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Abstract 

This dissertation is concerned with the representation or visual knowledge. 
Image features often have many different local interpretations. As a result, visual 
interpretations are often ambiguous and hypothetical. In many model-based 
vision systems the problem of representing ambiguous and hypothetical interpre­
tations is not very specifically addressed. Generally, specialization hierarchies are 
used to suppress a potential explosion in local interpretations. Such a solution has 
problems, as many local interpretations cannot be represented by a single hierar­
chy. As well, ambiguous and hypothetical interpretations tend to be represented 
along more than one knowledge representation dimension limiting modularity in 
representatio~ and control. In this dissertation a better solution is proposed. · 

Classes of objects which have local features with similar appearance in the 
image arc represented by discrimination graphs. Such graphs are directed and 
acyclic. Their leaves represeni classes of elementary objects. All other nodes 
represent abstract (and sometimes unnatural) classes of objects, which intension­
ally represent the set of elementary object classes that descend from them. 
Rather than interpreting each image feature as an elementary object, we use the 
abstract class that represents the complete set of possible (elementary) objects. 
Following the principle of least commitment, the interpretation of each image 
feature is repeatedly forced into more restrictive classes as the context for the 
image feature is expanded, until the image no longer provides subcla.ssification 
information. 

This approach is called discrimination v1S1on, and it has several attractive 
features. First, hypothetical and ambiguous interpretations can be represented 
along one knowledge representation dimension. Second, the number of hypotheses 
represent·ed for a single image feature can be kept small. Third, in an interpreta­
tion graph competing hypotheses can be represented in the domain of a single 
variable. This oft.en eliminates the need for restructuring the graph when a 
hypothesis is invalidated. Fourth, the problem of resolving ambiguity can be 
treated as a constraint satisfaction problem which is a well researched problem in 
Computational Vision. 

Our system has been implemented as Mapsee-3, a program for interpreting 
sketch map~. A hierarchical arc consistency algorithm has been used to deal with 
the inherently hierarchical discrimination graphs. Experimental data show that, 
for the domain implemented, this algorithm is more efficient than standard arc 

oom•t.m,y olgo,ith=. ~ (\j..,¾ 
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Chapter 1 

1. INTRODUCTION AND READING GUIDE 

1.1. What the Research Area is about 

Vision provides human beings with very powerful mechanisms for perceiving 

the surrounding world. In just a split second, one can not only recognize and 

describe objects that appear in the visual field, but also infer motion :i.nd distance 

with apparent ease. Throughout the past decades, vision researchers have sought 

to explain these mechanisms. While physiological studies of the brain have taught 

us much about the structure of our visual sensps, 1 the higher mental processes 

cannot be measured directly, because they have no known physical location. 

Experiment.al Psychologists derive characteristics of such processes by means of 

chronometric, recall, and recognition studies. 

The development of computers during the last few decades has made possi­

ble the design of computer programs that display intelligent behavior. Artificial 

Intelligence is the discipline concerned with the design of these program models. 

Early research in the field resulted in the development of many computer models 

for different kinds of intelligent behavior (e.g. Samuel, 1963; Evans, 1963; Newell 

and Simon, 1963; Quillian, 1969). 

1A eood ovc-rvicw of l.h~c studi~8 cu be found in Hv:bf'I a.ad Wi~d (1970) 
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In the early sixties Artificial Intelligence also became involved with Vision. 

Computer programs were designed that took the digitized output of a television 

camera as input and attempted to identify different aspects of the three­

dimensional situation that was represented. These studies formed the beginning 

of a research area that is now known as computational vision. Its objectives vary 

from the study of computational principles underlying vision to the development 

of high-performance, general-purpose Machine V~ion systems. 

The problems involved in designing such a system are immense. Take, for 

instance, the simple task of recognizing a number of children's blocks scattered 

on a table. For an adult, this kind of task seems trivial, because we carry all the 

different types of knowledge to perform the task with us (e.g. knowledge about 

objects, their physical appearance, applications, knowledge of lighting, support, 

occlusion etc.). The representation and coordination of these knowledge sources 

in a computer program is a non-trivial task. 

For example, edge detection techniques provide us with line segments which 

mark the areas where intensity changes take place. Such line segments can indi­

cate object and surface boundaries but they may also indicate shadow edges and 

edges caused by such things as irregularities in surface reflectivity. Thus, image 

fcat11res are highly ambiguous and it is difficult to assign appropriate interpreta­

tions to them. A proper interpretation of an image requires a combination or 

knowledge or the image formation process with knowledge of the objects 

displayed. The problem of combining and applying these knowledge types to an 
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image such that the displayed objects can be identified and located is often 

referred to as the vision problem. 

Several approaches to solving this problem e_an be identified. Some research­

ers have chosen the frontal attack in which the goal is to build systems that take 

digitized color photographs of outdoor scenes as input and produce a set of mean­

ingful descriptions of the scene as output. Through experience with these systems 

these researchers hope to acquire an understanding of the kind of knowledge and 

processes that are necessary and sufficient to build such systems. Others have 

limited themselves to building systems for a more specific purpose (usually for 

industrial applications) with the hope that insight will be obtained into the 

knowledge and processes necessary for success in a particular domain. In contrast, 

a third group of researchers feel that as a start both the outside world and the 

vision problem as a whole are too complex to deal with all at once. They feel that 

one should start by addressing particular aspects of the vision problem in 

simplified worlds. 

Another effect of problems such as the Vision problem is that most of the 

research in Artificial Intelligence takes place in the form of long term projects. 

The LNR project at the University of California (Norman and Rumelbart, 1975), 

the HEARSAY project at CMU (Lesser and Erman, 1977, 1978; Nagao et al, 

1978, 1979) and the VISIONS project at Amherst (Hanson and Riseman, 1978) 

are examples of such an approach . 
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The research that underlies this dissertation has also been part of such a 

long term project. The MAPSEE project at UBC is concerned with representa­

tional formats and dimensions for representing "high level" visual knowledge. 

Here the term "high level" applies to knowledge about objects or events that can 

occur in the scene depicted by an image. 

1.2. What this Dissertation is about 

This dissertation is concerned with the representation of visual interpreta­

tions that are ambiguous and hypothetical. The problem directly relates to one of 

the key issues in the vision problem: the proper mapping of image features to 

interpretations. Local image features may have many different interpretations. 

We will therefore refer to this problem as the ambiguity problem. Many model­

based vision systems use specialization hierarchies as a way of reducing the 

number of possible local interpretations for each image feature. These hierarchies 

enable us to replace a set of elementary interpretations by a smaller set of 

abstract interpretations. In this dissertation we will show that this solutio;: :ntro­

duces new problems. 

This dissertation introduces discrimination graphs as a representation for 

interpretations that are hypothetical and ambiguous. These graphs represent 

classes of objects that can have a similar appearance in the image. At the leaves 
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of such graphs we represent classes of elementary objects which describe the 

image unambiguously. All other nodes represent abstract classes of such objects. 

Rather than invoking elementary object classes directly, as is done in most 

model-based Vision systems, we invoke the class that represents the complete set 

of possible object classes. Following the principle of least commitment, we then 

replace this class by one of its subclasses as we expand our focus of attention over 

the image. This process continues until the image no longer provides information 

which enables us to do further subclassification. 

Discrimination graphs offer many advantages over specialization hierarchies. 

First, all pos~ible local interpretations for a single image feature can be 

represented within the boundaries of one discrimination graph. This cannot be 

achieved wit.h specialization hierarchies, because the possible local interpretations 

for a single image feature often cannot be captured in a single specialization 

hierarchy. Scrond, we can further reduce the number of interpretations that we 

have to represent explicitly for each image feature. Third, hypothetical interpre-

tat.ions that ore competing in the interpretation of a particular image feature can 

be represented as labels in the domain of a single variable in a constraint graph.2 

In model-based vision systems that use specialization hierarchies at least some 

competing hypotheses must be represented by different variables. A disadvantage 

of the latter approach is that every time a hypothesis is invalidated the con­

straint graph needs to be restructured. With all competing hypotheses 

2\Ve .usu me Lhat the node, iD Hth a gn.pb repre1e1:1t 1.b1lu.ct object., lbe domain their demen-:.a.ry de1ttnd1.nh in 
the dUcrimiutioa gn.p ... .a.ad the lia.b the coa:r\ninh bclw~• Lhe obj«-ta 
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represented in the domain of a single variable the removal of an inconsistent 

hypothesi5 requires only the deletion or replacement of a label in the domain of 

the variable. As a result, structural changes in the constraint graph are required 

only in exceptional conditions. 

Little is known about the complexity of algorithms which are used to res­

tructure constraint graphs. Propagation of consistency over labels in the dorna.in 

or a variable, on the other hand, puts us in the domain of constraint satisfaction. 

Const.rain!. sat-isfaction algorithms have been extensively studied and used in 

computational vision. 

