
Abstract

The Bit Complexity
of Randomized Leader Election on a Ring

Karl Abrahamson •
Andrew Adler +
Rachel Gelbart •

Lisa Higham •
David Kirkpatrick •

Technical Report 85-3
February 1gs6

• Department of Computer Science / + Department of ~fathematice
University of British Columbia

Vancouver, B.C., Canada, V6T 1W5.

The inherent bit complexity or leader election on asynchronous unidirectional rings of pro
cessors is examined under various assumptions about global knowledge of the ring. If processors
have unique identities with a maximum of m hits, then the expected number of communication
bits suITicient to elect a leader with probability 1, on a ring of (unknown) size n is O (rim). Ir the
ring size is known to within a multiple of 2, then the expected number of communication bits
sufficient to elect a leader with probability 1 is O (n logn).

These upper bounds are complemented by lower bounds on the communication complexity
of a related problem called solitude verification that reduces to leader elect.ion in O (n) bits. Ir
processors have unique identities chosen from a. sufficiently large universe of size s, then the aver
age, over all choices of identities, of the communication complexity of verifying solitude is
D(n logs) bits. Wb n the ring size is known on ly approximately, then O(n logn) bits are required
for solitude verification. The lower bounds address the complexity of certifying solitude. This is
modelled by the best case behaviour of non-deterministic solitude verification algorithms.

The Bit Complexity of Randomized Lesder Election on a Ring

Karl Abrahamson *, Andrew Adler+, Rachel Gelbart*, Lisa Higham*, David Kirkpatrick•

• Department or Computer Science / + Department of Ma.thematics

University of British Columbia, Vancouver, B.C., Canada

1. Introduction

Studies in the complexity of distributed computation typically ask two questions. i) What is

the complexity, under some chosen measure(s), of a chosen problem or family of problems, on dis

tributed networks formalized in a chosen model? (The model might include both the n_etwork

topology and assumptions about the processors and their interprocessor communication.) ii) How

is this complexity affected by changes in the model? This paper addresses these questions for the

problem of electing a leader using randomized distributed algorithms running on asynchronous

unidirectional rings of processors, where the measure of complexity is the expected number of bits

transmitted ,

Leader election results in a unique processor, from among a specified subset of the proces

sors, entering a distinguished final state. This problem is one of a small number of problems

which are fundamental in that their solutions form the building blocks of many more involved

distributed computations. Earlier work in the study of distributed computation has established

the importance of the ring topology as a test-bed for the design and analysis of distributed algo

rithms. It is the chosen model here because it is a simple topology which exhibits many impor

taut attributes of distributed computations.

A unidirectional ring can be viewed as a sequence P 0 , ••• ,P" _1 of processors where each pro

cessor P, sends messages to P, +i and receives messages from P, _1 (liubscripts are implicitly

- 3 -

reduced modulo n). A number of variants of this basic model are distinguished by supplementary

properties . Communication between processors is either synchronous or asynchronous. Processors

may he indistinguishable or may have distinct identifiers. Processors may or may not know the

size of the ring at I.he start of computation. The complexity, measured by the number of com

munication messages, of leader election on models with various combinations of these properties

has been well stud icd.

On an asynchronous unidirectional ring of processors with distinct identifiers, a lea.<ler can

be elected by a deterministic algorithm, which operates using pairwise comparisons of processor

identifiers, using O (n log n) messages each of O (m) bits IDKR,PeJ, where m is the number of

bits in the largest processor identifier. If interprocessor communication is synchronous and

identifiers are drawn from some known countable universe, then O (n) messages su!Iice to elect a

leader in the worst case [FLj. On the other hand, in the asynchronous case, if the universe or

identifiers is unbounded, any deterministic leader election algorithm must exchange n(n log n)

messages (of arbitrary length) in the worst case IB,PKRJ or average case (PKR], even if bidirec

tional communication is possible. Even if the ring size n is known to all processors and messages

arc transmitted synchronously, algorithms which are restricted to operate either on the basis of

comparisons of processor identifiers or within a bounded number of rounds, must transmit

0(n log H) messages in the worst case jFLJ.

If processors arc not endowed with distinct identifiers then, as was first observed by Angluin

[Aj, deterministic algorithms are unable to elect leaders, even if n is known to all processors. Itai

and Rodch [IR] propose the use of randomized algorithms to skirt this limitation. They present a

randomized algorithm that elects a leader in an asynchronous ring or known size n using

0 (n log n) expected messages of O (log 11) bits each . The lower bound results of 1Pa) show that

even if processors have distinct identifiers drawn from some sufficiently large universe, the

expected number of messages (of arbitrary length) communicated by a randomized leader election

algorithm is O(n log n). However, 0 (n) eXpC'cted messages suffice for randomized leader elec

t.ion 011 a synchronous ring without identifiers !IH.], provided the ring size n is known to all pro-

cessors.

In this paper, it is shown that with respect to bit complexity, the algorithms cited above for

asynchronous rings are not optimal. The relationship between leader election and two subprob

lems, called attrition and solitude verification, is explored in section 2. EfJicient reductions arc

established which motivate the development or procedures for these two subproblems (section 3)

and lower bounds for solitude verification (section 4).

It follows from the results or section 3 that when each processor in a unidirectional ring of n

processors, has a distinct m -bit identifier, it is possible to elect a leader by a randomized algo

rithm using O (mn) expected bits of communication. In addition, when the processors are indis

tinguishable but each knows the ring size n to within a factor or 2, then it is possible to elect a

leader by a randomized algorithm using O (n log n) expected bits of communication.

These upper bounds are complemented by the lower bounds of section 4. It follows from

the results of that section that when processors have unique identifiers drawn from a sufficiently

large universe of size s then any algorithm must transmit 0(n log s) bits to elect a leader, even

in the best case. Ir processors are indistinguishable but each knows the ring size only to within

some interval of size 6, then any algorithm must transmit O(n log .6.) bits to elect a leader, even

rn t.he best case .

The lower bounds are proved for successful computations of algorithms in a very general

model. Algorithms may be non-deterministic and non-uniform and may deadlock. Moreover

computations need only terminate in the weak non-distributive sense. An algorithm terminates

dist.rihut.in-ly if whenever processors enter a decision state the decision is irrevocable, that is it

will not change in light of subsequent messages received. The weaker non-distributive termina

tion rders t.o the situation in which the cessation of message traffic is not necessarily detectable

by indi v i<lu al processors and all decisions arc predicated on this undetectable condition.

The upper and lower bounds a.re tight to within constant factors, except when the ring size

is known to lil~ within some relatively small interval. This gap is reminiscent of earlier results

concerning knowledge of ring size jFLJ. The special case when the ring size is known exactly is

I he su hj cct. of a <:om pan ion p:tpt>r iAAIIK I]. A not.her d ircction for investigation is u nccrtain

- 6 -

leader election, that is probabilistic leader election that terminates correctly with probability

greater than 1 - £ for some fixed £ > 0. A second companion paper, IAAHK2J, considers this

problem on rings or indistinguishable processors. Pach!, !Paj, studies the problem when processors

have distinct identifiers. Some of these results together with an overview of the results of the

present paper are briefly described in section 5.

2. Leader Election, Attrition and Solltude Verlflcation

This section sets out a general framework for the study of leader election on rings. Two

fundamental problems are introduced and their relationship to leader election is established. This

relationship motivates the algorithms and lower bound results of the next two sections.

