
CONSTRAINT SATISFACTION

by

Alan Mack worth*

Technical Report 85-15
September 1985

L. h rat ry fur ·omputa.l.ional Vision
D epartment of Computer Science

Cniversit v or BritL Li Columbia
Vane unir B.C.

Canada V6T 1\V5

* Alan Mackworth 1s a Fellow of the Canadian Institute for Advanced
Research .

L

- 1 -

1. INTRODUCTION

Constraint Satisfaction is an umbrella term for a variety of techniques in

artifi('ial intelligenee and related disciplines. In this article attention is focussed

on the main approaches, such as backtracking, constraint propagation and

cooperative algorithms, with some consideration given to the motivations and

techniques underlying other constraint-based systems.

The first class of constraint satisfaction problems considered are those in

whieh one has a set of variables each to be instantiated in an associated domain,

and a set of Boolean constraints limiting the set of allowed values for specified

subsets of the variables. This general formulation has a wide variety of incarna­

tions in various applications: it is a general search problem. One standard

approach involves backtracking; various forms of "intelligent" backtracking are

surveyed. A complementary approach based on the class of consisteney algo­

rithms has some nice properties which are described and illustrated.

The second class of problems considered are the numerical optimization

problems that arise when one is designing a system to maximize the extent to

which the solutions it provides satisfy a large number of local constraints. Algo­

rithms for their solution are based on generalizations of the consistency algo­

rithms, for applications primarily in computational vision. These algorithms,

which have a high degree of potential parallelism, are variously known as

cooperative or probabilistic relaxation algorithms.

- 2 -

One can call these two problem classes Boolean constraint satisfaction prob­

lems and constrained optimization problems, respectively. A.9 with all dicho­

tomies this one is not absolute: som<> approaches lie between these two poles,

others combine them. There are, in fact, many other dimensions along which one

could categorize the area but this is the best first cut.

2. BOOLEAN CONSTRAINT SATISFACTION PROBLEMS

A Boolean constraint satisfaction problem (CSP) is characterized as follows:

given is a set V of n variables { v 1, v 2, ... , vn }, a5sociated with each variable l'i is a

domain Di of possible values. On some specified subsets of those variables, there

are constraint relations given which are subsets of the Cartesian product of the

domains of the variables involved. The set of solutions is the largest subset of

the Cartesian product of all the given variable domains such that each n-tup!e in

that set satisfies all the given constraint relations. One may be required to find

the entire set of solutions, one member of the set, or simply to report if the set of

solutions has any members - the decision problem. If the set of solutions is

empty the CSP is unsatisfiable.

A surprisingly large number of seemingly different applications can be for­

malised in this way. Some of them shall be enumerated in Section 3.4. One, of

particular theoretical interest, is the map coloring problem. Consider, for exam­

ple, the problem of deciding if three colors suffice to color a given planar map

such that each region is a different color from each of its neighbors. This is

I.

- 3 -

formulated as a Boolean CSP by creating a variable for each region to b(' colored ,

associating with each variable the domain {Red, Green, Blue} and requiring for

each pair of adjacent regions that they have different colors. Since the map

coloring problem is known to be NP-complete and is therefore believed inherently

to require exponential time to solve, one does not expect to find an efficient, poly­

nomial time algorithm to determine if a general CSP is satisfiable.

Various restrictions on the general definition of a CSP are possible. For

example, the domains may be required to have a finite number of discrete values.

If this is the case then the constraining relations may be specified extensionally as

the set of all p-tuples that satisfy the constraint. One may further require that all

the relations be unary or binary, that is, that they only constrain individual vari­

ables or pairs of variables. These restrictions apply to the map coloring example

above. However, they are not necessary for some of the techniques reported here

to be applicable. For example, suppose one were planning the layout of furniture

in an office. The position of each item of furniture would be a variable, with an

associated domain that would contain an infinite number of pairs (or triples, if

rotations are allowed) of real values. Those domains would have to be described

intensionally by, for example, describing the boundaries of the connected sub­

spaces permitted for that item. The constraints, such as "The wastebasket must

be within three feet of the chair. The door must be unobstructed " must also

be specified intensionally using, perhaps, algebraic inequalities on the values of

the constrained variables. Moreover, one might have p-ary relations such as: "The

desk must be between the chair and the door."

