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Abstract

This dissertation is concerned with the representation of visual knowledge.
image features often have many different local interpretations. As a result, visual
interpretations are often ambiguous and hypothetical. In many model-based
vision systems the problem of representing ambiguous and hypothetical interpre-
tations is not very specifically addressed. Generally, specialization hierarchies are
used to suppress a potential explosion in local interpretations. Such a solution has
problems, as many local interpretations cannot be represented by a single hierar-
chy. As well, ambiguous and hypothetical interpretations tend to be represented
along more than one knowledge representation dimension limiting modularity in
representation and control. In this dissertation a better solution is proposed.

Classes of objects which have local features with similar appearance in the
image are represented by discrimination graphs. Such graphs are directed and
acyclic. Their leaves represent classes of elementary objects. All other nodes
represent abstract (and sometimes unnatural) classes of objects, which intension-
ally represent the set of elementary object classes that descend from them.
Rather than interpreting each image feature as an elementary object, we use the
abstract class that represents the complete set of possible (elementary) objects.
Following the principle of least commitment, the interpretation of each image
feature is repeatedly forced into more restrictive classes as the context for the
image feature is expanded, until the image no longer provides subclassification
information.

This approach is called discrimination vision, and it has several attractive
features. First, hypothetical and ambiguous interpretations can be represented
along one knowledge representation dimension. Second, the number of hypotheses
represented for a single image feature can be kept small. Third, in an interpreta-
tion graph competing hypotheses can be represented in the domain of a single
variable. This often eliminates the need for restructuring the graph when a
bypothesis is invalidated. Fourth, the problem of resolving ambiguity can be
treated as a constraint satisfaction problem which is a well researched problem in
Computational Vision.

Our system has been implemented as Mapsee-3, a program for interpreting
sketch maps. A hierarchical arc consistency algorithm has been used to deal with
the inherently hierarchical discrimination graphs. Experimental data show that,
for the domain implemented, this algorithm is more efficient than standard arc

consistency algorithms.
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Chapter 1 1

1. INTRODUCTION AND READING GUIDE

1.1. What the Research Area is about

Vision provides human beings with very powerful mechanisms for perceiving
the surrounding world. In just a split second, one can not only recognize and
describe objects that appear in the visual field, but also infer motion and distance
with apparent ease. Throughout the past decades, vision researchers have sought
Lo explain these mechanisms. While physiological studies of the brain have taught
us much about the structure of our visual seuspﬁ,' the higher mental processes
cannot be measured directly, because they have no knmown physical location.
Experimental Psychologists derive characteristics of such processes by means of

chronometric, recall, and recognition studies.

The development of computers during the last few decades has made possi-
ble the design of computer programs that display intelligent behavior. Artificial
Intelligence is the discipline concerned with the design of these program models.
Early research in the field resulted in the development of many computer models
for different kinds of intelligent behavior (e.g. Samuel, 1963; Evans, 1963; Newell

and Simon, 1963; Quillian, 1969).

A good overview of these smudics can be fonnd in Hubel and Wiesel (1079)
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In the early sixties Artificial Intelligence also became involved with Vision.
Computer programs were designed that took the digitized output of a television
camera as input and attempted to identify different aspects of the three-
dimensional situation that was represented. These studies formed the beginning
of a research area that is now known as computational vision. Its objectives vary
from the study of computational principles underlying vision to the development

of high-performance, general-purpose Machine Vision systems.

The problems involved in designing such a system are immense. Take, for
instance, the simple task of recognizing a number of children’s blocks scattered
on a table. For an adult, this kind of task seems trivial, because we carry all the
different types of knowledge to perform the task with us (e.g. knowledge about
objects, their physical appearance, applications, knowledge of lighting, support,
occlusion ete.). The representation and coordination of these knowledge sources

in a computer program is a non-trivial task.

For example, edge detection techniques provide us with line segments which
mark the areas where intensity changes take place. Such line segments can indi-
cate object and surface boundaries but they may also indicate shadow edges and
edges caused by such things as irregularities in surface reflectivity. Thus, image
features are highly ambiguous and it is difficult to assign appropriate interpreta-
tions to them. A proper interpretation of an image requires a combination of
knowledge of the image formation process with knowledge of the objects

displayed. The problem ol combining and applying these knowledge types to an
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image such that the displayed objects can be identified and located is often

referred to as the vision problem.

Several approaches to solving this problem can be identified. Some research-
ers have chosen the frontal attack in which the goal is to build systems that take
digitized color photographs of outdoor scenes as input and produce a set of mean-
ingful descriptions of the scene as output. Through experience with these systems
these researchers hope to acquire an understanding of the kind of knowledge and
processes that are necessary and sufficient to build such systems. Others have
limited themselves to building systems for a more specific purpose (usually for
industrial applications) with the hope that insight will be obtained into the
knowledge and processes necessary for success in a particular domain. In contrast,
a third group of researchers feel that as a start both the outside world and the
vision problem as a whole are too complex to deal with all at once. They feel that
one should start by addressing particular aspects of the vision problem in

simplified worlds.

Another eflect of problems such as the Vision problem is that most of the
research in Artificial Intelligence takes place in the form of long term projects.
The LNR project at the University of California (Norman and Rumelhart, 1975),
the HEARSAY project at CMU (Lesser and Erman, 1977, 1978; Nagao et al,
1978, 1979) and the VISIONS project at Amherst (Hanson and Riseman, 1978)

are examples of such an approach.

Chapter 1 4
1

The research that underlies this dissertation has also been part of such a

long term project. The MAPSEE project at UBC is concerned with representa-

tional formats and dimensions for representing “high level” visual knowledge.

Here the term “‘high level” applies to knowledge about objects or events that can

occur in the scene depicted by an image.

1.2. What this Dissertation is about

This dissertation is concerned with the representation of visual interpreta-
tions that are ambiguous and hypothetical. The problem directly relates to one of
the key issues in the vision problem: the proper mapping of image features to
interpretations. Local image [eatures may have many different interpretations.
We will therefore refer to this problem as the ambiguity problem. Many model-
based vision systems use specialization hierarchies as a way of reducing the
number of possible local interpretations for each image feature. These hierarchies
enable us to replace a set of elementary interpretations by a smaller set of
abstract interpretations. In this dissertation we wi-ll show that this solutioz intro-

duces new problems.

This dissertation introduces discrimination graphs as a representation for
interpretations that are hypothetical and ambiguous. These graphs represent

classes of objects that can have a similar appearance in the image. At the leaves
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of such graphs we represent classes ol elementary objects which describe the
image unambiguously. All other nodes represent abstract classes of such objects.
Rather than invoking elementary object classes directly, as is done in most
model-based Vision .systems, we invoke the class that represents the complete set
of possible object classes. Following the principle of least commitment, we then
replace this class by one of its subclasses as we expand our focus of attention over
the image. This process continues until the image no longer provides information

which enables us to do further subelassification.

Discrimination graphs offer many advantages over specialization hierarchies.
First, all possible local interpretations for a single image feature can be
represented within the boundaries of one discrimination graph. This cannot be
achieved with specialization hierarchies, because the possible local interpretations
for a single image [eature often cannot be captured in a single specialization
hierarchy. Sccond, we can further reduce the number of interpretations that we
have to represent explicitly for each image feature. Third, hypothetical interpre-
tations that are competing in the interpretation of a particular image leature can
be represented as labels in the domain of 2 single variable in a constraint graph.?
In model-based vision systems that use specialization hierarchies at least some
competing hypotheses must be represented by different variables. A disadvantage
of the latter approach is that every time a hypothesis is invalidated the con-

straint graph needs to be restructured. With all competing hypotheses

*We assume that the modes in such a graph represent abstract objects, the domain their elemenzary descendusts in
the discriminaticn graph, and the links the constraints belween the objects

Chapter 1 .3

represented in the domain of a single variable the removal of an inconsistent
hypothesis requires only the deletion or replacement of a label in the domain of
the variable. As a resnlt, structural changes in the constraint graph are required

only in exceptional conditions.

Little is known about the complexity of algorithms which are used to res-
tructure constraint graphs. Propagation of consistency over labels in the dornain
ol a vartable, on the other hand, puts us in the domain of constraint satisfaction.
Constraint satisfaction algorithms have been extensively studied and used in

computational vision.

The idea of using diserimination graphs to represent hypothetical and ambi-
guous interpretations does not depend on any characteristic of the interpretations
themselves and is therefore domain-independent. In this dissertation, however, we
concentrate mainly on the use of discrimination graphs for the representation of
visual knowledge. In particular, we will describe the design and implementation
of Mapsee-3, a sketch map interpretation program that uses discrimination
graphs. As a part of the MAPSEE project, Mapsee-3 has inherited an interest in
the so-called schema-based object representations. It has also inherited an interest
in the knowledge representation dimensions studied: composition/aggregation and
specialization/generalization. In Mapsee-3 the latter has been replaced with 2
discrimination/generalization  dimension which is  orthogonal to the

composition/aggregation dimension.
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Mapsee-3 interprets image features which at first are assigned an extremely
abstract and ambiguous interpretation. As more and more constraints are
discovered in the image, constraint propagation techniques forece this interpreta-
tion to become more specific and less ambiguous. Discrimination graphs are
closely involved in this process. We therefore call this particular approach

diseriminalion wvision .

A strong emphasis is put on the conceptual clarity of the Mapsee-3 design.

The conceptual clarity of a system can be evaluated by several criteria:

=

. modularity in representation

2. modularity in control

b

uniformity in representation

4. strict separation between domain dependent and domain independent knowledge

It will be shown that Mapsee-3 rates better with respect to these criteria
than Mapsee-2, a schema-based program that uses specialization hierarchies
instead of diserimination graphs. As well, Mapsee-3 will be shown to be more

efficient.
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1.3. Reading Guide

There are many factors in computational vision that result in ambiguity.
The one addressed in this dissertation is the ambiguity that occurs in mapping
image features to "high level” interpretations. For this reason the representation
of “high level” knowledge is a major concern. In the literature review in Chapter

2 the focus is therefore on the representation and use of this knowledge.

Chapter 3 describes our solution to the ambiguity problem. We discuss the
design principles of a system for representing visual knowledge. The design prin-
ciples are largely domain-independent, at least to the degree that they are appli-
cable to any signal processing domain. Mapsee-3 is an implementation of these
principles. This program is described in Chapter 4. The interpretations made by
Mapsee-3 from 10 different sketches are discussed in Chapter 5. As well, the
ambiguity problem is discusséd from a wider perspective. Finally, a summary of

this dissertation and possible future directions are provided in Chapter 6.
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2. LITERATURE REVIEW

2.1. Introduction

In this chapter, we review the computational vision literature. It is selective,
because of its focus on the “high level” aspect of computational vision. Most of
the work in early vision such as edge detection and region formation will be
bypassed. This work has been ably reviewed on several occasions (e.g. Barrow

and Tenenbaum, 1981; Brady, 1982).

Two passes will be made through the literature. In the first pass, we focus on
representation, or, more precisely, the question of the representation of structural
descriptions that capture the meaningful organization of an image. During the
second pass we are concerned with control, that is, how to characterize the pro-
cess that constructs and utilizes different structural descriptions. The former
problem is also known as the problem of “‘epistemological adequacy™ (McCarthy
and Hayes, 1969) or “descriptive adequacy” (Havens and Mackworth, 1983). The
latter problem is also referred to as *“‘heuristic adequacy” (McCarthy and Hayes,

1969) or *'procedural adequacy” (Havens and Mackworth, 1983).

In the first of the next five sections, we discuss the representation problem,
in the second one the control problem. In the third section we discuss some of the

work done on the use of sketch maps in computational vision. In the fourth sec-
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tion we address the central theme of this dissertation: the representation of
interpretations which are ambiguous and hypothetical. In that section we show
how most computational vision systems deal with the problem. In the last section
the review is summarized, and a different approach for dealing with interpreta-

tions that are ambiguous and hypothetical is proposed.

2.2. The Representation Problem

2.2.1. Multiple Levels of Representation in Image and Scene Domain

]

Most of the early computational vision systems were concerned with the
blocks world environment. The reason for such a choice is obvious. Blocks are
among the simplest three-dimensional objects. These early programs take a two-
dimensional line drawing or the digitized output of a TV camera as input and
they attempt to identily different aspects of the three-dimensional situation. The
two-dimensional drawing is usually referred to as picfure or image; the three-
dimensional situation as the scere. Some of the lessons learned from these pro-

grams are most useful.

Guzman (1968), for example, wrote a program that starts from a
specification of the picture lines and vertices. His program groups the regions into

“nuclei of bodies"”, where each body represents an object. The process of linking



Chapter 2 11

regions together is driven by a list of vertex arms specilying the arms of vertex
types which can link regions. Thus, the information about what constitutes valid
three-dimensional objects is represented in one domain only, the picture domain.
Although a few three-dimensional situations were handled correctly, the many
failures (e.g., the inability of the program to handle objects with holes) illustrate
the necessity to represent the knowledge about three-dimensional objects in more

than one domain, as was noted by Clowes (1971).
]

Clowes represented the information about three-dimensional objects in two
domains: a picture domain and a scene domain. For example, in the picture
domain one speaks of lines, regions, and vertices, whereas in the scene domain
these primitives take the form of edges, surfaces, and corners respectively. Clowes
also noted that not all vertex configurations in the picture make sense in the
scene domain: only certain configurations are possible!. Clowes investigated the
possible configurations and interpretations of four vertex types: L, Fork, Arrow,
and Tee. For each edge he allowed four different types of interpretations: convex,

concave, and two types of occlusion.

Thus, the necessity was shown for distinguishing between at least two
domains of representation: a picture domain with descriptions of the two-
dimensional aspects of the image and a scene domain with descriptions of the
three-dimensional aspects. Subsequent research, however, showed the need for a

further refinement of representations in both picture and scene domain.

IA similar observation was made by Hofmanw (1971}

Chapter 2 12

An obvious shortcoming in the Clowes labeling is, for instance, the inability
to deal with shadow lines. Waltz (1972) therefore extended the classification
schema. Among other things, picture lines can represent shadow lines. Waltz's

line labels also express the illumination status ¢f the surfaces appearing at the
edge.

Although Waltz's system meant a further step to a more adequate descrip-
tion of the scene it is still no match for human competence in the domain. Edges
do not only express surface relationships, but also have a spatial orientation. Sur-
faces have orientations and can [requently be labeled with a meaningful name:
side-face, or top-face for a polyhedral object, or a door, wall, or roof, if the line
drawing depicts a house. Finally, the object depicted by the line drawing as a
whole carries a meaningful name: cube, wedge, or house. All such descriptions
require a stratification of knowledge in the scene domain. The more recently
developed computational vision systems reflect this requirement (e.g., Hanson and

Riseman, 1978; Mulder, 1979).

However, the situation becomes even more complex when the domain of
interpretation changes from blocks to outdoor scenes. The correct recognition of
an object can no longer depend on the availability of one knowledge source only.
An object has many different appearances, depending on the observer's position,
illumination conditions, and context. Different knowledge sources must be coordi-
nated in order to correctly predict an object’s appearance. Several systems have

been desizned and implemented to interpret outdoor scenes, or aspects of them
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\
(e.g. Bajesy and Lieberman, 1974; Hanson and' Riseman, 1978). Among other
things, Bajesy and Licberman used four different knowledge sources: knowledge

about the world, the observer, the illumination, and the environment.

It is also necessary to maintain different representations in the image
domain. Even in unfamiliar or strange situations such as abstract art people can
estimate intrinsic characteristics such as color, orientation, shape and illumina-
tion. Phenomena such as shape, size, and color constancy are well known. Varia-
tions in illumination do not change our perception of surfaces. A black piece of
paper may, for instance, reflect more light than a piece of white paper in shadow,

but the pieces of paper are still perceived as black and white respectively.

Apart from different object dependent representations in the scene domain,
one should therefore also maintain different representations in the image domain:
representations that can be computed from the physical information provided by
the image (such as color and incident illumination). Marr (1978), for instance, has
proposed a “low level”” representation that captures the intensity changes and the
local three-dimensional geometry of an image. Barrow and Tenenbaum (1978),
starting from an intensity image, use the knowledge about viewer and light-
source position to compute and make consistent information about illumination,
reflection, orientation, and distance of surface. Woodham (1981) showed that by
varying the incident illumination under constant viewing direction one can
uniquely determine the surface orientation at each image point, using a technique

called photometric stereo.
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2.2.2. Dimensions of Knowledge Representation in the Scene Domaln

This dissertation is mostly concerned with the representation of knowledge
in the scene domain. Il we want to account for human competence in this
domain, an increasing stratification of the knowledge itself is required. However,
different levels of representation do not stand by themselves. Often we can

impose an ordering upon them by using different relalfons.

Two kinds of relations play a very important role in describing visual
knowledge: the component relations and the “is-a” relations. Two dimensions of
knowledge representation result from these relations: the
composifion [aggregation dimension, and the specializalion [generalization

dimension.

2.2.2.1. Composition and Aggregation

Concepts can be decomposed into parts and they can be aggregated into
super-components. The ability to describe objects at different levels of composi-
tion contributes to the power of the visual system. We often do not know in
advance at which level of detail an object will appear in the image. Thus, the
abilily to recognize an object by its overall shape, if it is completely visible, or by

ils components, is an important feature of the system.
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Not only are objects often embedded in a network of composilion relations,
two dilferent objects with a common super-component are often related as well.
In static imagery the relationship is usually spatial. In motion analysis, on the
other hand, composition can be used as an explicit organization for a sequence of

events (e.g. Tsotsos, 1984).

Composition comes in two variations: must —be —parl and may -be —part .
The former indicates that under all circumstances one concept is 2 component of
another, while the latter does not have this requirement. Outside the computa-
tional vision area the composition/aggregation dimension has received little
atlention. The ability to reason with parts can be found in Raphael’s SIR pro-
gram (Raphael, 1964). More recently, Schubert (1979) has addressed the problems
of mechanizing the extraction of composition relationships [rom tangled hierar-
chies and the problem of relationship inheritance for parts of objects in a taxon-
omy. Some knowledge representation languages use composition, which will be

discussed further in the section on control.

2.2.2.2. Specialization and Generalization

Another way of structuring the world is to follow the principle of

classification. Classification means to consider a number of objects, situations, or

events as equivalent. Classification is natural, because many real world attributes

do not occur independently of each other. Creatures with feathers, for instance,
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are more likely to have wings than creatures with fur. A name is generally associ-
ated with a class: animal, bird, elc. By means of class inclusion different classes

are organized into a system. Such a system is called a fazonomy.

Specialization or ‘“is-a" hierarchies have been frequently used in the
knowledge represeniation literature, generating a great deal of controversy. In his
paper titled “What is-a is and isn’t" Brachman (1982) has attempted to make an

inventory of different ‘‘is-a’ interpretations.

First of all, there is the question whether the nodes in the taxonomic hierar-
chies represent classes or individuals. According to Brachman, an “is-a” link asso-
ciating a class with an individual has at least four possible interpretations. The
most commonly used one is the set membership. It is also the one most com-
monly found in the computational vision literature where it is called an sfnsiance

link.

For the case in which a taxonomy involves classes only, Brachman found five

different partially overlapping interpretations:

- subset[superset:
This interpretation can be found in expressions such as: “A canary is a bird". I x
is in the set of canaries, then it is also in the set of birds. Universal implication

appears to be implied in this distinction.

- generalization/specialization:

This interpretation is expressible in the form of a simple conditional, which is not a
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well formed first-order formula:

canary (z ) — bird (z)

This particular interpretation of an ‘“is-a” link comes from Hayes (1979). The
absence of a quantifier makes this cxpression confusing. A universal quantifier in
front of this expression makes it indistinguishable from the subset/superset case. On
the other hand, if the concepts represent prototypes then we need default rules

specifying which properties are inherited in the implication.

- AKO:
To a large extent this interpretation is the same as the subset/superset interpreta-
tion. A canary is also “a-kind-of"" bird. However, within the subset/superset distine-
tion there is sometimes a need for distinguishing between ‘'kinds" and classes that
stand for more arbitrary descriptions such as “‘a person walking to school™ who is a

person, but not “a kind of" person. The “a-kind-of" interpretation implies “kinds”".

- Value restriction:
"“The trunk of an clephant is a cylinder 1.3 meters long”. The interpretation is to
say that, in order to describe the trunk of an elephant as a cylinder of 1.3 meters,
we need a particular context. In Mapsee-3 we will introduce a new kind of “is-a"
hierarchy which will be known as a discrimination graph. This graph has the value

restriction interpretation.

- Conceptual attainment:
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“A triangle is a polygon." Here we mean to express the fact that a triangle is a
polygon with three sides, i.e. to demonstrate a case in which opne description
includes another. This is dilferent from value restriction where some kind of context
is needed to progress from one class to the next. However, it is difficult to distin-

guish this interpretation from the subset/superset interpretation.

Martin (1079) distinguishes as many as nine different forms of specialization.
In addition to the individual/class, the specialization/generalization (specializa-
tion by species), and the value restriction distinction (specialization by context),
Martin distinguishes between specialization by inflection (e.g. dog - dogs), predi-
cate (e.g. fat dogs), appositive (pet dog), stereotype (e.g. lap dog), and slot (e.g.
bit ball). Even composition is considered to be a form of specialization. For

instance, the ‘‘leg of a dog" is seen as specialization by role.

A further complication in distinguishing types of taxonomies is what the
class itsell represents. Generally, there are two possibilities. The first is that the
class is a set of attributes that all members of that class have to satisfy. The
other is that the class represents the attributes of a typical member. In the latter
representation property inheritance need not be universal. A prototypical bird
flies, but penguins do not. An example of a system in which both class represen-
tations are used is NETL (Fahlman, 1979). Reiter (1980) has developed a form of
non-monotonic logic that makes explicit the kind of default reasoning necessary

for prototypes.



Chapter 2 19

2.2.2.3. Other Relations

Spatial

Objects can only enter into certain spatial relationships with each other.
Objects that are only partially visible can often be recognized as a result of the

fact that their components have entered in certain spatial relationships.

Stmilarity

This relation was originally proposed by Minsky (1975). Tsotsos e al (1980)
use this relation as a means of selecting alternative hypotheses. Similarity rela-
tions come close to the concept of discrimination graphs which we will propose in

Chapter 3.

Depiction

Depiction is a relation linking concepts in different domains of representa-
tion. In vision, depiction is the relation between objects in the image and scene.
For instance, a line in the image may depict a corner in the scene. This relation
has also been called the relation of representation (Clowes, 1971), and projection

(Shibahara et of 1983; Tsotsos, 1984).

Causal /

Causal relations are important in knowledge bases in which one event is

known to cause another. Rieger and Grinberg (1977) have used such a relation for

Chapter 2 20

representing causality in physical mechanics. More recently, such a relation has
been used in medical image interpretation (Shibahara et al 1982; Shibahara et

ol 1983).

2.2.3. Composition and Specialization in Computational Vision

The summary of possible “is-a"" interpretations characterizes the confusion
that exists in the field of Knowledge Representation. Fortunately, in computa-
tional vision there is less confusion. In most vision systems the “is-a"" hierarchies
are based on universal implication and are referred to as specialization hierar-
chies. While an explicit use of the two knowledge representation dimensions is
rarely found in the early computational vision literature, more recent work ack-

nowledges the importance of both dimensions.

Roberts's (1965) program recognizes objects in a scene as being instances of
a class of three different models: a cube, a rectangular wedge, and a hexagonal
prism. These objects are described by their three-dimensional homogeneous coor-
dinates. Compound objects consisting of configurations of the three models ean
be recognized as well. Guzman’s (1968) program determines only the numbe: and
location of objects in the sceme. Clowes (1971) only determines whether the
object(s) in the scene make three-dimensional sense. Falk's (1972) INTERPRET
can recognize a set of nine fixed size prototypes, but does not make a distinction

between classes of prototypes.
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In a few systems the presence of both composition and specialization hierar-
chies can be demonstrated at more than one level. Winston's (1975) work on
structural descriptions is an example of this. Winston wrote a program that
derives an abstract (generic) structural description for an arch by providing the
program with descriptions of examples and non-examples of that object. The
descriptions of the arch and the (non)examples are compared via a similarity net-
work and the arch description is adjusted in case of inconsistencies. Both hierar-
chies are visible in the network representation (Winston 1975, p. 198). The com-
position relation comes in two varieties: must-be-part and its negation: must-
not-be-part. The class of a node in the network can be determined by following

its "‘a-kind-of"" link.

Marr and Nishihara (1976) have proposed'a method for representing 3D-
shapes, based on a hierarchy of stick figures. Each stick forms the central axis of
a generalized cone representation. 3D-model representations are formed by means
of a composition hierarchy of stick figures. The central axis of each component of
the stick figure is defined relative 1o the axis of its super-component. In addition,
a specialization hierarchy is formed by means of what Marr and Nishihara call a
catalogue of 3D-models. Their method further consists of an image-space proces-
sor which maps representations from an object-centered frame into a viewer-
centered frame and vice versa. As well, their method appears to be the first one
to use the principle of least commitment in computational vision. Such a princi-
ple implies that nothing should be done that may later have to be undone. We

will see later that Mapsee-3 operates on the same principle.
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Rosenthal and Bajesy (1978) constructed an inquiry-driven computer vision
system. The system is told to look for a particular object in the scene. Among
other [eatures, the system uses composition and specialization hierarchies in its
search for the object in the image. For instance, when told to look for a car, the
system will find that a car is a sub-class for motorvehicle which, in turn, is a
component of a thoroughfare. A thoroughfare can, because of its particular shape,
be located in the image and the system then proceeds to look for a car inside the
thoroughfare strip. Rosenthal and Bajesy make use of the fact that a parf-of
relation in the scene is often equivalent to an fnside relationship in the image.
This relationship has been made explicit by making the composition hierarchy
cross the image/scene boundary. In Mapsee-3 an image-to-scene mapping relation

will be used for this purpose.

Composition and specialization hierarchies form an important part of the
knowledge representation in the ACRONYM system (Brooks, 1981 and 1983).
Models are represented as generalized cones. Their data structures are organized
as units with slots and fillers to define their values. Composition hierarchies are
recognizable as a subgraph of what Brooks calls the object graph. The nodes in
this graph represent models and the ares are units of class subpart or affixment.
Specialization hierarchies appear in the form of a restriction graph in which the
nodes represent sets of constraints on the model description and ares represent

subclass inclusion.
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In the MAPSEE project an explicit representation of both knowledge
representation dimensions has also been pursued by several researchers. Havens
(1978) wrote a program that describes line sketches of polyhedral objects at three
levels of composition. Havens and Mackworth (1983) use a seven level composi-
tion hierarchy in Mapsee-2, a program that interprets line sketches of geographic
maps. In a bottom-up direction the relation used ‘E “‘must-be-part-of”’. Specializa-

tion hierarchies are part of the knowledge representation in this program as well.

A more complex composition hierarchy is used in the MISSEE system
{Glicksman, 1982), an offshoot from the MAPSEE project. MISSEE uses multiple
information sources for interpreting a digital image. Composition hierarchies form
one of the means for combining data about objects {from different information
sources. Specialization hierarchies are used as well. A short description of the

MISSEE system is provided in Glicksman (1983).

Both knowledge representation dimensions can be found in the VISIONS sys-
tem (Hanson and Riseman, 1978). This system is possibly the most complete
general-purpose vision system. Multiple levels of representation in both the image
and scene domain are used. As well, at an intermediate level the image is
represented by means of surfaces and volumes. Composition hierarchies are
present in both the image domain (e.g. region shapes and their components), and
the scene domain (e.g. objects and their components). Specialization hierarchies
are also present in the scene domain. More recent work in the VISIONS project is

described in Weymouth (1981) and Weymouth et al (1983).
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Composition and specialization are also the prime representational axes in
the knowledge representation research done in thF Laboratory for Computational
Medicine at the University of Toronto. One of the systems developed in this lab
is a causal arrythmia analyzer (CAA) which can recognize repetitive time varying
signals such as electrocardiagrams (Shibahara el of 1982; Shibahara et ol 1983).
The composition and specialization semantics were inherited from a knowledge

representation language called PSN (Levesque and Mylopolos, 1978).

Finally, both hierarchies have been exploited by Browse (1982). Browse's
program interprets line sketches of a body-form and determines the two-
dimensional position and three-dimensional orientation of its body parts. An
interesting aspect of Browse's work is that the line sketch is scanned at different
levels of resolution. Browse has suggested that there is a relationship between the
levels of detail in the image at which cues are constructed and the level of com-
position and specialization of the concepts in the scene to which these cues have
access. Browse maintains two composition hierarchies. One describes the image at
a coarse level, the other at a fine level. Different specialization hierarchies connect

the two composition hierarchies.
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2.3. The Control Problem

So far our main concern has been the what and why aspect of knowledge
representation. In this section we address the how question; that is, the question
how we represent and how we characterize the processes that use these represen-
tations. This section consists of two parts. In the first part we discuss some of the
representational formats that have been used in Artificial Intelligence in general,
and computational vision in particular. In the second part we discuss different

characterizations of the processes that use the knowledge represented.
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2.3.1. Representational Formats

2.3.1.1. Semantic Nets

Network models of information are based on the concept of associative
memory, an idea that Anderson and Bower (1973) have traced back as far as
Aristotle. Quillian (1966) is generally attributed with the origin of the use of
semantic nets. In Quillian’s system the nodes represent word concepts. The links
form an indication of the type of inference that can be made from the concepi. A
distinction between specialization and composition is already apparent in his
TLC model (Quillian, 1969). TLC was an investigation of the usefulness of a
semantic net as a knowledge base for the reading of text. Among other things
this semantic net consists of sets of hierarchies of concepts. A set of properties

has been attached to each node which defines the corresponding concept.