Leader election requires that a single processor be chosen from among some non-empty sub

set of processors called candidates. Initially each candidate is a contender. Intuitively, a leader

election algorithm must i) eliminate all but one contender by converting some of the contenders

to non-contenders, and ii) confirm that only one contender remains. This separation was pointed

out and exploited earlier by !Lai and Rodeh IIRJ. These subtasks are called attrition and solitude

verification respectively . More formally, a procedure solves the attrit£on problem if, when ini

tiated by eYery candidate, it eventually takes all but exactly one of these candidates into a per

manent state of non-contention. Typically an attrition procedure does not terminate but rather

enters an infinite loop in which the remaining contender continues to send messages to itself. An

algorithm solves t.l1e sohtudc Ftriflcation probhm if, when initiated by a set. of processors, it even

tually t.errninal(•s with an initiator in Rt.ate "yes" if and only if it was the sole initiator. The

stronger solitude. detection problem requires, in addition, that all initiators be left in state "no" if

there was more than one initiator.

Both attrition and solitude detection can be reduced to leader election with O {11) bits of

cornmunicat.ion on rin,~s of size 11. For t.he attrition reduction, a leader is elected from among

the attrition contenders. For the solitude verification reduction, the processors wishing to detect ,

- 6 -

their solitude first use O (n) bits to alert the whole ring to contend for leadership.1 Once a leader

is elected, it is easy to see how to solve at.triti(in (no additional communication) or to detect soli

tude (an additional O (n) bits or communication}. Hence, non-linear lower bounds on the com

plexity or either attrition or solitude verification translate to lower bounds on the complexity of

leader election. Conversely, attrition and solitude verification can be interleaved to solve leader

election by annotating attrition messages with solitude verification messages. Whenever a con

tender enters a state or non-contention, it forwards a solitude verification rest.art message to alert

remaining contenders that they were not previously alone. When attrition has reduced the set of

coutenders to one, solitude verification will proceed uninlercepted, eventually verifying that only

one contender, the "leader," remains. Ir the solitude verification algorithm terminates distribu-

tivcly, so does the resulting leader election algorithm.

The eITiciency of the leader election algorit.hm described above depends not only on the

efTiciency of the attrition and solitude verification procedures from which it is constructed, but

also on the cost or interleaving. If solitude verification is conser11ative in the sense that every

message is bouuded in length by some fixed constant number of bits, then annotated attrition

messages a.re at worst a. constant factor longer than unannotated messages. So the cost of prema

ture at.tempts to verify solitude is dominated oy the cost of attrition. The only remaining cost

att.rihat.ablc to interleaving involves the transmission of restart messages. In genera.I this cost can

also be subsumed by t.he cost of attrition. This is shown in the next sect.ion for the attrition pro-

ccd u re II sed in this paper. Th :it section describes a randomized attrition procedure, two different.

conservative solitude verific:1tion algorithms, (each exploiting different possible properties of the

ring of processors), and an interlraving stratcg_v that combines the procedures to yield efficient

leader election algorithms.

1 The r~d uctioo outliuNi here is from solitude verification to a. venioo of leader election in which a.II processors arc
ca.ndida.tes for leadership In fact, this can be generalized to a. reduction to an arbitrary set of candidates a.:i i, shown in
sect.ion -t 2

- 7 -

3. Procedures for Attrition and Solitude Verltlc:a.tlon

The previous section argues that leader election can be efficiently reduced to attrition and

solitude verification. This section describes and analyses efficient procedures for these two sub

problems. The attrition procedure is randomized but completely genera.I in that it makes no

assumptions about the host ring. Two solitude verification algorithms are described which exploit

different assumptions about the ring, specifically the existence or distinct identifiers or at least

partial knowledge of the ring size. Both solitude verification algorithms are deterministic and ter

minate distributively.

3.1. The At.trition Procedure

3.1.1. Informal description

The attrition procedure is initiated hy all candidates for leadership. The number of candi

dates is denoted by c . The candid ates are the initial contenders; all other processors are non

contcndcrs. The procedure uses coin tosses to eliminate some contenders while ensuring that it is

not possible for all contenders to be eliminated. A non-contender never converts to a contender,

but bch:tvcs entirely p::i.ssively - simply forwarding any messages received . Contenders create

messages which arc propagated to the next contender. Since contenders (respectively non

contcu<lcrn) have active (respectively passive) roles in the algorithm, they a.re referred to as active

(passi11e} processors in the following description.

Like the randomized attrition procedure of !IR], the procedure here can be thought of as

proceeding in phn,:;c.~. I·lowercr, t.hcse ph ci ses are implicit only. They are not enforced by

counters, but will be just,ificd in the subsrquent analysis oft.he procedure.

At the beginning of each phase, each active processor tosses an unbiased coin yielding h or

t, sends the outcome to its successor, and waits to receive a message Crom its predecessor. Sup

pose an active processor, P, sends and receives the same coin toss. It is possible that this is true

for every active processor, so no decision can be taken by P. P continues alternately to send

- 8 -

:rnd receive coin tosses, remaining in the same ph:ise, until P receives a message dilTerent from

what it most recently sent. Suppose P eventu:illy ser.ds l and receives h. Then sori1e other

acLive processor, Q , must have sent h :rnd recci,·ed l . If only one of P and Q becomes passive,

the possibility of losing all active processors is avoided. The convention used is that sending t

and receiving h chanp,cs an active processor to passive in the next phase, while the opposite

results in a processor remaining active in the next phase. Once any active processor has decided

its state (active or passive) for the next phase, it sends a * message to signal the end of its phase.

Any undecided processor, Q, that receives a* message while waiting for a coin flip becomes p:i.s-

sivc in the next phase, since it is assured that there will remain at lc:ist one active processor . . Q

forwards the * mcss:i.gc to announce that it h3S ended its phase. * messages continue to be for

warded until received by a decided processor (which has already propagated a* message).

These idc:J.S :ire formalized in the transition diagram of figure l. The notation "x/y" is read

TIJ..
H/:1.

• I.

Figure 1. The Attrition Procedure

TIJ..
HIJ..

- 0 -

"receive x, then send y ". >-. is used whe_re no reception or transmisllion is to occur. Each proces-

sor begins at START. The transition leaving state FLIP is chosen by an unbiased coin toss.

3.1.2. Formal description and correctness

This section establishes the following properties of the attrition algorithm of figure 1:

1. There is alw:-i-ys at least one active processor. (A processor is active if it is in any state other

than P-GATE or PASS).

2. The attrition procedure cannot deadlock.

3. The number or active processors never increases and eventually decreases to one.

Some ddinil,io11s are introduced to facilit:i.te the proofs. Let each processor P:r; maintain an

internal phase cou11lcr, p,. p, is initialized to O and incremented each time P:r; enters a gate

stat.e. When P:r = k, P, is in phase k. The following variables are defined relative to an arbi-

trary computation of the attrition process:

S (k) =
I ,J the .i th message sent by Pr while Pi = k .

(k) -r r ,J -- the j th message received by Pi while p, = k .

q (k) =
I,J the state of Pz immediately after P" sends its j th message cf phase k.

q {k) =
• I ,J the state of Pr immediately before Y, receives its j th message or phase k.