- 4 -

Crossword puzzles will be used here as a tutorial example of the concepts of

constraint satisfaction. Consider the puzzle in Figure 1. To simplify the presen­

tation, assume that one is required to find in the given word list the eight words

that correspond to 1 Across, 2 Down and so on, with duplicates allowed . The

reader should try to solve this simple CSP now, introspecting on the methods

used as she goes through the process of looking for a solution.

In general, one may represent the satisfiability decision problem for a CSP as

equivalent to determining the truth value of a well-formed formula in first order

predicate logic:

P;; is only included in the formula if i < j since it is assumed that

Pji (xi ,xi) = P;j (x; ,xj). Initially here, only constraints representable as unary

and binary predicates will be C'Onsidered. For the crossword puzzle, the unary con­

straints {P;} specify the word length. P 1 requires that the word starting at 1

Across have 5 letters. The binary constraints arise when a word across intersects a

word down. For example, P 12 requires that the third letter of word 1 Across be

the same as the first letter of word 2 Down. In general, but not for this example,

p-ary predicates (l<p <n) are required.

For binary predicates another convenient problem representation is as a net­

' work consisting of a graph with a vertex for each variable with its associated

domain attached and an edge between the vertices corresponding to each pair of

2 3 Word List

AFT LASER
ALE LEE
HEEL LINE
HIKE SAILS ·
HOSES SHEET
KEEL STEER
KNOT

Figure 1. A constraint satisfaction problem: solve the crossword

- 6-

directly constram~d Yariables. In the crossword puzzle constraint network. shown

in Figure 2 the initia] domain of words for each variable is show11 inside the vertex

for that variable. Notice that only words satisfying the unary word length con­

straint are shown. In general, for p-ary constraints (p >2) a hypergraph represen­

tation, with a hyperedge for each constraint connecting the p vertices involved, is

required.

1 Across

4 Across

7 Across

8 Across

HOSES
LASER
SAILS
SHEET
STEER

HEEL
HIKE
KEEL
KNOT
LINE

AFT
ALE
EEL
LEE
TIE

HOSES
LASER
SAILS
SHEET
STEER

HOSES
LASER
SAILS
SHEET
STEER

HOSES
LASER
SAILS
SHEET
STEER

HEEL
IDKE
KEEL
KNOT
LINE

AFf
ALE
EEL
LEE
TIE

2Down

3Down

5 Down

6Down

Figure 2. The crossword puzzle constraint network

3. BACKTRACKING AND CONSISTENCY ALGORITHMS FOR

CONSTRAINT SATISFACTION PROBLEMS

3.1. Generate-and-Test

Assuming finite discrete domains, there is an algorithm to solve any CSP.

The assignment space D = D 1xD 2 X··XD,. is finite and so one may evaluate

the body of formula [l] on each element of D and stop if it evaluates to true.

This generate-and-test algorithm is correct but slow. In the crossword puzzle, the

number of different assignments to be tested is 58 or 390,625.

3.2. Backtracking Algorithms

\

Backtracking algorithms systematically explore D by sequentia.lly instantiat-

mg the variables in some order. As soon as any predicate has all its variables

instantiated its truth value is determined. Since the body of formula [l] is a con­

junction, if that predicate is false that partial assignment cannot be part of any

total valid assignment. Backtracking then fails back to the last variable with

unassigned values remaining in its domain (if any) and instantiates it to its next

value. The efficiency gain from backtracking arises from the fact that a poten­

tially very large subspace of D , namely the product space of the currently unas­

signed variable domains, is eliminated by a single predicate failure.

The reader is invited to solve the crossword puzzle by backtrackinb, instan­

tiating the words in the order 1 to 8. Start with word 1 Across as HOSES, try

- 7 -

word 2 Down as HOSES; P 12 is not satisfied so all potential solutions with these

two choices for 1 and 2 are illegal. Next try word 2 as LASER, and so on.