Although semantic nets are a nice way of visually illustrating the structure
of a knowledge base, it is difficult to infer the formal syntax and semantics of the
net from such an illustration. In his famous paper titled “What's in a link”
Woods (1975) pointed out that a lot of intuition is often necessary to understand
what a semantic net really represents. Questions should be asked about the
semantics of the representation itsell. The diversity of possible semantics for “is-

a' hierarchies is a clear example of this.
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Since then, different attempts have been made to be more formal about
semantic nets. Schubert (1976), for instance, has provided a clear correspondence
between his petwork notation and predicate calculus. Brachman (1979) has also
stressed Lhe need for knowledge-structuring primitives. In the next chapter, when
the concepts behind Mapsee-3 are discussed, semantic nets will be used for illus-
tration only. The schema will be used as a knowledge-structuring primitive. The

concept of schema will be discussed in the next section.

2.3.1.2. Declarative versus Procedural Representations

The problems of representation and control can be embodied in
procedural/declarative tradeoffs (Winograd, 1975). The procedural view assumes
that all “knowing” is equivalent to “knowing how” while the declarative view
emphasizes “knowing” as “knowing that”. The declarative approach provides
economy of representation and verifiability. The former is achieved because it is
easy to restrict the representation of each kind of information to one particular
location. The latter is the case because of the close ties between declarative
representations and the mechanisms of First Order Logic. In particular for the

latter reason declarative representations are favored in Mapsee-3.

The procedural approach, on the other hand, relies on specific procedures for
specific problems. However, an adequate exploitation of the semantics of images

requires a mixture of the two approaches. In Mapsee-3, some of the domain-
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dependent knowledge is represented procedurally.

2.3.2. Process Characterizations

2.3.2.1. The Segmentation and Interpretation Problem

The input to a vision program usually comes in the form of a digitized array
of pixels of varying intensity. The goal of the program is to provide different
descriptions in terms of models provided by the user. However, pixels do not
serve as meapingful units that can be interpreted in terms of models. These
models need information about more abstract units which may correspond to
such things as object and surface boundaries, shadows, and other illumination

effects.

The question of how to abstract this information is usually referred to as the
segmentation problem. But even if we have segmented correctly, we are still
faced with the question of how to transform deseriptions of the image in terms of
edges and surfaces into descriptions that capture its meaningful organization.

This is usually referred to as the interpretation problem.

The two problems are not totally independent, however. Some computa-
tional vision researchers hold that even for ségmentntion some knowledge about

what the image depicts is necessary (e.g., Mackworth, 1977a), whereas others
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hold that some knowledge about the intrinsic aspects of objects is sufficient (c.g.,

Barrow and Tenenbaum, 1978).

Oune possible reason for this disagreement is that for many ecarly computa-
tional vision studies line drawings were used. The usual experience with this
domain is that the information which can be abstracted from the image is
insuficient to uniquely determine the content of the scene. The only information
implicit in a line drawing is about the location and shape of lines. Information

about such things as surface texture and reflectivity is absent.

It has been argued (Clocksin, 1978) that as a result of this, computational
vision researchers have been forced to rely on control paradigms in which the use
of domain-dependent knowledge is the only way to achieve an adequate interpre-

tation of the image. In the next section we introduce such a paradigm.

Several researchers (e.g., Marr, 1978; Barrow and Tenenbaum, 1978) have
argued, however, that information about color, texture, and incident illumination
can tell us a lot about such things as surface boundaries and shadows. This infor-
mation can be abstracted by using very general knowledge about objects (e.g.,
assumptions about surface continuity). However, the degree of adequacy with
which this kind of abstraction can be made is a matter of ongoing research.

Although it is clear that in the long term the interpretation problem cannot
be solved without at the same time providing \i; solution for the segmentation

problem, many computational vision researchers have not waited for the solution
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of the latter problem in order to tackle the former. They rather assume that it is
possible to create certain representations in the image domain and have focused

on the interpretation problem instead.

It can be argued that line sketches present an impoverished stimulus
environment, but this does not refute the fact that humans are perfectly able to
recognize them. Thus, we may still hope that at least a limited set of perceptual
principles can be studied in line sketch perception. One should be aware, how-

ever, that some interpretation problems may be caused by line sketch artifacts.

In Mapsee-3 we avoid the segmentation problem. We will assume it is possi-
ble to segment the image into a set of primitives without any knowledge of the
scene. Later on, during the discussion in Chapter 5, we will propose a more
dynamic solution which does not require a perfect segmentation. Mapsee-3 also

uses line sketches.

2.3.2.2. The Cycle of Perception

One of the central paradigms for the control structure of vision programs
stems from the first program that could recognize different polyhedral objeects.
This program was written by Roberts (1965). His program consists of two parts: a
program that reduces a gray level picture to a line drawing, and a program that

interprets the line drawing. The program can recognize three different types of
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polyhedra: cubes, wedges, and prisms.

Mackworth (1977a) noted that the perceptual process in Roberts's program
can be characterized as a sequence of four processes: cue discovery, model invoca-
tion, model lesting, and model elaboration. Mackworth (1877a) has shown that
this sequence can be found in most vision programs and that the programs can be
characterized by the way they treat this sequence. Frequently, the sequence is

gone through more than once and is therefore calied the cyele of perception.

Cue Discovery

Three concepts are of importance in the interpretation process: primitives,
cues, and models. Primitives are the elements in terms of which one seeks to
represent the image at different levels of representation. Models serve as interpre-
tations for primitives. Cues serve as mediators between primitives and models.
Each cue constrains one or more primitives by suggesting one or more possible

interpretations (models).

Cue discovery is the process that constructs primitives and cues from the
input data given to the program. During cue discovery, all the image domain
representations are constructed. Cue discovery is therefore equivalent to segmen-
tation. The kind of primitives and cues used differs from program to program. In
some programs lines are the only primitives (e.g., Clowes, 1971), but more com-
monly the lines and regions are the primitives (e.g., Guzman, 1968; Falk, 1972).

In many vision programs the vertices serve as the cues by means of which the
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scene domain models can be accessed.

Model Invocation

Model invocation is the process of associating the possible interpretations
with each of the primitives. The levels of representation that can be accessed
differs from program to program. If the cues are not given in the input (such is
the case in Guzman (1968) and Clowes (1971)) the segmentation process cul

minates in their construction (e.g., Falk (1872); Mackworth (1977b)).

Some vision programs have only one level‘- of representation in the scene
domain (e.g., Clowes, 1971; Mackworth, 1977b). In such a case the cues have
direct access to the models at that level of representation. Some more recently
developed vision programs have more sophisticated access mechanisms; the level
of representation in the image domain at which the cue is constructed determines

the scene domain level that the cue accesses (e.g., Mulder, 1979; Browse, 1982).

Model Testing

Model testing is the process that tests whether the description of the model
proposed for a primitive is consistent with the image description of the primitive,
For instance, if a specific river is proposed as an interpretation for a certain line
in a sketch map then the curved pattern specified for this river in its model

description has to match with the curved pattern of the line.
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Model Flaboralion

For an image to make sense as a whole, it is not sufficient that the model
descriptions match the primitive descriptions; the possible interpretations for a
primitive are usually constrained by more than‘one cue. Most of the cues also
constrain more than one primitive. The problem Iof simultaneously satisfying the
constraints imposed by the cues is called the consiraint satisfaction problem.
There exists a wide variety of algorithms that deal with this problem. As a very
particular constraint satisfaction algorithm will also be involved in the solution of
the ambiguity problem proposed in this dissertation, we devote a special section

to constraint satisfaction.

2.3.2.3. Constraint Satisfaction

A Constraint Satisfaction Problem (CSP) can be defined as follows:
Given n variables, each with a domain and a set of constraining relations find all
possible n-tuples such that each n-tuple is an instantiation of the n variables
satisflying the relations (Mackworth and Freuder, 1982). Algorithms that manipu-
late constraints come in many variations. The domain can be continucus or
discrete, and the relations can be unary, binary, or n-ary. Discrete domains usu-

ally consist of a finite set of atomic labels.

In one of the early attempts to solve the constraint satisfaction problem,

Hulfman (1971) used a depth-first backtrack algorithm. This algorithm is
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ineflicient and has all problems inherent in depth-first backtrack such as thrash-
ing (Bobrow and Raphael, 1974). Another problem with depth-first backtrack is
that this algorithm is exponential in the domain size. In computational vision

applications domain sizes can become very large.

Waltz (1672) devised a better solution. Before attempting a depth-first or
breadth-first search Waltz applies a junction filtering procedure, whereby the
cues (the junctions in his program) are visited in some order. For each of its
edges, the junetion interpretation list must provide an interpretation that
matches at least one of the interpretations allowed for that edge by the interpre-
tation list of the junction at the other end of the edge. Junction interpretations
that do not match are deleted. If such a deletion occurs, then all junctions whose
interpretations were constrained by the deleted junction interpretations are

revisited; their interpretations are filtered to accomodate the new situation.

The advantage of this procedure is that a single pass through the junctions
is sufficient. Thus, thrashing can be avoided. Although there is no guarantee that
there will only be one interpretation left at each junction (and thus at each prim-
itive) this procedure guarantees the removal of all locally inconsistent interpreta-
tions. However, Waltz's junction filtering procedure deals with binary consistency
problems only. Mackworth (1977b) extended this algorithm to include n-ary con-
sistency problems calling it a network consistency algorithm. Neiwork con-
sistency algorithms have the property of eliminating all local inconsistencies that

cannot participate in a global solution. However, they do not solve the CSP.
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Mackworth (1977¢) emphasized the importance of three different forms of
network consistency: node, are, and path consistency. Node, arc, and path con-
sistency algorithms eliminate all local inconsistencies that involve 1, 2, or 3 vari-
ables respectively. Among other features, arc consistency has a time complexity
that is linear in the number of ares, and polynomial in the domain size (Mack-
worth and Freuder, 1982). One particular arc consistency algorithm, AC-3 (Mack-
worth, 1977¢), is cubed in the domain size. Node, Arc, and Path consistency algo-
rithms are useful preprocessors for a Depth-first backtrack or divide-and-conquer
algorithm because they have the effect of reducing the domain size (Mackworth,

1977¢).

Freuder (1978) proposed a nelwork consistency algorithm called k-
consistency. His algorithm is based on removing all inconsistencies in all subsets
of k out of n variables. (k <n ). This algorithm solves the CSP if k¥ = n. Node,
arc, and path consistency (Mackworth, 1977¢) are actually special cases of this

algorithm for £ = 1, 2, and 3 respectively.

In some of the applications the labels have certainty values associated with
them, in others they do not. However, labels without certainty values can be seen
as a special case of labels with certainty values (Hummel and Zucker; 1983). Con-
straint satisfaction algorithms that use certainty values are often referred to as

Relazation Labeling Algorithms.

Rosenfeld el al (1976) introduced the idea of assigning weights to labels and

relations to the field of computational vision. The weight of the labels is
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iteratively updated by means of rules that take into account the compatibility
with the labels of the neighboring variables. The global effect on the weight of a

single label increases with cach iteration.

Relaxation Labeling has been [requently used for line and curve enhance-
ment (e.g. Zucker et al 1977). A multi-level approach to relaxation labeling was
proposed in Zucker (1978). A survey of this kind of work has been provided in
Davis and Rosenfeld (1981). In the scene domain, relaxation labeling has been
used for updating hypotheses that are interconnected by composition and special-

ization hierarchies and a lew other relations (Tsotsos, 1984).

Despite all the good fleatures ol algorithms that manipulate constraints,
these algorithms have problems as well. One problem is, that constraints arc only
propagaled, and actually finding the constraints themselves has to be done else-
where. Another problem is that labels are treated as atomic elements without an
internal structure. As a result, we cannot reason about labels which often
represent objects in the interpretation process. These two problems have, among
other things, been an important motivation for the development of schema-based

vision programs to which we will turn next.

2.3.2.4. Schema-based Computational Vision

The term schema is usually traced back to Bartlett (1932) and to Piaget

(e.g., Piaget, 1967), Over the last few years schemata have served as a convergent
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notion for knowledge representation research in both Psychology (e.g., Norman
and Bobrow, 1976; Neisser, 1976) and Artificial Intelligence (e.g., Minsky, 1975;
Kuipers, 1975; Freuder, 1976; Havens, 1978). At present, there is a wide diversity

of definitions and characterizations of schemata.

Bobrow and Norman (1975), for example, define schemata as:

“active processing elements that can be activated from higher level purposes and
expectations (model-driven), or from input data that must be accouated for”

(data-driven).

One characteristic of schemata is that they can represent both declarative
and procedural knowledge (Winograd, 1975). From a declarative perspective a
schema can be embedded in different types of structural networks such as the
specialization and composition hierarchy. A procedural representation, on the

other hand, implies that a schema can assume control.

The control structure in most schema-based vision programs is hierarchically
organized. A general interpreter takes the input data and constructs primitives
and cues. Cues suggest different schemata as interpretations in different parts of
the image. The interpreter has a choice between two modes of operation:

bottom-up and top-down.

In bottom-up mode, the interpreter collects evidence by observing the cues

in the image. Such evidence can be compared against domain specific knowledge
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to constrain the number of possible interpretations. In top-down mode, on the
other hand, the interpreter hands over control to a schema's procedure. Such a
procedure orders the search space heuristically and searches for very specilic evi-
dence in specific parts of the image. Most schema-based vision programs can be
characterized by the (sometimes very sophisticated) interplay between these two

modes ol operation.

Kuipers (1975) proposed a schema-based recognition model which is totally
top-down. His program can recognize an object in the scene as belonging to one
of three classes of objects: parallelepiped with three visible surfaces, wedges with
two visible surfaces, and wedges with three visible surfaces. The interpreter starts
with assuming the presence of one of the classes and hands over control immedi-

ately to the schema for that class.

Kuipers attempts to avoid thrashing behavior by using a complaint depart-
ment; that is, if a schema fails to reach its objective it consults a similarity net-
work which will recommend a replacement schema. The problem with such an
approach is that this similarity network has to provide a replacement candidate
for each possible failure situation. An unexpected situation not covered by the

similarity network restores all the problems inherent in depth-first search.

Freuder {1976) designed a system that recognizes hammers. The knowledge
about hammers is stored in a general knowledge (GK) metwork, whereas the
knowledge specific for the hammer in the image (as it is built up during recogni-

tion) is stored in a particular knowledge (PK) network. Features found during a
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segmentation process are used as bottom-up evidence for the existence of sche-
mata (called conjectures by Freuder) of which a feature may be a part. The sche-
mata suggested by features are installed in the PK network as hypotheses which
may be explored in top-down mode. Such an exploration may result in the crea-

tion of other schemata.

Freuder's work is focused 'on the control structure for coordinating bottom-
up and top-down methods. This control structure is based on a priority-queue
multiprocessing scheme. When schemata are suggested by features in the image a
priority is assigned to them. This priority can be changed during the recognition
process. A global scheduler selects and invokes the schema with the highest prior-
ity. Successful exploration of a schema results in the hypothesizing of one or more

higher order schemata of which the successfully explored schema was a part.

Although Freuder's approach marks an improvement with respect to previ-
ous systems his way of using a priority-queue multiprocessing scheme can be sub-
jected to criticism, as was noted by Havens (1978). The problem is that a global
priority is assigned to a schema by a local procedure that suggests a schema on
basis of one feature found in the image. Havens argued that schema invocations

should be pattern-based rather than based on some form of numerical priorities.

Havens (1878) has proposed a complete schema-based recognition model for

machine perception. Schemata are characterized as:

“a modular representation of everytbing known about some concept, object, event, or
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situation'".

The knowledge associated with schemata can be represented both in declara-
tive and procedural form. Two types of knowledge can be associated with sche-

mata: factual and heuristic knowledge.

Factual knowledge can be represented both in declarative and procedural
form. For instance, the embedding of schemata in a network of different composi-
tion and specialization hierarchies is a declarative representation of [actual
knowledge. Heuristic knowledge is represented in procedural form only. By means
of its heuristic knowledge (also called methods), a schema guides the search pro-

cess for the schema’s concept.

Havens' recognition model consists of three stages: expectation, matching,
and completion. Low level cues can suggest different schemata as a possible
explanation. Each of these schemata has expectations associated with it, consist-
ing of possible final instantiations of the schema. For example, a parallelogram
can be used as a low-level feature to invoke a schema for a cube. The cube
schema has to test whether its description is also made up by two other parallelo-
grams in a particular configuration. As a result the description of the cube
schema has to match the description of two other parallelograms. This expecta-

tion and matching process can be seen as an iterative recognition cycle.

However, Havens' perceptual model is eyclic in another sense as well. Once
1

all the expectations of a schema are satisfied, the schema will seek completion;
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that is, it will act as a cue for other schemats which are further up in the compo-

sition hierarchy in which the schema is embedded.

As is the case in Freuder's program, schemata can employ both model-driven
and data-driven metlhods to perform the recognition process. In top-down mode a
schema will invoke the methods associated with each of its expectations. These
expectations are directly or indirectly verified in the image. In bottom-up mode,
on the other hand, a schema is confronted with pon-determinism; that is, the
schema can be embedded in several composition hierarchies which means that
there is more than one possible parent node. As a result, multiple hypotheses
have to exist simultaneously. In bottom-up mode methods are therefore realized

as concurrent processes.

For this reason Havens also has a multiprocessing scheme. However, invoca-
tion of a schema’s method is not based on a global numeric priority. The central
idea is that a schema's method will remain active until one of its expectations
turns out to be difficult to prove. The schema then suspends itsell by creating
new expectations that describe its unrealized objectives. These expectations are
stored as a pattern in a global database. The suspended method can be resumed
as soon as another schema provides the kind of e\vidence the suspended schema is
waiting for. Thus we can see that Havens' mulltiprocessiug scheme is based on

pattern-based invocation rather than numerical priority-based invocation.

Havens has developed a Lisp-based knowledge representation language,

Maya (Havens, 1978), to deal with these issues. Maya provides a data structure
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for representing objects and classes, a pattern matching facility, and facilities for
parallel processing. Maya is one of the many schema-based languages that have
been developed, most of which provide knowledge-structuring primitives and a
number of processes that can operate on them. FRL (Roberts and Goldstein,
1977a, 1977b), the UNIT package (Stefik, 1979; Smith and Friedland, 1980), KRL
(Bobrow and Winograd, 1977), and PSN (Levesque and Mylopolos, 1979) are

examples of such languages.

As mentioned before PSN was used in Tsotsos's work on motion analysis
fe.g. Tsotsos, 1984). PSN formalizes traditional semantic network concepts in a
procedural framework. Its primitives are classes and binary relations. Their
semantics are defined by means of four basic operations: add, remove, fetch, and
test. The knowledge structure is centered around “is-a’” and “part-of" hierar-
chies. Both hierarchies can take part in the inheritance of properties. Another
interesting aspect of PSN is the notion of a meta-class, a class of classes, which is

used to explain certain features of the representation within itself.
)

In most schema-based vision systems domain dependency is introduced in
the control structure. In particular, the heuristic knowledge associated with a
schema is usually domain-dependent. Bajesy and Joshi (1978) designed and imple-
mented a system that forms an exception to this rule. Their system, which inter-
prets natural outdoor scemes, has been implemented as s production system
(Newell, 1973) with three components: a data base, a number of production rules,

and an interpreter. The data base consists of facls which represent visual pro-
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perties of the image (measured or derived). These f[acts are subdivided in two
groups: short term facts, which are considered to be of immediate importance to
the interpreter, and long term facts, which are not. The scene knowledge is
encoded by means of production rules which are also subdivided in long term and
short lerm rules. The scene objects are ordered by means of different relations
such as “kind-of”, “physical part-of”, size, and distance. The rules can be
clustered by means of the first two relations, the facts by the latter two. By
using the concept of partial ordering of objects in combination with a production
system methodology the system achieves its design goal: a systematic (domain-
independent) control structure which can deal in an efficient manner with a visu-
ally rich domain. A general control structure is a well known feature of produc-
tion systems (Davis and King, 1975). The clust.lering of rules and facts enable

the system to apply relevant rules only.

2.4. Interpreting Sketch Maps

Sketch maps have often been used as an aid in interpreting aerial or satellite
photographs. They can be seen as a simplified representation of the photograph.
Often we can recognize a particular area just by looking at the sketch map.
Sketch maps are therefore useful in two respects. First, they carry many charac-
teristics of the original image and can be used as an aid in interpreting the origi-

nal image. Second, a significant number of the perceptual problems associated

Chapter 31 44

with interpreting the original image are present in the interpretation of sketches.

The automatic interpretation of sketches is therefore by itsell a worthwile goal.

The HAWKEYE system (Tenenbaum ef al 1978; Bolles et al 1978) is an
example of a system that uses a map database as an aid in interpreting aerial
photographs. After establishing geometric correspondence between an aerial
image and a symbolic map, information from the map is used to guide interpreta-
tion of the former. This technique bas been successfully applied to such tasks as
monitoring the volume of water in a reservoir and monitoring the number of box-
cars in a railyard. Glicksman's (1982) work in ;.'his area has already been men-

tioned in section 2.2.3.

The MAPSEE project at U.B.C. is one of the projects which has adopted the
problem of sketch map interpretation. Mapsee-1 was developed by Mackworth
{1977b). Line segments and regions are the primitives in this program. The ver-
tices are the cues. All of these are created by a segmentation process. The cues
are all ambiguous. For instance, both the bar and stem of a T-vertex can be a
river and all surrounding regions can be land. Another possibility is that the bar
is a shore and the stem is a river. The regions adjacent to the stem now have to
be land, but the third region adjacent to the bar is water. A network consisteney

algorithm is used to reduce the possible label set.

The scene domain knowledge in Mapsee-1 was represented at one level only.
As a result it was impossible to speak about such concepts as road-systems and

geo-systems. Furthermore, the labels were represented as labels only, lacking any
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modularly organized internal structure by means of which one could reason about
them. The former problem was resolved in a system with a stratified knowledge
base that could interpret line sketches of houses (Mulder, 1979). The latter prob-
lem was resolved by representing models as schemata (Havens, 1978), A schema-
based approach formed the foundation of Mapsce-2 (Havens and Mackworth,

\
1983; Havens, Mackworth, and Mulder, 1985).

The objects in Mapsee-2 arc described by means of their attributes. Thus,
each object “knows™ what its components are and what it is part of. The objects
are embedded in bolh a composition and a specialization hierarchy. Figure 2.1 A
and B show these hicrarchies. Each of the primitives (line-segments and regions)
gets represented at cach level of composition and specialization by means of two

processes: composition and specialization.

® wvoria

Geo-system

Shore  Mountain Road Town Bridge River

Figure 2.1A: The Mapsee-2 composition hierarchy
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Figure 2.1B: The Mapsee-2 specialization hierarchies

Composition is achieved by a bottom-up, depth-first approach. Image cues
suggest one or more interpretations at the leaves of the composition hierarchy. If
there is more than one interpretation for a primitive then the interpretation is
considered hypothetical. By means of composition, each hypothesis becomes a
cor;aponent of an instance of a schema one or more levels up in the composition

hierarchy. For instance, cach river instance has to become a component of a
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river-system instance which in turn becomes a component of a geo-system
instance etc. Composition is a very complex process, as it simultaneously has to
deal with both the proper matching of instances at different levels of composition
and the maintenance of mutual consistency between different hypotheses. This

process is deseribed in detail in Havens et al (1985).

In composition, objects are treated as schemata. The composition process
has to include looking at the schema's attributes in order to find its super-
components. Specialization, on the other hand, is dealt with as a Constraint
Satisfaction problem in which objects are treated as labels. There is a specializa-
tion hierarchy for each schema, whereby each schema-instance has a label as one
of its attributes. This label can be any node in the specialization hierarchy in
which the schema is embedded. For instance, a geo-system instance can have the
label island, which implies that the instance has been specialized to be an island

(Figure 2.1B).

Specialization in Mapsee-2 is a top-down process. At the start each schema
instance has the name of its schema as label. This label forms the root of a spe-
cialization hierarchy. Specialization takes place incrementally. Each time a new
component is added during composition the validity of its label is tested. For
instance, the label of a geo-system with a mountain-range as a component is spe-
cialized to be a landmass. If it then turns out that the geo-system is surrounded

by a shore, the label is specialized to island.
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In Mapsee-2, specialization is a special form of Are Consistency, called
Hierarchical Are Consislency. In the constraint graph, the variables are the
instances and their domain the specialization labels which are hierarchically
organized. Hierarchical Arc Consistency is implemented in a procedural way. As a
similar algorithm has been used in Mapsee-3. we will postpone the discussion of
this algorithm until Chapter 3. The Mapsee-2 program interpreted sketch maps

for the MISSEE program (Glicksman, 1982).

2.5. The Ambiguity Problem

Image cues tend to be highly ambiguous; that is, one cue suggests many pos-
sible interpretations for the primitive(s) constrained by the cue. Most of those
interpretations tend to be only locally consistent. Once the consistency require-
ments over a wider area of the image are considered, the number of possible
interpretations for each primitive will usually be reduced to one. The problem of
how to reduce the large set of interpretations that are locally consistent to a
smaller set that are globally consistent is an important aspect of the interpreta-
tion problem as defined in section 2.3.2.1. A careful consideration of the problem
shows that it can be described in two different ways: one way is to view it as a
problem of representing interpretations that are hypothetical ; the other is to look

at it as a problem of representing interpretations that are ambiguous .
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The hypothetical poinl of view

Figure 2.2 shows a closed line-segment that could serve as a cue for two geo-
graphic objects: a constline and a lakeshore. We can assume that these objects
are embedded in a Mapsee-2 like composition hierarchy such as the one in Figure
2.3. This figure demonstrates the hypothetical point of view, which states that
every locally consistent interpretation forms a hypothesis. As we start to consider
larger arcas in the image, we have to explicitly maintain some data structure that
tells us which hypothetical ;nterpretstions go together with those in adjacent
arcas and in what way. By means of the process of constraint propagation we will
be able to gradually eliminate certain hypotheses and the data structures in

which they are embedded.
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Figure 2.2: A closed line segment depicting a shore
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Lakeshore Coastline

Figure 2.3: A simple composition hierarchy
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Figure 2.4: A simple specialization hierarchy
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The ambiguity poini of view

In Figure 2.4 we have introduced a specialization hierarchy. This enables us
to use the ambiguity point of view stating that a coastline and a lakeshore are
both a specialization of a more generic interpretation, a shore. Regardless of
whether the primitive will turn out to be a coastline or lakeshore, we always
know it must be a shore. Thus, in the ambiguity approach the image cue will
constrain the primitive to be a shore and since tb{:s is the only possible interpreta-
tion, it is not hypothetical. Only after constraining evidence has come from adja-
cent areas in the image is the interpretation specialized into a lakeshore or coast-

line.

The ambiguity point of view is strongly linked with the principle of least
commilment which was introduced in computational vision by Marr and
Nishihara (1976). It means that we stick to the most abstract possible interpreta-
tion until evidence from the image forces us to move towards a more specific
interpretation. This principle is also reflected in human visual perception.
Humans do not generally interpret an image in terms more specific than the cir-

cumstances require.

The example shows that ambiguity can be represented in the form of a spe-
cializalion hierarchy. The example was concerned with a two level hierarchy only.
A representation in terms of the top node in the hierarchy (shore) is ambiguous
but non-hypothetical, whereas a representation in terms of the leaf nodes (coast-

line and lakeshore) is unambiguous but hypothetical. With multiple level
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specialization hierarchies, we can create many different mixtures of the two
approaches. The hypothetical point of view and ambiguily point of view can
therefore be seen as the extremes in a specialization/generalization dimension,
and we can use this dimension as a criterion for comparing different vision sys-

tems.

Vision programs that have no specialization hierarchies automatically end up
at the hypothetical end of the scale (e.g. Freuder, 1976). Most programs with spe-
cialization hierarchies, on the other hand, are neither extremely hypothetical or

ambiguous, but somewhere in between.

An object in a specialization hierarchy, when suggested by a cue as a possi-
ble interpretation, is non-hypothetical ounly if no other objects are suggested by
the same cue. The cues in ACRONYM are all ambiguous and the interpretations
suggested by them are all hypothetical. Mapsee-2 (Havens ef al 1985) is some-
what different in this respect, because some cues are ambiguous, although others

are not.

The vision programs with specialization hierarchies differ strongly in the way
they use this hierarchy in the interpretation process. In Mapsee-2 there are some
cases in which a model at the top of such a hierarchy is suggested as a non-
hypothetical interpretation for a primitive in the image. As soon as more of the
primitive's context becomes known, a gradual specialization of the interpretation

takes place toward one of the leal nodes in the hierarchy. The majority of
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interpretations, however, are hypothetical. !