Ir Pz docs not receive (send) j messages in phase k, then r/~l and u/,~) (s/,~) and q/_~)) are

undellnccl. Note that the state variables arc parameterized by messages sent and received, not by

t.ransit;ions made. For example, if q/~l = IN, then q,~~~1 = HEADS.

The following kmma establishes that * messages effectively delimit phase boundaries.

Proof: Since messages sent by Pr are exactly those received by Pr+i, it suffices to show ti.tat Pr

and Pr +1 agree on phase boundaries. Notice from figure 1 that Pr+i enters :1 gate (a phase boun

dary) precisely when it receives a* message. But Pr, having sent the • message, cannot send any

further message wit.hout first passing through a gate. Nor can Pr enter a gate without sending a

* message. D

The following lemma is immediate from figure l. It points out that within a phase, as long as a

processor is undecided, its communication alternat.es between output and input messages.

Lemma S.2: [f Pr. is act.ive in phase k and qr~~} is defined, then qr~~}= g/~>.

[t follows from lemma ~~. l t.hal. each phase can be considered ir. isolation. Consider an arbi

trary phai:c k with m > l active processors. Since passive processors merely forward messages,

t.lwy can he ignored l'or t.hc following lemmas, and the ring assumed to have only m processors,

P 0, ... ,Pm--l· In llic rern:iinder of this subsection, the superscript, (k), is omitted, and variabks are

assumed to describe the k th phase.

The next. lemma establishes that the processors cannot all become passive.

Lemma 3.S: [f qr,J = OUT, t.hen there exists w and i such that qw,, = IN.

Proof: Choose the smallest i such that sv,, = *, over all processors P,,. Let Py be some proces

sor for which i is minimized. Now either qy,, = IN or qy,; = OUT. In the first case nothing

remains to be proved. In the second case, it follows that qy,,-I = TAILS, Sy,,-,= t, and

ry,,-, = h. Let C be the class of t-rncssages which were the (i-1)1h messages sent by some pro

cessor. Py sends a message of class C, but does not receive one, since ry,,-l = sy-l,i--I = h.

Since there can be at most n mess:igcs in class C, and all are eventually delivered, some proces

sor, P.,, must receive a class C message without sending one. The transition from OUT to OUT

cannot correspond to the reception of a class C message, by the minimality of i. The transition

from TAILS to FLIP pairs the absorption of one message in C with the production of one on the

previous transition. The only remaining transitions compatible with receiving a t-mcssage lead to

state IN. Therefore Pl!} must be in state IN after receiving its i th message, and hence q,,,,, = IN.

□

- 11 -

The safoty properties of the attrition procedure follow from lemma 3.3 and the next lemma.

At any point during the execut.ion, let N (*) be the number of* messages awaiting delivery. Let

N (OUT) and N (IN) be the number or processors in states OUT and IN respectively.

Lemma 8 .. f: N(*) = N(IN) + N(OUT) at every point during the execution .

Proof: The equal.ion holds initially and is preserved by every transition. D

Coroflar]J 8 . .5: If any processor reaches phase k + 1, then some processor is active in phase k + l.

Prvof: In order for any processor to reach a gate, some processor much reach IN or OUT. By

lemma 3.,3, some processor Pu,, reaches IN. As long as Pw remains at IN, there is an undelivered

* message, which must move around the ring, eventually re:i.ching P w and causing P w to enter

the active gate . 0

Corollary S.6: The attrition procedure cannot deadlock.

The next lemma leads to a bound on the number of phases in any computation of the attri

tion procedure.

Lemma S. 7: Suppose qx ,1 = IN. Let y be the first number in the list x -1,x -2, ... (counting

modulo m), such that ffv ,1 = IN. (Such a y must exist since x occurs in the list.) Then there is

a w E {y +l,y +2, ... ,x -1} such that qw,; E{OUT,P-GATE}.

Proof: If qz,J = IN, then r;,,_1 = Sz-l,J-l = t. So qr-1,,-1 = 9r-1,J-1 = TAILS. Suppose

'r-l,J-l ,/= t. After receiving 'z-i,,-t, Pz:-l moves from TAILS to either OUT or P-GATE, and

w = x -1 satisfies the lemma.

Suppose, instead, that 'r-I,i-I = t. Then qr-2,J-l = TAILS. Again, if f:,;_2,1 _1 ,/= t, then

w = x -2 satisfied the lemma. Otherwise the search continues through x -3,x -4, ... ,y + 1 until a

w is found such that qw,;-I = TAILS and r 10 , 1 _1 =f t. Such aw must exist since:

qv,, = IN ~ qv,,-l = HEADS ~ sy,,-I = h ~ rv+1,1 _1 = h

so some first non-I message r.,, 1 _1 must be encountered among ':r-l,J-h'r-Z,-t,···,ry+I,J-I· That

- 12 -

w satislil's t.he lemma. D

CoroUary 3.8: At lca.-;t, half of the acti,,c procrssors at phase k a.re passive at phase k +1.

Proof: Lemma 3.7 associates with each processor Pr which remains active, a distinct processor

P .. , whid1 becomes passive. The same P., is not associated with two different Pr
1

and Pr
2

since

qw, 1 ,q,u,;' E {OUT,P-GATE} implies j=j 1
• 0

Corollary 8.9: There are at most ltog cJ phases during which more than one processor is active,

where c is the number or candidates for leadership.

If there remain more than one active processor ID phase /.: , then with probability one, at

least two of them will eventually produce opposite com flips, thus resulting in a transition to

phase k +1. This obsen'ation, together with corollary 3.9 ensures that the final requirement for

correctness is satisfied.

3.1.3. Complexity analysis

Recall that the last phase of the attrition procedure, when only one active processor

remains, is an infinite loop broken by the intervention or the solitude verification algorithm.

Therefore the complexity of concern for the attrition procedure is the expected number of bits

sent, up to but not including the last phase. Corollary 3.9 establishes that there can be at most

Ltog c J + 1 phases. It remains to bound the expected number of messages sent per phase.

The following random variables over computations are needed:

if only one processor is active in phase

0 k, or if phase k is not reached

m if more than one processor is active in

phase k, and processor Pr sends m

messages during phase k.

MP) is defined for both active and passive processors, x, and for all integers k ~ l.

- 13 -

/,cmma 3. lO: I'r (M/k l ~ m) ~ 22-m .

Proof: The lemma is trivial if k is great.er than or equal to the number of the last phase. There

fore suppose that there are two or more active processors io phase k. It is sufiicient to consider

the active processors only, since each passive processor sends the same number or messages as its

nearest active predecessor.

The lemma is proved by induction on m. The case m = 2 is trivial. Ir, in phase /;;, Pr

reaches state FLIP s times, then P, sends s + l messages. But whenever Pr reaches FLIP, there

is a probability of at least .!.. that it will not return to FLIP in the same phase, since its coin toss
2

is random relative to that of its nearest active predecessor. The induction follows immediately.

□

Corollary 9.11: E(MP>) ~ 3.