The efficiency of backtracking has been investigated empirically (25, 4, 15,

16). Good analytical results are hard to come by but see (16, 13, 36, 35). Other

factors being equal, it pays to pre-order the variables in terms of increasing domain

size; one thereby maximizes the average size of the subspace rejected by the failure

of a predicate. This principle has been extended to dynamic re-ordering (4, 37)

involving 1 or 2 or more levels of lookahead search to find the variable with the

smallest domain of acceptable values to instanti~te next. Regardless of the order

of instantiation one almost always observes thrashing behaviour in ba<'ktrack

search (5). Thrashing <'an be defined here as the repeated exploration of subtrees

of the backtrack search tree that differ only in inessential features, such as the

assignments to variables irrelevant to the failure of the subtrees (43, 27). This ubi­

quitous phenomenon is indeed observed , in abundance, as one develops the search

tree for the crossword puzzle. Many of the techniques reported in this subsection

and the next are designed to reduce or eliminate thrashing, essentially by provid­

ing the algorithms with better memories.

One form of so-called intelligent backtracking uses varying degrees of look

ahead to delete unacceptable values from the domains of all the uninstantiated

variables (17 : 16). Another form of intelligent backtracking identifies the la.test

instantiated variable C'ausing the failure and fails back to it, possibly across many

intervening levels {43, 15, 8). Gaschnig's (14) backmarking algorithm is another

potential improvement on backtracking that looks backward to remember valu~

·'

- 8 -

combinations that guarantee failure or success so that they are not re-tried else­

where in the tree.

Similar techniques are exploited in dependency-directed backtracking (42) and

truth or belief maintenance systems (10). Those systems generally abandon the

chronological stack-based control discipline of pure backtracking, allowing choices

'
to be undone independent of the order in which they were made. The AI program-

ming languages Micro-Planner and Prolog are based on automatic backtrack con­

trol structures. The possibility of providing some of the techniques surveyed 111

this article as general AI tools should not be overlooked (43, 27, 10).

3.3. Consistency Algorithms

Another family of algorithms, complementary to the class of backtracking

algorithms, has been characterized as the class of consistency algorithms (2i). By

analyzing the various causes of thrashing behaviour in backtracking. various

authors have described algorithms that eliminate those causes (45, 47, 34, 27, 12).

They are most easily described in the network model of CSP's given earlier. For

binary constraints each edge in the graph between vertices ; and j is replaced by

the arc (i ,j) and arc (j ,i).

Node i, composed of vertex , and the associated domain of variable v.- , 1s

node consistent iff

- g -

Each ·node can trivially be made consistent by performing the domain restriction

operation

In the crossword puzzle, this corresponds to the obvious strategy of deleting from

each variable's domain any word with the wrong length {and, in a real crossword

puzzle, any word that does not fit the clue).

Similarly arc (i ,j) is arc consistent iff

that is, if for every element in Di there is at least one element in D; such that the

pair of elements satisfy the constraining predicate. Arc { i ,j) can be made arc con­

sistent by removing from Di all elements that have no corresponding element in

Di with the following arc consistency domain restriction operation:

[2]

In the language of relational database theory this operation is known as a

semi-join (31). A network is node and arc consistent iff all its nodes and arcs are

consistent. A given network for a CSP can be made node consistent in a single

pass over the nodes. However, a single pass of the arc consistency operation over

the arcs will not guarantee that the network is arc consistent. One must either

repeat that pass until there is no reduction in any domain in a complete pass or

use a more selective constraint propagation technique that examines ea.ch of the

arcs keeping track of the arcs that may have become inconsistent as a result of

deletions from the domain at their destination node (47, 27). The first approach is

a symbolic relaxation algorithm and suggests parallel implementation techniques

(38). The second is usually more efficient on a single processor. The \Valtz (47)

filtering algorithm uses the second approach. That arc consistency algorithm

requires time linear in the number of constraints to make the network arc con­

sistent (30).