The idea of using discrimination graphs to represent hypothetical and ambi­

guous interpretations does not dC'pend on any characteristic of the interpretations 

themselves and is therefore domain-independent. In this dissertation, however, we 

concentrate mainly on the use of discrimination graphs for the representation of 

visual knowledge. In particular, we will describe the design and implementation 

of Mapsee-3, a sketch map interpretation program that uses discrimination 

graphs. As a part or the MAPSEE project, Mapsee-3 has inherited an interest in 

the so-called schema-based object representations. It has also inherited an interest 

in the knowledge representation dimensions studied: composition/aggregation and 

specialization/generalization. In Mapsee-3 the latter has been replaced with a 

discrimination/generalization dimension which is orthogonal to the 

composition/ aggregation dimension. 
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Mapsee-3 interprets image features which at first are assigned an extremely 

abstract and ambiguous interpretation. As more and more constraints are 

discovered in the image, constraint propagation techniques force this interpreta­

tion to become more specific and less ambiguous. Discrimination graphs are 

closely involved in this process. We therefore call this particular approach 

discrimination tnsion . 

A strong emphasis is put on the conceptual clarity of the Mapsee-3 design. 

The conceptual clarity of a system can be evaluated by several criteria: 

I. modularity in representation 

2. modularity in control 

3. uniformity in representation 

4. strict separation between domain dependent and domain independent knowledge 

It will be shown that Mapsee-3 rates better with respect to these criteria 

than Mapsee-2, a schema-based program that uses specialization hierarchies 

instead of discrimination graphs. As well, Mapsee-3 will be shown to be more 

efficient. 
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1.3. Reading Guide 

There are many factors in computational vision that result in ambiguity. 

The one addressed in this dissertation is the ambiguity that occurs in mapping 

image feat.ures to "high level" interpretations. For this reason the representation 

of "high level" knowledge is a major concern. In the literature review in Chapter 

2 the focus is therefore on the representation and use of this knowledge. 

Chapter 3 describes our solution to the ~biguity problem. We discuss the 

design principles of a system for representing visual knowledge. The design prin­

ciples are largely domain-independent, at least to the degree that they are appli­

cable to any signal processing domain. Mapsee-3 is an implementation of these 

principles. This program is described in Chapter 4. The interpretations made by 

Mapsee-3 from 10 different sketches are discussed in Chapter 5. As well, the 

ambiguity problem is discuss&! from a wider perspective. Finally, a summary of 

this dissertation and possible future directions are provided in Chapter 6. 
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2. LITERATURE REVIEW 

2.1. Introduction 

In this chapter, we review the computational vision literature. It is selective, 

because or its focus on the "high level" aspect or computational vision. Most or 

the work in early vision such as edge detection and region formation will be 

bypassed. This work has been ably reviewed on several occasions (e.g. Barrow 

and Tenenbaum, Hl81; Brady, 1982). 

Two passes will be made through the literature. In the first pass, we focus on 

representation, or, more precisely, the question of the representation of structural 

descriptions that capture the meaningful organization of an image. During the 

second pass we are concerned with control, that is, how to characterize the pro­

cess that constructs and utilizes different structural descriptions. The former 

problem is also known as the problem of "epistemological adequacy" (McCarthy 

and Hayes, 1969) or "descriptive adequacy" (Hav;ens and Mackworth, 1983). The 

latter problem is also rererred to as "heuristic adequacy" (McCarthy and Hayes, 

1969) or "procedural adequacy" (Havens and Mackworth, 1983). 

In the first of the next five sections, we discuss the representation problem, 

in the second one the control problem. In the third section we discuss some of the 

work done on the use of sketch maps in computational vision. In the fourth sec-
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tion we address the central theme or this dissertation: the representation or 

interpretations which are ambiguous and hypothetical. In that section we show 

how most computational vision systems deal with the problem. In the last section 

the review is summarized, and a different approach for dealing with interpreta­

tions that are ambiguous and hypothetical is proposed. 

2.2. The Representation Problem 

2.2.1. Multiple Levels of Representation in Image and Scene Domain 

Most of the early computational vision systems were concerned with the 

blocks world environment. The reason for such a choice is obvious. Blocks are 

among the simplest three-dimensional objects. These early programs take a two­

dimensional line drawing or the digitized output of a TV camera as input and 

they attempt to identify different aspects of the three-dimensional situation. The 

two-dimensional drawing is usually referred to as picture or image; the three-­

dimensional situation as the scene. Some of the lessons learned from these pro­

grams are most useful. 

Guzman {1968), for example, wrote a program that starts from a 

specification or the picture lines and vertices. His program groups the regions into 

"nuclei or bodies", where each body represents an object. The process or linking 
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regions together is driven by a list of vertex arms specifying the arms of vertex 

types which can link regions. Thus, the information about what constitutes valid 

three-dimensional objects is represented in one domain only, the picture domain. 

Although a few three-dimensional situations were handled correctly, the many 

failures (e.g., the inability of the program to handle objects with holes) illustrate 

the necessity to represent the knowledge about three-dimensional objects in more 

than one domain, as was noted by Clowes (Hl71}. 

Clowes represented the information about three-dimensional objects in two 

domains: a picture domain and a scene domain. For example, in the picture 

domain one speaks of lines, regions, and vertices, whereas in the scene domain 

these primitives take the form of edges, surfaces, and corners respectively. Clowes 

also noted that not all vertex configurations in the picture make sense in the 

scene domain: only certain configurations are possible1• Clowes investigated the 

possible configurations and interpretations of four vertex types: L, Fork, Arrow, 

and Tee. For each edge he allowed four different types of interpretations: convex, 

concave, and two types of occlusion. 

Thus, the necessity was shown for distinguishing between at least two 

domains of representation: a picture domain with descriptions of the two­

dimensional aspects of the image and a scene domain with descriptions of the 

three-dimensional aspects. Subsequent research, however, showed the need for a 

further refinement. of representations in both picture and scene domain. 

1A ~imila.r ob~"dioD. wu made by Halman (1g71) 
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An obvious shortcoming in the Clowes labeling is, for instance, the inability 

to deal with shadow lines. Waltz (1Q72) therefore extended the classification 

schema. Among other things, picture lines can represent shadow lines. Waltz's 

line labels also express the illumination status qf the surfaces appearing at the 

edge. 

Although Waltz's system meant a further step to a more adequate descrip­

tion of the scene it is still no match for human competence in the domain. Edges 

do not only express surface relationships, but also have a spatial orientation. Sur­

faces have orientations and can frequently be labeled with a meaningful name: 

side-face, or top-face for a polyhedral object, or a door, wa.11, or roof, if the line 

drawing depicts a house. Finally, the object depicted by the line drawing as a 

whole carries a meaningful name: cube, wedge, or house. All such descriptions 

require a stratification of knowledge in the scene domain. The more recently 

developed computational vision systems reflect this requirement (e.g., Hanson and 

Riseman, 1978; Mulder, 1979). 

However, the situation becomes even more complex when the domain of 

interpretation changes from blocks to outdoor scenes. The correet recognition of 

an object can no longer depend on the availability of one knowledge source only. 

An object has many different appearances, depending on the observer's position, 

illumination conditions, and context. Dill'eren~ knowledge sources must be coordi­

nated in order to correctly predict an object's appearance. Several systems have 

been designed and implemented to interpret outdoor scenes, or aspects of them 
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(e.g. Dajcsy and Lieberman, Ul74; Hanson and\ Riseman, Ul78). Among other 

things, Bajcsy and Lieberman used four different knowledge sources: knowledge 

about the world, the observer, the illumination, and the environment. 

It is also necessary to maintain different representations in the image 

domain. Even in unfamiliar or strange situations such as abstract art people can 

estimate intrinsic characteristics such as color, orientation, shape and illumina­

tion. Phenomena such as shape, size, and color constancy are well known. Varia­

tions in illumination do not change our perception of surfaces. A black piece of 

paper may, for instance, reflect more light than a piece of white paper in shadow, 

but the pieces or paper are still perceived as black and white respectively. 

Apart. from different object dependent representations in the scene domain, 

one should therefore also maintain different representations in the image domain: 

representat-ions that can be computed from the physical information provided by 

the image (such as color and incident illumination). Marr (Hl78), for instance, has 

proposed a "low level" representation that captures the intensity changes and the 

local three-dimensional geometry of an image. Darrow and Tenenbaum ( 1978), 

starting from an intensity image, use the knowledge about viewer and light-

source position to compute and make consistent information about illumination, 

reflection, orientation, and distance of surface. Woodham (1981) showed that by 

varying the incident illumination under constant viewing direction one can 

uniquely determine the surface orientation at each image point, using a technique 

called photometric stereo. 

Chapter 2 u 

2.2.2. Dimensions of Knowledge Representation In the Scene Domain 

This dissertation is mostly concerned with the representation of knowledge 

in the scene domain. If we want to account for human competence in this 

domain, an increasing stratification of the knowledge itself is required. However, 

di!Tercnt levels or representation do not stand by themselves. Often we can 

impose an ordering upon them by using different relations. 

Two kinds of relations play a very important role in describing visual 

knowledge: the component relations and the "is-a" relations. Two dimensions of 

knowledge representation result from these relations: the 

composition/ aggregation dimension, and the specialization/ generalization 

dimension. 

2.2.2.1. Composition and Aggregation 

Concepts can be decomposed into parts and they can be aggregated into 

super-components. The ability to describe objects at different levels of composi­

tion contributes to the power of the visual system. We often do not know in 

advance at which level of detail an object will appear in the image. Thus, the 

ability to recognize an object by its overall shape, if it is completely visible, or by 

its components, is an important feature of the system. 
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Not only are objects orten embedded in a network of composition relations, 

two different objects with a common super-component are often related as well. 