Corollary 3.12: The expected number of bits communicated by the attrition procedure up to the

last phase is at most 611 L log c J.

n-1

Proof: The total number of messages sent up to the last phase is given by E E Mr(k)_ By
r~ 1; 2:; l

corollaries 3.9 and 3.11 this has an expected value of at most 3n Ltog c J. Since there are only 3

distinct messages used, each can be encoded in 2 bit.s yielding an expected bit complexity of at

most 611 Liog cJ. 0

3.1.4. Interleaving properties

The attrition procedure lends itself naturally to being interleaved with a solitude verification

algorithm. Attrition messages can simply be annotated with solitude verification messages. The

* messages which serve to delimit phase boundaries are interpreted as solitude verification restart

signals. The interleaved algorithm proceeds exactly like attrition until the last phase, at which

point the absence of* messages allows solitude verificat.ion to run to completion. This is summar-

ized by:

- H -

Theorem !US: Any conservative solitude verification algorithm of complexity / (n) can be com

bined with the attrition procedure t.o yield a leader election algorithm or complexity

O(n log c + f (ri)).

3.2. Solitude Verification Algorithms

ln the absence of any information about the ring, solitude verification with certainty is

impossible. Therefore solitude verification algorithms must use specific ring information to verify

that there is a sole adive processor. Two cases are considered here.

1. Each processor Pr has a distinct identifier Ir, consisting or a string such that if x =j:w, then

I, is not a prefix of I., .

2. Each processor knows the size of the ring to within a factor of two.

These assumptions are as weak as possible m the sense that if processors identities can

appear at most twice or the size or the ring 1s not known to within a factor of 2, solitude

verification remains impossible. Though solitude verification is all that is required for leader elec

tion, the algorithms are, in fact, solitude detection algorithms.

3.2.1. Solitude detect.ion wlth distinct identifiers

Suppose each processor, P,, has a distinct identifier, Ir, which is not the prefix or any other

identifier in the ring. Processor P, uses an internal string variable J" which is initialized to the

empty string. Each initiator alternately sends the j th bit of its own identifier and receives the

j th bit of its nearest active predecessor, which it appends to l:r;. Thus P,. builds up in Jr the

identifier or its nearest active predecessor. Ir /,. contains m bits then after receipt of at most m

bit.s Pr can declare, by comparing Jr and Ir, whether or not it is alone. Because no identifier is

a prefix of any other identifier, P:r; can never falsely claim solitude.

Theorem 3.14: Ir processors have distinct m bit identifiers, then conservative and deterministic

solitude detection can be achieved with distributive termination using at most O (mn) bits.

- 16 -

3.2.2. Solitude detection when the size of the ring ls known approximately

Suppose that distinct identifiers are not available, I.mt each processor knows the size n of

the ring. ln this case, a non-conservative algorithm for determining solit.ude has each initiator

send a count.er which is incremented and forwarded by each passive processor until it reaches an

init.iat.or, P, . Dy comparing t.he received counter with n, Pr knows whether or not it is alone.

This algorithm can be transformed into a conset"vative solitude detection algorithm without any

incrc:.ise in bit communication complexity.

Each processor Pr, whether active or passive, maintains a counter c%, initialized to 0. Let

dr > 0 denote the distance from Pr to its nearest active predecessor. The algorithm maintains

the invariant:

if Pz has received j bits then c, = dz mod 21 .

Then if Pr reaches a state where er =n, there must be n -1 passive processors preceding

Pr, so P, can conclude that it is the sole initiator. It remains to describe the strategy necessary

to maintain the invariant.

lniliators first send 0. Thereafter, all processors alternately send and receive bits. If P% is

passive, then P, is required to send the j th low order bit of d" as its j th message. Initiators con

tinue to send 0. Suppose a processor, Py, has the lowest order j bit.s of dy in c11 • A simple

inductive argument shows that when Py receives its (j +l) st message (by assumption the (j +lyt

bit of dy - 1), it can compute the first (j +l) bits of dy and thus can update the value of cy to

satisfy c
11

= dy mod 21 .

In the previous algorithm, it was assumed that n is known exactly. Suppose instead, that

each processor knows a quantity N, such that N :$ n :$2N--l. Then there can be r.t most one

gap of length N or more between neighbouring active processors. Thus any gap of less than N

confirms non-solitude and any processor detecting a gap of N or more can determine solitude by

initiating a single checking round. (For the purposes of leader election, it is sufficient for any

active processor that detects a gap of N or more to declare itself the leader, since it has

confidence that no other processor can do the same). Thus, the algorithm can be used when n is

known to wit.bin a factor of less•than two.

Theorem S. LS: Ir each processor knows a value N such that the ring size n satisfies

N ~ n ~ 2N -1, then conservative and deterministic solitude detection can be achieved using at

most O (n log n) bits. 0

3.3. Time Complexity of the Leader Election Algorithm

As is usual for randomized algorithms for asynchronous models, the time complexity of an

algorithm is the expected number of unit time intervals before the algorithm terminates, under

the assumption that messages tra\·el each communication link in unit time, local processing is

instantaneous, and the algorithm proceeds with maximum possible syncbrony.

The time complexity of IDKRJ is O (n). Our leader election algorithm, as described,

requires O (n log n) time steps even for just the final phase, when verification bits are sent and

received one at a time by the sole remaining active processor. It therefore might appear that the

algorithm achieves an improvement by a factor of O (log n) in bits, only at the expense of an

additional factor of O (log n) in time over other leader election algorithms. But a slight altera

tion in the attrition algorithm reduces the time complexity of the final phase from O (n log n) to

almost linear. Suppose that the i !h message of a phase of attrition contains a package of / (i)

annotat.ed coin 0ips rather than a single com flip as previously described. Let

f (1) = 1 and/ (i) = 21 (,--!) for i >1. The probability that a processor sends at least k pack

ages of coin flips in a given phase is no more than 2-<t (i)+ +I (t-l))_ Hence the expected number

of corn flip bits sent by an arbitrary processor in a given phase is no more than

~ I (k)
lJ 2111)+ +/ (k -1)
k=l

f-, I
- /~, 21 (t)+ +I (t-!!) = 0 (1) . So the expected number of annotated

com flip bits sent by a processor m a phase is also constant. With this packaging, in the final

phase of leader election, the remaining active processor will initiate only O (log• n) messages

which propagate around the ring. 0 (n log' n) time steps are required to confirm solitude when

ring size is known without any increase in communication bit complexity. Similar packaging

- 17 -

yields O (n log' m) time steps when identifiers of length m are used to confirm solitude.

It remains to analyse the expected time for attrition up to the last phase. Let a round be

one single exchange of coin tosses for all active processors on the ring. It can be shown that there

are O (log n) rounds expected through the duration of attrition. By analysing the time for each

such round separately and summing, a ceiling on the expected time for attrition (up to the la.st

phase) results . The effects of overlapping rounds and packaging only serve to reduce the expected

time. But the time required for an isolated round is proportional to the longest gap between

active processors m that round. It can be shown that the expected length of the longest gap

between active processors m the i th round is no more than 2'. Thus the expected time for all

0 (109 n)
rounds, even assuming no overlap, is bounded by k · I; 2' - 0 (n) steps. Combining these

r=l

results for attrition and solitude verification yields:

Th eorem S.16: The leader election algorithm which results from combining the attrition pro

cedure of section 3.1 and the solitude verification algorithm of section 3.2.1 (section 3.2.2), can be

adapted to have time complexity O (n log• m) (0 (n log' n)) without any increase in the order

of the communication complexity.