The best framework for understanding these algorithms is to see them as

removing local inconsistencies from the network which can never be part of any

global solution. \Vhen those inconsistencies are removed they may cause incon­

sistencies in neighbouring arcs that were previously consistent. Those inconsisten­

cies are in turn removed so the algorithm eventually arrives, monotonically, at a

fixed point consistent network and halts. An inconsistent network has the same
\

set of solutions as the consistent network that results from applying a consistency

algorithm to it, but if one subsequently applies, say, a backtrack search to the con­

sistent network the resultant thrashing behaviour can be no worse and may be

much better.

The result of applying algorithm AC-3, a serial arc consistency algorithm (27),

to the crossword puzzle constraint graph is shown in Figure 3. The arcs to be ini­

tially examined are put on a queue in the order (12, 21, 13, 31, 42, 24, 43, ... , 86,

68) and the deleted words are italicised. \\'hen words are delected from a domain

at a node all the arcs into that node not currently waiting on the queue (except

the reverse of the arc causing the deletion) are added to the end of the queue. In

1 Across

4 Across

7 Across

8 Across

HOSES
LASER
SAILS
SHEET
STEER

HOSES
LASER
SAILS
SHEET

'EER

HOSES 4
LASER 5
SAILS
SHEET 25
STEER 26

14
15

21
16

AFT 29
ALE
EEL 30
I.EE 31
11E 32

2Down

3Down

5 Down

6Down

Figure 3. The arc consistent constraint network

- 11 -

Figure 3, the numbers following the deleted words give the order in which they are

deleted. Since each domain is eventually reduced to a singleton set of one element,

there is an unique solution to the puzzle, shown in Figure 4.

A generalization of this technique is to path consistency (34, 27). A path of

length 2 from node i through node m to node j is consistent iff:

A path is made consistent by deleting entries in the relation matrix representing

Pi; if it is not. Analogous relaxation and propagation techniques apply.

A further generalization to p-ary relations , is the concept of k-consistency

(l~p,k<n) (12). A network is k-consistent iff given any instantiation of any

(k--1) variables satisfying all the direct constraints among those variables it is pos­

sible to find an instantiation of any k th variable such that the k values taken

together satisfy all the constraints among the k variables. Node, arc and path

consistency correspond to k-consistency for k = 1,2 and 3, respectively. A net.­

work is strongly k-consistent iff it is j-consistent for all j < k. Another generali­

zation to p-ary relations {28) involves only arc consistency techniques.

Even though a network is strongly k-consistent for k < n there is no guaran­

tee that a solution exists unless each domain is reduced to a singleton. One

approach to finding complete solutions is to achieve strong n -consistency (12) but

that approach can be very inefficient as Freuder's algorithm for k-consistency is

O(n k) (44). A second approach is to achieve only strong arc consistency. If any

node still has more than one element in its domain choose the smallest such

1

L E E
8

L S E

E

Figure 4. The crossword puzzle solution

- 12 -

domain and recursively apply strong arc consistency to each half of it. Only the

arcs coming into that node can initially be inconsistent in the two subproblems

generated. A third and related approach is to instantiate the variable with the

smallest domain that has more than one value in it and repeat arc consistency

recursively, backtracking on failure. Again, initially only the arcs coming into that

node can be inconsistent. Or, fourth, one can simply backtrack on the consistent

network using any of the techniques in section ',3.2. This is the sense in which

backtracking and consistency algorithms are complementary. Backtracking is a

depth-first instantiation technique whereas consistency is an elimination approach

ruling out all solutions containing local inconsistencies in a progressively wider con­

text. Other names for the class of consistency algorithms include discrete relaxa­

tion , constraint propagation , domain elimination, range restriction, filtering and

full forward look ahead algorithms but these terms do not properly cover the range

of consistency techniques described here.