In static imagery the relationship is usually spatial. In motion analysis, on the 

other hand, composi"tion can be used as an explicit organization for a. sequence of 

events ( e.g. Tsotsos, 198,&). 

Composition comes in two variations: must-be -part and may-be -part. 

The former indicates that under all circumstances one concept is a. component of 

another, while t.he latter does not have this requirement. Outside the computa­

tional \'ision area the composition/aggregation dimension has received little 

attention. The ability to reason with parts can be found in Raphael's SIR prer­

gram (Raphael, 1064). More recently, Schubert. (1979) has addressed the problems 

of mechanizing the ext.raction of composition relationships from tangled hierar­

chies and the problem of relationship inheritance for parts of objects in a taxon­

omy. Some knowledge representation languages use composition, which will be 

discussed further in the sect.ion on control. 

2.2.2.2. Specialization and Generalization 

Another way of structuring the world is to follow the principle of 

classification. Classification means to consider a. number of objects, situations, or 

events as equivalent. Classification is natural, because many real world attributes 

do not occur independently of each other. Creatures with feathers, for instance, 

•.I • 
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a.re more likely to have wings than creatures with fur. A name is generally associ­

ated with a class: animal, bird, etc. By means of class inclusion different classes 

are organized into a system. Such a system is called a taxonomy. 

Specialization or "is-a" hierarchies have been frequently used in the 

knowledge representation literature, generating a great deal of controversy. In his 

paper titled "What is-a is and isn't'' Brachman (1982) ha~ attempted to make an 

inventory of different "is-a" interpretations. 

First of all, there is the question whether the nodes in the taxonomic hierar­

chies represent classes or individuals. According to Brachman, an "is-a" link asser­

ciating a class with an individual has at least four possible interpretations. The 

most commonly used one is the set membership. It is also the one most com­

monly found in the computational vision literat.ure where it is called an instance 

link. 

For the case in which a taxonomy involves classes only, Brachman found five 

different partially overlapping interpretations: 

- subset/superset: 

This interpretation can be found in expressions such as: "A canary is a bird". !! z 

is in the set of canaries, then it is also in the set of birds. Universal implication 

appears t.o be implied in this distinction. 

- generalization/specialization: 

This interpretation is expressible in the form of a simple conditional, which is not a 
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well rormed 6rst-order formula: 

canary (x) --+ bird (x) 

This particular interpretation of an "is-a" link comes from Hayes (1979). The 

absence or a quantifier makes this expression confusing. A universal quantifier in 

rront or this expression makes it indistinguishable from the subset/superset case. On 

the other hand, ir the concept.s represent prototypes then we need default rules 

specifying which properties a.re inherited in the implication. 

-AKO: 

To a large extent this interpretation is the same as the subset/superset interpreta­

tion. A canary is also "a-kind-of' bird. However, within the subset/superset distinc­

tion there is sometimes a need for distinguishing between "kind." and classes that 

stand for more arbitrary descriptions such as "a person walking to school" who is a 

person, but not ua kind of11 person. The "a-kind-or' interpretation implies 0 kinds". 

- Value restriction: 

"The trunk or an elephant is a cylinder 1.3 meters long". The interpretation is to 

say that, in order to describe the trunk of an elephant as a cylinder of 1.3 meters, 

we need a particular context. In Mapsee-3 we will introduce a new kind of "is-a" 

hierarchy which will be known as a discrimination graph. This graph has the value 

restriction interpretation. 

- Conceptual attainment: 
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"A triangle is a polygon." Here we mean to express the fact that a triangle is a 

polygon with three sides, i.e. to demonstrate a C33e in which one description 

includes another. This is dilJerent from value restriction where some kind or context 

is needed to progress from one class to the next. However, it is difficult to distin­

guish this interpretation from the subset/superset interpretation. 

Martin ( 1070) distinguishes as many as nine different forms of specialization. 

In addition to the individual/class, the specialization/generalization (specializa­

tion by species), and the value restriction distinction (specialization by context), 

Martin distinguishes between specialization by inflection (e.g. dog - dogs), predi­

cate (e.g. rat dogs), appositive (pet dog), stereotype (e.g. lap dog), and slot (e.g. 

hit ball). Even composition is considered to be a form of specialization. For 

instance, the "leg of a dog" is seen as specialization by role. 

A further complication in distinguishing types of taxonomies is what the 

class itself represents. Generally, there are two possibilities. The first is that the 

class is a set of attributes that all members of that class have to satisfy. The 

other is that the class represents the attributes of a typical member. In the latter 

representation property inheritance need not be universal. A prototypical bird 

flies, but penguins do not. An example of a system in which both class represen­

tations are used is NETL (Fahlman, Hl70). Reiter (1080) has developed a form of 

non-monotonic logic that makes explicit the kind of default reasoning necessary 

for prototypes. 



Chapter :I 111 

2.2.2.3. Other Relations 

Spatial 

Objects can only enter into certain spatial relationships with each other. 

Objects that are only partially visible can often be recognized as a result of the 

fact that their components have entered in certain spatial relationships. 

Similarity 

This relation was originally proposed by Minsky (1975). Tsotsos et al (H180) 

use this relation as a means of selecting alternative hypotheses. Similarity rela­

tions come close to the concept of discrimination graphs which we will propose in 

Chapter 3. 

Depiction 

Depiction is a relation linking concepts in different domains of representa­

tion. In vision, depiction is the relation between objects in the image and scene. 

For instance, a line in the image may depict a comer in the scene. This relation 

has also been called the relation of representation (Clowes, 1971), and projection 

(Shibahara et al 1983; Tsotsos, 1984). 

Causal 

Causal relations are important in knowledge bases in which one event is 

known to cause another. Rieger and Grinberg (1977) have used such a relation for 

._ 
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representing causality in physical mechanics. More recently, such a relation has 

been used in medical image interpretation (Shibahara el al HJ82; Shibahara el 

al 1983). 

2.2.3. Composition and Specialization in Computational Vision 

The summary of possible "is-a" interpretations characterizes the confusion 

that exists in the field of Knowledge Representation. Fortunately, in computa­

tional vision there is less confusion. In most vision systems the "is-a" hierarchies 

are based on universal implication and are referred to as specialization hierar­

chies. While an explicit use of the two knowledge representation dimensions is 

rarely found in the early computational vision literature, more recent work ack­

nowledges the importance of both dimensions. 

Roberts's (1965) program recognizes objects in a scene as being instances of 

a class of three different models: a cube, a rect~ngular wedge, and a hexagonal 

prism. These objects are described by their three-dimensional homogeneous coor­

dinates. Compound objects consisting of configurations of the three models can 

be recognized as well. Guzman's (1968) program determines only the numb.:; and 

location of objects in the scene. Clowes (1971) only determines whether the 

object(s) in the scene make three-dimensional sense. Falk's (1972) U'lTERPRET 

can recognize a set of nine fixed size prototypes, but does not make a distilldion 

between classes of prototypes . 
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In a few systems the presence or both composition and specialization hierar­

chies can be demonstrated at more than one level. Winston's (I075) work on 

structural descriptions is an example of this. Winston wrote a program that 

derives an abstract (generic) structural description for an arch by providing the 

program with descriptions of examples and non-examples of that object. The 

descriptions of the arch and the (non)examples are compared via a similarity net­

work and the arch description is adjusted in case of inconsistencies. Both hierar­

chies are visible in the network representation (Winston 1975, p. 198). The com­

position relation comes in two varieties: must-be-part and its negation: must­

not-be-part. The class or a node in the network can be determined by following 

its "a-kind-of" link. 

Marr and Nishihara (I!J76) have proposed ',a method for representing 3D­

shapes, based on a hierarchy or stick figures. Each stick forms the central &.'Cis or 

a generalized cone representation. 3D-model representations are formed by means 

or a composition hierarchy of stick figures. The central axis or each component of 

the stick figure is defined relative to the axis of its super-component. In addition, 

a specialization hierarchy is formed by means of what Marr and Nishihara call a 

catalogue of 3D-models. Their method further consists of an image-space proces­

sor which maps representations from an object-centered frame into a viewer­

centered frame and vice versa . As well, their method appears to be the first one 

to use the principle of least commitment in computational vision. Such a princi­

ple implies that nothing should be done that may later have to be undone. We 

will see later that Mapsee-3 operates on the same principle. 
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Rosenthal and Bajcsy (1Q78) constructed an inquiry-driven computer vision 

system. The system is told to look for a particular object in the scene. Among 

other features, the system uses composition and specialization hierarchies in its 

search for the object in the image. For instance, when told to look for a car, the 

system will find that a car is a sub-class for motorvehicle which, in turn, is a 

component or a thoroughfare. A thoroughfare can, because of its particular shape, 

be located in the image and the system then proceeds to look for a car inside the 

thoroughfare strip. Rosenthal and Bajcsy make use of the fact that a part-of 

relation in the scene is often equivalent to an · iriside relationship in the image. 

This relationship has been made explicit by making the composition hierarchy 

cross the image/scene boundary. In Mapsee-3 an image-to-scene mapping relation 

will be used for this purpose. 