4. Lower Bounds on the Complexity of Solitude Verlflcation

This section provides lower bounds on the number of bits of communication required for sol

itude verification. Two cases, paralleling those considered in section 3.2, are studied. In each

case lower bounds are developed which show that the algorithms discussed earlier are essentially

optimal.

The lower bounds apply even to non-deterministic distributed algorithms. In order to facili

tate the proofs, a formal model of non-deterministic algorithms and their computations is first

presented in subsection 4.1. In subsection 4.2, the solitude verification and leader election prob

lems are defined in terms of the formal model. That section also contains an O (n) reduction

- 18 -

from solitude verification to leader election within the model, implying that even the general

non-deterministic lower bounds for solitude verification translate to the same lower bounds for

leader election. Techniques and tools common to the proofs are grouped together in subsection

4.3. Subsections 4.4, and 4.5 study respectively, the cases where processors have distinct

i<lenWiers, and processors know the approximate size of the ring.

4.1. Model of Computation

A labelled ring is a unidirectional n-ring of processors P 0 , .•. ,Pn-l where each processor has

associated with it a (not necessarily unique) label from ID X {initiator,non-initiator} where ID

denotes some fixed universe or identifiers. Various assumptions about the universe ID reflect the

degree to which processors are distinct. The second label field is used to distinguish processors

that initiate a computation from those that only participate in response to other initiators.

A history is a finite sequence of bits each of which is marked as either an input or an output

bit. Each marked bit is a (communication) event. A history is initiating (non-initiating) if and

only if its first communication event is an output (input).

Let H1 be the set of all initiating histories, and HN ue the set of all non-initiating his

tories. A (non-deterministic} process P is a pair (H ,!) where H ~ ll1 LJ IIN and f is a func

tion / : H -+ {yes ,no}. Given .h EH, J (h) is the final state of h in P. A process

P = (H ,f) is initiating if ll is a subset of H1 and non-initiating ir J{ is a subset of H,v. Intui

tively, a process provides a choice or histories that describe possible input-output behaviour of a

processor .

A (distributed} algorithm a is a mapping from labels to processes that assigns initiating

processes to initiators and non-initiating processes to non-initiators. In this way it is ensured that

indistinguishable processors (processors with identical labels), receive the same process.

Let P, = (II, ,J,) denote the process assigned to processor P, by distributed algorithm a in

a labelled n-ring R = P 0 ,P 1, ... ,Pn-l· The sequence C - h 0 ,h 1, ••• ,hn-l defines a computation of

a on R if h, E //,, for o:=:;i :s; n -1.

- rn -

Given a computation G = h0 ,h i,-•·,h•-l• the communication events that make up history

h, can be partially partitioned, relative to C, in a natural way into communication intervals.

The 01
h communication interval of history h, is the empty string. If h, is initiating, then the

k lh, k 2: I, communication interval in h, is the largest interval of events following the (k-1)51

interval whose sequence of input communication events matches the sequence of output communi

cation events in the (k -I)51 communication interval of h, _1. If h1 is non-initiating, then the k th ,

k 2: I, communication interval of h
1

is the largest interval of events following the (k-1)"1 interval

whose sequence of input communication events matches the sequence of output communication

events in the k lh communication interval of h
1

_1. If there is at least one initiator, the communi~

cation intervals of non-initiators are well defined. Those communication events which are

assigned to a communication interval are realizable. A history is realizable if all of its communi

cation events are realizable. Note that realizable events and realizable histories are defined rela

tive to a computation. h, \ C denotes the initial subsequence or h; that is realizable relative to C

and is referred to as a truncated history. h, \ \ C denotes the partition of h, \ C into communica

tion intervals and is referred to as a scheduled history.

If the full history, h,, is realizable relative to C then the computation C leaves processor

P, in state j, (h,), (the final state of h, in P,), otherwise C leaves P, in state undecided.

The computation C is weakly decisive if for some i, os;is;n-l, h, \G= Ii,, that is, if

some history in the computation is realizable. C is decisive if for every i, os; is; n -1,

h, \ C = h, , that is, every history in the computation is realizable.

Let W, (D) be the set of weakly decisive (decisive) computations of an algorithm a on a

ring R . Let T be a predicate defined on computations of a. a solves the problem corresponding

to T on R with distributit•e termination if and only if \;f w E W, T (w). a solves the problem

corresponding to Ton R with non-distributive termination if and only if \;fdED,T(d). These

formal definitions of distributive and non-distributive termination capture t.he corresponding

informal notions. Notice that distributive termination of an algorithm a is a stronger requirement

than non-distributive termination of a because for distributive termination a condition must be

- 20 -

met by every weakly decisive computation of a, whereas for non-distributive termination, the

condition need only hold for fully decisive computations. A decision reached by a processor, P, ,

in a computation of a distributively terminating algorithm is final. It cannot be subsequently

changed by receipt of messages from processors that have not terminated. In the formal model,

this corresponds to the fact that if a non-deterministically chosen history h, is fully realized, then

P, 's state, / (h,), is final. P, cannot detect that other histories were not realized. On the other

hand, when a decision is reached by a processor, P,, in a computation of a non-distributively ter

minating algorithm, the decision is only necessarily final if P, receives no further messages. In

the formal model, this corresponds to all non-deterministically chosen histories being fully real

ized. Only decisive computations are used in the proofs of this paper. Thus the results are true

even for non-distribut.ively terminating algorithms.2

The (communication) complexity of a computation C = h 0 , •.• ,h~_1 of algorithm a on

n --1

labelled 11 -ring R is defined as E I h, \CI where I h, \CI is the length of h, \ C (that 1s the
i =()

number of realizable communication events in h,). The complexity of a computation 1s the

number of bits that could be sent and received until the communication either becomes 111con-

sistent or terminates.

4.2. The Problems

A weak version of !eader election requires that at most one processor be left, at termination,

in a distinguished fin:il stal~. Formally, the weak leader election predicate, L, is defined over

computations by : L (C) = (there exists at most one h, in C such that h, is initiating, and

h, \ C: = h, and J, (h.,) = yes). A weak version of solitude verification requires that if any initia

tor is left in a distinguished final state at termination, then that initiator is the only initiator of

the comput;it.ion. Formally, t.he weak .~olitude verification predicate, V, is defined over comput.a-

t,ions by: I/ (C) = (If there exists h., in C such that h, is initiating and h, \ C = h, and

f, (h,) = yes, then It, is the only initiating history in C). Thus, using the delinitious of the

:>n,e distinclion bc(wc•~n the t.wo Lypes or termi:n(ion is required for /AAI-IK!J.

- 21 -

previous subsection, an algorithm a solves the weak leader election (weak solitude verification)

problem on a ring R, with non-distributive termination if and only if, for every decisive computa

tion C of a on R , L (C) (V (C)) is true.

Not.ice that an algorithm has to meet only a rather weak requirement in order that it be

said to solve one of t.he problems. For example, deadlocking computations are tolerated . This

only serves to strengthen the lower bound results that follow. Conclusions are drawn about the

number of bits that must be transmitted in any computation of an algorithm which succeeds in

verifying solitude, (a successful computation), even if the algorithm solves the problem in only

this weak sense. A successful solitude verification computation has exactly one initiating history,

h,, and h, is realized and has final state yes. A successful leader election computation has exactly

one of the initiators left in final state yes.