3.4. Applications

As surveyed in (27, 16) various combinations of backtracking and consistency

techniques have been suggested for. or actually applied to, finite assignment space

puzzles such as cryptaritbmetic problems, Instant Insanity, magic and Latin

squares, and the n -queens problem (not to mention crossword puzzles). Other

applications reported include map coloring, Boolean satisfiability, graph and sub­

graph homomorphism and isomorphism, database retrieval for conjunctive queries,

- 13 -

theorem proving and spatial layout tasks. The first application in computational

vision was to edge labelling (47) but there have been many others reported includ­

ing sketch map interpretation (28) and consistency for schema-based systems (18).
I

I

In (48) arc consistency is used on a vision problem in which the domains are not

discrete. In that application the domains correspond to a range of allowable sur­

face orientations at various locations in an image of a smooth surface. In general,

the only requirement for using consistency is that one be able to carry out restric­

tion operations typified by equation 12] on the descriptions of the domains and

relations, which may be intensional rather than extensional.

Various experimental and theoretical results on the running time of these

algorithms have been reported (47, 15, 33, 16, 39, 40, 30) but the results must be

interpreted with ca.re since the authors are not always discussing the same algo­

rithms, different measures of time are used, some results are task-specific, and

some authors analyze the decision problem while others analyze the problem of

synthesizing the global n -ary relation, reporting all solutions. More work needs to

be done but at this point the situation is that arc consistency techniques can

markedly improve the overall efficiency of backtracking algorithms as can the vari­

ous intelligent backtracking enhancements. The general lesson is that by doing a

limited amount of local computation at each level, using, say, linear, quadratic or

cubic time, one can optimize backtracking search sufficiently to effect an overall

substantial improvement in performance on some difficult problems; however,

there is still no adequate theory of how the nature of the task constraints affects

the performance of these techniques.

- 14-

4. RELAXATION ALGORITHMS FOR CONSTRAINED OPTIMIZA­

TION PROBLEMS

The restrictions on the Boolean CSP paradigm can be relaxed in several ways.

In computational vision and other AI domains one is often not just satisfying a set

of Boolean constraints but rather optimizing the degree to which a solution satisfies

a variety of conflicting continuous constraints. Several generalizations of the con­

sistency techniques have been invented to cope with that problem. In (49) the

labels in the discrete domains have associated weights in the unit interval [0,1] and

the relation matrices are allowed to have entries from [-1,1]. These entries meas­

ure the extent to which two values from related domains are compatible. The

algorithm looks at each variable domain in parallel adjusting the weight of each

label based on an updating rule which adjusts the weight's previous value using

the strength of the connection from this variable to each of its neighbouring vari­

ables, the compatibility coefficient between this label and each of its neighbour's

labels, and the previous weight of that neighbouring label. This process iteratPs

until a fixed point is reached when no significant change occurs in any weight or

until some other stopping criterion applies. The details of the various updating

and stopping rules used by these so-called relaxation labelling algorithms can be

found in the surveys in (9, 2) where applications and other variations on this for­

mulation are also given. An interpretation of the weights as probabilities and the

compatibilities as Bayesian conditional probabilities was suggested, hence the term

probabilistic relaxation algorithms. The term relaxation was suggested by the loose

- 15 -

analogy with the numerical methods used to solve, sa.y, the heat equation for a

steel plate. However, the probabilistic interpretation has several problems of

semantics and convergence and other interpretations are now preferred. For exam­

ple, this class of algorithms can be seen as finding the optimal solution to a linear

programming problem as surveyed in (2).

Algorithms in this generic class are often termed cooperative algorithms (22,

32). Here the sense is that compatible values in neighbouring domains can

cooperatively reinforce each other by increasing each other's weight. Simultane­

ously, incompatible values compete, trying to suppress each other. Each value in a

domain is competing with each of the other values in that domain. This general

class of algorithms is attractive because they are highly parallel, requiring only

local neighbourhood communication between uniform processors which need only

simple arithmetic operations and limited memory. These features suggest various

implementations for low level perception (such as stereo vision) in artificial and

biological systems, whicb are being explored (22, 32, 49, 3, 21, 50. HJ).

The semantics of these algorithms - the specification of what is being com­

puted - has been clarified (46, 20). The best formal analysis and design of these

algorithms is based on the concept of minimization of a figure-of-merit (or

"energy") of the system under study. If that surface is everywhere a downwards­

convex function of the configuration variables of the system then there is an

unique global minimum and steepest descent techniques will find it. If that require­

ment is not met then techniques such as simulated annealing based on the Metrop­

olis algorithm and Boltzmann distributions (24) are useful.