Browse (1982) uses cues from diflerent levels of resolution in the image to
access differenl levels of specializations. All interpretations are hypothetical.
Interpretations suggested at a coarse [evel of detail have to agree with those sug-
gested at a fine level of detail. Browse uses the specialization hierarchy to bring

the two sets into agreement.

Tsotsos (1984) uses specialization hierarchies in the CAA program (Shi-
bahara et al 1932; Shibahara et of 1983), but they are not used to reduce or
eliminate hypothetical interpretations. All class instantiations in his system are
hypothetical. Alternative hypotheses can be tested through similarity links (Tsot-
sos el al 1980). In a case of incorrect prediction, the system moves upward along
the specialization hicrarchy in order to remove the constraints from the failing

hypothesis.

In ACRONYM a class of objects is suggested as a possible interpretation for
parts of the image. One of the uses of the specialization hierarchy in ACRONYM
is to determine whether one of the sub-classes of this class can also serve as a
possible interpretation. If this is not the case, the hypothesis is considered to be
false. Although no one will argue that specialization hierarchies can be used for
representing ambiguity, one may wonder whether the same hierarchy should be
used to determine the correctness of hypotheses. The level of specialization al
which an object can be described depends entirely on what and how much of the

object is visible in the image. If not enough information is available to verify the
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correctness of a sub-class then ACRONYM will reject a possibly correct

hypothesis.

2.8. Discussion

The “high level” vision literature has been looked at from several points of
view. With an emphasis on knowledge representation, the following aspects were

highlighted:

1. Computational vision systems require a flexible knowledge base that can
deal with an image at different levels of detail and specificity. A multi-level
representation along two dimensions: a composition/aggregation dimension
which enables the system to interpret an image at different levels of detail,
and a specialization/generalization dimension which enables the system to
interpret an image at different levels of specificity, provide the system with

such flexibility.

2. There is a need to describe objects in at least two different ways:

a. as labels which form the domain in a CSP.

b. by their internal structure.

The schema-based systems provide the ability to do both.
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3. Is-a hierarchies vary widely in their interpretation. The discussion locused

on the fact that specialization hierarchies often appear to be playing a role in

the representation and resolution of ambiguity.

4. Hypotheticality and ambiguity can be seen as the extremes in a

specialization /generalization dimension. There appears to be no “high-level”

vision system at the ambiguity end of this dimension.

With the representation of ambiguous and hypothetical interpretations as

the central topic of this dissertation the last observation is very interesting, and

several possible reasons suggest themselves as an explanation of why this is the
case.

One possible reason is that model-based research in computational vision has
been concentrating on the representation of objects and their interrelationships.
Hypothetical interpretations, although recognized as a problem, have been dealt
with more as a side issuc. As a result, solutions to the problem are usually imple-
mented in a procedural way. The data structures that actually represent
hypothetical interpretations are part of the temporary database created during
construetion of an image interpretation. Yet, if we want to be able to reason
about possible ambiguities in interpretations then we need to represent the

knowledge about these ambiguities in a declarative form and in the permanent
database of the system.
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Figure 2.5 supgests a second possible reason. This figure shows a situation
in which a closed line-segment has three possible interpretations: a coastline, a
lakeshore, and a road. A coastline and lakeshore can be generalized to a shore,
but for a shore and a road no natural categorization exists. All Vision systems
discussed use natural categorization only. However, image features often sug-
gest interpretations which do not fit together in natural categories. For instance,
a collection of green pixels is extremely ambiguous. They can depict a golf
course, farm land, a park, forest, or even the astroturf in a stadium. In order to
take an ambiguiry approach one will often have to exceed the boundaries of

natural cateporization. In Figure 2.5, for instance, we have created the unna-
tural concept road/ shore.
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Figure 2.5: An unnatural specialization hierarchy
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A third possible reason is that as a result of noisy data the image features
may be unreliable. In such a case we can consider them to be hypothetical. Con-
sequently, all model invocations would necessarily be hypothetical as well. This
aspect, however, stands apart from the previous two arguments. Even in an ideal
segmentation that leads to ‘“correct” features only the ambiguity problem still

exists.

The last reason forms a good justification for using a hypothetical approach,

although we can criticize this approach for containing some undesirable features.

1. Systems that use specialization hierarchies for representing ambiguity but which

do not fall at the ambiguity end of the scale violate the conceptual clarity criterion

of modularity in repr tion. Part of the possible interpretations for an image
feature are now represented along the composition/aggregation dimension as
hypothetical interpretations, whereas another part is represented along the

specialization/generalization dimension as ambiguous interpretations.

2. Modularity in control is also affected. In a system with modular control, the
processes operate on one particular knowledge representation dimension only. As a
result of the fact that ambiguity is spread over more than one knowledge represen-
tation dimension, the process that deals with ambiguity has to access more than one
knowledge representation dimension as well. In section 5.2.4 we will discuss a

Mapsee-2 example and compare it with Mapsee-3.

3. Each possible interpretation for a primitive has to be explicitly represented and
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pursued as hypothesis. The number of possible interpretations for a single primitive

is often very large.

4. Each sct of interpretations that cannot be “joined” into one (abstract) interpreta-
tion by means of a specialization hierarchy needs to be maintained in an interpreta-
tion graph by different variables. As already mentioned in Chapter 1, competing
hypotheses are thus represented by different variables. Each time a hypothesis is
invalidated, we bave to restructure the interpretation graph. This can be a complex

and cumbersome operation. [n particular, Mapsee-2 suffered from that problem.

All these problems can be alleviated if we construct a knowledge representa-
tion dimension whose sole purpose is the representation of all possible ambiguities
in interpretation. This knowledge representation dimension can take the form of
a discrimination graph such as the one illustrated in Figure 2.5. Depending on
how we construet this graph we can build a vision system with a hypothetical
approach, an ambiguity approach, or anything in between. Additionally, diserimi-

nation graphs offer the following advantages:

1. Different hypotheses and their mutual consistencies can now be represented in the
form of an explicit, declarative data structure, which is part of the permanent
knowledge base. Such a data structure can form a knowledge representation dimen-

sion by itself, thus achieving modularity in representation.

2. Modularity in control is also achieved because we now need one process only to

operate on each knowledze rep ation di A composition process will
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operate along the composition /aggregation dimension. This process is considerably discrimination graphs. Attached procedures have the ability to search for and, if
simplified as a result of the removal of the hypothetical element. The discrimination found, create spatial relationships between their components. Composition will be
process operates along a discrimination/generalization dimension. This process deals seen as the process that constructs a network of constraints. Discrimination will
with ambiguity. Moreover, it can now be completely formalized as a network con- then be viewed as a network consistency process that maintains consistency in
sistency algorithm. We will discuss this in the next chapter. the network.

3. Discrimination graphs are by nature hierarchical. This enables us to represcnt a
set of elementary interpretations by means of one abstract interpretation. We can
thus reduce the number of interpretations that need to be represented for a single

primitive.

4. Discrimination graphs allow us to provide a unique (abstract) interpretation for
each set of interpretations that am image primitive can depict. Hence, competing
bypotheses can be represented in the domain of a single variable in the interpreta-
tion graph which represents the current state of interpretation of the image. Invali-
dation of a particular hypothesis now only requires a deletion or replacement of a
label in the domain of a variable. This can be achieved without changing the struc-

ture of the interpretation graph. \

In the next chapter we describe the design of Mapsee-3, a system that uses
discrimination graphs. The design is in the spirit of the Mapsee-2 system. Object
classes and relations are represented as schemata: modular units of declarative

and procedural knowledge. Schemata are embedded in both composition and
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3. DESIGN OF MAPSEE-3

3.1. Introduction

In this chapter we describe the design of Mapsee-3, a schema-based sketch
map interpretation program. Although the program was designed for the
interpretation of sketch maps, many of its design.' principles are of a more general
nature. In this chapter, we focus on the design principles of the system. The

actual implementation of the system is discussed in Chapter 4.

The most important features of the program are:

1. A declarative and domain-independent data structure for representing ambi-
guities that can arise when we map image primitives to scene interpretations.
This data structure takes the form of a discrimination graph. A motivation for

the desirability of such a structure was given in the previous chapter.

2. Two knowledge representation dimensions along which knowledge about scenes
can be represented. A composition hierarchy of object classes forms the core of a
composition/aggregation dimension. At each level of composition one or more
discrimination graphs form a discrimination/generalization dimension which is

orthogonal to the composition /aggregation dimension.

3. Alzorithms that automatically construct parts of the scene's knowledge base.
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4. A composition process that operates in a data-driven manner on the composi-
tion hierarchy. At first, image primitives are mapped into interpretations that
form the leaves of a composition hierarchy in the scene domain. Gradually, these
interpretations are transformed into more aggregated interpretations which are
represented at intermediate levels in this hierarchy. This process of aggregating

interpretations continues until the top of the hierarchy has been reached.

5. A network consistency algoritbm that operates on discrimination graphs. In
the previous chapter we observed that algorithms of this type have been well

researched and they can be more efficient than depth-first backtrack.

In the design, great emphasis has been put on conceptual clarity, including:

1. Modularity in representation. Objects and relations are represented as sche-

mata. The knowledge representation dimensions used are orthogonal.

2. Modularity in control. There is only one process that operates in each
knowledge representation dimension, a process which can alter only data struc-
tures in the dimension in which it operates. It cannot directly invoke a process
operating along another dimension. Each Mapsee-3 process owns a queue from
which it takes its input. Different processes intercommunicate by putting items

on each other’s queue.

3. Uniformity. Each schema type has a fixed representational format. A grammar

is provided [or this representation.
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4. Strict separation between domain-dependent and domain-independent
knowledge. The schema, the knowledge representation dimensions and the
processes operating along them form a domain-independent format for represent-

ing knowledge about different scenes.

The design also focuses on efficiency. Many computational vision systems
(including Mapsee-2) create interpretation graphs in which the variables (nodes)
represent hypothetical interpretations. Such graphs require continuous restructur-
ing when hypotheses are invalidated. In Mapsee-3, different hypotheses are main-
tained in the domain of a single variable. The nodes and links represent non-
bypothetical interpretations and constraints only. As a result of the algorithms
used, invalidation of a hypothesis requires only deletion or replacement of a label
in the domain of a variable. The structure of the interpretation graph remains
unaffected by this operation. Other efficiency measures result from the use of

hierarchical constraint propagation in the system.

The Mapsee-3 knowledge base has been designed to operate ideally in a sig-
nal processing environment. The input to such an environment consists of one or
more signals whose intensity varies over time or space. The objective of the sys-
tem is to segment the signal(s) into primitives, segmenting in such a way that
each primitive can be interpreted meaningfully. A wide variety of domains can be
looked at as signal processing environments, including areas such as the interpre-

tation of sound waves, and spectral analysis, in addition to computational vision.
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In its current implementation, however, Mapsee-3 somewhat limited
because of the assumption that the domain can be ideally segmented; that is, we
assume no noisy data. As a result, we know what the the primitives are, and we
know that they are correct. So we do not have to deal with one of the causes of
ambiguity noted in the previous chapter. It was observed that ambiguity is
caused by at least two different factors: a segmentation process that has to deal
with noisy data, and image primitives which are underconstrained when it comes
to interpretation. In this dissertation, we are concerned only with undercon-

strained image primitives.

In many respects Mapsee-3 is a sequel to Mapsee-2, the schema-based sketch
map interpretation program which was summarized in the previous chapter. For
example, the Mapsee-3 composition hierarchy is similar to the one used in
Mapsee-2 (sce Figure 2.1A). The main point of departure from Mapsee-2 is the
use of discrimination graphs which form a knowledge representation dimension
by themselves. This enables Mapsee-3 to be more modular in representation and

control than Mapsee-2.

The Mapsee-3 interpreter operates in a data-driven manner. After a segmen-
tation process that constructs images, an image-to-scene mapping process maps
primitives into object classes which are the leaves of a composition hierarchy in
the scene domain. Thereaflter, interpretation is guided by two modular processes:
composition and discrimination. Composition ensures that each primitive is sub-

sequently represented at each level of composition, starting at the leaves of the
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hierarchy and gradually working to the top. Discrimination graphs, on which the
discrimination process operates, express possible refinements of interpretations at
cach level of composition. Using the principle of least commitment, this process
uses the spatial relations found by the composition process as a way of refining

the interpretation of each primitive.

Composition can also be considered as the process that searches for spatial
constraints between primitives. The constraints found are represented in the form
of an inlerpretation graph. Discrimination is then the process that propagates
these constraints over this graph until a consistent situation is zrrived at. In
Mapsee-3, diserimination has been implemented by means of a network con-

sistency algorithm which uses the principle of least commitment.

In section 3.2 we explain the representation of the system. We discuss the
unit of knowledge representation, and the knowledge representation dimensions.
In section 3.3 we discuss the three stages of the Mapsee-3 control: segmentation,
image-to-scene mapping, and interpretation. With the focus on interpretation, we
discuss the two components of this process: composition and discrimination. The
Mapsee-3 knowledge base can be subdivided into a natural and an unnatural con-
stituent. While the former must be provided by the user, the latter can be con-
structed automatically from the former. The construction algorithms are dis-

cussed in section 3.4. A summary of the design is given in section 3.5.
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3.2. Representation

3.2.1. Schemata

The unit of representation in Mapsee-3 is the schema. A schema in Mapsee-3
is a list of attribute-value pairs which describe the schema's internal properties
and its constrainls on other schemata. Two categories of schemata are dis-
tinguished: image schemata and scene schemata. The first category can be subdi-
vided in six (somewhat domain-dependent) classes: points, links, lines, chains,
patches, and regions. The second category is subdivided in two (domain-

independent) classes: object classes and relations.

In most schema-based vision systems, only object classes are represented as
schemata. Relations are generally represcnted by the schema’s attributes. The

reasons for representing relations as schemata are twofold:

1) It leaves the user-implementer with the choice of er an object- or relation-

o

based system. This is particularly important with respect to procedural attachment.
In Mapsee-3, the user can decide to which kind of schemata to attach part of the

control.

2) Relations can be of any arity, while the constraints with other schemata remain
binary. In object-based systems, it is more difficult to represent higher order rela-

tions.
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As this dissertation focuses primarily on the representation of scene
knowledge, we describe only the scene schema and its attributes. The reader is
referred to Appendix D for a complete description of all classes of schemata and

their syntax. The following attributes can be found in every scene schema X':

1) A schema-label: uniquely identifies an object class or relation to the system (e.g.

+569).

h h

a repr ts an object class or rclation.

2) type: indicates whether the
3) composition level: each scene schema is embedded in a composition hierarchy.

4) discrimination level: each schema is also embedded in a discrimination graph, the
concept of which is explained in section 3.2.2.

5) links-in: the list of schemata which have pointers directed at X .

6) links-out: the list of schemata to which X has pointers.

7) mandatory components: the list of schemata that enter in a "‘must-be-parts' rela-
tion with X .

8) other components: the list of schemata that enter in a “may-be-parts” relation
with X .

9) mandatory super-components: the list of schemata that enter in a “must-be-
part-of”’ relation with X .

10) other super-componeats: the list of schemata that enter in a “may-be-part-of”
relation with X'.

11) disciminations: X 's in the discrimination graph.

12) generalizations: X 's parents in the discrimination graph.
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13) methods: a schema can represent both declarative and procedural konowledge.
The schema’s methods are procedures which are “owned" by the schema. Each
Mapsee-3 method consists of a lunction that takes one or two arguments. A more
detailed explanation of the operation of methods is provided in section 3.3.1.

14) instances: during interpretation each sch can be i tiated zero or more

times. Each instantiation is represented as a uniquely identifiable unit. A scene

schema instance Y has the following attributes:
a) instance label: uniquely identifies ¥ to the system.
b) iinverse: Each relation in Mapsee-3 has an inverse. If ¥ is an instantiation of
a relation, then it must have an inverse which is an instantiation of the inverse
of Y's parent schema.
c) parent: the schema Y is an instance of.
d) ilinks-out: the instance equivalent of “links-out™.
¢) ilinks-in: the instance equivalent of “links-in".
f) icomponents: the established components of Y.
g) isuper-components: the established super-components of Y.
h) labels: the list of current interpretation(s) of Y. At the time of creation V¥
inberits the label of its parent X . This label can be replaced by any of X s sue-
cessors in the discrimination graph, il the situation requires it.
i) idepicted-by: each schema instance is depicted by one or more image primi-

tives,

15) inverse: see iinverse. \
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16) depicted-by: see idepicted-by

In Mapsee-3 schemata never point directly at other schemata of the same
type. The only exception to this rule is for the discrimination and generalization
attribute. These attributes are taken to be internal properties of the schema. A
conerete example from the sketch map world illustrates the constraints (sce Fig-
ure 2.1A and B). A geo-system, for instance, is a mandatory component of the
world; thal is, the geo-systemn schema points at a *‘must-be-part-of”’ schema
which, in turn, points at the world schema. The "'must-be-part-of"” schema has an
inverse which represents a “must-be-parts” relation. The latter serves as an
intermediary between the world and the geo-system schema. The geo-system’s
discriminations, on the other hand, are the landmass and waterbody schemata,

both of which are object classes.

Mapsee-3 differs from Mapsee-2 in its representation of the scene knowledge.
In Mapsee-2 some schemata are treated as labels, whereas others are treated as
object classes with an internal structure. In Mapsee-3 each schema can be treated
either way. The representation of image schemata, on the other hand, is very

1
similar to the one used in Mapsee-2 (see Appendix D for a syntactic description).
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3.2.2. The Knowledge Representation Dimensions

The knowledge base of which the schemata are a part is organized along
three dimensions: composition/aggregation, discrimination/generalization, and a
dimension in which the relations are represented that map image primitives into

scene interpretations and vice versa.

- Composilion/Aggregation

Schemata are embedded in a Composition hierarchy by means of a “parts”
and “‘part-of”" relation. The former points the schema to its components, the
latter at its super-schema(ta) in the hierarchy. Composition relations can be
cither of the “must-be” or “may-be" kind provided the distinction is explicit.
The composition hierarchies in Mapsee-3 occur ei‘t.her in the image or in the scene
domain, but they never cross the image/scene boundary. The Mapsee-3 composi-
tion hierarchy in the scene domain is based on spatial or time relationships. Two
schemata in such a relationship must have a common super-schema further up in

the hierarchy.

We can also look at a composition hierarchy [rom a different point of view.
Together with the relations on which it is based, it forms a graph. Each node in
this graph is a schema, and each link is a predicate. The graph forms a closed
world in the sense that it contains all and only those predicates that are true.

Any predicate which is not in the hierarchy is false in this world. Figure 2.1A, for
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instance, shows an  example from the sketch map world.

Pari -of (shore ,geo —system ) is true, but Part—of ( tain ,road -ay ) is

false. The graph can therefore be seen as a model constraint graph. The schemata

are the variables, their label the domain.

An interpreted image with schema instances at different levels of composi-
tion consists of an interpretation graph in which the nodes are schema instances
and the links represent constraints between these instances. Each image primitive
is represented by one or more instances at different levels of composition. For
instance, in Figure 2.1A an image primitive interpreted as a mountain will also
depict an instance of 2 mountain-range at the next level up, and an instance of a
geo-system at the level beyond that. These instances are all part of an interpreta-
tion graph. This graph is constructed by a composition process that operates
along the composition/aggregation dimension. We will discuss this process in the

control section of this chapter.

- Discrimination/ Generalization

Image primitives may be ambiguous when it comes to interpreting them.
Suppose a particular image primitive p can be interpreted by each one of two
different schemata A and B. In the hypothetical approach, we would have to
instantiate each of these schemata as a possible hypothesis. The ambiguity
approach, on the other hand, requires at least one additional schema that can

represent p in a non-hypothetical way. This schema, A /B, represents intension-
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ally the set consisting of A and B,

Figure 3.1 shows a simple OR graph consisting of A /B and its elementary
schemata. We call this graph a discrimination graph. Each link can be thought of
as the constraint necessary to specialize A /B in‘to one of the schemata it inten-
sionally represents. If we follow the principle of lels.st commitment, then p will be
represenied at first as an instance of A /B. If a constraint represented by one of
the arcs eminating from A /B is found then 4 /B will specialize into the schema

at the tail of the arc.

The structure of the discrimination graph determines whether the system
can use the ambiguity approach at all times during the interpretation process.
For instance, by means of the diserimination graph in Figure 3.1 the ambiguity
approach can be used to interpret p. This is the case, because both the possible
interpretations for p and all their possible combinations are explicitly represented
in the graph. Figure 2.5 is an example of a discrimination graph for which this is
nol the case. In this example, p is a closed line segment which depicts either a
road, coastline, or lakeshore. Initially p can be interpreted as an instance of a
road/shore schema. However, il at a certain point in the interpretation process,
the constraints are such that lakeshore and road are the only possible interpreta-

tions then we are in trouble. There is no schema which
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uniquely represents the combination road/lakeshore. As a rzsult we have to

represent p as a road/ shore with two possible (hypotheticzl) interpretations.
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Figure 3.1: A simple discrimination graph

The structure of the discrimination graph thus determines what the
approach to the ambiguity problem must be. If p has n possible interpretations
and we construct a two-level discrimination graph with a source node which
intensionally represents the n interpretations then we opt for an approach
which is mainly hypothetical. If, on the other hand, we construct a discrimina-
tion graph which not only represents the n interpretations but all possible com-
binations as well, then we opt for the ambiguity approzch. As well, we can con-
struct a graph which constitutes a compromise betwecn the two approaches. In

Chag:=r 4 we will see that Mapsee-3 does the latter.
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The idea of discrimination graphs is not new. They are identified in early Al
systems such as EPAM (Feigenbaum, 1963; Simon and Feigenbaum, 1964). In
Mapsee-3, their use is therefore not novel in concept, but in application: the
representation of visual interpretations that are hypothetical and ambiguous. The
term discrimination was chosen because of its application. In Mapsee-3, the graph
is used to visually diseriminate between different schemata. Because context is
used as a diseriminating factor, one way of looking at the discrimination graph is
to see it as a similarity graph. The links in the graph represent similarity in
appearance hetween the schemata represented. If we replace A /B in Figure 3.1
by the schema shore , A by coastline, and B by lakeshore then we have created
the diserimination graph shown in Figure 2.4. In sketch maps a shore, lakeshore,
and coastline are all depicted by a closed line segment. Only by taking the con-
text into consideration can we discriminate between a coastline and lakeshore. If
the shore surrounds a landmass it becomes the former, if it surrounds a water-
boady it becomes the latter. Thus. diserimination comes close to what Brachman
(1982) ealls “value restriction”. However, discrimination graphs distinguish them-
selves lrom specialization hierarchies in that there is no universal implication. An
object class may appear in many different ways in the image. In the sketch map
world, for instance, a road may be depicted by many differently shaped line seg-
ments. The line segment may be closed, or it may run off the picture frame on

one or both sides.

The Mapsee-3 interpreter expects each discrimination graph to be orthogonal

to the composition hierarchy; that is, each discrimination graph is located at a
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particular level of composition. This is done to keep the system as modular as
possible. Orthogonality can be easily achieved because of the additional require-
ment that the leal nodes of the composition hierarchy are equidistant [rom the
top node. For compesition hierarchies that do not satisfy the latler requirement,
we can create dummy schemata at the missing levels. Although these dummy
schemata are essentially undefined interpretations, the system will treat these

schemata as being redundant, and it can disregard their presence.

As mentioned before, a schema instance's interpretation is expressed by one
of the instance's attributes, called its label. The main advantage of such a
representation is that refinement of interpretation of a particular primitive does
not result in a restructuring of the interpretation graph. For instance, in Figure
2.1B, a primitive depicting a shore is represented in the interpretation graph as
an instance of a shore and is labeled shore as well. If the interpretation needs to
be refined to coastline then all we need to do is replace the label shore by the
label coastline. This leaves the value of the composition attributes of the
instance unchanged. Thus, the composition and discrimination process operate
independently from cach other. This results in modularity in control, which the

Mapsee-2 systemn did not have.

A last point with respect to discrimination graphs is that many nodes do not
represent natural object classes. The road/shore object class in Figure 2.5 is such
an example. The graph therefore consists of a natural and an unnatural consti-

tuent. The subgraph containing the shore, coastline, and lakeshore forms the
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natural constituent in Figure 2.5. Natural constituents have to be provided by
the user. However, in order to take the burden away from the user, we can pro-
vide algorithms by means of which we can automatically construct unnatural
constituents. In section 3.4, we will discuss the algorithms for constructing the

unnatural constituents in the discrimination graphs of the Mapsee-3 system.

- Image-to-scene mapping

As mentioned before, composition hierarchies do not cross the image/scene
boundaries. The connection between image and scene is provided by the relations
“depicts”” and “depicted-by". In general, image primitives constructed at dilferent
levels of detail in the image can depict schemata at different levels of composition
in the scene, as in the system created by Browse (1082). In Mapsee-3, image prim-
itives depict schemata only at the composition leal level in the sceme. At this

level each schema instance is depicted by one image primitive.

3.3. Control

In its most rudimentary form, Mapsee-3 is a sequence of three processes: seg-

mentation , image —to —scene mapping , and inlerpretation .

Segmentation is the process by which primitives are created from input data.

These primitives serve as a basis for interpretation and they are presumed
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correcl. We thus avoid a number of low level vision issues which, as mentioned

before, this dissertation does not address.

Discrimination graphs are based on a categorization of image primitives with
respect Lo a particular characteristic {e.g. shape). Image-to-scene mapping puts
each image primitive in such a category and it creates an instance of an abstract
schema at the composition leal level which uniquely represents the particular

category to which the primitive belongs.

This dissertation focuses on the interpretation process. It ensures that each
image primitive is represented at all levels of composition and with an appropri-
ate interpretation. An interpreted image consists of an interpretation graph in
which each node represents a schema instance and each link a constraint between
two different instances. Because a schema can be an object class or a relation of

any arity, the graph is actually a super-graph.

Interpretation consists of two processes: composition and discrimination .
Composition represents each image primitive at all levels of composition, while
discrimination ensures that each image primitive is represented at an appropriate
level of discrimination at all times. As mentioned before, another way of looking
at composition and discrimination is to see composition as the process that con-
structs the interpretation graph and discrimination as the process that propagates

consistency over this graph.
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Both composition and discrimination are modular procssses with composi-
tion being the only process, that operates in the composition/aggregation
dimension. The same holds for the discriminaticn process in the
discrimination/ generalization dimension. The modulasity of both processes is
further enhanced by the fact thzt they cannot directly invoke each other. Two

different queues serve as a buffer between the processes.

Figure 3.2 shows a flow chart of the control structure of the interpreter.
Interpretation takes place in cycles. During each cycle, one schema instance is
matched and linked with a schema instance at the next hipher level of composi-
tion. Oum;-msition is subdivided in two stages: completion and assembly.
Discrimination, a constraint propagation process, is implemented by means of a
hierarchical arc consistency algorithm which is invoked twice during an

interpretation cycle.

\ I
d%‘ Completion — | HAC Assembly HAC

L——= fallure

-% EUCCass

Figure 3.2: Flow chart of the interpretation process
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In this chapter we look at composition and discrimination from a conceptual
point of view. The actual implementation is discussed in Chapter 4. A formal

description of the interpreter is provided in Appendix E.

3.3.1. Composition

Image-to-sccne mapping results in 2 number of schema instantiations at the
composition leal level, one for each image primitive. The objective of composition
is to represent these leal level instances at each of the other levels of composition,
thereby establishing different relationships between the instances. Composition is
a data-driven process. During each cycle of interpretation one schema instance is

represented at the next higher level of composition.

Composition is subdivided in two stages: completion and assembly. The rea-
son for this subdivision is that for one instance to be a component of a super-
instance both instances must match in two different ways. First of all, the lower
instance must establish a relationship with snotl‘ler instance at the same level of
composition, which has already been establisheci as a component of the super-
instance. Sccondly, the labels of the lower instance must be compatible with
those of the super-instance. The first match is achieved by the completion pro-
cess, the second match by the discrimination process. Once both types of match
have succeeded, the lower and super-instance can be linked in an operation taken

care of by the assembly process.
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In order to obtain a match between an instance and a super-instance the
completion process invokes the latter’s methods. These methods are [unctions
which are stored as the value of the “method” attribute of the super-instance's
parent. Once invoked, these functions search for 2 relationship between the com-
pleting component and an instance which is already established as a component
of the super-instance. These functions are specific for the domain in which they
operate and together form a domain-dependent aspect of the representation

which the user must provide when creating the knowledge base.

The list of schema attributes described in section 3.2.1 show that each
schema instance has a parent and that each schema is embedded in a composition
hierarchy. This hierarchy can be followed by tracing the schema’s component

attributes. %

The first step in the completion of a schema instance S; is to fetch the
super-component(s) of its parent S. Let us assume for the moment that there is
only one super-component, which we call SS. The objective of the completion
process is to find an instance S5; of S5 of which 5; can become a component.
SS; is a valid super-component for S; if an existing component C; of SS; can be
found that can enter in a relationship with S;. Schema S5 has methods witk (ke
power to search for and establish such relations. The completion process can

invoke these methods when it attempts to complete 5; to SS;.