Section 2 contains a description of how a randomized, distributively terminating algorithm

for electing a leader from among all processors on the ring can be converted, using an additional

0 (n) bits of communication, to an algorithm for solitude detection (and hence solitude

verification) . In fact this O (n) reduction holds even for the non-deterministic, non-distribu t.ively

terminating model, and for the weak versions of the two problems. Initiators, wishing to deter

mine their solitude, alert the ring by propagating a wake-up message. All processors, having been

alerted, non-dct.crministically choose whether or not to be candidates for leadership, and run the

weak leader elect.ion algorithm. A candidate remaining in contention guesses if and when the

leader election algorithm terminates with itself as leader. At this time the elected leader circu

lates a single constant length message to determine whether one or more than one original initia

tor w:i.s present. A final round announces the result. Because the portion of this algorithm fol

lowing leader election is deterministic, the reduction converts successful computations of leader

election to correct and decisive computations of solitude detection. Unsuccessfu I leader election

can happen if either no processor chose t.o he a candidate or if the weak leader election algorit.hm

left all processors in a non-leader state. But in both of these cases the corresponding solitude

detection computation deadlocks, sat.isfying weak solitude verification. Finally, if a candid ate

guesses erroneously that it is the sole remaining contender Gefore weak leader election has

- 22 -

terminated (non-distributively), then eventually the leader election algorithm must correct this

error. So the resulting solitude verification computation is also eventually alerted to the error, and

correctly achieves non-distrilrntive termination. Thus non-linear lower bounds for computations

that verify solitude translate to lower bounds for computations that elect a leader even Cor: this

general model. Notice that non-determinism allows this reduction to hold for the general version

of leader election when a leader is elected from c candidates rather than from the fixed

configuration of all processors on the ring. Thus the lower bounds for solitude verification imply

lower bounds for a best case configuration of candidates for leadership.

4.3. Tools

In the lower bound results that follow, two techniques are used to create new rings and

(weakly) decisive computations on them from existing ones. Let C = h 0,hi, ... ,hn-l be a compu

tation of some algorithm a on the ring R = P 0,P 1, ... ,Pn-l· Suppose that h, \ \ C = h1 \ \ C and

h,+1, . . . ,h1 contains no initiators. Consider the new sequence C' = h 0, ••• ,h,,h1+1, ••. ,hn-l formed

by removing from C. Then C' 1s a computation of a on

R' = P 0 ' , ••. ,P, ',P1 +1 ' , •• . ,Pn-i' where Pt' has the same label as Pk. In addition, if C is a

(weakly) decisive computation of ct on R then C I is a (weakly) decisive computation of a on

R '. This process of forming C:' on R ' from C on R when h, \ \ C = h1 \ \ C while retaining

all initial.ors is referred to as collapsing.

Let C 1 = h 0 , . .. ,h,._1 and C 2 = /0 , ... ,lm-t be computations of an algorithm a on the two

rmgs R 1 = P0, ... ,/
7

" _ 1 and /i' 2 = (J 0 , .• . ,Qm-i- Suppo~e that h, \\C 1 = 11 \\C:.: for some i and

J. Consider tl1e sequence C' = h 0 , .•• ,h, ,l1 +1, . .. ,l,,._1,l 0 , ... ,/1 ,h,+1, ... ,hn .-t formed by combining

and Cz. Then C' IS a computation or a on

R 1 = P 0 ' , • .. ,P, 1 ,Q1 +1 ' , •.• ,Qm-t' ,Qo' , ... ,Q, ',P,+1 ' , ... ,Pn-1' where Pt' (Qt') has t-he same

label as Pk (Q1). Also, if C 1 or C 2 is a weakly decisive computation of a on R 1 or R 2 respec

tively, then C' is a weakly decisive computation of a on R '. If both C 1 and C 2 arc decisive

comput.ations of a on R 1 and R 2 r<'spectively, then C I is a decisive computation of a ou R '.

This process of forming C' on fl ' by combining C I on R 1 and C 2 on R 2 is referred tu as

splicing. The special Ca$e of splicing a computation to itself is called doubling.

In a computation C = h 0 ,h 1, .•. ,hn-1' it may happen that a scheduled history has only

input bit.s in some communication interval before its last. This corresponds to P, acting as a

temporary sink absorbing bits before the end of the computation but not sending any on. As a

result, successors of P, may have some empty communication intervals. However, if there are k

initiators, there can be at most k -1 sinks. In particular, if a computation has only one initiator,

then each communication interval of each scheduled history must contain output bits until com

pul.ation ceases. Therefore, when there is one initiator, h, \ \ C is encoded in 3 I h, \CI bits by

using 2 extra bits per communication event - one to describe the type of event and one to

denote communication interval boundaries. I h, \ \ C I denotes the length of this encoding. The

fact that I h, \ \ C I = 3 I h, \CI when there is one initiator is used frequently, and it is summar-

ized in the following lemma.

Lemma 4.1: Let C = h 0 ,h 1, ... ,h. _1 be a computation with exactly one initiator. Then each

scheduled history of C can be encoded so that its length is 3 times the length of the correspond-

ing trunc:ite<l history .

The proofs to follow take advantage of the fact tha.t any collection of k distinct binary

st.riugs contain at lc:i.st k lor, /: bit,s fork >3. The following lemma is also needed.
'..!

Lemma .f.P.: Let C = h 0 ,li 1, ..• ,hn-l be a computation with exactly one initiator. If the complex

ity of C is less than cm log m, with m :Sn, th<'n there exist i and j, O<j -·i < m 12
c such that

Proof: Lt! (,' = h 0\\C,h 1\\C, ... ,h"_1\\G, be the sequence, in tli(' sta.nd:trd en-:oding, of the

scheduled histories corresponding to C. Let k be t.he maximum integer such that every subse

quence of (; containing k scheduled histories has each scheduled history distinct. The encoding

of a subscqurnce of k distinct scheduled histories must •~ontain a total or at least k log k bits.
2

8ut C can be decomposed into f n /'2k 1 disjoint subsequences each with at least k scheduled his-

- 24 -

tories. Since the complexity or C is less than cm log m, at least one of these subsequences must

have less th:rn
cm log m

----=----=-=-- ~ 2ck log m realizable communication events and hence can be r n /2k l

encoded Ly at most 3·2ck log m bits. Hence, k log k < 3·2ck log m. Thus k < m IZc. 0
2

The lower 1.wund arguments both have similar structure. It is assumed that an algorithm o:

exif,LS that solves solitude verification on a ring R with non-distributive termination and that o:

has a successful computation C with small communication complexity. It follows, by some com

bination of collapsing and splicing, that C can be transformed into a decisive computation C' of

a on a different ring R ', in which more than one initiator terminaks in state yes. Thus a docs

not. solve solitude verification on R '.

4.4. Distinct Identifiers

The objective of this subsection is to char:icterize the complexity or algorithms that solve

the solitude verification problem on rings of processors with distinct identifiers chosen (otherwise

arbitrarily) from a set ID of size s. Let o: be :iny algorithm that solves weak solitude verification

on all 11-ring~ with dis(.i11ct idrnl iHers chosen from ID. There are (~) possible identifier sets for

such ::ui 11 -ring . Supp0sc t.hat for each of these sets, there is at least one permutation of the

id<'ntifier set., such that for aa 11 -ring l:1ut'llcd with this permutation and with exactly one initia

tor, P , a h::ts some successful compu tat.ion. a: 1s th~n said to non-trivially solve solitude

verification for ti -ri11gs with identifiers chosen from ID.