Composition and specialization hierarchies form an important part of the 

knowledge representation in the ACRONYM system (Brooks, 1Q81 and 1983). 

Models a.re represented as generalized cones. Their data structures are organized 

as units with slots and fillers to define their values. Composition hierarchies are 

recognizable as a subgraph of what Brooks calls the object graph. The nodes in 

this graph represent models and the arcs are units of class subpart or alfL'Cment. 

Specialization hierarchies appear in the form of a restriction graph in which the 

nodes represent sets of constraints on the model description and arcs represent 

subclass inclusion. 
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In the MAPSEE project an explicit representation of both knowledge 

representation dimensions has also been pursued by several researchers. Havens 

(1978) wrote a program that describes line sketches of polyhedral objects at three 

levels of composition. Havens and Mackworth (1983) use a seven level composi­

tion hierarchy in Mapsee-2, a program that interprets line sketches of geographic 
1 

maps. In a bottom-up direction the relation used 'is "must-be-part-or'. Specializa-

tion hierarchies are part of the knowledge representation in this program as well. 

A more complex composition hierarchy is used in the MISSEE system 

(Glicksma.n, 1082), a.n offshoot from the MAPSEE project. MISSEE uses multiple 

information sources for interpreting a. digital image. Composition hierarchies form 

one of the means for combining data about objects from different information 

sources. Specialization hierarchies are used as well. A short description of the 

MISSEE system is provided in Glicksman (1983). 

Both knowledge representation dimensions can be found in the VISIONS sys­

tem (Hanson and Riseman, HJ78). This system is possibly the most complete 

general-purpose vision system. Multiple levels of representation in both the image 

and scene domain are used. As well, a.t an intermediate level the image is 

represented by means of surfaces and volumes. Composition hierarchies are 

present in both the image domain (e.g. region shapes and their components), and 

the scene domain (e.g. objects and their components). Specialization hierarchies 

are also present in the scene domain. More recent work in the VISIONS project is 

described in Weymouth (1981) and Weymouth et al (1983). 
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Composition and specialization are also the prime representational axes in 

the knowledge representation research done in th~ Laboratory for Computational 

Medicine at the University of Toronto. One of the systems developed in this lab 

is a causal arrythmia analyzer (CAA) which can recognize repetitive time varying 

signals such as electroca.rdiagra.ms (Shibahara. et al 1982; Shibahara. et al H)83). 

The composition and specialization semantics were inherited from a. knowledge 

representation language ca.lied PSN (Levesque and Mylopolos, 197Q). 

Finally, both hierarchies have been exploited by Browse (1Q82). Browse's 

program interprets line sketches of a body-form and determines the two­

dimensional position and three-dimensional orientation of its body parts. An 

interesting aspect of Browse's work is that the line sketch is scanned at different 

levels of resolution. Browse has suggested that there is a relationship between the 

levels of detail in the image a.t which cues are constructed and the level of com­

position and specialization of the concepts in the scene to which these cues have 

access. Browse maintains two composition hierarchies. One describes the image a.t 

a coarse level, the other at a fine level. Different specialization hierarchies connect 

t.he two composition hierarchies. 
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2.3. The Control Problem 

So far our main concern has been the what and whg aspect of knowledge 

representation. In this section we address the how question; that is, the question 

how we represent and how we characterize the processes that use these represen­

tations. This section consists or two parts. In the first part we discuss some of the 

representational formats that have been used in Artificial Intelligence in general, 

and computational vision in particular. In the second part we discuss different 

characti:-rizations or the processes that use the knowledge represented. 
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2.3.l. Representational Formats 

2.3.l.l. Semantic Nets 

Network models of information are based on the concept or associative 

memory, an idea that Anderson and Bower (1973) have traced back as far as 

Aristotle. Quillian ( 1966) is generally attributed with the origin or the use or 

semantic nets. In Quillian's system the nodes represent word concepts. The links 

form an indication of the type of inference that can be made from the concept. A 

dist.inction between specialization and composition is already apparent in his 

TLC model (Quillian, 1969). TLC was an investigation of the usefulness or a 

semantic net as a knowledge base for the reading of text. Among other things 

this semantic net consists of sets of hierarchies of concepts. A set of properties 

has been attached to each node which defines the corresponding concept. 

Although semantic nets are a nice way of visually illustrating the structure 

of a knowledge base, it is difficult to infer the formal syntax and semantics of the 

net from such an illustration. In his famous paper titled "What's in a link" 

Woods (Hl75) pointed out that a lot of intuition is often necessary to understand 

what a semantic net really represents. Questions should be asked about the 

semantics of the representation itself. The diversity of possible semantics for "is­

a" hierarchies is a clear example of this. 
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Since then, different attempts have been made to be more formal about 

semantic nets. Schubert ( Hl76), for instance, has provided a clear correspondence 

between his network notation and predicate calculus. Brachman (1979) has also 

stressed the need for knowledge-structuring primitives. In the next chapter, when 

the concepts behind Mapsee-3 are discussed, semantic nets will be used for illus­

tration only. The schema will be used as a knowledge-structuring primitive. The 

concept of schema will be discussed in the next section. 

2.3.1.2. Declarative versus Procedural Representations 

The problems of representation and control can be embodied in 

procedural/declarative tradeoffs (Winograd, 1975). The procedural view assumes 

that all "knowing" is equivalent to "knowing how" while the declarative view 

emphasizes "knowing" as "knowing that". The declarative approach provides 

economy of representation and verifiability. The former is achieved because it is 

easy to restrict the representation of each kind of information to one particular 

location. The latter is the case because of the close ties between declarative 

representations and the mechanisms of First Order Logic. In particular for the 

latter reason declarative representations are favored in Mapsee-3. 

The procedural approach, on the other hand, relies on specific procedures for 

specific problems. However, an adequate exploitation of the semantics of images 

requires a mixture of the two approaches. In Mapsee-3, some of the domain-
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dependent knowledge is represented procedurally. 

2.3.2. Process Characterizations 

2.3.2.1. The Segmentation and Interpretation Problem 

The input to a vision program usually comes in the form of a digitized array 

of pixels of varying intensity. The goal of the program is to provide different 

descriptions in terms of models provided by the user. However, pixels do not 

serve as meaningful units that can be interpreted in terms of models. These 

models need information about more abstract units which may correspond to 

such things as object and surface boundaries, shadows, and other illumination 

effects. 

The question of how to abstract this information is usually referred to as the 

segmentation problem. But even if we have segmented correctly, we are still 

faced with the question of how to transform descriptions of the image in terms of 

edges and surfaces into descriptions that capture its meaningful organization. 

This is usually referred to as the interpretation problem. 

The two problems are not totally independent, however. Some computa­

tional vision researchers hold that even for segmentation some knowledge about 

what the image depicts is necessary (e.g., Mackworth, 1977a), whereas others 
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hold that some knowledge about the intrinsic aspects of objects is sufficient (e.g., 

Darrow and Tenenbaum, 1978). 

One possible reason for this disagreement is that for many early computa­

tional vision studies line drawings were used. The usual experience with this 

domain is that the information which can be abstracted from the image is 

insufficient to uniquely determine the content of the scene. The only information 

implicit in a line drawing is about the location and shape of lines. Information 

about such things as surface texture and reflectivity is absent. 

It ha.s been argued (Clocksin, 1978) that as a result of this, computational 

vision researchers have been forced to rely on control paradigms in which the use 

of domain-dependent knowledge is the only way to achieve an adequate interpre­

tation of the image. In the next section we introduce such a paradigm. 

Several researchers (e.g., Marr, 1978; Barrow and Tenenbaum, 1978) have 

argued, however, that information about color, texture, and incident illumination 

can tell us a lot about such things as surface boundaries and shadows. This infor­

mation can be abstracted by using very general knowledge about objects (e.g., 

assumptions about surface continuity). However, the degree of adequacy with 

which this kind of abstraction can be made is a matter of ongoing research. 

Although it is clear that in the long term the interpretation problem cannot 
1 

be solved without at the same time providing a solution for the segmentation 

problem, many computational vision researchers have not waited for the solution 
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of t.he latter problem in order to tackle the former. They rather assume that it is 

possible to create certain representations in the image domain and have focused 

on the interpretation problem instead. 

It can be argued that line sketches present an impoverished stimulus 

environment, but this does not refute the fact that humans are perfectly able to 

recognize them. Thus, we may still hope that at least a limited set of perceptual 

principles can be studied in line sketch perception. One should be aware, how­

ever, that some interpretation problems may be caused by line sketch artifacts. 

In Mapsce-3 we avoid the segmentation problem. We will assume it is possi­

ble to segment the image into a set of primitives without any knowledge of the 

scene. Later on, during the discussion in Chapter 5, we will propose a more 

dynamic solution which does not require a perfect segmentation. Mapsee-3 also 

uses line sketches. 

2.3.2.2. The Cycle of Perception 

One of t-he central paradigms for the control structure of vision programs 

stems from the first program that could recognize different polyhedral objects. 

This program was written by Roberts (1965). His program consists of two parts: a 

program that reduces a gray level picture to a line drawing, and a program that 

interprets the line drawing. The program can recognize three different types of 
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polyhedra: cubes, wedges, and prisms. 