In the case that SS does not yet have a single instance then the completion

process has the power to create 2 new instance S5; which becomes a completion
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candidate for S;. The same is done when 5; fails to match with any of the exist-

ing instances of SS.

An example will be helpful to further clarify composition. Suppose, we want
to interpret a simplé sketch consisting of two towns connected by a road (Figure
3.3). We will be using the composition hierarchy in Figure 3.4. In this example we
bypass the fact that there exists a relational level in between the two object class
levels. The segmentation process has constructed three primitives: two blobs and
a line. We assume that the blobs serve as a cue for town and line for road. As a
result, two town instances (town-1 and fown -2) are created and one road
(road -1). The details of the composition process will be somewhat dependent on
the sequence in which we complete these instances; the final result, however,

should always be the same.

Blob-1 Blob-2

% &

Line-1

Figure 3.3: Two towns connected by a road
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Road-system

Town Road

Figure 3.4: A composition hierarchy for Figure 3.3

If we complete fown —1 first, then town —1 becomes a component of road-
system. No road-system thus far exists, so we create one: road —sysicm —1 of
which fown —1 becomes a component. The completion of read —1 results in the
invocaticn of road-system’s methods. Road-system owns several metkods, in
particular one that establishes whether one of read—1's ends is close to
town —1's location. If this is the case, then a spatial relation “‘road-townp’ is
established between road —1 and town —1 and road —1 becomes a component of

road —system —1.

If, however, we complete town —2 before road —1, then the compositicn

process follows a different course. If we complete fown —2 to road-system then
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the road-system will find that it has no method to establish a relationship
between fown-1 and town-2. As a result, it creates a new instance
road —system -2 ol which fown -2 becomes a component. If we now complete
road -1 then the road-system finds that road -1 can be a component of both its
instances. Since road -1 can be a component of one road-system instance only,
road-system will merge road -system -2 and road -system-1 into one new

instance road —system -1 of which road -1 becomes a component.

Composition becomes more complex when discrimination graphs get
involved. Figure 3.5 illustrates such a situation. We will use this
composition [discrimination graph to reinterpret Figure 3.3 with the difference
that we now take line-l to be an ambiguous feature serving as a cue for a road
and a river. Using the principle of least commitment, line-1 causes an instantia-
tion of road/river: road [river-1. If we complete road /river -1 it will complete
to road/river-system. With not a single instance created at the second composi-
tion level, road /river—1 becomes a component of road /river —system-1.
Town -1, however, wants to complete Lo road-system. Now it is not sufficient to
say that because road-system has no instances, we must creale a new one.
Town -1 can become a component of road-system, as well as of any generaliza-

tion or diserimination (il there are any) of road-system.
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Figure 3.5: A composition hierarchy and discrimination graphs

at two levels of representation

Abstract schemata such as road/ river-system can inherit the methods of
their descendents in the discrimination graph under certain circumstances. We
will discuss these inheritance rules in section 3.4.4. It is suffcient for the
moment to assume that road/ river-system inherits road-system’s “‘road-townp™

method. Completion of fown —1 to road/river-system enables the lztter to use
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road-system's “‘road-townp” method to establish the T-junction. As a result

town ~1 becomes a component of road [river —system ~1.

From this example we can infer that an instance does not neccssarily com-
plete to an instance of its super-schema. Given an instance S; of a schema S,
what is the set of schemata to which S; can potentially complete? Let SS be the
super-schema of S in the composition hierarchy. Let the discrimination sel of §§
be all the possible discriminations and generalizations of S in the discrimination
graph in which § is embedded. We include S5 in this set and call the set D . Let
the superdiscrimination set of 55 be the set of all schemata which have an ele-
ment of D as a possible discrimination. We call this set SD. The completion set
for 5; are the instances in D u SD. If no matching instance in this set can be

found then S; becomes a component of 2 newly created instance of S5.

As an example consider the discrimination graph in Figure 3.6. S5's discrim-
ination set is given by the dotted line, the superdiscrimination set by the dashed

line. The arrows show the direction of discrimination in this graph.
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= discrimination set

------- = guperdiscrimination set

Figure 3.6: A discrimination and superdiscrimination set

We can also infcr from the example in Figure 5.5 that completion proceeds
in a non-hypothetical manner. Thanks to the exisience of abstract schemata
such as road/river and road/river-system there is no need to create two
hypothetical instances road —1 and river—1 and to pursue them as such. Thus,

no hypotheses can enter in the composition/ aggregation dimcasion.

Completion dces not actually link §; and 5§;, but this is done during

assembly which is postponed until a compatbility chcck has been made
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between the label(s) of S; and S5;. Such a compatibility check involves opera-
tions in the discrimination/generalization dimension and belongs therefore to the

domain of the discrimination process to which we turn next.

3.3.2. Discrimination

In section 3.2.2, we looked at discrimination graphs as a representation for
“look alike'" schemata that could be discriminated only when placed in a proper
context. Upon instantiation a new instance inherits the schema label of its parent
as label. Thus, in Figure 3.5 road /river -1 will start out with road/river as label
and fown -1 with town as label. The discovery of a relation “road-townp" causes
both instances to become a component of the same super-component:
road [river —system —1. In the model constraint graph represented by the compo-
sition hierarchy in Figure 3.5, Parl —of (town ,road [river —system ) is false. Com-
patibility of labels is achieved by replacing the labels of road /river —sysfem -1
and road [river -1 by one of their successors in the discrimination graph: road-

system and road.

We will formally describe and treat discrimination as a constraint satisfac-

1
tion problem. In the following section we will therefore describe a general algo-
rithm that deals with constraints organized in hierarchical form, as they are in

the discrimination graph.
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3.3.2.1. Hierarchical Arc Consistency

In section 2.3.2.3 the Constraint Satisfaction Problem (CSP) was defined as
a situation with n variables each with a domain and a set of constraining rela-
tions. A solution to this problem consists of all possible n-tuples such that each
n-tuple is an instantiation of the m variables satislying the relations. Several
kinds of algorithms were discussed. Some algorithms, such as depth-first back-
track always solve the problem, whereas others such as network consistency algo-

rithms, do not provide that guarantee.

The problem with algorithms such as depth-first backtrack is that they are
exponential in the domain size which is particularly damaging in computational
vision problems where domain sizes are generally very large to begin with. Net-
work consistency algorithms such as arc consistency are considered to be useful

because they are generally polynomial in the domain size.
Additionally, arc consistency is attractive, because:

1. In the best possible case, arc consistency solves the CSP. If there is only one n -
tuple satisfying the relations for all n variables and if the &k -ary (k <n) constraints

are suffizcicnt to propagate this solution, the CSP is solved.

2. In the worst possible case, arc consistency does not solve the CSP, but can serve

as a useful preprocessor for depth-first backtrack.

3. Arc consistency algorithms are simpler than depth-first backtrack. They have
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been well researched, and their complexity is known (Mackworth and Freuder,

1982).

4. The discrimination process can be implemented entirely by means of an arc con-
sistency algorithm. This process is the only one to deal with the
discrimination [generalization dimension. Hence, there is modularity in both

representation and control.

The first two arguments are efficiency arguments. The last two arguments,
however, strongly support the conceptual clarity of the system. For this reason,
Mapsee-3 uses an arc consistency algorithm to do constraint propagation. How-
ever, in regular arc consistency algorithms the domain consists of label sets. This
would not suffice for the discrimination graphs i, which labels are organized in a
hierarchical form. Mapsee-3 therefore uses hierarchical are consistency, a

hierarchical version of arc consistency.

Hierarchical arc consistency is a network consistency algorithm for hierarchi-
cally organized domains. The objective of a hierarchical representation is that for
each variable instantiation we no longer have to explicitly represent all possible
labels. This set is now represented implicitly by one or more abstract labels. The
particular algorithm we will be discussing in this section is called HAC-3, a
derivative of AC-3 described in Mackworth (1977¢). Hierarchical are consistency
(HAC) is formally described in a concurrent paper (Mackworth, Mulder, and

Havens, 1985). As HAC-3 is used io Mapsee-3, we will discuss this topic in some
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detail here as well. In this section AC-3 and HAC-3 will be described informally.

A lormal description is provided in Appendix A.

AC-3

We represent the CSP as a graph G with variables V', eack with a domain
D. G is consistent if all nodes and arcs are consistent. A node V; is consistent if
the predicates applicable to V; are true for all labels in D;. The arcs are con-
sistent if for each are (1,5 ) each of the labels in D; is consistent with at least one
label in D; . 1'

AC-3 consists of two steps. In the first step, the consistency of each node
and arc is tested. All inconsistent labels are deleted. In the second step all arcs
pointing at a variable in the domain of which labels were deleted are revisited.
Step 1 is repeated for each of those arcs. This process continues until all nodes

and arcs are consistent or until the domain of each variable is empty.

AC-3 is a very intercsting algorithm for applications in computational vision.
It does not build an explicit data structure for administering the compatibility
between different labels of adjacent variables in the constraint graph, but instead,
AC-3 searcies for a compatible label in the domain of an adjacent variable, ter-
minating the search as soon as such a label is found. No data structure is created
for administering the compatibility. The worst-case complexity of AC-3 is linear
in the number of constraints and quadratic in the domain size (Mackworth and

Freuder, 1982).
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In the best possible case for AC-3, all but one label of each variable will
eventually be deleted. In the general case, AC-3 is not guaranteed to solve the
constraint satisflaction problem. However, as discussed in section 2.3.2.3 AC-3isa
useful preprocessor by means of which we can reduce the domain size before

applying depth-first backtrack.

HAC-3

In AC-3 the domain of a variable is organized as a set of labels. Each instan-
tiation of a variable has this set or a subset of these labels in its domain. In
HAC-3 the domain D is organized in a hierarchical form. Each node in this
hierarchy stands for a label that is unique in D;. The labels at the leaves of the
hierarchy are the same (basic) labels that were represented in the variable domain
in AC-3. The source node of the hierarchy intensionally represents the complete
set of labels at the leaves of the hierarchy. Each intermediate node represents a

subset of this set.

HAC-3 is also a two-step algorithm. In the first step the hierarchical arc con-
sistency of each node and are is tested. An arc (i,5) is hierarchically arc con-
sistent, if each label in [ is hicrarchically arc consistent with at least one label
in D;. A label pair (m ,n) is hierarchically are consistent if for all descendants d
of m in the hierarchy P(d,n) is true. For each label pair (m,n) that is not
hierarchically are consistent we replace m by those descendants d in the hierar-

chy such that (d,n) is hierarchically arc consistent. The second step in HAC-3 is
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similar to the one in AC-3.

In both HAC-3 and AC-3 the final label of :i variable is determined entirely
by the constraints present in the image. In HAC-3, however, the final label need
not be a leaf label in the discrimination graph but can be any intermediate label
as well. This appears to be a natural phenomenon. An example illustrates this.
Under ideal observation conditions a human observer can specialize a picture of a
car up to its make and year. Such a recognition, however, would not be possible

for the same car covered with snow.

This is a major advantage of HAC-3 over AC-3 and depth-first backtrack
where a unique final label is not possible unless it is a leaf label. In natural image
understanding one cannot always discriminate down to the leaves of the graph as
the snow covered car demonstrates. HAC-3 mimics this behavior. Another advan-
tage of ILAC-3 over AC-3 is one of efficiency. Compared to AC-3 the domain size
of HAC-3 is generally smaller. As a result, there can be an increase in time
efficiency. In Chapter 5 we will discuss some experimental data obtained from
Mapsee-3 which actually show an improvement in time efficiency of HAC-3 over

AC-3.
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3.4. Setting up a Knowledge Base for a Particular Domain

We have now discussed the Mapsee-3 representation and control. However,
we have not yet shown how to actually construct a knowledge bhase for a particu-
lar domain. One parl of the knowledge base has to be provided by the user,

whereas the other part is automatically constructed by the system.

The very strict modularity requirements of the Mapsee-3 system impose a
number of restrictions on the ways in which we can construct the diflerent
knowledge  representation  dimensions.  Mosl  important  of all,  the
diserimination/generalization dimension must represent the knowledge about pos-
sible ambiguities in interpretations. In order to preserve modularity in representa-
tion and control we must prevent hypothetical interpretations from being intro-

duced along any of the other dimensions,

In the image-to-scene dimension we have to ensure that for every image
primitive there exists an (abstract) schema in the scene which intensionally
represents all possible interpretations of this primitive. If we map the primitive
into this schema, we obtain an interpretation that is ambiguous but is not

hypathetical.

In the composition /aggregation dimension we have to ensure that the map-
ping of an interpretation at one particular level of composition never leads to an
instantiation of a schema at an adjacent level that is hypothetical. This can be

prevented if we ensure that there are no composition relations of the “may-be”
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kind. In the sketch map world, for instance, a road is a mandatory component of
a road-system. A primitive interpreted as a road must therefore be part of a
road-system as well. IT Lhe road interpretation is non-hypothetical then the road-
system interpretation eannot be hypothetical either. Because the composition pro-
cess in Mapsee-3 is entirely data-driven, all “part-of” relations in the Mapsee-3

implementation are of the “must-be’ kind.

Given all these constraints on the structure of the knowledge base, its con-
struclion is not a trivial matter. In particular, the presence of schemata which do
not represenl natural concepts complicate matters. Both natural and unpatural
coneepts have Lo be embedded in a composition hierarchy. In order to relieve the
user from the burden of having to construct the complete knowledge base, we
have designed a number of algorithms that enable us fo automatically construct

the unnatural constituent of the knowledge base.

In the next three sections, we discuss the construction of the Mapsee-3
knowledge base. In the first section we discuss the information that has to be pro-
vided by the user and the constraints which must be satisfied. In the second sec-
tion we discuss the construction of the diserimination graphs located at the leaf
level of the Mapsee-3 composition hierarchy. In the third section we discuss the

algorithm by means of which the remainder of the knowledge base is constructed.
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3.4.1. The Basic Composition Hierarchy and Diserimination Graphs

Mapsee-3 requires the presence of a segmentation process that cumulates in
the formation of a number of (image) primitives. For any particular domain the
user must categorize the primitives with respect to one or more characteristics
that are of interest (e.g. shape, texture). Each primitive category must map into a
particular set of interpretations. This mapping scheme must also be provided by

the user.

LEach interpretation is represented as a schema. The user must provide the

information for all natural schemata as follows:

1. An internal structure for each schema. This structure comsists of a list of
attribute-value pairs which conforms in format with the syntactic rules for schemata
provided in Appendix D. The user is also responsible for providing the schema’s pro-

cedural knowledge, its methods,

2. The composition hierarchy and discrimination graph(s) in which these schemata
arc embedded. [n an aggregation direction only “must-be-part-of™ links are allowed.

Discrimination graphs must be orthogonal to the composition hierarchy.

3. The set of image primitive categories depicted by each schema and vice versa.

The reader in need of a concrete idea of what the Mapsee-3 composition

bierarchy and discrimination graphs look like at this stage is invited to look
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ahead to Figure 4.1. As mentioned before, the image primitives in Mapsee-3 map
into schemata at the composition leal level only. This is not a general constraint

on the knowledge base but it simplifies its construction.

From here on we will refer to a natural schema as a basic schema. The com-
position hierarchy containing basic schemata is referred to as the basic composi-
tion hierarchy. All discrimination graphs embedding basic schemata are basic
discrimination graphs. Unnatural schemata will be referred to as abstract sche-

mata.

3.4.2. Constructing an Abstract Discrimination Graph at the Composi-

tion Leaf Level

While describing the concept of discrimination graphs, we pointed out that
they can represent any approach, be it a hypothetical approach, an ambiguity
approach, or any position in between. The Mapsee-3 system takes an intermedi-
ate position that comes very close to an ambiguity point of view, closer than any
of the vision systems reviewed in Chapter 2. All the different sets of basic
interpretations that can arise for any image primitive category are represected by
a single schema. At the start of the interpretation process, each primitive can
therefore be represented by a single (abstract) schema. However, not all combina-
tions of basic interpretations are explicitly represented. In intermediate situations

in the interpretation process, a primitive sometimes depicts more than one
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interpretation.

The Mapsee-3 discrimination graphs are OR graphs which are binary in a
discrimination direction. Neither condition is a general constraint on the
approach. The only reason for imposing these constraints is to obtain an improve-
ment in the time eflicicncy of the network consistency algorithm operating on
these graphs. The leaves of the graph represent basic schemata, whereas most of
the other nodes in the graph represent abstract schemata which intensionally
represent the basic schemata that descend from them. The network consistency
algorithm operating on the graph follows a principle of least commitment. For
this reason the set of basic schemata intensionally represented by each node must

be a subset of the set represented by its sncestor(s).

The first discrimination graphs to be constructed are the discrimination
graphs at the composition leaf level. These graphs come first, because the compo-
sition leaf level is the point of entry in the scene domain for the image-to-scene
mapping process. At this point, only the basic discrimination graphs are given as
they were constructed by the user. In Figure 4.4, level 1 is the composition leaf
level and contains only one basic discrimination graph that consists of more than

one node. The abstract discrimination graphs will become an extension of these

graphs.

No abstract schemata have yet been created. As a first step, we take each
primitive category and create an abstract schema which intensionally represents

the set of basic schemata depicted by the category. In the example in Figure 3.7,
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for instance, we have d the exist of four different primitive categories:

one depicts a town, a second one depicts 3 road or shore, a third one a road,
river, or shore, and a fourth one a road or river. As the town is a basic schema
which already exists, we only bave to create three abstract schemata: a

road/shore, a road/river/shore, and a road/river.

Next, we create abstract discrimination graphs which are binary OR graphs.
These graphs are constructed such that the source nodes of the basic discrimina-
tion graphs become the leaves and all abstract schemata are contained in the
graphs. As well, the graphs are constructed such that the descendants of each
abstract schema represent an exclusive subset of the set of basic schemata
represented by their ancestors. The latter has also been motivated by an efficient

operation of the network consistency algorithm operating on the graph.

The algorithm that constructs the abstract discrimination graph at the com-

position leafl level consists of three steps:

Step 1. Order the abstract schemata by the size of the set of basic schemata they

intensionally represent. Call this ordered list AS.

For each element ¢ in AS do:
Find the schema that represents the largest subset of & . Call this schema 3. If

the setsize of 5 is less than half the size of &
\

then execute step 2,

clse execute step 3.
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Step 2. Split the set represented by # into two disjoint subsets of approxi-
mately equal size, and create two new abstract schemata 53 and 5 ,. Each
of these schemata represents one of the subsets, Create a discrimination
link between s and its two siblings and insert the siblings into AS at a

location that corresponds to their setsize.

Step 3. Find the schema 8, representing the exclusion of the sets
represented by s and s,. If this schema does not exist
then create it and insert it into AS at the proper location.

Create a discrimination link between 8 and its siblings 8 and s,.

The graph that results from this construction is not necessarily unique. One
may find more than one ;. In this case one can arbitrarily take one of these

schemata to be 5. Depending on the s, chosen the result will be different.

Figure 3.7 is a simple example of the construction of discrimination graphs.
The basic schemata in this figure are: fown, road, river, and shore. The
abstract schemata are (ordered by setsize): road /river [shore, road [shore , and
road [river. Two discrimination graphs result from this construction. One con-
sists of a single schema: town . The other contains all other schemata. Note the
ambiguity in the construction. Road [river [shore could also have been linked

with road [river
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and shore instead.
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Figure 3.7: A construction example of a discrimination graph

3.4.3. Embedding Abstract Schemata in a Composition [lierarchy and Con-

structing Abstract Discrimination Graphs at Multi-levels of Composition

Thus far we have created abstract discrimination graphs at the composition
leaf level only. For modularity reasons alone, it is necessary to embed each of
the abstract schemata in these graphs in a composition hierarchy as well. If this
were not the case, then we would face the problem that interpretations could
never be developed zlong the composition/aggregation dimension without

becoming hypothetical. Figure 3.8 can serve as aa illustration of this problem.



iG3

/

e __,,...----‘? Hate’r‘body

=
;!'reo-system .-'::- !
| .
‘h““‘ I’J
| -] La..c}:‘na ss
level 1+1 l 1 1f
/ A
/ ____,...-—--'Q Lakdshore
;! —— !
m—
Shore é:: . ./
- r_r
‘.‘\ {_
R“
.

f
® Coszgl ine

lavel 1

Figure 3.8: A one-to-one mapping situation
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Figure 3.9: A many-to-one mapping situation

Suppose that coastline and lakeshore are basic sd:emgta e_mbeddcd in a
basic composition hierarchy. Coastline is a mandatory component of landmass
and likewisc lakeshore is a component of waterbody. Also suppose that shore is
an abstract schema which intensionally represents coastline and L:keshore and
we have Just constructed the abstract discrimination graph containizg shore,

coastline , and lakeshore . Shore is not yet in a composition hierarchy. Without a



Chapter 3 106

super-schema there is only one way to represent shore at the next higher level.
We replace shore by its two (hypothetical) descendants both of which have a
super-schema. However, this means that shore becomes a component of two
hypothetical super-schemata: landmass and waterbody, only one of which can be
the correct one. In other words, without a super-schema for shore we can only
represent shore at a higher level by introducing a hypothetical schema. The only
way to avoid this problem is to find or create a super-schema at level {+1 of

which shore is a mandatory component.

In the composition/aggregation dimension basic schemata map from one
level of composition to the next one up in one of three ways: one-to-one, many-
to-one, or one-to-many. Figure 3.8 illustrates a one-lo-one mapping situation.
Each of the shore’s descendants maps into a different super-schema. Shore can-
not map into either landmass or waterbody without introducing a hypothetical
schema. We must therefore create a new (abstract) schema at level [41
(geo —system ) which intensionally represents landmass and walerbody. Shore
becomes 2 mandatory component of geo -system . Using the algorithm for creat-
ing abstract discrimination graphs we create a new abstract discrimination graph
at level [ +1 which contains geo—system , landmass, and waferbody. We thus

effectively project the discrimination graph at level [ onto level [ +1.

Figure 3.9 illustrates a many-to-one mapping situation. Both of shore's des-
cendants map into one super-schema, geo —system . In this situation there is no

need to create a new abstract super-schema for shore . All of shore 's hypotheti-
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cal interpretations are a component of geo—system. Shore must therefore

become a mandatory componsnt of geo —system zs well.
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Figure 3.10: A one-to-many mapping situation

Figure 3.10 illustrates the most complicated mapping, a one-to-many map-
ping. One of S's descendants, L;, is a2 mandatory component of two super-
schemata: SL; ; and SL;,. § cannot become a component of any of the SL
schemata without introducing hypothetical schemata. However, the creaticn of

just one super-cchema for § at level [+ 1 is an inadequate solution as well.
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Once again, the reason is modularity.

As mentioned before, an interpretation is represented in Mapsee-3 as a
schema-instance. Each instance is embedded in an interpretation graph which
reflects the structure of the composition hierarchy in which the instance's parent
schema is embedded. For example, an instance of schema L, in Figure 3.10 is
embedded in an interpretation graph which, among other things, contains an
instance of schema SL, . An instance of schema L;, on the other hand, will find
itsell in an interpretation graph with an instance of schema SL; ; and an instance
of schema SL; 5. As the interpretation graph reflects the composition hierarchy,
the composition process is responsible for constructing and altering the structure

of this graph.

The discrimination process, on the other hand, can only operate in the
discrimination/generalization dimension and it cannot change the structure of the
interpretation graph. In order to preserve modularity in control, we have to
prevent that an operation in the discrimination/generalization dimension necessi-
tates a change in the structure of the interpretation graph. This would happen if
S had only one super-schema SS. Il during interpretation a schema-instance
with label S refines its label to L;, then S's super-component SS would be
required to split into two instances, one with label SL; ;, and another with label
SL; 5. This split would require a change in the structure of the interpretation
graph. S must therefore have at least as many super-schemata as any of its des-

cendants in the discrimination graph.
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The same modularity requirement is reflected in the comstruction of the
discrimination graphs at level / 4+1. The only way to avoid changes in the struc-
ture of the interpretation graph is to ensure that all super-schemata of descen-
dants from S generalize to at least one super-schema of S. In the reverse direc-
tion each super-schema of S must map into one super-schema of each of S's des-
cendants. In this way it is guaranteed that a label refinement in an interpretation
graph which contains instances of 5, SS,, and SS, always enables us to find new

labels for each of these instances without having to change the structure of the

graph.

We will now discuss the algorithm by which the projection of an abstract
schema onto level [ +1 and the subsequent construction of a discrimination graph
at that level can be done. The reader can verify that for the basic mapping situa-
tions illustrated in the Figures 3.8 and 3.10 the application of this algorithm
results in the situation illustrated in these figures. The situation in Figure 3.9 is
dealt with correctly as well. However, a redundancy is created because shore
becomes a component of a newly created (abstract) generalization of geo —system

rather than geo —syslem itself.
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The Projection Algorithin

- Subdividing the discriminalion graphs into sublrees

The first step in projecting a discrimination graph from level | onto level
I 41 is a subdivision of each discrimination graph into two-level subtrees. Each
node in the graph and its direct descendants in a discrimination direction form a
subtree. The next step is to assign a level number to each node in the discrimina-
tion graph. The leaves of the graph become level 1, their parents level 2 etc. In
case of conflict the highest level number prevails. The projection takes place sub-
tree by subtree, beginning with all trees with source node at level 2, because all
leaves at level 1 are already contained in a basic composition hierarchy. Next the

trees at level 3 ete.

- Projecting subtrees from composition level [ Lo level I+1

Each subtree ST consists of a source schema S and a set of leaves L. L has
g elements: L,.....L . A discrimination link d; ; connects S with L; (1<i<gq).
n; ‘‘must-be-part-of” links eminate from each L; (1<i <g). The set of super-
schemata in the composition hierarchy of L; we call SL;. SL; has r elements:

SL;

8 S

«8L; o (r = n;). Figure 3.11 shows the situation.
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'_/" level 1

Figure 3.11: An illustration of the projection algorithm

The projection algorithm consists of two steps:

1. Create a new set of super-schemata S5 and create a ““must-be-part-of*’ link

between § and each elemcat of §5. S5 has ¢ elements: §5,,.....,55, (f = max

n; {1=isq}).

2. For each set SL; (1=i=gq) do:
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Create new discrimination links cting SL; with SS. Each of these links
represents d; ; at level [ +1. The elements in both sets are connected in the fol-
lowing way:

SL; y connetts with S, SL; 5 conmects with SS,,....,5L; , connects with
S5, .
Hr <t

then create additional links that connect SL; , with S5, for each possible

value of k (r<k <t).

Figure 3.11 shows there is a one-to-one mapping between S5 and SL; for
the elements 1 - (r-1), and a one-to-many mapping from SL; . to the elements
S5, - §5;. This algorithm guarantees that there is 2 unique mapping between 5§

and SL; (1<i<gq) for each d; ;.

By means of this algorithm one automatically constructs abstract composi-
tion hierarchies and abstract discrimination graphs at multiple levels of composi-
tion. The only complication with respect to Mapsee-3 is that the “must-be-part-
of" links themselves are represented as schemata. In Mapsee-3, object class levels
alternate with composition relation levels. The projection algorithm works well in
that situation, but does not provide economy of representation. Figure 3.9 is an
example of such a situation. In the projection algorithm that was actually used to
construct the Mapsee-3 knowledge base, some efliciency measures were taken.

These measures were implemented as preprocessors of the general projection algo-
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rithm and they are not essential to the general understanding of the projection
algorithm. The reader is therefore referred to Appendix C for a description of

these measures.

3.4.4. Method Inheritance

The discussion of how to automatically construct abstract schemata at
different levels of composition has now been completed. Most of the attributes of
abstract schemata are easy to generate as they depend directly on the location of

the schema in the composition hierarchy or discrimination graphs. However, this

is not the case for the schema's methods.

Many schemata own methods. As discussed before, they are used to search
for and establish relationships between components of the schema which owns the
method. Methods are central to the interpretation process because the relation-
ships they create form the constraints on the operation of both the composition
and discrimination process. In Mapsee-3 only basic schemata own methods
because they have to be provided by the user. Methods apply to one or more

schemata at one particular level of composition only.

Because of their central importance to the composition process, abstract
schemata need methods as well. Fortunately, it is possible to provide procedures
by means of which we can automatically determine whether or not a method of a

particular schema can be inherited by any of its generalizations in the
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discrimination graph. The goal of methods is to create relationships between
instances at a lower composition level. Two or more instances can enter in a rela-
tionship if the primitives depicted by the relationship satisfy particular con-
straints, and if the labels of the respective instances are not neutral with respect

to each other. An example will illustrate how to determine inheritance.
1

In Figure 3.12 we are faced with the question whether or not a T-junction
can exist between the line segments shown. The spatial configuration of the line
segments allows for the formation of such a junction. Most spatial relationships
in the Mapsee-3 implementation consist of T-junetions of one form or another.
The stem of the T-junction has three possible interpretations: road, river, or
mountain . For the bar, there exist only two possible interpretations: roed, or
river. For any pair of interpretations, the Mapsee model constraint graph deter-
mines whether particular pairs of interpretations can coexist under the spatial
situation shown and whether a T-junction can be formed. Coexistence and T-
junction formation rules can be expressed by means of a matrix, an example of
which is shown in Table 3.1. The possible interpretations for the stem of the Tee
are the rows of the matrix, the bar interpretations form the columns. Each cell in

the matrix can assume one of three values:

+ if the interpretation in the corresponding row can form a T-junction with the

interpretation in the corresponding column.