• 16 ·

In (21) an iterative shape-from-shading algorithm is proposed in which a

specific figure-of-merit is minimized. The algorithm is given an image of a smooth

surface for which the dependence of the grey value on surface orientation is

known. Since surface orientation at a point has two degrees of freedom that single

constraint is not. sufficient. Accordingly, the additional requirement that the sur­

face be as smooth as possible is introduced. The figure-of-merit is a weighted sum

of measures of the extent to which these two constraints are violated. The require­

ment that it be minimized translates analytically to a very large, sparse set of

equations on the values of surface orientation at each pi..xel in the image. That set

of equations is solved by standard numerical iterative relaxation techniques using

gradient descent, yielding a simple updating rule for approximations to the surface

orientation values. Notice, here, however, that the domains no longer consist of a

discrete set of possible values with associated weights but simply the best current

approximation to the value.

5. OTHER CONSTRAINT-BASED SYSTEMS

The constraint satisfaction approach has considerable attraction both in

artificial intelligence and other areas of computer science. In graphics and simula­

tion, constraint propagation is the mechanism underlying two pioneering systems:

Sutherland's Sketchpad (44) and Borning's Thinglab (6). Stefik's Molgen system

(-11) propagates constraints arising at different levels of planning abstraction to

generate plans for gene-splicing experiments. Various systems have been

- 17 -

implemented for domains such as circuit analysis (42, 23) and job shop scheduling

(11). Other applications in computational vision are described in (32, 7, 29). Con­

straint propagation and dataflow as the design principles for new computational

architectures are discussed in (1). Part of the appeal of logic programming (26) is

that attention is focussed more on the constraints of the problem, less on the way

they are used. There is, for example, less of a distinction between input and out­

put variables in a relational language like Prolog than in a functional language like

LISP. Personal computer spreadsheet systems based on Visicalc and its descendant

already embody some of these constraint-based ideas. There the variables take

only numeric values and the constraints are simple algebraic formulas but some of

the latest systems allow relaxation for the solution of mutually dependent. con­

straint sets .

6. CONCLUSIONS

The definition of the word constraint varies enormously. It has been taken to

mean a relation over a Cartesian product of sets, a Boolean predicate, a fuzzy rela­

tion, a continuous figure-of-merit analogous to energy, an algebraic equation, an

inequality, a Horn clause in Prolog and various other arbitrarily complex symbolic

relationships. Nevertheless, underlying this variety, a common constraint satisfac­

tion paradigm is emerging. Much of our knowledge of the world is best expressed

in terms of what is allowed or, conversely, what is not allowed. Most current

artificial computational systems on the other hand, insist on a particular direction

• 18 -

of use of that knowledge. This forces the designer or user to over-specify control

information leading to undesirable representational redundancy, a rigid

input/output dichotomy and conceptual mismatch at the human-computer inter­

face. The constraint propagation paradigm allows the system designer to concen­

trate on what not how. In computational vision, for example, it is crucial to deter­

mine precisely how an image constrains the equivalence class of scenes that could

produce it, and to identify other constraints that will further constrain the scene.

The constraints implicit in other knowledge and data sources can be analyzed and

represented. These constraints may be uniformly introduced and used in various

directions depending on the current availability to the system of specific data and

knowledge.

7. BIBLIOGRAPHY

1. Abelson, Harold and Sussman, Gerald Jay, Structure and Interpretation of

Computer Programs, MIT Press, Cambridge, Mass., 1985.

2. Ballard, Dana H. and Brown, Christopher M., Computer Vision, Prentice-Hall

Inc., Englewood Cliffs, N.J., 1982.

3. Barrow, Harry G. and Tenenbaum, Jay M., "Recovering intrinsic scene

characteristics from images", in E.M. Riseman and A.R. Hanson, (eds.), Com­

puter Vision Systems, New York: Academic Press, 3-26, (1978).

4. Bitner, J.R. and Reingold, E.M., "Backtrack programming techniques", Com­

mun. ACAf 18, 11, 651-656, (Nov. 1075).