Mackworth (1977a) noted that the perceptual process in Roberts's program 

can b,:, characterized as a sequence of four processes: cue diacovery, model invoca-

lion, model testing, and model elaboration. Mackworth (1977a) has shown that 

this sequence can be found in most vision programs and that the programs can be 

characterized by the way they treat this sequence. Frequently, the sequence is 

gone through more than once and is therefore called the cycle of perception. 

Cue Discovery 

Three concepts are of importance in the interpretation process: primitives, 

cues, and models. Primitives are the elements in terms of which one seeks to 

represent the image at different levels or represen,tation. Models serve as interpre-
' 

tat.ions for primitives. Cues serve as mediators between primitives and models. 

Each cue constrains one or more primitives by suggesting one or more possible 

interpretations (models). 

Cue discovery is the process that constructs primitives and cues from the 

input data given to the program. During cue discovery, all the image domain 

representations are constructed. Cue discovery is therefore equivalent to segmen­

tation. The kind of primitives and cues used differs from program to program. In 

some programs lines are the only primitives (e.g., Clowes, 1971), but more com­

monly the lines and regions are the primitives (e.g., Guzman, 1968; Falk, 1972). 

In many vision programs the vertices serve as the cues by means of which the 
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scene domain models can be accessed. 

Model Invocation 

Model invocation is the process of associating the possible interpretations 

with each of the primitives. The levels of representation that can be accessed 

differs from program to program. U the cues are not given in the input (such is 

the case in Guzman (1968) and Clowes (1971)) the segmentation process cul­

minates in their construction (e.g., Falk (IQ72); Mackworth (1977b)). 

' Some vision programs have only one level• of representation in the scene 

domain (e.g., Clowes, 1971; Mackworth, 1977b). In such a case the cues have 

direct access to the models at that level of representation. Some more recently 

developed vision programs have more sophisticated access mechanisms; the level 

of representation in the image domain at which the cue is constructed determines 

the scene domain level that the cue accesses (e.g., Mulder, 1979; Browse, 1982). 

Model Testing 

Model testing is the process that tests whether the description of the model 

proposed for a primitive is consistent with the image description of the primitive. 

For instance, if a specific river is proposed as an interpretation for a certain line 

in a sketch map then the curved pattern specified for this river in its model 

description has to match with the curved pattern of the line. 
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Model Elaboration 

For an image to make sense as a whole, it is not sufficient that the model 

descriptions match the primitive descriptions; the possible interpretations for a 

primitive are usually constrained by more than one cue. Most of the cues also 

constrain more than one primitive. The problem or simultaneously satisfying the 

constraints imposed by the cues is called the constraint satisfaction problem. 

There exists a wide variety of algorithms that deal with this problem. As a very 

particular constraint satisfaction algorithm will also be involved in the solution of 

the ambiguity problem proposed in this dissertation, we devote a special section 

to constraint satisfaction. 

2.3.2.3. Constraint Satisfaction 

A Constraint Satisfaction Problem (CSP) can be defined as follows: 

Given n variables, each with a domain and a set of constraining relations find all 

possibl~ n -tuples such that each n -tuple is an instantiation of the n variables 

satisfying the relations (Mackworth and Freuder, 1982). Algorithms that manipu-

late constraints come in many variations. The domain can be continuous or 

discrete, and the relations can be unary, binary, or n -ary. Discrete domains usu-

ally consist of a finite set of atomic labels. 

In one of the early attempts to solve the constraint satisfaction problem, 

HulTman (1071) used a depth-first backtrack algorithm. This algorithm is 
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inefficient and has all problems inherent in depth-first backtrack such as thrash­

ing (Oohrow and Raphael, 1974). Another problem with depth-first backtrack is 

that this algorit.hm is exponential in the domain size. In computational vision 

applications domain sizes can become very large. 

Waltz (1972) devised a better solution . Before attempting a depth-first or 

breadth-first search Waltz applies a junction filtering procedure, whereby the 

cues (the junctions in his program) are visited in some order. For each of its 

edges, the junction interpretation list must provide an interpretation that 

matches at least. one of the interpretations allowed for that edge by the interpre­

tation list of the junction at the other end of the edge. Junction interpretations 

that do not match are deleted. If such a deletion occurs, then all junctions whose 

interpretations were constrained by the deleted junction interpretations are 

revisited; their interpretations are filtered to accomodate the new situation. 

The advantage of this procedure is that a single pass through the junctions 

is sufficient. Thus, thrashing can be avoided. Although there is no guarantee that 

there will only be one interpretation left at each junction (and thus at each prim­

itive) this procedure guarantees the removal of all locally inconsistent interpreta­

tions. However, Waltz's junct.ion filtering procedure deals with binary consistency 

problems only. Mackworth (1977b) extended this algorithm to include n-ary con­

sistency problems calling it a network consistency algorithm. Network con­

sistency algorithms have the property of eliminating all local inconsistencies that 

cannot participate in a global solution. However, they do not solve the CSP . 
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Mackworth (1977c) emphasized the importance of three different Corms of 

network consistency: node, arc, and pat.Ii consistency. Node, arc, and path con­

sistency algorithms eliminate all local inconsistencies that involve 1, 2, or 3 vari­

ables respectively. Among other features, arc consistency bas a time complexity 

that is linear in the number of arcs, and polynomial in the domain size (Mack­

worth and Freuder, HJ82). One particular arc consistency algorithm, AC-3 (11,-lack­

worth, J077c), is cubed in the domain size. Node, Arc, and Path consistency algo­

rithms are useful preprocessors for a Depth-first backtrack or divide-and-conquer 

algorithm because they have the effect of reducing the domain size (Mackworth, 

1977c). 

Freuder (1978) proposed a network consistency algorithm called k­

consistcncy. His algorithm is based 011 removing all inconsistencies in all subsets 

of k out of n variables. (k :::,n ). This algorithm solves the CSP if k = n. Node, 

arc, and path consistency (Mackworth, 1977c) are actually special cases of this 

algorithm fork = 1, 2, and 3 respectively. 

In some of the applications the labels have certainty values associated with 

them, in others they do not. However, labels without certainty values can be seen 

as a special case of labels with certainty values (Hummel and Zucker; HJ83). Con­

straint satisfaction algorithms that use certainty values are often referred to as 

Relaxation Labeling Algorithm3. 

Rosenfeld et al ( 1976) introduced the idea of assigning weights to labels and 

relations to the field of computational vision. The weight of the labels is 
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iterat.ively updated by means of rules that take into account the compatibility 

with the labels of the neighboring variables. The global effect on the weight of a 

single label increases with each iteration. 

Relaxation Labeling has been frequently used for line and curve enhance­

ment (e.g. Zucker el al 1977). A multi-level approach to relaxation labeling was 

proposed in Zucker (1978). A survey of this kind of work has been provided in 

Davis and Rosenfeld (!081). In the scene domain, relaxation labeling has been 

used for updating hypotheses that are interconnected by composition and special­

ization hierarchies and a few other relations (Tsotsos, 1984). 

Drspite all the good features of algorithms that manipulate constraints. 

these algorithms have problems as well. One problem is, that constraints arc only 

propagated, and actually finding the constraints themselves has to be done else­

where. Another problem is that labels are treated as atomic elements without an 

internal structure. As a result, we cannot reason about labels which often 

represent objects in I.he interpretation process. These two problems have, among 

other things, been an important motivation for the development of schema-b3Sed 

vision programs to which we will turn next. 

2.3.2.4. Schema-based Computational Vision 

The term schema is usually traced back to Bartlett (1Q32) and to Piaget 

(e.g., Piaget, l!J67). Over the last few years schemata have served as a convergent 



Chapter I ll7 

notion for knowledge representation research in both Psychology (e.g., Norman 

and Bobrow, 1W6; Neisser, 1976) and Artificial Intelligence (e.g., Minsky, 1975; 

Kuipers, 1975; Freuder, 1976; Havens, 1978). At present, there is a wide diversity 

of definitions and characterizations of schemata. 

Bobrow and Norman (1975), for example, define schemata as: 

"active processing elements that can be activated from higher level purposes and 

expectations (model-driven), or from input data that must be accounted for" 

(data-driven). 

One characteristic of schemata is that they can represent both declarative 

and procedural knowledge (Winograd, 1975). From a declarative perspective a 

schema can be embedded in different types of structural networks such as the 

specialization and composition hierarchy. A procedural representation, on the 

other hand, implies that a schema can assume control. 

The control structure in most schema-based vision programs is hierarchically 

organized. A general interpreter takes the input data and constructs primitives 

and cues. Cues suggest different schemata as interpretations in difforent parts of 

the image. The interpreter has a choice between two modes of operation: 

bottom-up and top-down. 

In bottom-up mode, the interpreter collects evidence by observing the cues 

in the image. Such evidence can be compared against domain specific knowledge 
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to constrain the number of possible interpretations. In top-down mode, on the 

other hand, the interpreter hands over control to a schema's procedure. Such a 

procedure orders the search space heuristically and searches for very specific evi­

dence in specific parts of the image. Most schema-based vision programs can be 

characterized by the (sometimes very sophisticated) interplay between t.hcse two 

modes of operation. 

Kuipers (1975) proposed a. schema-based recognition model which is totally 

top-down. His program can recognize an object in the scene as belonging to one 

of three classes of objects: parallelepiped with three visible surfaces, wedges with 

two visible surfaces, and wedges with three visible surfaces. The interpreter starts 

with assuming the presence of one of the classes and hands over control immedi­

ately to the schema for that class. 