- il the interpretation in the corresponding row cannot coexist with the interpreta-

tion in the corresponding column under the spatial situation shown.
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* if the interpretation in the corrcspording row cannot form a T-junctioa, but can

coexist with the interpretation in the corresponding column.

Road/river /mountain

Road/river

Figure 3.12: An example of a T-junction in a sketch map

Road | River | Mountain | Shore Bridﬁc-side Town
Road + - - . - +
River - + + + + -
Mountain . - + - - =
Shore - - - - - -
me‘side - L L - - L]
Tow.n - - - - L] -

Table 3.1: A T-junction matrix
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Road | River
Road - -
River - +
Mountain " *

Table 3.2: A T-junction matrix for Figure 3.12

Road | River
Road —+ -
River - +

Table 3.3: The T-junction matrix for two road/rivers

A T-junction c¢an only be formed in Figure 3.12 if each of the possible
interpretations [or the stem can form a T-junction with at least one of the possi-
ble interpretations for the bar and is not indifferent with respect to any of these
interpretations (i.e. no *). Table 3.2 shows the situation io Figure 3.12. No T-
junction can thus be formed because mountain is indifferent to both road and

river .

This example shows the essence of determining whether a particular method
can be inherited by an abstract schema. Sets of basic schemata form an abstract
schema. The possible interpretations for the stem of the Tee define the abstract
schema road /river [mountain ; the bar interpretations define the abstract schema
road [river . A road/river/mountain and a road/river cannot form a T-junction.

Table 3.3, on the other hand, shows that two road/rivers can. T-junction
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methods are owned by schemata such as road-system and river-system. We can
sel up a simple procedure [or determining whether this method can be inherited
by any of road-system’s or river-system’s generalizations in the discrimination

graph.

Each method M can create a relation R at composition level . A method
M owned by a schema § can potentially be inherited by any of the generaliza-
tions G of § in the discrimination graph containing S and G. With the matrix

representation it is easy to determine whether & inherits M from §.

1. Take the set of components of G at level [ . Call this set GC'.

2. Create the set BD consisting of the union of all basic descendants of GC in

their respective discrimipation graphs.

3. Create a matrix MTR . Each row and column entry is formed by an element of

BD.

4. Fill in the values of MTR (+,-, or #) such that each row cntry represents the

source of R and each column entry the object.

5.If MTR contains no * then M can be inherited by G, otherwise it cannot.

In this example we have used a binary relation. The same procedure can be

used for n-ary relations. The matrix becomes n -dimensional in such a case.
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3.5. Discrimination Vision

We have now discussed the main features of the Mapsee-3 design. The
schema syntax provides a general format for representing knowledge about a par-
ticular domain. Composition hierarchies and discrimination graphs are useful for
many different domains. Onece the user has provided these hierarchies for a par-
ticular domain, the processes of composition and discrimination can operate on
them. The only domain-dependent aspect of the representation are the schema’s
methods, which are invoked by the composition process. However, the user has to
provide (write) them. As well, if a particular domain requires additional domain-
dependent schema attributes, it is up to the user to provide such attributes and
the retrieval [unctions operating on them. The user, however, only needs to pro-
vide the natural constituent of the knowledge base. The projection algorithms

take care of the unnatural constituent.

The objectives of the system design are conceptual clarity and efficiency.
The former objective is reached because of the efforts to keep representation and
control of the system modular and uniform. In particular, hypothetical and ambi-
guous interpretations are represented in one knowledge representation dimension:
the diserimination graphs. Efficiency results partially from the representation
chosen and partially from the algorithms used. In the interpretation graph, com-
peting hypotheses are all represented in the domain of a single variable. Invalida-
tion of a hypothesis results in only deletion or replacement of a label and not in a

major restructuring of the interpretation graph. The latter would be the case in
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an interpretation graph where competing hypotheses are represented by different

variables. Mapsee-2 was an example of such an approach.

The hierarchical arc consistency algorithm provides effliciency as well, and
does so in two different ways. First of all, the principle of least commitment helps
to keep the number of labels in the variable domains as small as possible. Furth-
ermore, hierarchical are consistency does not maintain an explicit representation
of all possible combinations of hypotheses, most of which will be eliminated dur-
ing the interpretation process. If competing hypotheses are spread over different
variables, then at the very least we have to partially represent the possible com-

binations.

The model that underlies the design described in this chapter interprets
image primitives by means of schema instances which at first have an extreme
generic and unspecified interpretation. As more and more constraints are
discovered during composition, this interpretation becomes more and more
specific until a final characterization of the scene is obtained. Because of this con-
tinuing process of interpretation refinement along a discrimination graph we call

this particular approach to model-based vision: diseriminalion vision.

Summary of Mapsee-3's main features:

1. lmage primitives are interpreted in terms of schemata which can be treated either
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a. object classes or relations with an internal structure.

b. atomic labels.

2. Three  knowledge  representation  dimensions are  distinguished:
composition/aggregation, discrimination/generalization, and image-to-scene map-
ping. The discrimization/generalization dimension provides a means of representing
all possible forms of ambiguity as they arise from the image in an explicit declara-
tive form in the permanent knowledge base of the system. This knowledge base con-
sists of a natural and unnatural constituent. The latter can be constructed automat-

ically f[rom the former.

. An interpretation process i w0 o az P
3. An interpretation pi that of ¢ dul P p

Al L

and 3 ambiguous and

and discrimination. Both pr are s
bypothetical interpretations are represented in ome dimension only. A onpe-
dimensional representation also enables us to entirely describe discrimination by

means of a network consistency algorithm.

The implementation of Mapsee-3 is described in the next chapter.

Chapter 4 iz0

4. DESCRIPTION OF MAPSEE-3

4.1. Introduction

Like its predecessors, Mapsee-3 is a program for interpreting sketch maps.
Sketch maps are a useful domain because of their simple semantics, which makes
an attractive testbed for particular representational formats. A mixture of
natural and conventional knowledge is necessary for interpreting sketch maps
such as the one in Figure 4.1. Objects such as roads, rivers, and shores could
have been taken from an aerial photograph by tracing their course. On the other
hand, for the drawing of objects such as mountains and bridges, conventions exist

which are only indirectly related to their natural appearance.

Mapsee-3 is an implementation of the design described in the previous
chapter. The program is roughly divided in three parts: segmentation,
image —to -scene mapping , and inferpretation . Segmentation is a process that
constructs the primitives and the cues for the interpretation process. All cues are
based on the shape of the primitives. During image-to-scene mapping, all cues
computed are systematically checked, and are then used to create generic
instances of schemata at the leaf level of the composition hierarchy. One instance
is created for each primitive. Interpretation is the process of composition and

discrimination as described in Chapter 3.
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Figure 4.1: Lower Mainland of British Columbia

In sketch maps the primitives are the line segments and regions. In the scene

domain, a line segment can be interpreted as one of the following object classes:
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road, river, lakeshore, coastline, bridge-side, mountain, or town. Each of these is
a component of one or more super-classes such as road-system and geo-system. A
region, on the other hand, can be interpreted as mainland, island, lake, or ocean.
Each class forms a node in a discrimination graph. For instance, the classes shore,

lakeshore, and coastline are embedded in one graph.

Mapsee-3 recognizes two kinds of relationships: composition and spatial rela-
tionships. Composition relations are “part-of’’ and “‘parts” relations. The former
are all of the “must-be” kind. Most spatial relationships in Mapsee-3 are depicted
by T-junctions, such as ‘‘road-road-tee’”, a junction between two roads, and

“river-shore-tee’, a junction between a river and a shore.

All Mapsee-3 primitives are categorized with respect to shape. Thus, the
diserimination graphs are all based on similarities in shape characteristics of the
different object classes. Towns, for instance, are characterized by blobs, whereas
bridge-sides are depicted by three connected straight line segments, the two outer
lines of which are symmetric with respect to the middle line. Most shape
categories do not uniquely determine a particular object class. The final interpre-
tation of a particular line segment is therefore partially the result of the shape
category to which it belongs, and partially the result of the spatial relationships

in which it enters with other line segments.

Mapsee-3 was implemented in Franz Lisp on a Vax 11/780 running Unix
4.2BSD. Maya data structures (Havens, 1978) were used for representing sche-

mata.
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4.2. Input
( *instancex #line
deviance 19.6902
Inparam ((0.0920 . 0.9957) 9.2944)
The input to Mapsee is a plot program. Each plot consists of a sequence of length 0.0769

components (#line-2 #line-179)
deviant *point-88

chn #chain-2

ends (*point-6 *point-177))

plotter commands {Drew-lo(z,y) and Move —fo(z,y) from the current posi-

tion}. Each sequence of Draw -lo commands is called a chain.

Figure 4.2: An instance of a line schema

4.3. Segmentation

g g : ; 3 ; 4.3.1. The Sketch Level
Six different types of schemata are maintained in the image: points, links,

lines, chains, patches, and regions. Each of these types has a very simple struc-

Two different types of representation are maintained at the Sketch level.
ture.! Figure 4.2 shows an example of a line instance. In the Mapsee-3 implemen-

First of all, the sketch is represented as a set of interconnected points (chains) as
tation, segmentation is a semi context-free process at best. Both representation

given in the input. The points are also represented in a 32 x 32 array which cov-
and control are tuned to the sketch map world. The types of image schemata

ers the whole image. Each cell in this array is a pointer to the list of points in the
used illustrate this phenomenon. The main purpose of segmentation is to build a

area covered by the cell. By means of this representation, questions about prox-
reasonable shape description for each chain and to find the regions adjacent to

imity of other chains to a certain point can be quickly answered.
each chain. Two different levels of representation can be distinguished in the
image: The Skeich level and the Line [region level.

4.3.2. The Line/region Level

For each of the chains a line hierarchy is built. Its construction is illustrated

in Figure 4.3. A chain of (interconnected) points is drawn from A to B. The top

*The reader ia referred Lo Appendix D for & description of the syntactic stractare of each type of image schema i = = 3 =
e PRMER AR ' line of the hierarchy (line 1) connects the end points of the chain,
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Each of its two successors (line 2 and 3) connects onz of the end points of its
predecessor with the point of maximal distance in the curve approximated by
the predecessor. This distance is called the deviance of the line. Line 2 has the
lines 4 and 5 as successors, and line 3 is succecded by the Lines 6 and 7. This
binary tree is continued until a'l the poiats in the chain are covered. In this way

each chzin can be described at any desired level of detaii.

This representation has several disadvantages, however. For one thing, a
small change in the shape of a line segment can bring about large changes in
the line hierarchy. A better technique for representing the shape of Lns seg-

ments has been recently proposed by Mackworth and Mokhtarian (1984).

Figure 4.3: A line hierarchy
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4.3.3. The Region Formation Proeess

The region formation process starts with a query as to whether the picture
as a whole is empty. If the answer is negative, then the picture is subdivided into
four square subpatches and the query is repeated for each of the subpatches. I a
patch is empty, then no further subdivision is made. However, this subdivision ol
patches does not continue ad infinitum . Region refinement stops when a patch
size of 1/R? of the total picture area is reached. For all examples shown in
Chapter 5, an R value of 8 was chosen. Each set of [our-connected empty

patches defines a region.

The region formation process is conservatively biased. The reason for this
bias is that in free hand sketches lines which are supposed to join may leave a
small gap. We want to prevent a region “leakage' through these gaps. For exam-
ple, leakage through a shore line that is not properly closed would cause a land-
mass to be interconnected with a waterbody. This would have disastrous effects
on the interpretation process. The decision at which patch size to stop segment-
ing is a heuristic decision. The image data structures and procedures were inher-

ited virtualiy unchanged from Mapsee-1 (Mackworth, 1977b).
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4.4. Image-to-scene Mapping

As mentioned before, the segmentation process culminates in the computa-
tion of a number of shape attributes for each chain. By means of these attributes,
the image appearance of all the objects at the leaf level of the composition hierar-
chy in the scene domain can be described. The shape of a mountain, for instance,
is constrained by means of six attributes. All these attributes are constructed on
the level at which the chain is described by two lines only (see Figure 4.3). The

six attributes are specified as follows:
1. The angle between the two lines has to remain within certain bounds.
2. The deviance of each line has to be very small.
3. The line length of both lines has to be approximately equal.
4. The angle of each line with the vertical has to be small.
1

5. The angles in 4 have Lo be approximately equal as well.

6. The y-coordinate of the intersection point of the two lines has to be greater
than the y-coordinate of one of its end points (We do not want mountains upside

down).

Each schema at the composition leaf level is described in terms of the attri-

butes just mentioned. Table 4.1 shows this description. In this figure “+" means
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must-be-there, =" means must-not-be-there, and '‘+" means may-be-there. Most
of the atiributes shown in the figure represent a set of attributes. The mountain
shape attribute, for instance, stands for the logical AND of the six attributes
mentioned above. The potential closure attribute represents the fact that a chain
which is only partially visible in the image may actually be closed. This is always
the case when it runs off the edge on both sides. Towns are uniquely described by

the blob attribute.

Potential | Visible | Mountain | Bridge-side
closure closure shape shape blob
Town - + - - +
Road * * * * =
River * - * ® -
Mountain s = + = =
Bridge-side * - - B
Shore * * * * =

Table 4.1: Shape attributes of the schemata at the composition leaf level

Most attributes are mutually exclusive, or can go together in certain ways
only. The mountain-, bridge-, and blob-shape are mutually exclusive. The same
holds for potential and visible closure. Table 4.2 shows all the possible combina-
tions of attributes. The set of basic schemata that can satisfy these attributes can
be found by replacing the “**"s in Table 4.1 by 2 “+" or *-"" in all poss-ible ways.

An abstract schema is created for each set of basic schemata in Table 4.2,
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For each chain, the image-to-scene process checks the value of each of the 1. Object level

altributes in Table 4.2, and creates a (non-hypothetical) instance of the
2. Super-object level

corresponding abstract schema (class).

3. System level

Sets of basie Potential | Visible | Mountain | Bridge-side
schemata closure | closure shape shape blob

Town - T = ~ T 4. Geo-system level
Road/river - - - - -
Road /shore 2 + = 2 = 5. World level
Road /river/shore + = = r -
Road/river/bridge-side - - - + -
Road/river/mountain - - + = - ; 3 oz i wa
Road/river/mountain/shore + = + = = Relational levels exist between all levels of composition. Each arc in Figure
Road/river/bridge-side/shore ) N B 5 ¥ 4.4 stands for two composition relations: a part —of and a parts relation. The

) om W x former is of the “‘must-be-part-of” type.
Table 4.2: Possible combinations between shape attributes

4.5. Interpretation

4.5.1. The Basic Composition and Discrimination Graphs

In Mapsee-3 object classes and relations are represented by schemata. Figure
4.4 shows the basic composition and discrimination graphs for the domain. These
hierarchies have to be provided by the user. Any schema embedded in these
hierarchies is called a basic schema. Five different levels of composition can be

distinguished:
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Figure 4.4: The basic composition hierarchy and discrimination graphs
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{object "¢592 'schema

schema-label '#592

type 'object

domain ‘scene

name 'road-system

dec-level 3

spec-level 1

labels '(£S92)

links-in '(+S40 «S75 +S77 #S111i +S335 +5335i)

links-out '(#S40i #S751 +S77i +S111 #S335 #5335i)

parts (#5401 #575i #577i)

part-of '(£S111)

specializations 'nil

generalizations '(#586 *S88)

internal-methods 'nil

methods '(M300 M301 M302 M313)

disambiguating-methods '(M313)

semi-disamb-methods '(M302 M313)

completed-system-methods '(M335)

M300 ’(road-road-tee (#S54) (#554))

M301 ’(road-town-tee (+554) (+520))

M302 '(road-over-bridgep (£5S54) (*S52))

M313 '(mergep (+554) (#554))

M335 *(incomplete-roadsystemp (£592))
)

Figure 4.5: The road-system schema

132

Figure 4.5 shows the internal structure of the road-system schema. Each

the scene schema syntax, each scene schema has the following attributes:

1. a composition level (dec-level)

2. a discrimination level (spec-level)

3. The list of schemata it points at (links-out)

schema is identified by a unique schema label (e.g. +S92). In correspondence with
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4. The list of adjaccnt schemata pointing at the schema (links-in)
5. The potential components of the schema (parts)

6. The super-schema(ta) it must be a part of (part-of)

7. its specializations (in the discrimination graph)

8. its generalizations (in the discrimination graph)

9. Different types of methods (to be discussed in section 4.5.4)

A schema always has itsell as a label. When an instance is created, it will
initially be assigned the label of its parent schema. Thus, a geo-system instance
will have the label geo-syslem at the start. When the interpretation process
proceeds, however, the discrimination process may refine the label. Discrimination
does not affect the description of an instance, except for its label. A geo-system

instance can obtain the label(s) of any of its discriminations (see Figure 4.4).

Figure 4.6 below shows the internal structure of the “part-of"” schema *5877.
It connects a road with a road-system. Its inverse (*S77i) connects a road-system
with a road. Like the object schemata, the “parts’’ and “part-of” schemata are

embedded in a discrimination graph.
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{object '#S77 'schema
schema-label '+577
type 'relation
domain 'scene
name 'part-of
dec-level 2.5
spec-level 1
labels '(xS77)
links-in '(#S54)
links-out '(+592)
parts 'nil
part-of '(+592)
specializations "nil
generalizations '(#S69 #S71)
inverse "*577i

Figure 4.6: A relational schema

4.5.2. Constructing the Abstract Discrimination Graph at the Compo-

sition Leaf level

Figure 4.7 shows the abstract discrimination graph at the composition leaf
level. The abstract schemata are given in Table 4.2. The graphs are the result of
applying the algorithm given in section 3.2.4, as the reader can verily. The only
ambiguity in the graph results from the fact that road /river /shore could also
have been subdivided as roed /river and shore. The construction results in two
discrimination graphs. One graph consists of a single node: fown . The other con-

tains the remainder of basic and abstract schemata.



Chapter 4

135

Road/river/mountain/shore

1\
I
!\
f 3
\\\ I “
\ ! 1
Y ’ Raad/river/shorfe \‘
, S 1
N ! \
A4 H 1
i N \
1 k. ! \
7. I
?\Road/riv,ér/bri?qe-side I ».
/ , Roﬁd :}ve'; /dountain
*Jhad/s ‘wr\ 1 -
\\ -
ey b .-’;y
S\ ~ \\ o i
\ S o
N ety !
o e S ']
\ ,f’ "‘-..‘\‘ !
\‘I ) ' Shore
Roed/river R
I\ 1 \\
/I \ '] \
I A i 1
f o\ i \
N ] Y
Ir.I' M\ ’f
Bridge-s iae@ ur' River 'I b Lakeshbre
Town oa oastline ountain
@ ® roaa ® coast1i Owm

Figure 4.7: The discrimination graphs at the composition leaf level

4.5.3. Constructing the Abstract Composition Hierarchy and Discrimination

Gragphs

In the basic Composition hierarchy (Figure 4.4), not al! schemata are

represented at all levels of composition. For instance, skore is not represcnted

at levels 2 and 3, whereas road, river, mountain, and fown are not represented
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at level 2. Our first move is therefore to creatz dummy rcpresentations for each
of these objects at each of the missing levels. In this way the hierarchy obtains
uniform depth. Figure 4.8 is the result. The dummy representations carry the

same name as their component, except that a * has becn added. Thus, river

becomes a component of river®.

= composition

——————— = discrimination
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Figure 4.8: The basic composition hierarchy and discrimination graphs

with dummy representations at each level of compositicn
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The creation of dummy representations does not affect the orthogonality of
the dimensions, because the meaning of a dummy representation at a particular
level of composition is that it is undefined. If a particular instance obtains a
dummy 'mt.erpretatipn, then we have essentially created an undefined interpreta-
tion in the interpretation graph. One can either accomodate such an interpreta-

p
tion (which is what Mapsee-3 does), or remove it. Suppose A is a component of

B and B is a component of C. Il B becomes undefined then we can remove B

by making A a component of C directly.

Applying the projection algorithm given in Appendix C, we create the
discrimination graphs for level 2. This must be done in two steps because there is
a relational level in between level 1 and 2. Diserimination graphs are also created
at this relational level. Figure 4.9 shows the result. The intermediate relational
level is not shown in this figure. Similarly, we project level 2 onto level 3 (Figure

4.10).

Note that each instance of superroad /river [bridge becomes a component of
two different instances of road /river —system . This is the consequence of the
modularity criterion. Superroad [river /bridge's discrimination bridge has two
super-schemata. Any generalization of bridge must therefore have at least two

super-schemata as well.

The projection rules do not require the creation of any abstract schemata at
level 4 (Figure 4.11). As a result no projection from level 4 onto level 5 is

required, because all links are part of the basic composition hierarchy (Figure
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4.12).
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for levels 1 and 2
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————— = composition
——————— = discrimination

Figure 4.12: The composition hierarchy and discrimination graphs
for levels 4 and 5
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4.5.4. Methods

In a Mapsee-3 schema, all attributes beginning with M followed by a number
are methods. The value of such an attribute is a monadic or dyadic funetion
which, upon successful application, creates an instance of a unary or binary (spa-
tial) relation. Examples of methods can be found in Figure 4.5. For each of the
arguments of the function, the owner schema provides a list of schemata, whose
instances can fill these arguments. In Figure 4.5, for instance, the method M300
(road-road-tee) takes two arguments. Each of these arguments must be an

instance of #S54 (road).

A successful application of a method results in the instantiation of a schema
representing a relation. A successful application of road-system's “‘road-road-tee"”
method, for instance, results in an instantiation of +5300 (road-road-tee). This

instance will link two road instances.

The inheritance scheme for methods discussed in section 3.4.4 has not been
implemented as such. When represented in matrix format, the Mapsee-3 relations
show very particular patterns. A number of method types have therefore been
created, each one of which corresponds to a particular matrix pattern. Each type
has its own inheritance rules and the application of these rules has the same
result as the general inheritance scheme. )

In correspondence with the syntax, a distinction is made between internal

and external methods. The former kind represents monadie, the latter dyadic
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functions. All other types correspond to particular matrix patterns. Table 4.3 lists

all methods and their types.

Regular methods are characterized by a matrix containing one cell with a
“+" value and “*+"’s in the other cells. Table 4.4 shows an example of such a
relation (road-road-tee). For semi-disambiguating methods, the matrix contains
one or more rows or columns with one “+'" and “-"'s otherwise. The “road-over-
bridge” method (Table 4.5) owned by the road-system schema is an example of
this. Disambiguating methods are characterized by a matrix in which one cell has
a 4" value, when the remainder of the matrix cells have “-"'s. The “mountain-
mountain-tee” method (Table 4.6) examplifies this case. For all three method
types it is assumed that they are able to establish a positive relationship. If the
relationship is negative then all the “*+'’s in the matrix must be replaced by *-

s and vice wversa.

Disambiguating methods can be inherited by all generalizations of the sche-
mata to which the method applies. There is 2 restriction, however, for semi-
disambiguating methods. One of the instances serving as an argument in the
method's function must have a unique basic label. In the method's matrix, this
label must represent a column or row which contains no “#™'s. If this condition is
satisfied, then the method can be inherited by a generalization of the owner
schema. In the example in Table 4.5, the second argument of the function “‘road-
over-bridge’ must have bridge as label. If this is the case, then any generaliza-

tion of the road-system schema can inherit this method. Finally, regular methods
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cannot be inherited by any abstract schemata.

Completed-system methods form a category by themselves. They are disam-
biguating methods with an additional constraint: can only take effect alter image
interpretation has been completed. Mapsee-3 is strongly data-driven. A schema's
method cannot search or investigate chains that have not already been involved
in the composition process. For instance, it can happen that a road has the shape
of a bridgeside. Originally such a chain will be interpreted as a
road/river/bridge-side. With one cycle of the interpretation process completed,
this road/river/bridge-side will not be refined to a bridge, because there is no
matching bridge-side. Completed-system methods have the ability to determine
such things as: “single bridge-sides cannot be bridge-sides'. As a result, the
road/river /bridge-side will be forced to specializé to a road/river. However, such
measures can be taken only afler we have visited all chains. For this reason
interpretation goes through two cycles with completed-system methods being

applied in the second cycle.

The methods listed in Table 4.3 perform the following operations. All
methods ending with *“-tee” form a T-junction between two components. For
instance, “road-road-tee” forms a relation between two roads. The “road-over-
bridge"” method imposes the road interpretation on any chain crossing a pair of
chains forming a bridge. The “‘bridge-side/bridge-side” method imposes a relation
with the same name on any pair of matching bridge-side-shaped chains. The

disambiguating nature of this relation causes the interpretation of both chains to
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be refined to bridge-side. The “surface-overlap” method ensures that geo-system
components with overlapping regions become a component of one and the same
geo-system instance. This method docs not create a relation. The “single-world"
method ensures thalt all geo-system instances become a component of one world

instance, while not creating a relation ecither.

The “merge" method merges schema instances that have become redundant.
No relation is created. “Island-inside-waterbody” imposes the island label on a
geo-system which is surrounded by a waterbody and vice versa. “Lake-inside-
landmass” follows the same principle. IT a shore 1; cut off by the picture f[rame on
both sides and one of the geo-systems adjacent to the shore is a landmass then
the geo-system on the other side must be a waterbody. This interpretation is
imposed by the "landmass-beside-waterbody™ method. The last three methods
create a relation. The “not-roadp” method deletes the road label from any chain
whose end points are adjacent to a chain interpreted as a river. The “not-riverp”

method does the same for a river label when it is adjacent to « road. The

completed-system methods were explained before in this section.
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Method type Method name Owner schema
Road-road-tee Road-system
Road-town-tee Road-system
Regular River-river-tee Ri\'er—system
River-under-bridge River-system
River-shore-tee Geo-system
River-mountain-tee Geo-system
Externs] Semi-disambiguating | Road-over-bridge Road-system
Mountain-mountain-tee Mountain-range
Bridge-side/bridge-side Bridge
Disambiguating Surface-overlap Geo-system
Single-world World
Merge all
Island-inside-waterbody World
Regular Lake-inside-landmass World
Landmass-beside-waterbody | World
Internal | Disambiguating gg:-:?v?rﬂ gxg:::ﬁ
Incomplete road-system World
Completed-system Incomplete river-system World
Incomplete bridge World
Table 4.3: Methods
Road | River | Bridge-side | Shore | Mountain | Town
Road ax * * * * *
River - + * » *
Bridgeside * * * * * *
Shore - " * * * *
Mountain * * . * * *
Town . * . * * .

Table 4.4: Road-road-tee method
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Road | River | Bridge | Shore | Mountain | Town
Road * * + * * *
River * * = * % *
Bridge * * - - * *
Shore * * " * % *
Mountain * * - * * +
Town . * - * * =

Table 4.5: Road-over-bridge method

Road | River | Bridge | Shore | Mountain | Town
Road - - - - - -
River - - - - - -
Bridge - - - - - -
Shore - - - - - -
Mountain - - - - + -
Town - - - - = =

Table 4.6: Mountain-mountain-tee method

4.5.5. Composition and Discrimination

The control flow of the Mapsee-3 interpreter has been discussed in Chapter 3
and is shown once more in Figure 4.13. The interpreter is formally described in
Appendix E. Control alternates between the interpreter's two main constituents:
composition and discrimination. The latter is shown as HAC (hierarchical are
consistency) in Figure 4.13. Both processes take their input from and return their
output to two different queues. Composition owns a completion queue; discrimi-

nation owns a consistency queue. These queues form the means of communication
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between the two processes.

The image-to-scene process has pushed a number of instances on the con-
sistency queue, one for cach primitive. All of them are instances of schemata at
the composition leal level. These instances also form the beginning of the
interpretation graph. The interpretation process operates in cycles. With an
interpretation for each primitive at each level of composition as the goal, each
cycle consists of taking a schema instance from the completion queue and return-
ing a new instance which represents the previous instance at the next higher level
of composition. This also has the result of extending the interpretation graph

with one or more instances and relations.

Each instance starts out with the label of its parent. As each instance gets
represented further up the composition hierarchy, more and more spatial rela-
tions are embedded in the interpretation graph. If the current label of an instance
becomes incompatible with all of the labels of one of its neighbors then hierarchi-
cal are consistency, using the principle of least commitment, will replace the label
by one of its successors in the discrimination graph. For example, a road/shore

instance (see Figure 4.9) can obtain the label coastline.

Apart from being data-driven, the interpreter operates in a breadili-first
manner. At first, all instances at the object level are represented at the super-
object level. Next, all super-object level instances are represented at the system

level. This process continues until the world level is reached.
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The line sketch at the image level in Fipure 4.14 shows a river Howing
under a bridge. This is the only interpretation allowed by the Magsee semantics.