Theorem .{.S: Ld rt b<.' :111.r :1lgorithm that non-trivially solves t.he weak solitude verification prob-

lern on ri11gs of br(W<'<'n N and '2,V proc<'ssors with distinct identifiers chosen from a universe lD

of size s 2: 2N. Then the average, over all Ct) identifier sets L or size N, of the minimum

communication complexity or successfol computations of a on any ring R with label set l is

O(N log (s /'2N)).

Proof: Let L be any subset of ID of size n =N and let R be a ring or n processors, with exactly

- 25 -

one initi:\tor and with distinct. identifiers chosen from L. Let C = h 0 ,h 1, ... ,hN-l be a computa

tion on R. C is a cheap computation if it has complexity less th:i.n
11

log~ / '2N). IC a chca.p C

exii;t.s, the ring R and the identifier set L are also said to he cheap. Ir C is cheap, then at least

one of the truncated histories h O \ C, h 1 \ C, ... ,hn _1 \ C must have length less than l = log (
3
/

2N) .

Choose ar.y such truncated history and call it the cheap (truncated) history associated with C

and indirectly associated with R and L. Now suppose that a has the property that for at least.

one-half of the (
3

) possible choices for L, there exists a cheap successful computation cf a and
. II

1.hcrcfore :111 as:c:ociated cheap truncated history. Among all the partitions of ID into s /n subsets

of size n, at lc:1st one such partition must have among its subsets at leasts /Zn cheap identifier

sels. Therefore there ;,xist s /21: disjoint, cheap labellings with corresponding cheap successful

comp11ta.Lions. But. t.here are fewer than 231 = s /2N = s /2n distinct cheap scheduled histories

in tot.al. So some <:heap sd1c<lulcd history must be associated wit.It successful computations of a

on two rings with disjoint sets of i<lcn tificrs. [f these computations are spliced at their common

history, t.ltc result is a drcisive cornµut.at.ion of a on a ring of size 2N, whose processors all have

d i:;ti net id1,n ti llc,rs. l lo\\'cv rr, th is compu tat.ion leaves two processors in the final st.ate yes con

trad icl ing thr corrccln,.s::; of cc 0

Coro/I ary .f .4 : Let a be :in a!gorith m that meets the con<l itions or theorem 4.3. If the size s of

the uniHrse ID is fl(N 1+<) for some €>0, then the average, over all identifier sets L of size N, of

tht· miuirnurn corn1aur.ication complexity of successful computations of a on any R with label set

L is n(N logs).

4.5. Ring Size Known Approximately

If ring size n is to be u5ed to verify solitude, it must be known to ,vithin a factor of two.

The objective of this subsection is to characterize the complexity of computations that verify soli

tude, as a function of processors' uncertainty of ring size within this limit.

Theorem 4.5: Let a be any non-distributiv!'!y terminating algorithm that solves the solitude

- 26 -

verification problem on the class of a.II rings or size n, where n EIN ,N +.uJ for some N and

O < t::. < N . Then any successful computation or a on any ring in the class must have comrnun

icat.io11 complexity O.(N log!::.).

Proof: Let R be any ring of 11 processors, N ~ n ~ N + !::., exactly one or which, say P 0 , is an

initiator. Let C = h 0 ,h 1, ••• ,h"_1 be any successful computation or a on R confirming the soli

tude of P 0 . (So / 0(h 0) = yrs.) Let f = log t::.N. Suppose that the communication complexity of
log

C is lcs:; tha11 (Nlog.6. --2N) / 12 = (iNlogN-2N) / 12. By lemma 4.2, there exi~t i and j

such that O < j --i <N' = !::. and h, \\C = h1 \\C . Consider the new computation

h 0 , . .. ,h., ,h. 1 +1, . . . ,h.n-l formed by removing S = h,+1, ... ,h1 and apply repeated collapsing to each

subsequence 11 1 == h0 , . •• ,h, and /! 2 = h1 +1, . • • ,hn-J separately until these subsequences each is

composed of distinct scheduled histories. Let the resulting computation be

C' =h 0
1

, . . . , /: 1
1 ,h1+1' , .• . ,h,. __ 11

, where ho\\C' =ho\\C,h1\\C' =h,\\C, and

h,,, _1\\C' =hn_1\\C. Sinceh 0' , ••. ,h.1
1 andh1+1' , ... ,hm_1

1 arescqucnccsofdistinctschcdulccl

histories, combined communication complexity IS at leas t

(I -H }log (l + l) + (m - l - l)log(m - / - l) which is at least ml (m) Thus their combined
6 G 6 og 2 ·

length m must not exceed N, since otherwise, the assumption on the complexity of C 1s
2

violated. Therefore C' can be doubled to form a new computation, C' ', or a on a ring fl I of

size 2m < N processors . But since tlic sul;seqncncc S, which was originally removed, has length

s < L\, there exists k such that N ~ 2m +ks ~N + !::.. Thus k copies or S can be spliced

in to C ' ', :iftcr either scheduled history identical to h, \ \ C, forming a new decisive computation

of a on a ring of size n I E IN ,N + .u] which contains 2 scheduled histories identical to h 0.

Thus 2 processors conclude solitude, contradicting the correctness of a for rings of size

n E [N ,N + ~]- 0

It can be shown that theorem 4.5 holds even if the algorithm a is required to work correctly

only on the class of rings in which processors have identifiers, and no processor identifier appears

more than twice. If all processor identifiers are known to be distinct then the results are different,

- 27 -

as w:\s shown in section 4.4.

5. Conclusions

5.1. Technical Results

The inherent. communication complexity, measured in terms of the expected number of bits,

of elcctin~ a leader in a ring of processors has been ident.ified to within constant factors for two

cases. \Vh<'n :di processors know the ring size to be within some interval IN, ,Nu] and all proces

sorn have dist.ind idl.'ntificrs drawn from some set of size s ~ N/+< , where f>0 , then for all rt

satisfying N1 :Sn :S Nu /2 , the average, over all n-riugs, of the expected bit complexity of ran

domized leader election is e(n log s) . On the other hand, if the ring size is known to be in

some interval [N1,Nu] where N1 +Ni':SNu < '2N1 , for some t:<O, and processor identifiers are

not necessarily distinct then, for all n satisfying N1 :Sn :S Nu , the expected bit complexity of r~n

domized leader election is 8(n log n) .

The results for leader election stem from bounds on the complexity of two more primitive

processes called att.rition and solitude verification. The identification of these subproblems and

lhc clarification of their relationship to leader election is one of the important contributions of

this paper. E!Ticient conscrvat.ive solitude verification algorithms that exploit known properties of

a ring can be combined with the randomized attrition procedure described in section 3.1 to pro

vide new efficient leader election algorithms. Solitude verification is or equal interest for its role

in the proof of lower bounds for leader election. For all solitude verification computations of con

cern there is only one initiator, which considerably simplifies the analysis. This is reflected in the

strong lower bounds or section 4.

5.2. Related fosues

In addition to the specific technical contributions cited above the results or this paper shed

light on a number or important issues in distributed computing. These are summarized under

- 28 -

t.hrcc general hcadin~s below.