Kuipers attempts to avoid thrashing behavior by using a complaint depart­

ment; that is, if a schema fails to reach its objective it consults a similarity net­

work which will recommend a replacement schema. The problem with such an 

approach is that this si.nilarity network has to provide a replacement candidate 

for each possible failure situation. An unexpected situation not covered by the 

similarity network restores all the problems inherent in depth-first search. 

Freuder (1976) designed a. system that recognizes hammers. The knowledge 

a.bout hammers is stored in a. genera.I knowledge (GK) network, whereas the 

knowledge specific for the hammer in the image (as it is built up during recogni­

tion) is stored in a particular knowledge (PK) network. Features found during a. 
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segmentation process are used as bottom-up evidence for the existence or sche­

mata (called conjectures by Freuder) of which a feature may be a part. The sche­

mata. suggested by reatures are installed in the PK network as hypotheses which 

may be explored in top-down mode. Such an exploration may result in the crea­

tion or other schemata. 

Freuder's work is focused on the control structure for coordinating bottom­

up and top-down methods. This control structure is based on a priority-queue 

multiprocessing scheme. When schemata are suggested by features in the image a 

priority is assigned to them. This priority can be changed during the recognition 

process. A global scheduler selects and invokes the schema. with the highest prior­

ity. Successful exploration of a schema results in the hypothesizing of one or more 

higher order schemata or which the successfully explored schema was a part. 

Although Frcuder's approach marks an improvement with respect to previ­

ous systems bis way of using a priority-queue multiprocessing scheme can be sub­

jected to criticism, as was noted by Havens (11178). The problem is that a global 

priority is assigned to a schema by a local procedure that suggests a schema on 

basis of one feature found in the image. Havens argued that schema invocations 

should be pattern-based rather than based on some form of numerical priorities. 

Havens (1978) has proposed a complete schema-based recognition model for 

machine perception. Schemata are characterized as: 

"a modular representation or everything known about some concept, object, event, or 
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situation''. 

The knowledge associated with schemata can be reprtsented both in declara­

tive and procedural form. Two types of knowledge can be associated with sche­

ma.ta: factual and heuristic knowledge. 

Factua.\ knowledge can be represented both in declarative and procedural 

form. For instance, the embedding or schemata in a network of different composi­

tion and specialization hierarchies is a declarative representation of factual 

knowledge. Heuristic knowledge is represented in procedural form only. By means 

of its heuristic knowledge (also called methods), a schema guides the search pro­

cess for the schema's concept. 

Havens' recognition model consists of three stages: expectation, matching, 

and completion. Low level cues can suggest different schemata as a possible 

explanation. Each of these schemata has expectations associated with it, consist­

ing of possible final instantiations of the schema. For example, a parallelogram 

can be used as a low-level feature to invoke a schema for a cube. The cube 

schema has to test whether its description is also made up by two other parallelo­

grams in a particular configuration. As a result the description of the cube 

schema has to match the description of two other parallelograms. This expecta­

tion and matching process can be seen as an iterative recognition cycle. 

However, Havens' perceptual model is cyclic in &nother sense as well. Once 
I 

all the expectations of a schema are satisfied, the schema will seek completion; 
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that is, it will act as a cue for other schemata which are further up in the comp~ 

silion hierarchy in which the schema is embedded. 

As is the case in Freuder's program, schemata can employ both model-driven 

and data-driven meLhods to perform the recognition process. In top-c!own mode a 

schema will invoke the methods associated with each of its expectations. These 

expectations are directly or indirectly verified in the image. In bottom-up mode, 

on the other hand, a schema is confronted with non-determinism; that is, the 

schema can be embedded in several composition hierarchies which means that 

there is more than one possible parent node. As a result, multiple hypotheses 

have to exist simultaneously. In bottom-up mode methods are therefore realized 

as con current processes. 

For this reason Havens also has a multiprocessing scheme. However, invoca­

tion of a schema's method is not based on a global numeric priority. The central 

idea is that a schema's method will remain active until one of its expectations 

turns out to be difficult t.o prove. The schema then suspends itself by creating 

new expectations that describe its unrealized objectives. These expectations are 

stored as a pat.tern in a global database. The suspended method can be resumed 

as soon as another schema provides the kind of evidence the suspended schema is 
\ 

waiting for. Thus we can see that Havens' multiprocessing scheme is based on 

pattern-based invocation rather than numerical priority-based invocation. 

Havens has deYeloped a Lisp-based knowledge representation language, 

Maya (Havens, 1978), to deal with these issues. Maya provides a data structure 
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for representing objects and classes, a pattern matching facility, and facilities for 

parallel processing. Maya is one of the many schema-based languages that have 

been developed, most of which provide knowledge-structuring primitives and a 

number of processes that can operate on them. FRL (Roberts and Goldstein, 

1977a, 1977b), the UNIT package (Stefik, 1979; Smith and Friedland, 1980), KRL 

(Bobrow and Winograd, 1977), and PSN (Levesque and Mylopolos, 1079) are 

examples of such languages. 

As mentioned before PSN was used in Tsotsos's work on motion analysis 

(e.g. Tsotsos, 1984). PSN formalizes traditional semantic network concepts in a 

procedural framework. Its primitives are classes and binary relations. Their 

semantics are defined by means of four basic operations: add, remove, fetch, and 

test. The knowledge structure is centered around "is-a" and "part-of' hierar-

chies. Both hierarchies can take part in the inheritance of properties. Another 

interesting aspect of PSN is the notion of a meta-class, a class of classes, which is 

used to explain certain features of the representation within itself. 
\ 

In most schema-based vision systems domain dependency is introduced in 

the control structure. In particular, the heuristic knowledge associated with a 

schema is usually domain-dependent. Bajcsy and Joshi (1978) designed and imple­

mented a system that forms an exception to this rule. Their system, which inter­

prets natural outdoor scenes, has been implemented as a production system 

(Newell, 1973) with three components: a data base, a number or production rules, 

and an interpreter. The data base consists of facts which represent visual pr~ 
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perties of the image (measured or derived). These / acts a.re subdivided in two 

groups: short term /acts, which a.re considered to be of immediate importance to 

the interpreter, and long term /acts, which a.re not. The scene knowledge is 

encoded by means of production rules which are also subdivided in long term and 

short term rules. The scene objects a.re ordered by means of different relations 

such as "kind-of", "physical part-of", size, and distance. The rules can be 

clustered by means of the first two relations, the / acts by the latter two. By 

using the concept of partial ordering of objects in combination with a production 

system methodology the system achieves its design goal: a systematic (domain­

indepcndent) control structure which can deal in an efficient manner with a ,·isu­

ally rich domain. A general control structure is a well known feature of produc­

tion systems (Davis and King, 1975). The clustering of rules and / acts enable 

' 
the system to apply relevant rules only. 

2.4. Interpreting Sketch Maps 

Sketch maps have often been used as an aid in interpreting aerial or satellite 

photographs. They can be seen as a simplified representation of the photograph. 

Often we can recognize a particular area just by looking at the sketch map. 

Sketch maps are therefore useful in two respects. First, they carry many charac­

teristics of the original image and can be used as an aid in interpreting the origi­

nal image. Second, a significant number of the perceptual problems associated 
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with interpreting the original image a.re present in the interpretation of sketches. 

The automatic interpretation of sketches is therefore by itself a worthwile goal. 

The HAWKEYE system (Tenenbaum el al 1978; Bolles el al 1970) is an 

example of a. system that uses a map database as an aid in interpreting aerial 

photographs. After establishing geometric correspondence between an aerial 

image and a symbolic map, information from the map is used to guide interpreta­

tion of the former. This technique has been successfully applied to such tasks as 

monitoring the volume of water in a reservoir and monitoring the number of box-, 
cars in a railyard. Glicksman's (1082) work in t

0

his area has already been men-

tioned in sect.ion 2.2.3. 

The ~1APSEE project at U.B.C. is one of the projects which has adopted the 

problem of sketch map interpretation . Mapsee-1 was developed by Mackworth 

(1977b). Line segments and regions are the primitives in this program. The ver­

tices are the cues. All of these are created by a segmentation process. The cues 

are all ambiguous. For instance, both the bar and stem of a T-vertex can be a 

river and all surrounding regions can be land. Another possibility is that the bar 

is a shore and the stem is a river. The regions adjacent to the stem now have to 

be land, but the third region adjacent t-0 the bar is water. A network consist.,-i~y 

algorithm is used to reduce the possible label set. 

The scene domain knowledge in Mapsee-1 was represented at one level only. 

As a result it was impossible to speak about such concepts as road-systems and 

geo-systems. Furthermore, the labels were represented as labels only, lacking any 
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modularly organized internal structure by means of which one could reason about 

them. The former problem was f('S()lved in a system with a stratified knowledge 

base that could interpret line sketches of houses (Mulder, 1970). The laUer prob­

lem was resolved by representing models as schemata (Havens, Ul78). A schema­

based approach formed the foundation of Mapsce--2 (Havens and Mackworth, 

' 1983; llavcns, Mackworth, and Mulder, 1985). 