5. Bobrow, Daniel G. and Raphael, B., "New programming languages for AI

research", Comput. Surv. 6, 153-174, (1974).

6. Borning, Alan, "Thinglab: A constraint-oriented simulation laboratory",

Rep. No. CS-79-746, Computer Science Department, Stanford University,

California, (1079).

7. Brooks, Rodney A., "Symbolic reasonmg among 3-D models and 2-D

images", Artificial Intelligence 17(1-3), 285-348, (1981).

- 20 -

8. Bruynooghe, Maurice, "Solving combinatorial search problems by intelligent

backtracking", Information Processing Letters 12, 1, 36-30, (1981).

Q. Davis, Larry S. and Rosenfeld, Azriel, "Cooperating processes for low-level

vision: a survey", Artificial Intelligence 17, 245-263, (1Q81).

10. de Kleer, Johan, "Choices without backtracking", A.4.Al-84 Proceedings of

the National Conference on Artificial Intelligence, (l984) , 70-85.

11. Fox, Mark S., Allen, Brad and Strohm, Gary, "Job-shop scheduling: an

investigation in constraint-directed reasoning", AAAl-82 Proceedings of the

National Conference on Artificial Jntelligence,(IQ82), 155-158.

12. Freuder, Eugene C., "Synthesizing constraint expressions", Comm. ACAi 21,

13. Freuder, EugPne C., "A sufficient condition for backtrack-free search" J.

ACM 19, 24-32, (1982).

14. Gaschnig, John A., "A general backtrack algorithm that eliminates most

redundant tests", Proc. International Conference on Artificial Intelligence,

457, (August 1977), Cambridge, MA.

15. Gaschnig, John, Performance lvfeasurement and Analysis of Certain Search

Algorithms, (Thesis) CMU-CS-79-124, Department of Computer Science,

Carnegie-Mellon University, Pittsburgh, Penn., 1Q70.

- n -

16. Haralick, Robert M. and Elliott, G.L., "Increasing tree search efficiency for

constraint satisfaction problems", Artificial Intelligence 14, 263-313, (1980).

17. Haralick, Robert M. and Shapiro, Linda, 41The consistent labeling problem:

Part 1", IEEE Trans. Pattern Anal. Machine Intell., PAMI-1, 173-184, (1979).

18. Havens, William S. and Mackworth, Alan K., "Representing knowledge of

the visual world", IEEE Computer 16, 10, 90-06, (1983).

19. Hinton, Geoffrey E., Sejnowski, Terrence J., and Ackley, David H.,

"Boltzmann machines: constraint satisfaction networks that learn", Techni­

cal Report CAfU-CS-84-119, Department of Computer Science, Carnegie­

Mellon University, Pittsburgh, Pennsylvania, 1984.

20. Hummel, Robert A., and Zucker, Steven W., "On the foundations of relaxa­

tion labeling processes", IEEE Trans. on Pattern Analysis and Afachine Intel­

ligence PA.\ll-5, 3, 267-287 (1983).

21. Ikeuchi, Katsushi and Horn, Berthold K.P., "Numerical shape from shading

and occluding boundaries", Artificial Intelligence, 17, 141-184, (1981).

22. Julesz, Bela, Foundations of Cyclopean Perception, University of Chicago

Press, Chicago (1971).

23. Kelly, Van E. and Steinberg, Louis I., "The Critter system: analyzing digital

circuits by propagating behaviors and specifications", AAAI-82 Proc. of the

- 22 -

National Conference on Artificial Intelligence, (1082), 284-289 .

24. Kirkpatrick, S., Gelatt, C.D., Jr., and Vecchi, M.P., "Optimization by simu­

lated annealing", Science, 220, 671-680, (rn83).

25. Knuth, Donald E., "Estimating the efficiency of backtrack programs", Math.

Comput. 29, 121-136, (1975).

26. Kowalski, Robert, "Predicate logic as a programming langua.ge", IFIP 74,

North-Holland, Amsterdam, 569-574, (1974).

27. Mackwort.h, Alan K., "Consistency in networks of relations", Artificial Intel-
'

ligence, 8, 1, 99-118, (1977).

