, E. Korach and D. Rotem. Lower Bounds for Distributed Mazimum-finding

Algorithms, J. ACM 31,4 (Oct. 1984), pp. 905-918.