The objects in Mapsec-2 arc described by means of their attributes. Thus, 

each object "knows" what its components are and what it is part of. The objects 

are embedded in both a composition and a specialization hierarchy. Figure 2.1 A 

and B show these hierarchies. Each of the primitives (line-segments and regions) 

gets represented at each level of composition and specialization by means of two 

procc;;scs: composition and specialization. 

Cbopur l 4' 

World 

Shore Mountain Road Town Bridge River 

Figure 2.lA: The Mapsee-2 composition hierarchy 
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Figure 2.18: The Mapsee-2 specialization hierarchies 
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C-0mposition is achieved by a bottom-up, depth-first approach. Image cues 

suggest one or more interpretations at the leaves of the composition hierarchy. Ir 

there is more than one interpretation for a primitive then the interpretation is 

considered hypothetical. By means of composition, each hypothesis becomes a 

component of an instance of a schema one or more levels up in the composition 

hierarchy. For instance, each river instance has to become a component of a 
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river-system instance which in turn becomes a component of a geo-system 

instance etc. Composition is a very complex process, as it simultaneously has to 

deal with both the proper matching of instances at different levels of composition 

and the maintenance of mutual consistency between different hypotht-ses. This 

process is described in detail in Havens el al ( 198S). 

In composition, objects are treated as schemata. The composition process 

bas to include looking at the schema's attributes in order to find its super­

component.s. Specialization, on the other hand, is dealt with as a Constraint 

Satisfaction problem in which objects are treat-ed as labels. There is a specializa­

tion hierarchy for each schema, whereby each schema-instance has a label as one 

of its attributes. This label can be any node in the specialization hierarchy in 

which the schema is embedded. For instance, a geo-system instance can have the 

label island, which implies that the instance has been specialized to be an island 

(Figure 2.18). 

Specialization in Mapsee-2 is a top-down process. At the start ea.ch schema 

instance has the name of its schema as label. This label forms the root of a spe­

cialization hierarchy. Specialization takes place incrementally. Ea.ch time a new 

component is added during composition the validity of its label is tested. For 

instance, the label of a geo-system with a mountain-range as a component is spe­

cialized to be a landmass. If it then turns out that the geo-system is surrounded 

by a shore, the label is specialized to island. 
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In Mapsee-2, specialization is a special form of Aic Consistency, ca.lied 

Hierarchical Arc Consistency. In the constraint graph, the variables are the 

instances and their domain the specialization labels which a.re hierarchically 

organized. Hierarchical Aic Consistency is implemented in a procedural way. As a 

similar algorithm has been used in Mapsee-3, we will postpone the discussion of 

this algorithm until Chapter 3. The Mapsee-2 program interpreted sketch maps 

for the MISSEE program (Glicksman, 1982). 

2.5. The Ambiguity Problem 

Image cues tend to be highly ambiguous; that is, one cue suggests many pos­

sible interpretations for the primitive(s) constrained by the cue. Most of those 

interpretations tend to be only locally consistent. Once the consist.ency require­

ments over a wider area of the image are considered, the number of possible 

interpretations for each primitive will usually be reduced to one. The problem of 

how to reduce the large set of interpretations that are locally consistent to a 

smaller set that are globally consistent is an important aspect of the interpreta­

tion problem as defined in section 2.3.2.1. A careful consideration of the problem 

shows that it can be described in two different ways: one way is to view it as a 

problem of representing interpretations that are hypothetical; the other is to look 

' at it as a problem of representing interpretations that are ambiguou& . 
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The hypothetical point of view 

Figure 2.2 shows a dosed line-segment that could serve as a cue for two geo­

graphic objects: a coastline and a lakeshore. We can assume that tlwse obj<-ds 

are embedded in a Mapsee-2 like composition hierarchy such as the one in Figure 

2.3. This figure demonst.rates the hypothetical point of view, which states that 

every locally consistent interpretation forms a hypothesis. As we start to consider 

larger ar<.'as in the image, we have to explicitly maintain some data structure that 

tells us which hypothetical 'interpretations go together with those in adj a.cent 

areas and in what way. By means of the process of constraint propagation we will 

be able to gradually eliminate certain hypotheses and the data structures in 

which t.hey are embedded. 
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Figure 21: A closed line segment depicting a shore 

World 

Coastline 

Figure 2.3: A simple composition hierarchy 

• Shore , ' , ' , ' , ' , ' , ' , ' , ' , ' , ' , ' , ', 
/ ' 

8 Lakeshore It Coastline 

Figure 2.4: A simple specialization hierarchy 
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The ambiguity point of view 

In Figure 2.4 we have introduced a specialization hierarchy. This enables us 

to use the ambiguity point of view stating that a coastline and a lakeshore are 

both a specialization of a more generic interpretation, a shore. Regardless of 

whether the primitive will turn out to be a coastline or lakeshore, we always 

know it must be a shore. Thus, in the ambiguity approach the image cue will 

constrain the primitive to be a shore and since th,is is the only possible interpreta­

tion, it is not hypothetical. Only after constraining evidence has come from adja­

cent areas in the image is the interpretation specialized into a lakeshore or coast­

line. 

The ambiguity point of view is strongly linked with the principle of least 

commitment which was introduced in computational vision by Marr and 

Nishihara ( 1976). It means that we stick to the most abstract possible interpreta­

tion until evidence from the image forces us to move towards a more specific 

interpretation. This principle is also reflected in human visual perception. 

Humans do not generally interpret an image in terms more specific than the cir-

cumstances require. 

The example shows that ambiguity can be represented in the form of a spe­

cialization hierarchy. The example was concerned with a two level hierarchy only. 

A representation in terms of the top node in the hierarchy (shore) is ambiguous 

but non-hypothetical, whereas a representation in terms of the leaf nodes ( coast­

line and lakeshore) is unambiguous but hypothetical. With multiple level 

~ 
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specialization hierarchies, we can create many different mixtures of the two 

approaches. The hypothetical point of view and ambiguity point of view can 

therefore be seen as the extremes in a specialization/generalization dimension, 

and we can use this dimension as a criterion for comparing different vision sys-

terns. 

Vision programs that have no specialization hierarchies automatically end up 

at the hypothetical end of the scale (e.g. Freuder, 1976). Most programs with spe­

cialization hierarchies, on the other hand, are neither extremely hypothetical or 

ambiguous, but somewhere in between. 

An object in a specialization hierarchy, when suggested by a cue as a possi­

ble interpretation, is non-hypothetical only if no other objects are suggested by 

the same cue. The cues in ACRONYM are all ambiguous and the interpretations 

suggested by them are all hypothetical. Mapsee-2 (Havens et al 1985) is some-

what different in this respect, because some cues are ambiguous, although others 

are not. 

The vision programs with specialization hierarchies differ strongly in the way 

they use this hierarchy in the interpretation process. In Mapsee-2 there are some 

cases in which a model at the top of such a hierarchy is suggested as a non­

hypothetical interpretation for a primitive in the image. As soon as more of the 

primitive's context becomes known, a gradual specialization of the interpretation 

takes place toward one of the leaf nodes in the hierarchy. The majority of 
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interpretations, however, arc hypothetical. 

Browse ( 11)82) uses cues from different levels or resolution in the image to 

access different levels of specializations. All interpretations are hypothetical. 

Interpretations suggested at a coarse level of detail have to agree with those sug­

gested at a fine level of detail. Browse uses the specialization hierarchy to bring 

the two sets into agreement. 

Tsotsos ( 1984) uses specialization hierarchies in the CAA program (Shi­

bahara el al 11)82; Shibahara et al 1Q83), but they are not used to reduce or 

eliminate hypot.hetical interpretations. All class instantiations in his system arc 

hypot,het.ical. Alternative hypothC'Scs can be tested through similarity links (Tsot­

sos el al Hl80). In a case of incorrect prediction, the system moves upward along 

the specializat.ion hierar~hy in order to remove the constraints from the failing 

hypothesis. 

In ACRONYM a class of objects is suggested as a possible interpretation for 

parts of the image. One of the uses of the specialization hierarchy in ACRONYM 

is to determine whether one of the sub-classes of this class can also serve as a 

possible interpretat.ion. If this is not the case, the hypothesis is considered to be 

false. Although no one will argue that specialization hierarchies can be used for 

representing ambiguity, one may wonder whether the same hierarchy should be 

used to determine the correctness of hypotheses. The level of specialization at 

which an object can be described depends entirely on what and how much of the 

object is visible in the image. Ir not enough information is available to verify the 
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correctness of a sub-class then ACRONYM will reject a possibly correct 

hypothesis. 

2.6. Discussion 

The "high level" vision literature has been looked at from several points of 

view. With an emphasis on knowledge representation, the following aspects were 

highlighted: 

l. Computational v1s1on systems require a flexible knowledge base that can 

deal with an image at different levels of detail and specificity. A mult.i-level 

reprcsentat.ion along two dimensions: a composition/aggregation dimension 

which enables the system to interpret an image at different levels of detail, 

and a specialization/generalizat.ion dimension which enables the system to 

interpret an image at different levels of specificity, provide the system "it.h 

such flexibility . 

2. There is a need to describe object.s in at least two different ways: 

a. as labels which form the domain in a CSP. 

b. by their internal structure. 