28. Mackworth, Alan K., "On reading sketch maps", Proc. IJCAI-5, l\HT, Cam-

bridge, l\Li\, (1977), 598-606.

29. Mackworth, Alan K., "On seeing things, again", Proc. Eight International

Joint Conference on Artificial Intelligence, Karslruhe (IQ83), 1187-1191.

30. Mackworth, Alan K. and Freuder, Eugene C., "The complexity of some poly­

nomial network consistency algorithms for constraint satisfaction problems",

Artificial Intelligence, 25, 1, 65-74, (1984)

31. Ma.ier, David, The Theory of Relational Databases, Computer Science Press,

Rockville, Maryland, 1983.

- Z3 -

32. Marr, David, Vision, San Francisco: W.H. Freeman, rn82.

33. McGregor, J.J., "Relational consistency algorithms and their application in

finding subgraph and graph isomorphisms", Information Sciences 19, 229-250,

(1979).

34. Montanari, Ugo, "Networks of constraints: fundamental properties and

applications to picture processing". Inform. Sci. 7, QS-132, (1974).

35. Nudel, Bernard, "Consistent-labeling problems and their algorithms", AAAI-

82 Proc. of the National Conference on Artificial Intelligence, (1982), 128-132.

36. Purdom, Paul \V., Jr., and Brown, Cynthia, A., "Evaluating search methods

analytically", AA . .Al-82 Proc. of the National Conference on Artificial Intelli­

gence, (1982), 124-127.

37. Purdom, Paul, Brown, Cynthia, and Robertson, Edward, "Multi-level

dynamic search rearrangement", Acta Informatica 15, 99-114, (1981).

38. Rosenfeld, Azriel, Hummel, Robert A. and Zucker, Steven, \V., "Scene label­

ling by relaxation operations", IEEE Trans. SMC 6, 420-433, (1976).

39. Seidel, Raimund, "A new method for solving constraint satisfaction prob­

lems", Proc. IJCAI-81, Vancouver, British Columbia, Canada, (Hl81), 338-

342.

40. Seidel, Raimund, "On the complexity of achieving k-consistency", Technical

\

Report 83-4, University or British Columbia, Department or Computer Sci-

ence, Vancouver, British Columbia, Canada, (1983) .

41. Stefik, Mark, "Planning with constraints", Artificial Intelligence 16, 111-140,

(1981).

42. Stallman, R.M. and Sussman, Gerald J., "Forward reasonmg and

dependency-directed backtracking in a system for computer-aided circuit

analysis", Artificial Intelligence 9, 2, 135-196, (1977).

43. Sussman, Gerald J. and McDermott, Drew V., "Why Conniving 1s better

than Planning", Artificial Intelligence Memo No. 255A, MIT (1972).

44. Sutherland, Ivan E., "Sketchpad: a man-machine graphical communication

system", .MIT Lincoln Lab. Tech. Rep. 206, Cambridge, MA, 1965.

45. Ullman, Julian R., "Associating parts or patterns", Information and Control

9, (6) .583-601, (1966) .

46. Ullman, Shimon "Relaxation and constrained optimization by]ocal

processes", Comput. Graphics Image Processing, 10, 115-125, (1979).

47. Waltz, David "Understanding line drawings of scenes with shadows", in P.H.

Winston, (ed.), The Psychology of Computer Vision, McGraw-Hill, NY, 1975,

19-91.

48. Woodham, Robert J., "A cooperative algorithm for determining surface

- 25 -

orientation from a single .view", Proc. /JCAJ-5, MIT, Cambridge, MA, (1977),

635-641 .

49. Zucker, Steven \"'-/., Hummel, Robert A. and Rosenfeld, Azriel, "An applica­

tion of relaxation labeling to line and curve enhancement", IEEE Trans.

Comput., vol. C-26, 394-403, Q22-g2g, (1977).

50. Zucker, Steven W., "Cooperative grouping and early orientation selection",

in O.J. Brad dick and A.C. Sleigh (eds.), Physical and Biological Processing of

Images, Springer-Verlag, Berlin, rn83, 32~334.