No objects other than rivers are psrmitted under bridges. However, each of the

chains is ambiguous at the start of the interpietation process. The bridge-sides = part-of/parts Fraval & ’/
can be interpreted as a road, river, or bridze-side, whereas the other two chains —=——— = spatlal relation
-------- £ 75 -to-
can be either a road, oi a river. Abstract schemata exist for each of these N . / . 2
ceve
interpretation combinations. The image-to-scene process has therefore created
the instances: Rd/rv /brs—1 & 2, and Rd/rv—1 & 2. In order to provide the P ’
pif s
reader with a somewhat more detailed description of the interpretation process, &t S/
we will follow the completion of the first two instances to the next level of
composition up. For a complete description of the interprezation of Figure 4.14 . I s
Vi
the reader is referred to Appendix B. s
¥
P /
!,) /
1" =il ~ ,lml 1 ,/
ﬁl Completion HAC Assembly HAC
ol G 3
Iy I
—>= rfallure 7 Region-1 , . "
image .
'—— success

Figure 4.14: Illustration of an interpretation graph, stage 0

Figure 4.13: Flow cha:t of the interpretation process



Chapter 4 151
Name abbreviations
Name Abbreviation

Road/river/bridge-side | Rd/rv/brs
Road/river/bridge Rd/rv/br
Road/river Rd/rv
Road/river+ Rd/rv+
Road/river-system Rd/rvsys
River-system Rvsys
Road-system Rdsys
Landmass Lm
World Wrld
River Rv
Rivers Rv#
Bridge-side Brs
Bridge-side/bridge-side | Brs/brs
River-under-bridge Rv/u/br

Table 4.7: Name abbreviations in the interpretation graph

4.5.6. An Example

Table 4.7 shows the name abbreviations used for the object classes and rela-
tions needed for Figure 4.14. In this example we [ollow the interpretation process
only for the two chains representing the bridge-sides. We exclusively concern our-
selves with the events taking place at composition levels 1 and 2. We disregard
the existence of a relational level in between. Segmentation of Figure 4.14 results
in the creation of one region and four chains. Table 4.2 shows that bridge-side-
shaped chains without potential closure can depict three different scene objects: a
road, river, or bridge-side. The image-to-scene mapping process therefore creates

two instances of the road/river/bridgeside schema at composition level 1,
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rd frv [brs-1 and rd [rv [brs-2 (sce Figure 4.15). Upon its creation each
instance inherits the labels of its parent: rd/rv/brs (shown in brackets). Both
instances are pushed onto the completion queue by the image-to-scene mapping

process. This triggers the start of the interpretation process.

Rd [rv [bra-1 is picked first. The completion process uses the model con-
straint graph (see Figure 4.9) in order to find the super-schema of Rd /rv [brs
(which is Rd /Rv /Br). Next, it searches for an instance in Rd /Rv /Br's super-
discrimination set for instances to which a method applies enabling
Rd /[Rv [Brs-1 to become a component of this instance. The criterion for a sue-
cessful application is that the super-instance has a component that can form a
spatial relation with Rd /Rv /Brs—-1. Rd [Rv [Brs—-1 must become a component
of the super-instance whose methods succeed in establishing such a spatial rela-

tion.

In this example not a single instance has yet been established at level 2. The
default rule therefore prevails. A new instance of Rd /Rv/Br is created:
Rd [Rv [Br-1 with the label of its parent. No links between Rd /Rv /Brs -1 and
Rd /[Rv /[Br-1 are yet established. First, we must ensure that the label of
Rd [Rv /Brs -1 is compatible with the label of ‘Rd /Rv [Br-1. Hence, the com-
pletion process pushes the link to be established on the consistency queue. At this
point the completion stage is over and HAC is invoked for the first time (see Fig-

ure 4.13). HAC tests and makes consistent the label of Rd /Rv [Brs-1
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with the label of Rd /Rv /Br—1.

4 e
——— = part-of/parts ’ rd
P P leval 5 P
——== = gpatlal relation
-t = inmage-to-scena : /"
/.lmml 4 P
g
//
F 4
rd
o level 3 i
o 7
//
F
- level 2 &
7
RE/Tv/Ers-1 @ ° @® Rd/rv-1@ Rd/frv-2 /
(R4 rv bra) Rd/rv/brs-2 (Rd/rv) (Rd/rv)
(Rd/rv/ers) rd
ssdevel Lo o : /
A \ i |
3 ' | i >
[ T e Ty i ]
1 : 2 3 : /
- [ /‘
Region-1 2 = o . . : y
imago - - o —

Figure 4.15: Illustration of an interpretation graph, stage 1
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HAC tests Part -of (Rd [Rv [Brs-1,itd [Rv [Br-1). It takes the labels of
both instances and check whether Part-of (Rd /Rv [Brs ,Rd [Rv /Br) is in the
model constraint graph. If this is the case, then consistency is established. If not,
a replacement candidate is searched for using the discrimination graph. A
replacement label for which Parl -of (replacement Rd [Rv [Br) is true consti-
tutes a valid candidate. Failure to find a replacement candidate means failure for
the whole interprelation process. In this example the label 7d /Rv /Brs is con-

sistent.

Assemibly is next. This simply means that the two instances are now linked
to each other, marking the beginning of the interpretation graph. Although we
tested whether Rd /Rv [Brs -1 was consistent with Rd /Rv /Br-1, we have not
yet done the opposite test. We therefore invoke HAC for a second time before
returning Lo complete the next instance. Rd f/rv /br-1 is inserted into the com-

pletion queuc afler id [rv Jbrs -2,

Completion of the second halfl of the bridge is more interesting. The comple-
tion proeess invokes the ‘‘bridge-side/bridge-side’” method. This method is a
disambignating method (see Table 4.3), owned by the bridge schema. Because
disambiguating methods can be accessed by all of the owner schema's generaliza-
tions, Kd /rv [br can use this method Lo establish this relation between any two
instances representing matching bridge-side-shaped chains. In addition, HAC now
has to test the spalial relation P(Rd /Rv [Bra ,Brs [Brs) as well. The model con-

straint graph in Figure 4.9 docs not show any spatial relations. Only P (brs brs)
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is true. The label of Rd /Rv [Brs -2 is therefore refined to bridge —side . The label

of the other bridge-side is refined likewise.

After assembly the interpretation graph consists of three objects and three
relations (two composition and one spatial). During the second HAC invocation,

Rd [Rv [Br-1 finds its label inconsistent and refines it to bridge .

The completion of the two bridge-sides demonstrates how interpretation
works. In the breadth-first strategy, we first complete all level 1 instances to level
2. Next, we complete all level 2 instances to level 3 etc. Figure 4.16 shows the
interpretation graph for all instances up to composition level 2. The reader is
referred to Appendix B for a detailed description of the other levels. The Figures

4.16 - 4.19 show the different stages of the interpretation graph.
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Figure 4.16: Illustration of an interpretation graph, stage 2



Chapfer 4 157
a 7
S e = / -
part-of/parts F /!ws! 5 P4
—=——— = spatial relation
== = - = image-to-scene _,/ /
/lsvel 4 > 5
BT
P
. Rdsys-1@ Rvsys-18 ® Rd/rvtys-{
4 | (Rdeys) | (Rveys) RA/rvsys-2 | (ad/rvays)
L i /rwsys) | ’
level 3 f /
7 ragrvsor-1 Rd/rve-1@ @ Rd/rve-27
Vi (Bridge) S ®d/rve) | @)
. Y i i
“level 2 / | '
J’ -8 Br 1 o
Rd/rv/brs-1 o ® Rd/rv-1@ Rd/rv-1 -~
(Bridge-side) Rd/rv/Ers-2 (Rd/rv) (Resrv) -
g (Bridge sida) ’
level 1 \ | i
LY i ! i
3 i i i
0 T 7
/ l'b N : /
it 1 /
Region-1 - k: i v
¥ 2 N S
image et S —y

Figure 4.17: Illustration of an interpretation graph, stage 3
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4.6. Summary

In this chapter the implementation of Mapsee-3 has been described. A seg-

R ) /1/ g L4 T:r]i:j.l- mentation process takes a set of plotter commands as input, and creates a set of
———— = gpatial relatien image primitives in the form of chains and regions. An image-to-scene mapping
"""" = image-to-scene // 8 Landmass<1 provides the connection between the image and the scene domain. Each image

/ lave! 4" (candmagd)
primitive is represented by one schema-instance at the composition leaf level.
.%.d;/:?.é =3, S The interpretation process creates an interpretation graph consisting of
: /
“level 3 . d \ A schema-instances and their constraints. A composition process constructs this
; \V/ \ . interpretation graph such that each image primitive depicts at least one instance
7 ‘3!/ \
'::r’;‘;‘;fr’ 1=~ “" ey t ’ %.d.{';-v.- at each level of composition in the scene domain. At the same time, a discrimina-
—— ’
/ . =~/ e ; . . .
~level 2 / \ tion process maintains consistency between the labels of the instances in the
s &ﬂ: = interpretation graph.
T rs-
'Rdfr‘\r/hrs-lj ® Bd/rv-1@ Rd/rv-2 /
(Bridge-sids) Rd/rv/brs-2 | (&v) (&v) i .
1‘ " (Bridpm-aide) | A The Mapsee-3 knowledge base has been constructed in such a way that
eve i |
Y ' ; : interpretation can take place mostly from an ambiguity point of view. Object
v Vg —3 i 4
> iy A ; classes and relations are represented as schemata. The Mapsee-3 knowledge base
~ Reglon-1 3 - i :
1 O is organized along three orthogonal dimensions: composition/aggregation,

i discrimination /generalization, and a dimension that provides the conneetion
Figure 4.19: Illustration of an interpretation graph, stage 5
between the image and the scene. For each dimension Mapsee-3 has a dimension-

specific process.
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In the next chapter we will discuss the experimental results of trial runs of

the system.
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5. RESULTS AND DISCUSSION

5.1. Introduction

This chapter is divided into four sections. In section 2 we report the results
of selected test runs of Mapsee-3. In section 3 we discuss the results reported in
section 2. In section 4 we look at how we can relax some of the constraints of the
Mapsee-3 design, thereby generalizing the design rules. In seetion 5 we broaden
the discussion and discuss the place of discrimination vision in a general-purpose

signal interpretation system.

5.2. Results \1

Mapsee-3 has been successfully tested on 10 different examples. Different
examples with a varying number of chains were needed in order to obtain some
performance measures for the hierarchical are consistency algorithm and for the
overall time complexity of the system. The Figures 5.1 - 5.10 show the different
sketches. Apart from Figure 5.8, all examples represent real maps. In the Figures
5.11 and 5.12 which show the segmentations of Figure 5.2 and 5.5 respectively,
color has no meaning. However, this is different for the Figures 5.13 - 5.22 which

show the interpretations of the sketches. Table 5.1 shows the color scheme used
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for these figures.

Primitive | Interpretation Color
Shore Magenta
Coastline
Lakeshore
. Bridge-side
Chain Road Red
River Cyan
Mountain Yellow
Town
Landmass Green
Mainland
. Island
Region Waterbody ; Blue
Ocean
Lake Cyan

Table 5.1: Interpretation color scheme

The Figures 5.13 - 5.22 show the interpretation results at the highest compo-
sition level (the world level). The world instance is the only instance at that
level. The pictures show all the chains and regions depicted by the instance
together with their respective interpretations. The label in the lower left corner of

each picture is the label of the instance.

The Mapsee-3 graphics support system enables us to look at any instance at
any desired level of composition. The Figures 5.23 - 5.28 show some of the
geo-syslem level instances of the Lower Mainland of B.C. (Figure 5.5). The Fig-
ures 5.29 - 5.33 show some of the Lower Mainland instances at the system level.

The Figures 5.34 - 5.38 show instances of some of the spatial relations.
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Figure 5.1: Ashcroft B.C.
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Figure 5.7: Okanagan B.C.

Figure 5.6: Madison, Wisconsin
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/\ Figure 5.11: segmentation of Fraser Valley

Figure 5.10: Spences Bridge B.C.

Figure 5.12: segmentation of Lower Mainland
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Figure 5.14: Fraser Valley interpretation Figure 5.16: Georgia Strait interpretation
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Figure 5.18: Madison interpretation Figure 5.20: Porpoise interpretation



Figure 5.22: Spences Bridge interpretation Figure 5.24: Howe Sound



Chapter 5 181 Chapter § 182

EE€0-8¥stlem

Figure 5.25: Indian Arm Figure 5.27: Boundary Bay

island

Figure 5.26: Gambier Island Figure 5.28: Keats Island
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rosd-systom iaKeshors

Figure 5.29: Lower Mainland road-system Figure 531: Shore of Indian Arm

rivar-system coastlins

Figure 530: Lower Mainland river-system Figure 532: Coastline of Gambier Island
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river-river-tee

Figure 5.33: Shore of Lower Mainland Figure 5.35: T-junction of rivers

road-over-bridgep
road-road-tee ad-over-bridgep

Figure 5.34: T-junction of roads Figure 5.36: A road crossing a bridge
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road-townp

Figure 5.37: A junction between a road and town

river-shore-tee

Figure 5.38: T-junction between a river and shore
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For each of the examples the behavior of HAC-3 was compared with the
behavior of AC-3. For both HAC-3 and AC-3 each label comparison was counted
as one iteration. During the test run, the HAC-3 iterations were counted, while
the behavior of AC-3 was simulated. In order t? count the iterations for AC-3,
each label was expanded into its representation at the leaves of the discrimina-

tion graph.

The results are shown in two different ways. Figure 5.39 shows the HAC and

AC iteration count plotted against the number of chains for each example.! Fig-
ure 5.40 shows the iterations plotted against the number of (scene) schema-
instances in the final interpretation of each example. Note that the number of
chains is a measure for the complexity of the input, the number of instances is a
measure for the complexity of the output. These measures have been plotted

against each other in Figure 5.42.

During discrimination the system spends all of its time on label testing and
propagation. During composition, on the other hand, most of the time is spent on
method application. In Figure 5.41 we have plotted the number of chains against
the number of external methods applied during each test run. The latter has been

taken as a time complexity measure for the system as a whole.

Table 5.2 shows the correlation coefficient and the residual variance resulting

from a best linear fit between the number of chains and the iteration counts for

*Two difflerent examples both have 14 chains In order to avoid confusion, the smallest AC-3 value goes with the
rmallest HAC3 value.
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AC-3 and HAC-3 in Figure 5.39. The Tables 5.3, 5.4, snd 5.5 show the same data

for the Figures 5.40, 5.41, and 5.42 respectively.

For the purpose of discussion in the next section, we should note the follow-

ing phenomena in the results shown:

1. An instance's label is not always refined to a leal level label. The magenta geo-
system in the Figures 5.17 and 5.27, for instance, has not rcfined its label at all.
Similarly, the Lower Mainlaod shoreline in Figure 5.33 has not been maximally

refined.

2. Regions which are not conuected during segmentation can still become part of
one and the same geo-system. As an example, compare the lake in the Lower Main-
land in Figure 5.12 with Figure 5.17. As well, areas too small for a region to be

formed can still become a geo-system. Figure 5.28 illustrates this phenomenosn.

3. In the iteration couuts plotted in the Figures 5.39 and 5.40, HAC-3 does cosn-
sistently better than AC-3. Both appear to be highly corrclated with the number of

chains.

4. The method count is also highly correlated with the number of chains. However,
the Lower Mainland with its 46 chains is a potential indicator that the relatiopship

may be non-linear.

5. The number of chains is highly correlated with the number of instances in the

interpretation graph.
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HAC-3 AC-3
Correlation Coeflicient 0.99 0.95
Residual Variance 3.45 11.818

Table 5.2: Number of chains versus iteration count

HAC-3 AC-3
Correlation Coellicient 0.99 0.97
Residual Variance 544.74 | 12089

Table 5.3: Number of instances versus iteration count

Correlation Coeflicient 0.94
Residual Variance 13.018

Table 5.4: Number of chains versus method count

Correlation Coeflicient | 0.99
Residual Variance 2.1721

Table 5.5: Number of chains versus number of instances
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5.3. Discussion of Results

5.3.1. Robustness

One criterion for evaluating a system is its robustness, that is, its ability to
cope with errors such as inappropriate segmentation. If we compare the Lower
Mainland segmentation (Figure 5.12) with its interpretation (Figure 5.17) then we
can observe that under certain conditions Mapsee-3 will merge a number of non-
connected regions into one geo-system. The merging of the regions of the lake
examplifies this process. Because of a conservative bias, the segmentation process
stops prematurely. The interpretation process, however, overcomes the problem

when it notices that all regions are surrounded by a shore.

This dissertation would not be balanced without mentioning some problems
as well. With respect to robustness, there is a particular form of interpretation-
driven segmentation that is not achieved. The [ormation of junctions is an impor-
tant aspect of segmentation. The decision whether or not to form a junction is
made in the interpretation process, using parameters with fixed values. For a
“road-road-tee”, for instance, the distance between the end point of the stem and
the bar has to be below a certain maximum. If this distance is exceeded in a slop-
pily drawn sketch then the junction is not found. Obviously, a form of
interpretation-driven dynamic thresholding is peeded, but this has not been

implemented.
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5.3.2. Graceful Degradation

Perhaps one of the most elegant features of Mapsee-3 is that interpretations
degrade gracefully as the information content of the image diminishes. By a
diminishing information content we do not mean a poorer quality of picture.
Rather, we mean objects displayed in an image under such conditions that they

cannot be recognized beyond a certain level of discrimination.

This phenomenon is a patural one. This was illustrated in the example dis-
cussed before. Under favorable conditions we can recognize a car up to its make
and year. This is not possible if the car is covered with a foot of snow. Mapsee-3
shows exactly this phenomenon. The geo-system in Figure 5.17 is in reality a
waterbody connected with the waterbody on the left. The shore adjacent to the
waterbody and the chain adjacent to the geo-system are actually one and the

same chain, but this cannot be seen in the picture.

The chain adjacent to the geo-system in Figure 5.17 could be interpreted as
road, river, or shore. No constraints are available to decide upon the correct
interpretation. In the road and river case the geo-system would become a land-
mass. In the shore case it would become a waterbody. As the system is unable to
decide between landmass and walerbody it follows the principle of least commit-
ment and remains at geo -system . As mentioned before, some well known vision

systems such as ACRONYM do not follow this principle.
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5.3.3. Domain Independence

The design of Mapsee-3 is largely domain-independent. The three knowledge
representation dimensions and the unit of knowledge representation, the schema,
provide only a format in which domain-dependent knowledge can be inscried.
The processes operating on the different knowledge representation dimensions, are

also largely domain-independent.

The image-to-scene process can deal with any domain that produces features
each of which depicts one or more models. The discrimination process is a con-
straint propagation process which is domain-independent. Composition is also
largely domain-independent. It does not need to know about any particularities of
a schema as long as it can access the schema's composition relation. The only
domain-dependent aspect of composition is formed by the schema’s methods. The
methods themselves require expert knowledge of the structure and constraints of

a particular domain.

A further sign of domain-independence of the Mapsee-3 scene knowledge
base is provided by the fact that some of the design principles underlying the
Hearsay-1I speech understanding system (Erman and Lesser, 1980) are very simi-
lar to the one's underlying Mapsee-3. The design principles of the Hearsay-II sys-
tem have been applied to a wide variety of signal processing domains. The
Hearsay-Il blackboard consists, among other things, of a multi-level composition

hierarchy. Hearsay-II's knowledge sources can be compared with Mapsee's
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methods, because both contain domain-dependent knowledge. As well, Hearsay-II
has, like Mapsee-3, a data driven control structure. Hearsay-Il does not use
discrimination graphs, but it is easy to argue that they would be useful in the
speech understanding domain. Like line sketches, speech wave [orms allow for
many possible local interpretations. There are many words that sound alike but
which have different meanings. Discrimination graphs could be based on similari-

ties of that nature.

The Mapsee-3 image knowledge hase, on the other hand, is rather domain-
dependent. The schemata used are intended to describe line sketches. They are
only domain-independent to the degree that they can be used for any line sketch
domain, be it sketch maps or line drawings of human faces. However, as we men-
tioned before, this dissertation has focused on the representation of the scene

domain. The image schemata were inherited from the Mapsee-2 system.

5.3.4. Modularity

Mapsee-3 is very modular in both representation and control. Its knowledge
representation dimensions are orthogonal. For each dimension there is a particu-
lar process that operates in that dimension only. It should be emphasized that, as
a result of the fact that ambiguous and hypothetical interpretations are
represented along one knowledge representation dimension only, more process

modularity can be achieved than would have béen the case with a hypothetical
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approach. A comparison between Mapsce-2 and Mapsee-3 will show why,

Figure 5.43 shows a sketch consisting of a shore line and a mountain. Figure
5.44 shows the composition hierarchy these concepts are embedded in. In
Mapsee-2 a closed line-segment forms a cue for a shore only. Hence, shores are
always non-hypothetical. A shore becomes a component of two geo-systems, an
inner- and an outer-geo-system. The mountain shaped line-segment, on the other
hand, depicts'several objects including a mountain. As a result, the mountain is
hypothetical. The modularity problem starts when a hypothetical mountain-range
completes to geo-system. The inner-geo-system's label has to be refined to land-
mass , but at the same time the shore's label has to be refined to coastline. All
these discriminations are hypothetical, because the mountain-range is hypotheti-
cal. However, the shore label is non-hypothetical. In order to resolve this contrad-
iction, the discrimination process has to be interrupted in the middle of con-
straint satisfaction in order to create a new hypothetical instance for shore with
the label coastline . Once the interpretation graph has been adapted, discrimina-

tion can continue.

In Mapsee-3 this never happens. The mountain-range completes as a
“road/river/mountain-range” which is non-hypo‘thetical. All three objects: road-
system, river-system, and mountain-range requi;e the geo-system to become a
landmass, and shore is refined to coastline. No interruption of the constraint
satisfaction process is required and no structural changes in the interpretation

graph are asked for. The interactive behavior between composition and diserimi-

Chapter b

nation is symptomatic for the hypothetical approach.
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Geo-~system

Mountain-range

Mountain

Figure 5.44: Composition hierarchy for the island/ mountain example

5.3.5. Effciency

Mapsee-3 is efficient with respect to two different measures. The first one
is the hierarchical representation of the domain of each variable as opposed to a
set representation. HAC-3 operates on the former, AC-3 on the latter. A
Figure 5.43: An island with a mountain
second measure is the complexity of the interpretation graph itself. The next

two subsections deal with each of these measures.
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5.3.5.1. HAC-3 versus AC-3

For all examples HAC-3 outperforms AC-3. Intuitively, this can be explained
by the fact that the domain size is always smaller for HAC-3 than AC-3. The one
exception to this rule occurs, naturally, when AC-3 has only one label in its
domain. As long as the domain size in HAC-3 remains small, we can expect a
good performance for this algorithm. HAC-3 will compare even more favorably
to AC-3 when the number of levels in the graph increases. The Mapsee-3 discrim-
ination graph consists of a maximum of four levels. For most chains, however,

only two or three levels are used.

Theoretically, HAC-3 does not always outperform AC-3. A formal study of
the time complexity behavior of HAC-3 for binary discrimination graphs is
reported in Mackworth, Mulder, and Havens (1985). If we define ¢ as the domain
size, and e as the number of arcs in the interpretation graph, then both AC-3
and HAC-3 are of O(a®e ). Asymptotically, however, the time complexity of HAC
is ta”e compared to 2a’e for AC-3. However, in an appropriately structured
discrimination graph, it is reasonable to assume that there is only one label active
in cach variable’s domain. With n defined as the number of nodes in the graph,
the worst case complexity for HAC under the specified condition is O((e + 3n /2)

log a ) which is remarkably better than AC-3's O(a®¢ ).

For both HAC-3 and AC-3 the number of chains and the iteration count are

highly correlated. This is not very surprising, because both algorithms are linear
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in the number of instances in the interpretation graph, if the graph is planar®
This will usually be the case in Mapsee-3. As well, there is a linear relationship
between the number of chains and the number of instances in the interpretation
graph. The value of the correlation coeflicient in Table 5.5 demonstrates this. For
each chain there can be no more instances than there are levels in the composi-
tion hierarchy (0 in Mapsee-3). Each chain can be involved in a few spatial rela-
tionships as well. This adds about 3 instances per chain. Hence, one can expect
about 12 instances in the interpretation graph for each chain. Figure 5.42 shows

the correctness of this rough calculation.

As a result of the hierarchical representation, the domain size in HAC-3 will
remain fairly constant. If we can treat the domain size as a constant then we can
expect a strong linear relationship between the number of chains and the itera-
tion count. Figure 5.39 shows this is the case. In AC-3, on the other hand, the
domain size is not constant. It starts out large and gradually decreases in size as
interpretation progresses. As a result, we can expect much more variance in the
AC-3 iteration count. Indeed, the residual variance is considerably larger for AC-

3 than it is for HAC-3 (Table 5.2).

2This was proved for AC-3 in Mackworth and Freader (1082), and HAC-3'% ion bebavior is id te
AC-3
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5.3.5.2. Complexity of the Interpretation Graph

In the previous subsection we argued that the number of nodes in the
Mapsee-3 interpretation graph is linear with respect to the number of chains in
the image. In this respect the AMapsee-3 approach is a major departure from
Mapsee-2, in which each hypothesis and possible combination between different
hypotheses is represented as a node in the interpretation graph. In particular, in
relatively underconstrained images this leads to an exponential growth of of the

interpretation graph, as the number of chains increases.

5.3.6. Overall Complexity of the Interpretation Process

A good indicator of the complexity of the interpretation process is the
amount of search that needs to be done. In Mapsee-3 most ol the search is done
by external methods. Hence, we have used the number of times an external
method was applied during a trial run as an indicator of the overall time taken

by the system.

In Mapsee-3 an external method establishes a spatial relationship between 2
chains. The number of pairwise comparisons one can make between n chains is
polynomial in the number of chains. The correlation coefficient in Table 5.4, how-
ever, indicates a high correlation. A visual inspection of Figure 5.41 reveals, that

the good linear fit is mainly due to the images with a relatively small number of
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chains. The Lower Mainland, on the other hand, with its 46 chains appears to
deviate from this pattern, possibly indieating a polynomial trend. Although no
atlempt was made in Mapsee-3 to curb a potential explosion in the number of
method applications, this is possible. In Mapsee-3 relations can be established
between adjacent chains only. Hence, one can restrict the number of applicable
instances in a schema’s superdiscrimination set by considering only those methods

of instances that are depicted by an adjacent chain.

5.4. Generalizing Mapsee-3

5.4.1. Constructing an Abstract Composition Hierarchy with Relaxed

Restrictions

Starting out with a basic composition bierarchy and basie discrimination
graphs at the composition leal level, we construct an abstract composition hierar-
chy with discrimination graphs at each level of composition. In the sections 3.2.2
and 3.2.3 the construction is subjected to a number of restricting assumptions.

These are:

1. Only “must-be-part-of " links could be used for projection.

2. The discrimination graphs had to be orthogonal to the composition hierarchy.
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3. lmage fealures were cues for schiemata at the composition leal level only.

The first restriction is a convenient one because in geographic maps the
majority of the constraints are organized in a bottom-up direction. For instance,
road-systems, river-systemns, and mountain-ranges are all must -be —parf -of a
geo-system, but geo-system itsell has no mandatory components at all. In princi-
ple, there is no problem in projecting the discrimination graph along ‘‘must-be-
parts” links as well. “May-be™ links, however, have to be excluded from the pro-

cess as they reintroduce hypothetical interpretations.

There are strong objections to lifting the second restriction. It would remove
the orthogonality (and thus the modularity) of the composition and discrimina-
tion process. Il a diserimination results in a change of composilion level this
necessitales additional completion. It should be observed, however, that ortho-
gonality is not very much of a restriction. If orthogonality does not come natur-
ally, we can always manipulate the composition hierarchy such that orthogonality

is achieved.

The third restriction is not very much of a restriction either. In Mapsee-3
cues are formed al one level of detail only, and they have access to the composi-
tion leal level only. In principle, there should be no problem with cues formed at
multiple levels of detail with access to different levels of composition (See Browse
(1982) for an example of such a system). The discrimination hierarchies can still

be constructed level by level starting at composition level 1. With “must-be-
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parts” links accounted for as well, the projection process becomes bi-directional.
First we project level 1 onto level 2 using “‘must-be-part-ol”. Next we project
level 2 onto level 1 using “must-be-parts”, thereby avoiding class duplication. In
the following stage we project level 2 onto level 3%te. There is only one complica-
tion. We first have to construct abstract discrimination graphs at all levels of
composition accessed by cues. In the restricted approach, we had to do this for
the composition leal level only. When projecting one level onto the next, we have
to merge the projected discrimination graph with the one that already exists at

that level.

5.4.2. Relaxing the Discrimination Constraints

- n-ary conslraints

In HAC-3 we use unary and binary constraints only. Can HAC-3 deal with
n-ary constraints? In Mapsee-3 constraints are represented as relations. For the
algorithm, it makes no difference whether a variable has one, two, or n neigh-

bors. Hence, HAC-3 has no problem dealing with n-ary constraints.

One way of creating higher-order relations is to have methods that create
higher-order relations out of lower-order ones. Often this is computationally
expensive to achieve. In some cases, however, it may be possible to create higher-
order relations direetly by means ol image cues created at a coarse level of detail.

For instance, one can think of a 3-tuple relatiom consisting of a bridge, the road
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crossing it, and the river passing under it. A cue for such a relation could be con-

structed at a coarse level of detail in the image.