5.2.1. Global knowledge of ring

Suppose t.1:-aL all prcccssors know that the ring size n lies in the interval [N1 ,Nu I . If the

processors arc ind isl i11gu ish:~blc then deterministic le:i.der election is impossible [AJ, even if

N1 =Nu . Fur!hn111<,r,·, if Nu "2'2N1 then even randomized algorithms cannot elect a leader

among indisLinh11islt:1ble processors with certainty. However, if Nu <2N1 , then randomized

leader cl('ction can be ad, icvcd in O (11 log n) expected bits. If, in addition, N1 + Ni' '5, Nu , for

some t>O , (i.e. the interval is not too sm:i.11) then fl(n log n) bits are required to elect a leader

among indistinguishable processors.

On the other hand, even if N1 = 1 and Nu =oo , if processors h:i.ve distinct identities chosen

from a universe S of size s (which need not be known explicitly) then a leader can be elected with

O(n logs) expected bits. In fact, assuming N0 ~2N1 and n'5,s/2, fl(n log(s/n)) bits are

required to (•lect a leader with distinct identities from S.

5.2.2. Type of alsor-ithm

The leader election algorithms described in this paper are all randomized. In fact, the soli

tude vcrifrcal-ion proce:ss is deterministic. The algorithms c:innot deadlock. They all terminate

distributively with probability 1 and elect a le:uler (or detect solitude) with certainty. Finally,

with the exception of those modifications described in section 3.3, the algorithms arc all conserva

tive.

In con t.rast to the above, the lower bounds on solitude verification (and hence leader elec

tion) are proved on a non-deterministic model of computation. The model admits algorithms that

may deadlock. Furthermore algorithms may communicate non-conservatively, may t,erminate

non-distributively, and may, in the case of solitude verification, tolerate errors when there is only

one initiator. The lower bounds state a minimum bit complexity of any computation that pro

vides a certificate of solitude.

- 2!} -

The juxbpo:-:ition of the :i.lgorithms and model or comput:i.tion highlights a rem:ukable

insensitivity for lh(' problems and complcxit)' measure studied fo this paper, to th1) details of the

und('rlying mo<k·l or compul:lliou. This insensitivity is not prcsen•cd when the focus shifts to cer

t.:i.in clo~;c•ly related problems !AAlll(l ,AAI IK~J-

5.2.3. Type of analy?fo

The solitud,~ verificat:011 algorithms are analysed with respect t,o the worst case number of

bit.s of communication. The lower hounds refer to the best case number of bits communicated by

con1pulations of algorithms th:i.t. C('rlify solitude.

The hulk of earlier results on le:uler election arc concerned with message complexity. Tl,e

leacll)T election algorithms oft.his paper are competitive in this measure while improving upon ear

lier results by a factor of logti in the number of bits transmitted. While the obvious implementa

tion of the leader election alr,crit.hms of this paper on a synchronous model makes them somev,hat

unattractive in terms of communication time, implementations exist, as described in section 3.3,

which for all pracl ical purposes make the algorithms comparable with earlier algorithms in this

me::i.-;u re as well.

5.3. Extensions

The results of the present paper can be extended in two natural directions. First, the case

where the ring size 11 is known exactly -- a sit.u:1tion where the upper and lower bounds of this

paper do not agree - can be explored in more detail. The solitude verification problem when n is

kr.own cx:i.ctly is examined in [AAIIK1]. In this case number theoretic properties of n can be

exploited to improve upon the O (n log ti) algorithm contained in this paper. With exact

knowledge of ring size, there is a distinction between the complexity of distributively and non

distributively terminating versions of solitude verification. 0(n Jiogn) bits are necessary and

sufficient to achieve solitude verification with distributive termination. This becomes

0(n log log ti) bits for non-distributive tcrmin:i.tion. The upper bounds in this case are achieved

- 30 -

by non-deadlocking, deterministic algorithms, and the lower bounds by the same general models

as used in this p:qwr. The algorithms are non-conservative. If conservative solitude verification

is required then 0(11 log n) bits are necessary and sufficient IAAHKlJ.

Th is papn and its first companion paper are concerned with leader election and solitude

vcrilication when enou;;h informal.ion is availal,le to achieve cert:iinty. V\lhcn processor informa

tion is insufficient to confirm solitude with ccrbinty, it is still possible to solve these problems

probabilist.ically. [AAIU(2j cx:11nines prob:ibilbt.ic solitude verification, that is, algorithms that

arc correct with probability at least l - L \\!hen there is 110 knowledge of ring size, the communi

catio11 complexit,y of solitude verification with non-distributive termination is 0(n log _!_) bits.
(

(Distributive termination with probability l - e of correctness is impossible.) When ring size is

known to be less t.ha.n a. bo1111<l N, then distributive termination can be achieved with complexity

0 (11 N 1
log - + n log-) bits. A matching lower bound is shmvn for rings of actual size no

YI- E

N
larger th an

2

- 31 -

6. References

IAJ D . Angluin, Local and (;'lobal Pruf!Crties in Network.~ of Processors, Proce<·dings of th~

Twclft.!1 A1111ual AC!'\·1 Symposium 011 Theory cf C<•mputin~ {In80), 11p.82-93 .

[AAI-lIClj IC Abrah:im~on, A . Adl er, L . liigh~m, D . Kirkpat.rick, Solitude Verification o;1 u,:ngs of

/Cnown Size, in prcp:uatio11, l.f. of British Columbia.

[AAIIIGJ K. Abrahamson, A. Adler, L. Higham, D. Kirkpatrick, Probabilistic Solitude

Vcnjicati:011 on fli11gs, in preparation, U. of Briti:,h Columbia.

[BJ J. Burns, A Formal A/odd for Message Passing System, , TH.-gJ, Indiana Univcn;it.y,

[DKRJ

Sepkmbcr 1080.

D.Dolev , l\·f. Klawe :w<l M. Hodch, An O(n log n} U11idirectio11a.{ Distributed lduorithm

for Exlrrnw Fi11di11 _7 iri a Circle, J. Algorithms 3,3 (Sept. HJ82), pp.245-2G0.

[FLJ G . Frcdrirkson and N. Lynch , The Impact of Sy1:chronous Communication or1 the Prob-

{cm of Eiecti11g a Leader i1L a Ring, Proceedings of the Sixteenth Annu:tl ACtvt Sympo

sium on Tbcory of Computing (HJ8,t}, pp.493-Sm.

[IH] A. Hai ancl l\1 H.odeh, Symmetry Breaking in Distributed Networks, Proceedings of the

2'.:!nd Annu:il IEEE Symposium on Foundations of Computer Scirncc {1981), pp.150-158.

[Pa] J. Paehl , A Lower Bound for Probabilistic Distributed Algorithms, R esearch Report CS-

85-25 (August 1085), University of Waterloo. Watu ino, Canada.

[Pc]

[PKHJ

G. Peterson, An O{n log 11} Unidirectional Algorithm for the Circular Extrema Problem,

Trans. Prog. Lang. Sys. 4,4 (1982), pp.758-7G2.

J. Pa.ciil, E. Korach and D . Ro(cm, Lower Bounb fvr Distributed Maximum-findin!J

Algorithms, ,J. ACr-.t 31,4 (Oct. 198-1), pp. 905-918.

1