- Generalizing the discriminalion graph to a directed acyclic graph

Mapsee-3 uses an exclusive OR graph. The reason for this choice lies in
HAC-3. If there were more than one path from an intermediate label in the graph
to a leal, then the number of iterations necessary to reach the leaf would explode.
This is caused by the use of the P-or predicate in HAC-3.2 The only informa-
tion provided by P-or is whether there is a successor label that is consistent. It
does not tell us which path leads to this successor label. We can solve this path
identification problem by compiling the knowledge about the path. We can then
associate with each P-or a particular branch that we need to follow in order to
reach the consistent successor label. With this correction, HAC-3 can efficiently

operate on any directed acyclic graph.

5.4.3. Method Generalization

In Mapsee-3 abstract schemata bave no methods of their own. By means of
the method inheritance mechanisms discussed in section 3.2.6, abstract schemata
have access to the methods of their descendants in the discrimination graph. It

\

would be attractive, il abstract schemata had Itheir own abstract methods. It

3The reader shoeld consnlt Appendix A for a proper ssderstanding of the function of this predicate
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would increase the efficiency of diserimination vision. The following example

clarifies why this is the case.

A road/river-system schema can apply the “‘road-road-tee” method to two of
its components only il both components are already interpreted as road. Simi-
larly, the “‘river-river-tee” method can be applied ounly if both components are
rivers. If both constituents of a potential T-junction are labeled road /river then
the road/river-system schema has no power to enforce any relation. Yet under
these conditions we already know that a T-junction will eventually be established
because road and river are never neutral with respect to each other in a T-

junction.

If the road/river-system schema had a method that could establish a
road/river-road/river-tee then both constituents of the junction would become
part of the same road/river-system instance immediately. Currently, in Mapsee-3,
both constituents do not join together until the *‘geo-system’ level has been
reached. From there it takes many more method applications and instance
merges before both junction constituents are finally joined in one road- or river-
system instance. Hence, abstract methods emable us to establish relations in a
much earlier stage of the interpretation process than would be the case without

them.

The problem with abstract methods is, that it is hard to establish them
automatically when we create abstract schemata. Method generalization has to be

anticipated in advance. For the basic schemata classes of methods would have to
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be defined. By investigating the matrix for each class of methods it can be esta-

blished, whether or not the method can be generalized.

Returning to the example above, all T-junction methods can form a class.
Both the road-system and river-system schema own a T-junction method. The
sub-matrix for T-junctions in Table 3.2 for road and river interpretations only
contains no “#*''s. This implies that the "road-road-tee" and “river-river-tee”
method can bé generalized to a ‘‘road/river-road/river-tee’” method. Similarly we
can infer that for a T-junction the stem of which is a road /river /mountain and
the bar of which is a road /river, we cannot generalize the T-junction method
because the “+" between mountain and road shows that no T-junction can exist
between these two interpretations. The problem remains that in anticipation of

method generalization we have to define classes in advance.

5.5. Discrimination Vision in Context \

5.5.1. Discrimination Vision and Similar Concepts

The concept that comes closest to discrimination is probably Tsotsos's con-
cept of similarity links (e.g. Tsotsos et al, 1980). Both discrimination and simi-
larity links relate classes that have similarities in their respective descriptions.

Both relate classes that comprise a discriminatory set, that is, only one class can
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be instantiated at any one time. The difference between the two concepts is that

similarity links relate classes at the same level of specificity in an is-a hierarchy.*

Discrimination graphs relate classes at the same level of composition. As well,
they may include a specialization hierarchy. Visual similarity is only one of the
possible properties inherited in a specialization hierarchy, and not all visually

similar objects are embedded in a specialization hierarchy.

The idea of combining a specialization hierarchy with the principle of least
commitment was first proposed by Marr and Nishihara (1976). An implementa-
tion of this idea by means of a constraint satislaction algorithm was one of the
features of Mapsee-2 (Havens et al, 1984). In Mapsee-2, however, the constraints
were represented procedurally, in contrast with the declarative representation
used in Mapsee-3. The idea of representing and dutomatically constructing unna-

tural classes at multiple levels of composition can be found in Mapsee-3 only.

5.5.2. Discrimination Vision in a general-purpose Signal Interpretation

System

In Mapsce-3 we assume that the image features resulting from a segmenta-
tion process are correct. The program deals with only the fact that these features
are ambiguous when regarding interpretation. By choosing line sketches we have

avoided the problem of an image formation process which delivers unreliable

*This is a specralization hrerarchy with amiversal implication
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features as a result of noisy data. In a general-purpose signal interpretation sys-
tem such features could exist. Hence, we have to raise the question how discrimi-
nation vision would be affected if we have to work with features which are possi-

bly incorrect or maybe even non-existent.

It is obvious that Mapsee-3 does not have the mechanisms to deal with a
noisy image formation process. The issues involved in the design of a system with
a knowledge base that interacts with such a noisy image formation process are
very complex. Attempts to solve that problem are on the frontier of current

]
research in computational vision. '

One way to deal with potentially incorrect or non-existent features is to con-
sider the features themselves as hypothetical. This means, however, that all the
original schema invocations in the scene have to be hypothetical as well. Unless
there are ways of grouping the original hypotheses we would be forced back into

a hypothetical approach.

Some researchers assign certainty values to different hypotheses raised by a
single feature. Such a value is based on the assumption that one feature will more
commonly give rise to a certain hypothesis than another. With such an approach
we can group objects suggested with equal certainty by a particular feature into a
discrimination graph. We thus reduce the number of hypothetical invocations,
but at the same time we maintain the advantages of discrimination vision. One
result of such an approach would be that common situations are dealt with in an

cllicient manner. Uncommon situations would require some backtracking and
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take more time to be resolved.

5.6. Summary

In this chapter we have discussed the performance of the discrimination
vision approach as implemented in the Mapsee-3"system. Mapsee-3 is robust, but
this does not imply that the diserimination vision approach is more powerful than
a hypothetical approach. The main advantages of discrimination vision are con-
ceptual clarity and efliciency. The former is reflected in the modularity and uni-
formity of the system, and in the separation between domain-dependent and
domain-independent knowledge. The efficiency of the system has been demon-
strated by means of several measures such as the number of iterations required
by dilferent algorithms and the number of instances in the interpretation graph.
Additionally, the discrimination vision approach is domain-independent to the
extent that it should be applicable to any signal processing domain. The compati-

bility between the Mapsee-3 design principles and those of the Hearsay-II system

{Erman and Lesser, 1980) support this point of view.
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6. SUMMARY AND FUTURE DIRECTIONS

6.1. Summary

\

This dissertation has addressed the problem of representing visual interpre-
tations that are ambiguous and hypothetical. Ambiguity is caused by at least two
factors: a segmentation process that has to deal with noisy data, and image prim-
itives which are underconstrained when it comes to interpretation. We have only

concerned ourselves with the latter factor.

Hypothetical and ambiguous interpretations have a close relationship. On
the one hand, we can maintain a separate representation for each possible
interpretation of an image primitive. Such an interpretation is hypothetical. On
the other hand, we can join different possible interpretations in a discrimination
graph. As a result, we can merge some interpretations into one, more abstract,
interpretation. Such an interpretation is ambiguous. In most model-based vision
systems, we find a mixture of hypothetical and ambiguous interpretations. The
former are maintained along a composition/aggregation dimension, the latter
along a specialization/generalization dimension. The representation of ambiguous
and hypothetical interpretations along different knowledge representation dimen-
sions causes problems with modularity in representation and control, and with

efliciency.

Chapter 6 216

A schema-based program for interpreting sketch maps, Mapsee-3, has been
designed and implemented which solves these problems. Conceptual clarity has

been the criterion for the design. This is reflected in

1. the ularity in repr tation,

2. the modularity in control,

3. uniformity of the representation,

4. strict separation between domain-dep and domain-independent knowledge.

Most important of all, the knowledge about ambiguous and hypothetical
interpretations is represented along one knowledge representation dimension: a
discrimination/generalization dimension. This dimension is realized by diserimi-
nation graphs which form a hierarchical representation of object classes with
similarities in visual appearance. The key idea behind this representation is the
existence of an abstract object class for each possible combination of local
interpretations that can arise from the image. This class enables us to represent
each image primitive by means of one (abstract) object class. In Mapsee-3, an

object class is represented as a schema, which consists of a list of attributes. The

interpretation(s) of each image primitive are expressed by one of the schema's
attributes, ils label. A single label implies an ambiguous interpretation, whereas

multiple labels make the interpretation hypothetical.
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Discrimination graphs are reminiscent of specialization hierarchies, but they
are different in al least two respects: discrimination graphs often form categoriza-
tions of object classes which are unnatural, and there is no universal implication
in discrimination graphs. The presence of unnatural object classes is caused by
the fact that many object classes with visuzl similarities cannot be joined in a
(natural) specialization hierarchy. However, the unnatural constituent of a
discrimination graph can be constructed automatically once its natural counter-

part is known.

The Mapsec-3 knowledge base is organized along three dimensions: a
composition/ageregation dimension, a discrimination/generalization dimension,
and a dimension that contains the relations which connect image primitives with
object classes in the scene, These dimensions are constructed orthogonally to each
other. Objeet classes are embedded in hoth a composition hierarchy and a
discrimination graph. Discrimination graphs are constructed for one particular
level of composition only. A discrimination graph can therefore never contain
object classes from different levels of composition. Furthermore, the scene domain
can be accessed only through object classes at the composition leal level. All
these factors enhance modularity in representation. Finally, the knowledge
representation dimensions merely provide a general format for representing
knowledge about particular (scene) domains. This enhances domain-independence

of the system.
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The Mapsee-3 control is subdivided in three stages: segmentation, image-to-
sccne mapping, and interpretation. A segmentation process takes a set of plotter
commands as input, and creates a set of image primitives in the form of chains
and regions. An image-to-scene process provides the connection between the
image and the scene domain. Each image primitive is represented by one
(abstract) objeet class at the leaf level of the composition hierarchy in the scene
domain. Interpretation is guided by two modular processes: composition and
discrimination. Composition subsequently represents image primitives in terms of
different object classes at different levels of composition in a bottom-up manner
and discrimination ensures that each object class obtains an appropriate interpre-
tation. A hierarchical arc consistency algorithm achieves this. The composition
process can only create and alter data structures along the
composition/aggregation dimension. The same is true for the discrimination pro-
cess along the discrimination/generalization dimension. Thus, Mapsee-3 also

achieves modularity in control.

Hierarchical arc consistency is an arc consistency algorithm that uses the
principle of least commitment as an operating principle. It operates on a discrimi-
nation graph the domain of which is hierarchically organized. Hierarchical arc
consistency refines the label(s) of an object class along its discrimination graph up
to a level justified by the constraints found in the image. Although hierarchical
arc consistency does not solve the constraint satisfaction problem, it enables us to
stop the interpretation at a level of discrimination wl;:ich is not a leafl level in the

discrimination graph. This feature reflects a natural phenomenon in human
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information processing which cannot be achieved either by arc consistency or

depth-first backtrack.

Mapsee-3 is eflicient for two reasons. Both result from the use of discrimina-
tion graphs which enable us to construct an interpretation graph in which com-
peting hypothetical interpretations are represented by one variable. The inlerpre-
tations themselves form the labels in the domain of the variable. In most cases
the invalidation of a particular hypothesis results in the deletion or replacement
of a label, not in a structural change of the interpretation graph. The latter is the
case in many model-based vision systems. The other reason is the hierarchical
organization of discrimination graphs. Such an organization enables us to
represent the domain of each variable in hierarchical manner rather than as a set.
As 2 result, the number of labels that has to be represented in the domain of

each variable is relatively small.

The model that underlies the Mapsee-3 design interprets image primitives by
means of object classes whose interpretation is at first extremely generic and
unspecified. As more and more constraints are discovered in the image, this
interpretation becomes more and more specific. Because of this continuing process
of interpretation refinement along a discrimination graph, we call this particular

approach discriminalion vision.
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6.2. Future Directions

1. Generalization lo other domains.

The basie representational format of Mapsee-3 is domain-independent. It
would thercfore be natural to try out different domains. Line drawings of human
bodies as used by Browse in his dissertation (Browse, 1982) would be a possibil-
ity. As well, a system could be designed that can interpret line sketches from
more than one domain. This would increase the number of levels in the discrimi-
nation graph. However, a real test of Mapsee's domain-independence would come
from an implementation in a different signal processing domain such as speech

interpretation.

2. Top-down control strategy.

The Mapsee-3 control strategy is mainly data-driven. In particular, the com-
position process works along the composition hierarchy in a direction from leafl to
top. The constraints in the sketch map domain are the prime motivation for this
strategy. Most of the constraints are pointing upwards along the composition
hierarchy. For example, mountain-ranges and road-systems are all mandatory
components of a landmass, but a landmass itself has no mandatory components
at all. One of the few suitable situations for implementing top-down control is
the situation with a river-system and a bridge as its component. In such a situa-

tion we know there must be two rivers, both of which flow under the bridge. Line
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sketches of human bodies would also be a suitable domain for experimentation

with a more mixed control strategy.

8. Extensions lowards the real world.

This would entail abandoning the domain of line sketches and reaching in
the direction of the outside world. A good intermediate solution would be to stick
with the geographic world but to seek a richer input. Such a solution could be
found in the interpretation of digitized geographic maps. Without having to deal
with the complexity of the real world, one would be able to use edge detection
and region formation techniques which reintroduce the problem of hypothetical
image features. Such input material would enable us to experiment with diserimi-

nation vision in the context of a more general-purpose vision system.

4. Automatic construction of a generalized composition hierarchy.

More work needs to be done in order to develop algorithms for automatic
construction of an abstract composition hierarchy from a basic composition
hierarchy and basic discrimination graphs at different levels of composition. In
the discussion in section 5.4, we have sketched a construction solution only for 2
situation in which image primitives at different levels of detail are mapped into
different levels of composition. Formal proj ectimf algorithms for such a situation
have yet to be elaborated. Furthermore, the qu&tion of how to automatically

create abstract methods is very much an open issue.
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5. Inslance hierarchies.

In Mapsee-3, instance links connecting schemata with their instances only
exist in the temporary data base constructed during interpretation. This is the
case, because Mapsee-3 represents object classes only, not individuals. Mapsee-3
does not permanently store any knowledge about the particular scenes it has
interpreted. A system which amalgamates each new interpretation in its per-
manent knowledge base such that future recognition of the same scene can be

done more efficiently would constitute another worthwhile future enterprise.

6. Dynamic thresholding

The problem of dynamic thresholding was raised in section 5.3.1. Mapsee-3
uses fixed thresholds for forming T-junctions. We have argued that the value of
such thresholds should be dynamically controlled by the interpretation process.
For instance, il we already know that a particular chain is a road then we should
relax all the parameters by means of which this road can form junctions with
road compatible object classes. Knowledge-driven thresholding constitutes

another realm for future research. '

[
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8.3. Conclusion

Discrimination graphs are a better way of representing ambiguous and
hypothetical interpretations in 2 model-based vision system than specialization
hierarchies. They enhance modularity, uniformity, domain-independence, and the
cfliciency of the system. As well, the hierarchical arc consistency algorithm is an

efficient and natural means of propagating consistency over these graphs.
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APPENDIX A
HIERARCHICAL ARC CONSISTENCY

This appendix provides a formal description of the algorithms AC-3 and

HAC-3 referred to in section 3.3.2.1.

AC-3

Restricting ourselves to unary and binary constraints, we represent the con-
straint satisfaction problem as a graph G in which the nodes are variables, and
the links are constraints on these variables. Each variable V; has a domain D; of
labels. Different forms of consistency can be defined over the graph. The particu-

lar forms we describe are node consistency and are consistency.
Node consistency for node V; in graph G can be defined as:
(=) Pi(z)
where z is a label in D; and P; is a unary predicate on V;.

G is node consistent il all nodes in G are node consistent. The following pro-
\

cedure tests node consistency:
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procedure NC(i)
D;+—D; nz | Pi(z)

1 BEGIN

2 FOR i+l UNTIL n DO NCfi)
8 END

An arc(i,j) is consistent, if:

1) its source node V; is node consistent
2) its goal node V; is node consistent

3) each z € D; is consistent with at least one y € D;.

A directed graph G is arc consistent if all of its arcs are arc consistent.

AC-3 is an iterative procedure where each iteration consists of an updating
of the labels of a particular variable V under]’the constraints of a particular
predicate. If one or more labels of V are deleted during an iteration then all the
variables that constrain V are considered next. The labels of those variables are

tested under the constraints defined by the predicate that relates them to V.

The basic action in arc consistency is to remove any z € D; for which rule 3

does not hold. This action is embodied in the Boolean procedure REVISE.
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procedure REVISE(i,j)

1 BEGIN

£ DELETE + [abse

8 foreachz € D; DO

{ IF there isnoy € D; such that P;;(z,y) THEN
5 BEGIN

[ delete z from D;

7 DELETE +— true

8

9

END
END
10 return DELETE
11 END ¥

The effect of any deletion has to be propagated to all nodes whose values
could be affected by the deletion. This is done in the following procedure called

AC-3 in Mackworth (1977c):

Procedure AC-8

1 BEGIN

2 FOR i +— 1 UNTIL n DO NCfi)

8 Qe (i J)(ij)€ares(G)i #

4

5 REPEAT UNTIL Q is empty

6 BEGIN

7 select and delete any arc (k,m) from Q
8 if REVISE(k,m) then

9 Q+—Q U((i k)| (i k) € ares(C),i # ki %m)
10 END

1 END

12 END
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HAC-3 '

In AC-3 the domain of a variable is organized as a set of labels. Each instan-
tiation of a variable has this set or a subset of these labels in its domain. In
HAC-3 the domain D is organized in 2 hierarchical form. Each node in this
hierarchy stands for a label that is unique in G. The labels at the leaves of the
hierarchy are the same (basic) labels that are represented in the variable domain
in AC-3. The source node of the hierarchy intensionally represents the complete
set of labels at the leaves of the hierarchy. Each intermediate node represents a
subset of this set. We refer to a leafl label in the hierarchy as a basic label. An
intermediate label will be called an abstract label. In IIAC-3 the domain of each
variable still contains one or more labels. The difference with AC-3 is that in
HAC-3 any label can be either an abstract or basic label whereas in AC-3 each

label must be a basic label.

In AC-3 the constraints between two variables V; and V; with domains D;
and D; are represented in the predicate F;;. Such a representation takes the
form of a truth table. Table Al is an example of such a table. In the example, V',
is a geo-system surrounded by a shore (V,). V| has four possible labels, V, has
two. P, represents the “outer-shore™ constraint; that is, V, surrounds V. A
geo-system can only be surrounded by a shore if the geo-system is an island and
the shore a coastline or when the geo-system is a lake and the shore a lakeshore.

In order to make the are from ¥V, to V, consistent, AC-3 would eliminate the

labels mainland and ocean from the domain of V in this example.
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An abstract label pair (m,n) is hierarchically arc consistent if the set of basic
labels descending from m is arc consistent with the set of basic labels descending
from n. An arc (i,j) is hierarchically arc copsistent if each label in D; is

hierarchically are consistent with at least one label in D;.

In HAC-3 we compile Fj; into two new predicates: P-and;; and P-or;.
For any label pair (m.n)|(m € D;,n € D;) P-and;; expresses whether or not
the pair is hierarchically arc consistent. For any label pair
(m,n)|meD;n €D;) P-or; expresses whether or not al least one of m'’s

descendants is hierarchically arc eonsistent with n.

With P;; given, we can automatically construct P-and;; and P-or; for
each pair of labels, irrespective of their location in the hierarchy. An example will
show how this is done. For this purpose we have expanded the labels in Table Al
into a hierarchy. Figure Al shows the result. The constructed P-and's and
P -or's are shown in Table A2. For illustrative purposes we have expanded the
predicates into a 4-tuple (e.g. P-and;;y ). The indices k and ! indicate the level

in the hicrarchy whereby k£ = level number in D;, and [ = level number in D;.

P -and;,, is identical to P;; in Table AL. This is the basic table. The other

i
tables are constructed by properly AND ing and OR ing together different values

from the basic table.
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Py Lakeshore | Coastline P-and; ;,, | Shore
Island 0 1 Landmass 0
Mainland 0 0 Waterbody 0
Lake 1 0
Ocean 0 0
P-or, ;a4 | Shore
Table Al: A truth table representing the constraints between Landimass 1
two variables in AC-3 Waterbody | 1
-and; - Lak Coastli =
P-and; ;1 sshors e P-and; ; 5, ‘ Lakeshore | Coastline
Island 0 1
Mainland 0 0 Geo-system | 0 I o
Lake 1 0
Ocean 0 0
P-or; ;31 | Lakeshore | Coastline
Geo-system [ 1 | 1
P-and; ; ., | Lakeshore | Coastline
Landmass 0 4
Waterbody 0 0 P-and; ;4. | Shore
Geosystem | 0
P-or; ;5 | Lakeshore | Coastline
Landmass 0 1 P-or; ;32 | Shore
Waterbody 1

Geo-gystem 1

Table A2: P-and and P-or truth tables for the hierarchies in Figure Al



Appendiz A 237

i i
,\Geo-system level 3
Py
.
! \
! \
4 \
! \
! \
/
7 \
/ \
/
; \
" Landmass . Waterbody Shere , level 2
] i A
Y f % f%
R | I\ !\
Iy !y !
7 % P\ ;o3
Py ' S Iy
! \ 4 \ ! \
] 1 ! [} ! \
! v ! \ 4 \
! \ H \ H "
@ 2 & ® ® @ 1over:
Island Mainland Lake Ocean Lakeshore Coastline

Figure Al: The labels of two variables expanded into
a discrimination hierarchy

We can now discuss the HAC-3 algorithm. It is similar to AC-3 except that
the procedure REVISE is different. A label pair {(m,n) m € D;, n € D;} is
consistent if P—and,, is true. If this is not the case then we test P—or,, . If
this is false as well then we have to delete m from D;. If P —or,,, is true, how-
ever, then we replace m by its successors in the hierarchy and we repeat the
sequence of tests for each of the successors. We continue this testing until we
have found one or more successors k for which P —and,, is true. We call this

procedure HACREVISE .
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Procedure HACREVISE(i.f)

1 BEGIN

2 DELETE + false

3§ QI s Dl'

4 ND +— emply

5 WHILE Q1 non-empty DO

6 select and delete any element z from Q1

7 Q2D -

8 MATCH + false

9 WHILE Q2 non-empty and not MATCH DO
10 select and delete any element y from Q2
11 IF P -and;; (z,y) THEN

12 BEGIN

18 append 2 to ND

4 MATCH + true

15 END

16 END

17

18

19 IF not MATCH THEN

20 BEGIN

22 WHILE Q2 non-empty and not MATCH DO
28 select and delete any element y from Q2
24 IF P—or;; (2,y) THEN

25 BEGIN

26 append all succesaors of z to Q1
27 MATCH +— true

28 END

29 END

30

81 \

82 DELETE +— true J

98 END

34

5 END

36

37 Di «+— ND

38 relurn DELETE

59

40 END
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It is preferable to organize the domain of IIAC-3 as an OR graph. This will
prevent the existence of more than one path between two nodes when traveling in
a diserimination direction. Multiple paths can cause an explosion in search,

because ' ar requires us to follow each path until a consistent label is found.
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APPENDIX B
AN EXAMFPLE

In this appendix an in-depth discussion of the interpretalion process for the
example in Pigure 4.14 is provided. The interpretation scheme is shown in Figure
4.13. Table 4.7 shows the name abbreviations used for the object classes and rels-
tions. Interpretation iakes place in three stages: scgmentation, image-to-scene
mapping, and interpretation. The segmentation process segments the image into
primitives and cues. The segmentation of Figure 4.14 results in the creation of
one region and four chains. The image-to-scene process places each one of the
chains into a shape eategory and invokes the abstract schema depicted by this
shape ecategory. Four schema instances are ereated at the composition leaf level:
Itd [Rv [Brs -1 for chain-1, Rd /Rv [Brs -2 for chain-2, Rd /Rv-1 for chain-3,
and id [Rv 2 for chain-4 (Figure 4.15). The name inside the brackets is the
label of the instance. All instances are inserted in this order in a completion

queue.
1
'

The interpretation process consists of two processes: composition and
discrimination. Composition consists of two steps: completion and assembly.
PDiscrimination is cquivalent to hierarchical arc consistency, implemented as
HAC-3. Both the composition and discrimination processes take their input from
a quene. Composition has a completion queue, discrimination a label consistency
queue, abbreviated as le-queue. The composition and discrimination process com-

municate with each other by pushing clements on each other's queue. Figure 4.13
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shows how the processes alternate. The interpretation process is initiated by the

appearance of schema instances on the completion queue.

Completion takes place in a depth-first or breadth-first manner, depending
on whether we tréat the completion queue as a stack, or whether we order
instances by composition level. The first element on the queue is always picked
first. In this example we will follow a breadth-first strategy. The interpreter in

Appendix E also [ellows a breadth-first strategy.

completion-queue: fid /Re [Brs-1, Rd [Rv /[Brs-2, Rd [Rv-1, Rd [Rv-2.

Rd [Rv [Brs-1 is selected for completion &l{ld is deleted from the queue. It
completes to Rd /Rv /Br.! A matching instance is therefore looked [for among
the instances in the superdiscrimination set of road /river /bridge. As noune is
found, the default rule takes effect. That is, a new instance Rd /Ruv /Br-1 is

created.

This is the first step in the scheme shown in Figure 4.13. Rd /Rv /Brs-1 is
not yet linked to Rd /Rv /Br-1. First, we have to test the consistency of the arc
which will connect the two instances. The are (Rd /Rv [Brs-1 . Rd [Rv [Br-1)
is pushed on the le-queue and HAC-3 is invoked.? This is the second step shown

in Figure 4.13. HAC-3 takes elements from the le-queue and pushes elements on

There is a level of composition relations betwesn every two levels of composition Completion always invalves the
creation of *part-of” and & "paris” relalions linkiag two instances at adjaceat composition levels For reasons of simplici-
Ly, bowsver, we will act as if one ¢ ition object level with the sext one up directly

“See Appendix A for the exact algorithm
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this queue il label refinements take place. HAC-3 continues to operate until the
le-queue is empty. In the current ease there is only one element on the queue.
P -and(Rd /Rv /Bra-1,Rd {Rv [Br-1) is true. Thus, consistency has been esta-

blished.

Step 3 in the interpretation scheme (Figure 4.13) is assembly. This results in
the linkage of Rd /Rv /Brs-} and Rd [Rv [Br-1. Rd /Rv /Br-1 is inserted into
the completion queue. Instances are ordered by composition level. Thus

Rd /Rv /Br-1 is inserted at the end of the queue.

Up to pow consistency has been tested in one direction only {from
Rd fRv [Brs -1 to fid [Rv [ Br-1). During the second HAC test (step 4 in Figure
4.13) we push the arc {Rd /Rv /Br-1 . Rd /[Rv [Brs-1) on the le-queue. As is the
case in the previous test, there is immediate consistency. No label changes have
taken place so far, but we have now completed a cyele in the interpretation

scheme as illustrated in Figure 4.13.

completion-queue: Rd /Rv [Brs -2, Rd [Rv-1, Rd [Rv-2, Rd /[Rv [Br-1.

Rd /Rv [Brs -2 is next for completion. A matching instance is locked for
once more in the superdiscrimination set of road [river [bridge . Rd /Rv /Br-1 is
found and tried. Road /river [bridge has access to the “bridgesidep/bridgesidep”
method. This schema suceessfully applies this method to Rd /Ry [Brs-1 & 2. As
a result, an instance of the bridgesidep [bridgesidep relation is created which will

eventually link Rd /Ry /Brs—1 & 2. The ares (Rd /Rv /Brs-2 . Rd /Rv [Br -1),
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(Rd [Rv /Brs—1 . Rd /Rv [Brs-2), and (Rd /Rv [Brs-2 . Rd /Rv [Brs-1) are
now pushed on to le-quene. The first arc does not cause any problem, the second
one does. The bridgesidep [bridgeaidep relation cannot exist between two
road/river/bridge sides. P(Rd/Rv /Brs Brs[Brs) is false. HAC searches the
discrimination graph to find a consistent discrimination. Rd /Rv /Brs is special-
ized to bridge —side . The same occurs for Rd /Rv /Brs-2 when the third arc is

tested.

As label changes take place, HAC-3 pushes all the schemata that have arcs
pointing at Rd /Rv/Brs-1 & 2 onto the le-queue. As a result, the arc
(Rd /[Rv /[Br-1 . Rd /Rv /Brs-1) is pushed onto the lc-queue. During the next
HAC invocation, the label of Rd /Rv /Br-1 is refined to bridge, because only
P -and (bridge ,bridgeside ) is true. As a result of all the label changes
Rd /Rv [Brs -1 and Rd [Rv /Br-1 are inserted back into the completion queue.

However, the latter is already on the queue.

Next, assembly not only establishes the link between Rd/Rv /Brs-2 and
Rd /Rv [Br-1, but the spatial relations between Rd /Rv /Brs-1 & 2 as well.
During the second HAC test we push the are (Rd /Rv /[Br-1 . Rd [Rv [Brs -2)

on the le-queue, but this has no further effect.

completion-queue: Rd /Rv /[Brs-1, Rd [Rv-1 & 2, Rd [Rv [Br-1.

Rd [Rv /Brs-1 has already been completed once. It is our first case of what

is called post-completion. The reason for post-completion is the label refinement.
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of Rd [Rv [Brs -1 to bridge —side which has just taken place. As a result of this
refinement methods may mow apply which did not apply before. Application of
new methods may result in the establishment of new relations, further label
refinements, or the merge of one or more instances in Rd /Rv [Brs-1's super-
discrimination set. The latter may happen because Rd /Ry [Brs-1 may now
complete to instances other than Rd /Rv [Br-1. As Rd /Rv [Brs has only one
super-schema, this implies that the super-instances must be one and the same.

Hence, they must be merged.

Nothing of this kind happens in this case. Rd /Rv [Brs-1, because ol its
label, now completes to bridge . We have to search bridge’s superdiscrimination

set for a matching instance, other than Rd /Rv /Br-1, but none is found.

completion-queue: Rd [Rv-1 & 2, Rd /[Rv /Br-1.

Rd [Rv-1 is next. It will complete to the newly created Rd /Rv¢-1. It will
still take some time, before the river —under —bridge relation involving chain-3 is
found. "“River-under-bridge” is a regular method and we need the help of a nega-
tive relation to constrain chain-3 to be a river. Actually, this does not happen

until we reach the fandmass schema at level 4.

completion-quene: Rd /Rv-2, Rd [Rv+-1, Rd {Rv [Br-1.

The completion of Rd /Rv-2 proceeds in exactly the same manner as the

completion of Rd /Rv-1. Thus, Rd /Rv-2 becomes a component of the newly
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created instance Rd /Rv#-2. The current situation is shown in Figure 4.16.

completion-queve: Rd /Rv+-2 & 1, Rd /Rv [Br-1.

All level 1 instances have now been completed and we continue with level 2.
We can discuss the completion of boith Rd /Rv#-2 & 1 at the same time because
the processes are similar. Rd /Rv#-2 becomes a component of a newly created
instance ftd /Rvsys -1, Rd [Rv#-1 becomes a component of Rd /Rusys-2. At
this point we have no way of knowing that Kd /Rvsys -1 & 2 should be one and

the same instance.

completion-queue: 2d JRv /Br -1, Rd [Rvsys -2 & 1.

The completion of Rd /Rv /Br-1 (with label bridge ) is the next level 2 com-
pletion. The completion path of an instance, however, is determined by the
instance’s label, not by the parent schema. As a result, Rd /Rv /[Br-1 now com-
pletes as if it were an instance of bridge. Its two super-schemata are

road -syslem and river —system .

Let us assume that Rd /Rv /Br-1 completes to road -system first. It will
try to match any of the instances in road -system’s superdiscrimination set.
There are two instances in this set: Rd /Rvsys -2 & 1. Neither can successfully
apply any method. Hence, a new instance Rdsys -1 is created. During the [ollow-
ing assembly Rd /Rv /Br-1is linked with Rdsys-1. The second HAC invocation

does not result in any label changes.
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completion-quene: Rdsys -1, id [Rvsys -2 & 1.

Ttd /12w /Br -1 still has to complete for a second time, to river —system . As
we explained before, the road /river —system schema has no access to the “river-
under-bridge’" method, because it is a regular method. This means that Lhis
method only applies to two iustances, one with the label bridge —side , the other
with the label river. It does not apply to any generalizations of river (c.g.
Rd /Rv). Rd/Rv/Br-1 therefore completes to the newly created instance

FRusys -1. The current situation is shown in Figure 4.17.

completion-queue: Ruvsys -1, Rdsys -1, Rd [Rvsys -2 & 1.

We can now start completion from level 3 to level 4. Rysys -1 completes to

landmass . As there are no instances created at level 4 yet, Rusys —1 will become

a component of the newly created instance Lm -1.

completion-queune: Rdsys -1, Rd [Rvsys-2 & 1, Lm -1.

Rdsys -1 (with label road —system ) completes to Lm -1 as well, because both

INdsys -1 and Rusys—1 share the same component, and thus the same chains and

region.

completion-queue: Rd /Rvsys -2 & 1, Lm-1.
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Rd [Rvsys -2 will also complete to Lm -1, because the region surrounding
chain-3 overlaps with the region depicting Lm -1. This is checked by the method
“surface-overlap’. This part of the completion has no effect on the labels of any
of the instances involved. The landmass schema, however, has internal methods
it can apply to its components. Of particular interest in this case is the very
powerful “not-roadp'" method. The not-roadp relation is imposed on any com-
ponent of the landmass which represents a chain whose end point comes close to
a river or bri&geA The result of this operation is that the nof -roadp relation is

imposed on Rd /Rv+-1.

The label road /rivers cannot coexist with noi-readp. During the next
HAC invocation a chain of specializations will therefore take place: Rd /Ru+-1 to
river+, Rd /[Rv-1 to river, and Rd /Rvsys-2 to river —system. All three
instances are inserted into the completion queue for post-completion. After

assembly and a second HAC invocation Rd /Rvsys -2 is linked with Lm—1.

completion-queue: Bd /Rv-1, Rd [Rv+-1, Rd [Rvsys -1, Lm-1.

Post-completion of Rd /Rv-1 has no eflects. However, when we post-
complete Rd /Rv#-1, we are faced with the situation that Rd /Rv -1 now has the
label river, and Rd /Ruv /Br-1 has the label bridge . When Rd /Rv+-1 attempts
to match Ruvsys -1, the “river-under-bridge” method is applied successfully.
Although the labeling is stable, Rd /Rv+#-1 is not allowed to be part of two

super-instances. These two super-instances (Rd /Ruvsys—2 and Rvsys—1) will
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therefore merge into one newly created super-instance, which will be a structur-

ally modified Rvsys -1.

As a result of this structural change, we have to insert the “new” Rvsys -1,
and, recursively, all of its super-components into the completion queue. This
recursion is necessary because some “high level” schemata may have methods
that apply far down in the hierarchy (e.g. “‘not-roadp”). Figure 4.18 shows the

current situation.

completion-queue: Rusys -1, Rd {Rvsys -1, Lm—-1.

Post-completion of Rvsys -1 with its two components has no further effects.
The completion of Rd /Rusys -1 proceeds in a way totally symmetric to the com-
pletion of Rd /Rvsys-2. “Not-roadp” will cause Rd /Rv+#-2 to specialize to
river+, and, finally, Rd /Rvsys-1 will also merge with Rusys-1, leaving the
latter with three components: two rivers and a bridge. At this point we will
bypass all the intermediate states of the completion queue, and we will start with

the completion at level 4.

completion-queue: Lm -1.
Lm -1 completes to a newly created instance of world, Wrld—1, and this

constitutes the end of the first interpretation cycle, in which all chains have been

depicted up to the world level.
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The second eycle is rather trivial for this particular example. The
“completed-system' methods are now deblocked. As a result, particular checks
are made. The “incomplete-river-systemp’ method, for instance, will check for
each river-system, or one of its generalizations, whether their components can
actually be rivers, or bridges. A chain can depict a river, only if one of the follow-

ing conditions is satisfied:

1. It makes a T-junction with another chain which can be labeled as a river.

2. It makes a T-junction with a chain labeled as a bridge-side.

3. It makes a T-junction with a chain labeled as mountain.

4. It makes a T-junction with a chaio labeled as shore.

5. It runs of the edge on one or both sides.

If none of these conditions is satisfied, a nol —riverp relation is imposed on

the instance concerned. During the next invocation of HAC the label of the

instance is refined. This example shows the rules for river —-system . Compatible

rules exist for road-systems and bridges. )

The sccond cycle runs in exactly the same way as the first. Label changes
cause the completion process to be reinvoked which, in turn, reinvokes HAC efc .

Figure 4.19 shows the final interpretation graph.
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APPENDIX C

The Mapsee-3 Projection Algorithm

The only reason that the Mapsee-3 projection algorithm deviates from the
general projection algorithm discussed in section 3.2.5 is that this algorithm is
ineflicient in many-to-one mapping situations. In Mapsee-3 there exists a compo-
sition relation level between two object class levels. A projection from object class
level | to object class level I+1 must therefore be done in two stages. First we
project object class level | onto composition relation level [ +0.5. Next we project
composition relation level {+0.5 onto object class level I+1. In the first stage
there are only two kinds of mapping situations: one-to-one, or one-to-many. For
both cases the general projection algorithm works fine. In the second stage there
are also two kinds of mapping: one-to-one, or many-to-one. For this reason we
use a different algorithm. This algorithm does efficient many-to-one mapping. It

also takes advantage of the fact that no one-to-many mapping can occur.

The Mapsee-3 projection algorithm has three stages. In the first stage we
subdivide the discrimination graph into subtrees. In the second stage we project
each subtree from level [ to level [+0.5. In the third stage we project subtrees

from level {40.5 to level [+1.
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- Subdividing the discrimnination graphs inlo sublrees

The first step in projecling a discrimination graph from level | onto level
{+1 is a subdivision of each discrimination graph into two-level subtrecs. Each
node in the graph and its dircct descendants iu a discrimination direction form a
subtree. The next step is the assigning of a level number to each node in the
diserimination graph. The lfeaves of the graph become level 1, their parents level
2 ete. In case of conflict the highest level number prevails. The projection Lakes
place subirec by subtree. All trees with source node at level 2 are projected first,
because all leaves at level I are already contained in a basic composition hierar-

chy. Next the trees at level 3 ete.

- Projecling sublrees from composilion level I ta level +0.5

For this stage we use the general projection algorithm specified in section

3.2.5. For the convenience of the reader it will be repeated here.

Each subtree ST consists of a source schema S and a set of leaves L. L has ¢
elements: L,.....,L, . A discrimination link d; ; connects S with [; (1<i<gq). n;
“must-be-part-of” links eminate from each L; (1<i<gq). The set ol super-
schemata in the composition hierarchy of L; we call SL;. SL; has r elements:

SLy yyeesSLy o (1 = n;). Figure Cl shows the situation.
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Figure C1: An illustration of the general projection algorithm
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The projection algorithm consists of two steps:

1. Create a new set of super-schemata S5 aod create a “must-be-part-of” link
between S and each element of 5S. 55 has ¢ elements: §5,,.....,55, ({ = max
n {1<i<q}).

2. For each set SL; (1<i <q)do:

Create new discrimination links connecting SL; with SS. Each of these links
represent d; ; at level [ +1. The elements in both sets are connected ia the fol-
lowing way:

SL;.1 connects with S5, SL,-.z connects with SS;,‘-‘-A,SL,‘J conmects with
S5, .

Ifr <t

then create additional links that connect SL; . with S5 for each possible
value of k (r <k <t).

- Projecting sublrees from composition level | 4+0.5 to level | +1

In this stage some efliciency measures are introduced. A “must-be-part-of”
link connects two object class schemata. As a result each subtree leafl at level
[4+0.5 can have at most one super-schema at level [41. As well, different “must-
be-part-ol”’ links can point at the same super-schema. This causes a decrease in
the arity of the subtree at level [+1. In the extreme case the arity is reduced to
one. Figure C2 shows such a situation. The general projection algorithm deals
inefliciently with this situation (Figure C3). Irrespective of the label to which S is
refined, S5 will always be refined to SUPL ;. A merge between SS, and SUPL,

waould therefore be appropriate.

Figure C4 shows another situation in which the general projection algorithm
leads to inefficiencies. Discrimination graphs are not necessarily of uniform depth.

As a result, the super-schemata of two different leaves at level 14+0.5 may be
1
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diseriminations from another at level [ +1. Application of the general projection
algorithm results in Figure C5. The existing link between SUPL, and SUPL;
could have been used as a projection for dj o5, but this possibility has not been
taken advantage ol A more efficient approach for such a situation is to find the
most gencral schema in SUPL and to use that schema as super-schema for S.

Figure C6 shows the result.

Finally, we can simplify the general projection algorithm by taking advan-
tage of the restriction that S can have at most one super-schema. The revised
projection algorithm consists of three steps:

i. Create the set SUPL consisting of the union of all SL; (1<f <gq).
For each element el in SUPL do:
Check whether e! is a discrimination of any other element in SUPL . If this is
the case then delete ¢/ from SUPL .
I |SUPL | =1
then exccute step 2
else execute step 3

2. Create a “must-be-part-of”* link between S and SUPL ;.

3. Create a new schema S5 at level I +1 and create a “must-be-part-of”" link
between S and 55,.
For each L; (1<f<q)do:
If L; s super-schema SL; , € SUPL
then create a discrimination link between SL; ; and SS;. This link
represeats d; +0.5,; at level [ +1.
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APPENDIX D
SYNTAX OF THE MAPSEE-3 SCHEMATA

A schema is either a scene schema or an image schema.

<schema> =  <image-schema>> or <scene-schema>

A scene schema can represent an object class or relation. A scene schema can
be described either by a list of attributes or by a single label that uniquely
identifies the class or relation to the system. The former description is useful i
we want to look at the constraints that exist between a schema and its neighbors
in a constraint graph. The latter description is ai)pmpriate, il we want to treat a

schema as an element in the domain of a variable for constraint satisfaction pur-

poses.
The lollowing attributes can be found in every scene schema X :

1) A schema-label: uniquely identifies an object class or relation to the system (e.g.

+509).
2) type: indicates whether the schema represents an object class or relation.

3) composition level: each scene schema is embedded in a composition hierarchy.

bhadded

4) discrimination level: each schema is also in a discrimination graph, the
concept of which is explained in section 3.2.2.

5) links-in: the list of schemata which have pointers directed at X .

6) links-out: the list of schemata to which X has pointers.
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7) mandatory components: the list of schemata that enter in a “must-be-parts" rela- ¢) ilinks-in: the instance equivalent of “Iinkajin".

tion with X, f) icomponents: the established components of Y .

8) other components; the list of schemata that enter in a “may-be-parts” relation g) isuper-com ponents: the established super-components of Y.

with X . b) labels: the list of current interpretation(s) of Y. At the time of creation Y’
9) mandatory super-components: the list of schemata that enter in a “must-be- inherits the label of its parent X . This label can be replaced by any of X''s suc-
part-of " relation with X, ! . cessors in the discrimination graph, if the situation requires it.

10) other super-components: the list of schemata that enter in a “may-be-part-of” i) idepicted-by: each schema instance is depicted by one or more image primi-
relation with X . tives.

11) discriminations: X 's successors in the discrimination graph.

15) inverse: see iinverse.
12) generalizations: X 's parents in the discrimination graph.

16) depicted-by: see idepicted-by.
13) methods: a schema can represent both declarative and procedural knowledge.

The schema'’s methods are procedures which are “owned” by the schema. Each

. g <scene-schema> u= < <schema-label> <type>
Mapsee-3 method consists of a function that takes one or two arguments. A more < composition-level > <discrimination-level >
<links-in> <links-out>
detailed explanation of the operation of methods is provided in section 3.3.1. <mandatory-com: ts> <ather-components >
. < mandatory-super-components >
14) instances: during interpretation each schema can be instantiated zero or more <other-super-com ponents >
<discriminations> < generalizations>
times. Each instantiation is represented as a uniquely identifiable unit. A scene < methods> <instances>
<inverse> <depicted-by > >
schema instance Y has the lollowing attributes: <ichemaidabil>
< schema-label > *S-positive integer
a) instance label: uniquely identifies } to the system. <type> object class
relation
b) iinverse: each relation in Mapsee-3 has an inverse. If ¥ is an instantiation of < composition-level > 1= positive number
<discrimination-level > u=  positive number
a relation, then it must have an inverse which is an instantiation of the inverse <links-in> 1= < scepe-schema>+
. <links-out > = <scene-schema>>#*
of Y's parent schema. < mandatory-components>> = <> or <scene-schema>+
. 3 < other-components>> = <> or <scene-schema>+
c) parent: the schema Y is an instance of. < mandatory-super-components > <> or <scene-schema>+

<other-super-components>> <> or <scene-schema>+

d) ilinks-out: the instance equivalent of “links-out”.
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<discriminations> =
< generalizations > =
< methods >
<internal-methods> -
<external-methods> ==
<lunction-name> =
< instances > st
<inverse> =
<depicted-by > it

< scene-schema-instance>

<instance-label >

<iinverse> ==
< parent > =
<ilinks-in> ]
<ilinks-out > o=
<icomponecnts > =
< isuper-components > 1=
<labels> L

<idepicted-by >

<> or <scene-schema>>+

< > or <scepe-schema>+

< internal-methods >

<external-methods >

<> or < <[unction-name < scene-schema>> >+

]

< <function-name < < scene-schema>>+>
< <scene-schema>+> >+

alpha-numeric string

<> or <scene-sch inat >

<> or <scene-schema>

image primitive

< <instance-label > < parent > <ilinks-in>

<ilinks-out > <icomponents > <isuper-components >

<iinverse> <labels> <idepicted-by > >

<instance-label >

*S positive integer - positive integer

< scene-schema-instance >

< scene-schema>

< scene-schema-instance >+

< scene-schema-instance >+

< > or <scene-schema-instance>»

<> or <scene-schema-instance>

< scene-schema>+

image primitive instance

An image schema can represent a point, link, line, chain, patch, or region.

<image-schema>

W

< point-schema>
<link-schema >
<line-schema>
<chain-schema>
< patch-schema>>
<region-schema>

The input to Mapsee-3 is a line drawing given as a set of plotter commands

(e.g. plot {x,y) and goto (x,y)). For each point the coordinates are given. Each

pair of connected points forms a link. A set of links forms a chain. A line hierar-

chy is created for every chain by following the procedure described in section
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4.3.2. Each point instance is specified by its parent, coordinates, and the link it is

part of (if any). A link instance is specified by its start-point, end-point, parent,

and the chain it is part of.

< point-schema>

< point-instances>
< point-schema-instance >

< point-identifier>
< ppart-ol >
< coords>

<link-schema>>

< link-instances>
<link-schema-instance >

<link-identifier >
<start-point >
<end-point >
<lpart-ol >

[N

[

[l

Ii :u.' :u: .’ui

< +*point <point-instances> >
+point.

<> or <point-schema-instance>+
< < point-identifier>> *point

< ppart-of > <coords> >

< point-identifier >

+point - positive integer
<link-schema-instance >+

real . real

< ¢link <link-instances>>
+link

<> or <link-schema-instance>+
< <link-identifier> #link

< start-point > < end-point >
<lpart-of >>
<link-identifier>

+[ink - positive integer

real . real

real . real

< chain-schema-instance >

A line instance is specified by its parent, end-points, the chain it is part of,

its components in the line hierarchy (see section 4.3.2), the distance to the

furthest point in its set (deviance), some line parameters, its length, and the

point associated with the deviance (deviant).
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<line-schema>>

<linc-instances >
<line-schema-instance >

<line-identifier>
<deviance>
<loparam >
<leogth>
<components>

<devianl>
<chain>
<ends>

T

285

<+line <line-instances™> >

line

<> or <line-schema-instance>+
<line-identifier>

< <lipe-identifier> +line
<deviance> <lpparam >
<length> <components>
<deviant > <chain> <ends>>
¢|ine - posilive integer

positive real

real . real . real

positive real

< <line-schema-instance >
<line-schema-instance> >

< point-schema-instance >
<chain-schema-instance>

< < point-schema-instance >
<point-schema-instance> >

A chain instance is characterized by its parent, the top-line in the chain, the

links that constitute a chain, the first link (forward), the last link in the chain

(reverse), and a set of features (f |........[ . ) that characterize the chain’s shape.

<chain-schema

<chaip-instances >
< chain-schema-instance >

< chain-identifier>
<top-line>
<links>
<forward >
<reverse>
<i1>..<fh>

==
=

< *chain <chain-instunces> >
*chain

<> or <chain-schema-instance >+
< chain-identifier >

< <chain-identifier> ¢chain
<top-line > <links> <forward >
<reverse> <fl....... fo>>
tchuin - positive integer
<line-schema-instance >
<link-schema-instance >+
<link-schema-instance >
<link-schema-instance >

True or False

The image is subdivided into square patches. The patch formation process is

deseribed in section 4.3.3. Regions consist of interconnected empty patches. Each
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patch has four neighbors, and can be subdivided into four subpatches. The mid-

coordinates are the intersection point of the diagonals. Empty patches are part of

a region.

< patch-schema>

< patch-instances >
< patch-schema-instance>>

< patch-identifier >
< neighbors >

< mid-coords>
< area™>
<where>

< ptchpart-of >

< region-schema>
< region-instances>

< region-schema-instance >

< region-identifier>
<patches>

(AR

[

< #patch <patch-instances™>>
*patch

<> or <patch-schema-instance>#
< patch-identifier >

< < patch-identifier>> #patch

< neighbors> <subpatches>

< mid-coords > <area>

< where>> <ptchpart-of > >

#pateh - positive number

< < patch-schema-instance>

< patch-schema-instance >

< patch-schema-instance>

< patch-schema-instance > >

real . real

positive real

real

<> or <region-schema-instance>

< *region <region-instances> >
*region

<> or <region-schema-instance>#
< region-identifier >

< <region-identifier> *region

< patches>>

#region - positive integer

< patch-schema-instance > #
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APPENDIX E
)

THE MAPSEE-3 INTERPRETER

The Mapsee-3 interpreter represents each image primitive at all levels of
composition with an appropriate interpretation. Interpretation consists of two
processes: composition and discrimination. The former, in turn, consists of two
stages: completion and assembly. A flow chart of the interpretation process is

provided in Figure 4.13.

The composition process is constrained to operate in the
composition/aggregation dimension just as discrimination is constrained to
operate in the discrimination/generalization dimension. The modularity of the
two processes is further enhanced by their means of communication. Neither pro-
cess can call the other directly. They communicate through two different queues:
a completion queue and a consistency queue. The completion process has read
and write access to the first queue and write access to the second queue. The
discrimination process has read and write access to the consistency queue and
write access to the completion queue. Control is switched between completion,
diserimination, and assembly according to the low chart in Figure 4.13. Discrimi-

nation is the equivalent of H.A.C. (Hierarchical Arc Consistency).

Image-to-scene mapping results in the creation of a number of instances at
the composition leafl level, one for each image primitive. The objective of compo-
sition is to represent these leafl level instances at each of the other levels of com-

position, thereby establishing spatial relationships between them. Completion of
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an instance results in a representation of the instance at the next level up in the
composition hierarchy. Discrimination, on the other hand, ensures that each

primitive is represented at an appropriate level of discrimination.

The interpreter is described by the [ollowing procedure:

Procedure INTERPRET

1 BEGIN

2 WHILE completlion-queue non-emply

g BEGIN

4 select and delete firat element T from completion queue

5 new-super-comp ts, relations +— COMPLETE (z )
6 IF HAC-8 THEN

7 BEGIN

8 ASSEMBLE (z ,new-super-comp ta,new-relations)
g HAC-3

10 IF new-super-components THEN

11 {(sc )| se € new -super —components ) insert

12 #c into the completion-queue by composilion level
13 END

14 ELSE return failure

15 END

168 relurn succesa

17 END

The procedure COMPLETE represents completion. It returns one or more
super-components for z, found or created at the next higher level of composition.

If new spatial relations are created during completion then COMPLETE returns
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these as well. HAC -3 represents discrimination. The procedure ASSEMBLE
represents assembly. Composition is subdivided into completion and assembly,
because we want to ensure that the labels of z are made consistent with those of
its super-component(s) before we connect z with the existing interpretation
graph. During the first invocalion of HAC -3, the labels of z are made consistent
with the labels of its super-component(s). The reverse is done during the second
HAC' -3 invocation. This, however, can be done after assembly, because con-
sistency is symmetrical, i.e. if consistency can be obtained in one direction then it
can also be achieved in the other. The ASSEMBLE procedure assembles z and
the newly created spatial relations into the existing interpretation graph. An
insertion by composition level in the completion queue will cause COMPLETE to
operate in a breadth-first manner. A push-pop mechanism will result in a depth-

first operation.
Procedure COMPLETE (z)

0 BEGIN

1 new-auper-componenis +— emply

2 new-relations +— emply

5 | +— nearest common generalization of the labels of 2

For each super-component s of | DO
BEGIN
merge-queue +— emply
match +— [alse
adi +— ({i} | i is an instance of d,
d € superdiscrimination set of 3)

G0 w2 Oty e

g For eachi € sdi DO
10 BEGIN
11 comps +— COMPONENTS (i)
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12 For each j € comps DO

18 IF SPATIAL-RELATION Rfz,5) THEN

¥ BEGIN

5 tnatch +— true

16 r +— NEW-INSTANCE R(z5)

17 new-relations +— new —relations U r

18 push (z,r) onto consistency-queve

19 push (1,i) onto consistency-queue

20 merge-quene «— 1 | MErge —queue

21 END

22 END

23 IF match = false THEN

24 BEGIN

25 i +— NEW-INSTANCE (s)

26 push (z,i] onto consistency-queue

27 merge-queue +— 1 | merge —queue

28 END

29 a +— Jst element of merge-queue

S0 B +— remainder of merge-queue

81 Jor each b € B DO

32 BEGIN

38 a+— MERGE (a,b}

84 END

35 new-super-components +— a | new -super —components

96 consistency-quene +— consistency —queue U ((a,n)
[{e,n)€arcs(G),a #£n)

87 consistency-queve +— consistency —quere U ((n,a)
[(r,a)€arcs(G),a #n)

38 END

39 return new-super-comp ts, new-relali

{0 END

270
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Completion is a data driven process. In order to find the super-components
of schema instance z, we first investigate z's labels. Il z has only one label, say
v, then we only have to trace v's super-schema in the composition hierarchy.
However, if z has more than one label (say v and w) then we cannot just take v
and w's super-schema because this would introduce a hypothetical interpretation
in the composition/aggregation dimension. Instead, we take the nearest common
generali:ation_ of v and w in the discrimination graph, say !, and trace down I's
super-schema(ta) instead. In this way completion takes place in a non-
hypothetical manner. The two I[TAC-3 invocations in INTERPRET will ensure
that any new super-component for z will obtain again a proper and consistent

label set.

If a schema [ is a component of schema s then an instance of ! can be a
component of al mos! one instance of s . Whenever an instance of [ is compatible
with two instances of s then this is a sign that the two instances should be
merged. For this purpose a merge —quexe is used. The potential set of instances
to which z can complete is determined by the superdiscrimination set of s. This

was explained in section 3.3.1.

In the lines 10 - 21 a search is initiated for a spatial relation between z and
an existing component j of a potential super-component for z. The Mapsee-3
composition hierarchy is based on the premise that an instance can only become
a component of a super-instance il a spatial relationship exists between the

instance and an existing component of the super-instance. The search for such a
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relationship is carried out by the super-instance's methods which are invoked by
COMPLETE . This is done by the subroutine SPATIAL -RELATION , invokes
all of d's methods in an attempt to establish a spatial relation between z and j.
If a method is successfully applied then a new instance of a spatial relation is
created. Notice that only (z,r) is pushed onto the consistency queue and not

{r,z). The latter is done during assembly.

If no matching super-component can be found for z, then a new instance is
created for s which becomes the super-component for z. If | merge —quene | > I,

then all of its elements are merged into one. This is done in the lines 29 - 34.

The procedure COMPLETE has been kept as simple as possible at the cost
of sacrificing some detail and efficiency. The fact that there is a level of composi-
tion relations between z and s has been omitted. As well,
SPATIAL -RELATION checks whether the spatial relation under investigation
has already been created. The line 35 - 37 are necessary only when a merge
between elements has actually taken place. If this has not been the case then

they are redundant.
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procedure HAC-8

1 BEGIN

2 Jor i +— 1 until n DO NCfi}

g REPEAT until consistency-queue s empty

i BEGIN

5 select and delete first arc (k,m) [rom consistency-queue

L=

IF HACREVISE(k,m) THEN

7 BEGIN

consistency-queue +— consistency —queve U ({1 ,k)
| (i,k) € ares (G ),

i #k,i #m)
g ingerl k into completion-queve by composition level
10 END
1 END
12 END

HAC-3 has already been described in Appendix A. The only additional point
of interest is that HAC-3 inserts instance k into the completion queue whenever
ks label(s) have changed. A subscquent completion may reveal new spatial rela-

tions and may lead to new mergers between super-components.

ASSEMBLE is a very simple procedure. It links the completing instance
with its new super-components and it assembles the new relations. As the label(s)
of the super-components have not yet been made consistent with the label(s) of
their new components the appropriate links are pushed on the consistency queue.
The label(s) of the super-components will then be updated during the second

HAC -3 invocation in INTERPRET .
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procedure ASSEMBLE (instance, comps, rela)

1 BEGIN

2 for each rel € rels DO

8 BEGIN

{ link rel to its source and destination

5 push fsource,rel) on consistency-queuce
& push (deat,rel) on consislency-queue

7 END

8 Jor each comp € comps DO

9 BEGIN

10 link instance witk comp and vice versa
11 pusk (comp,inst ) on consislency-gueu
12 END

18 END

The Mapsee-3 interpreter is largely domain-independent. It can operate on
any schema-based representation that adheres to the syntactic constraints
specified in Appendix D. The only domain-dependent subroutine is
SPATIAL -RELATION in the procedure COMPLETE . This routine invokes

procedures which are specific for the schema involved and the domain concerned.