The schema-based systems provide the ability to do both. 
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3. ls-a hier:i.rchies vary widely in their interpretation. The discussion focused 

on the fact that specialization hierarchies often appear to be playing a role in 

the representation and resolution or ambiguity. 

4 . Hypotheticality and ambiguity can be seen as the extremes in a 

spccialization/generalizat-ion dimension. There appears to be no "high-level" 

vision system at the ambiguity end or this dimension. 

With the representation of ambiguous and hypothetical interpretations as 

the central topic or this dissertation the last observation is very interesting, and 

several possible reasons suggest themselves as an explanation or why this is the 

case. 

One possible reason is that model-based research in computational vision has 

been concentrating on the representation or objects and their interrelationships. 

Hypothetical interpretations, although recognized as a problem, have been dealt 

with more as a side issue. As a result, solutions to the problem are usually imple­

mented in a procedural way. The data structures that actually represent 

hypoth<'tical interpretations are part or the temporary database created during 

construction or an image interpretation. Yet, if we want to be able to reason 

about possible ambiguities in interpretations then we need to represent the 

knowledge about these ambiguities in a declarative form and in the permanent 

database or the system. 
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Figure 2.S suggests a second possible reason. T_~is figure mows a situation 

in which a closed line-segment bas three possible interpretations: a coastline, a 

lakeshore, and a road. A coastline and lakeshore can be generalized to a more, 

but for a shore and a road no natural categorization exists. All V1Sion systems 

discussed use natural categorization only. However, image features often sug­

gest interpretations which do not fit together in natural categories. For instance, 

a collection of green pixels is extremely ambiguous. They can depict a golf 

course, farm land, a part, forest, or even the astroturf in a stadium. In order to 

take an ambiguity approach one will often have to exceed the boundaries of 

natural categorization. In Figure 25, for instance, we have created the unna­

tural concept road/ shore. 

f'J Road/shore 
✓ \ 

✓ ' ✓,,. \ 

,,. ' ,, ' 
,/ ' ,,. ' ✓" ' ,, ' 

; ' ,,,, I 

,, ' 
" Shore \ 

I \ \ 
I \ I 

I ~ \ 
I \ \ 

I \ \ 
I \ \ 

I \ \ 
I \ \ 

I \ \ 
I \ \ 

I \ \ 
I \ 

0 Coastline b Lakcshore 9 Read 

Figure 2.5: An unnatural specialization hierarchy 
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A third possible reason is that as a result or noisy data tbe image features 

may be unreliable. In such a case we can consider them to be hypothetical. Con­

sequently, all model invocations would necessarily be hypothetical as well. This 

aspect, however, stands apart from the previous two arguments. Even in an ideal 

segmentation that leads to "correct" features only the ambiguity problem still 

exists. 

The last reason forms a good justification for using a hypothetical approach, 

although we can criticize this approach for containing some undesirable features. 

1. Systems that use specialization hierarchies for representing ambiguity but which 

do not fall at the ambiguity end or the ocale violate the conceptual clarity criterion 

of modularity in representation. Part or the possible interpretations for an image 

feature are now represent,ed along the composition/aggregation dimension as 

hypothetical interpretations, whereas another part is represented along the 

specialization/generalization dimension as ambiguous interpretations. 

2. Modularity in control is also affected. In a system with modular control, the 

processes operate on one particular knowledge representation dimension only. As a 

result or the fact that ambiguity is spread over more than one knowledge represen­

tation dimension, the process that deals with ambiguity has to access more than one 

knowledge representation dimension as well. In section 5.3.4 we will discuss a 

Mapsee-2 example and compare it with Mapsee-3. 

3. Each possible interpretation for a primitive has to be explicitly represented and 
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pursued as hypothesis. The number of possible interpretations for a single primitive 

is orten very large. 

◄. Each set of int.crpret,ations that, cannot be "joined" into one (abstract) interpreta­

tion by means of a specialization hierarchy needs to be maintained in an interpreta­

tion graph by different variables. As already mentioned in Chapter I, competing 

hypotheses are thus represented by different variables. Each time a hypothesis is 

invalidated, we have to restructure the interpretation graph. This can be a complex 

and cumbersome operation. In particular, Mapsee-2 suffered from that problem. 

All these problems can be alleviated if we construct a knowledge representa­

tion dimension whose sole purpose is the representation of all possible ambiguities 

in interpretation. This knowledge representation dimension can take the form of 

a discrimination graph such as the one illustrated in Figure 2.5. Depending on 

how we construct this graph we can build a vision system with a hypothetical 

approach, an ambiguity approach, or anything in between. Additionally, discrimi­

nation graphs oITer the following advantages: 

I. Different hypotheses and their mutual consistencies can now be represented in the 

form of an explicit, declarative data structure, which i, part of the permanent 

knowledge base. Such a data structure can form a knowledge representation dimen­

sion by itself, thus achieving modularity in representation. 

2. Modularity in control is also achieved because we now need one process only to 

operate on each knowledge representation dimension. A composition process will 
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operate along the composition/aggregation dimension. Thio process is considerably 

simplified as a result of the removal of the hypothetical element. The discrimination 

process operates along a discrimination/generali,ation dimension. This process deals 

wit.h ambiguity. Moreover, it can now be completely formalized as a network eon-

sist.ency algorithm. We will discuso this in the next chapter. 

3. Discrimination graphs are by nature hierarchical. This enables uo to represent a 

set of elementary interpretations by means of one abstract interpretation. We can 

thus reduce the number of interpretation• that need to be represented for a single 

primitive. 

4. Discrimination graphs allow us to provide a unique (abstract) interpretation for 

each oet of interpretations that an image primitive can depict. Hence, competing 

hypotheses can be represented in the domain of a single variable in the interpreta­

tion graph which represents the current state of interpretation of the image. lnvali-

dation of a particular hypothesis now only requires a deletion or replacement of a 

label io the domain of a nriable. This can be achieved without changing the struc­

ture of the interpretation graph. 

In the next chapter we describe the design pf Mapsee-3, a system that uses 

discrimination graphs. The design is in the spirit of the Mapsee-2 system. Object 

classes and relations arc represented as schemata: modular units of declarative 

and procedural knowledge. Schemata are embedded in both composition and 
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discrimination graphs. Attached procedures have the ability to search for and, if 

found, create spatial relationships between their components. Composition will be 

seen as the process that constructs a network of constraints. Discrimination will 

then be viewed as a network consistency process that maintains consistency in 

the network. 
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3. DESIGN OF MAPSEE-3 

3.1. Introduction 

In this chapter we describe the design of Mapsee-3, a schema-based sketch 

map interpretat.ion program. Although the program was designed for the 

' interpretation of sketch maps, many of its design· principles are of a more general 

nature. In this chapter, we focus on the design principles of the system. The 

actual implementation of the system is discussed in Chapter 4. 

The most important features of the program are: 

l. A declarative and domain-independent data structure for representing ambi­

guities that can arise when we map image primitives to scene interpretations. 

This data. structure takes the form of a discrimination graph. A motivation for 

the desirability of such a structure was given in the previous chapter. 

2. Two knowledge representation dimensions along which knowledge about scenes 

can be represented. A composition hierarchy of object classes Corms the core of a 

composition/aggregation dimension. At each level of composition one or more 

discrimination graphs form a discrimination/generalization dimension which is 

orthogonal to the composition/aggregation dimension. 

3. Algorithms that automatically construct parts of the scene's knowledge base. 
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4. A composition process that operates in a data-driven manner on the composi­

tion hierarchy. At first, image primitives are mapped into interpretations that 

form the leaves of a composition hierarchy in th~ scene domain. Gradually, these 

interpretations are transformed into more aggregated interpretations which are 

represented at intermediate levels in this hierarchy. This process of aggregating 

interpretations continues until the top of the hierarchy bas been reached. 

5. A network consistency algorithm that operates on discrimination graphs. In 

the previous chapter we observed that algorithms of this type have been well 

researched and they can be more efficient than depth-first backtrack. 

In the design, great emphasis has been put on conceptual clarity, including: 

l. Modularity in representation. Objects and relations are represented as sche­

mata. The knowledge representation dimensions used are orthogonal. 

2. Modularit.y in control. There is only one process that operates in each 

knowledge representation dimension, a process which can alter only data struc­

tures in the dimension in which it operates. It cannot directly invoke a process 

operating along another dimension. Each Mapsee-3 process owns a queue from 

which it takes its input. Different processes intercommunicate by putting items 

on each other's queue. 

3. Uniformity. Each schema type has a fixed representational format. A grammar 

is provided for this representation. 
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4. Strict separation between domain-dependent and domain-independent 

knowledge. The schema, the knowledge representation dimensions and the 

processes operating along them form a domain-independent format for represent­

ing knowledge about different scenes. 

The design also focuses on efficiency. Many computational vision systems 

(including Mapsee-2) create interpretation graphs in which the variables (nodes) 

represent hypothetical interpretations. Such graphs require continuous restructur­

ing when hypotheses are invalidated. In Mapsee-3, different hypotheses are main­

tained in the domain or a single variable. The nodes and links represent non­

hypothetical interpretations and constraints only. As a result of the algorithms 

used, invalidation of a hypothesis requires only deletion or replacement of a label 

in the domain of a variable. The structure of the interpretation graph remains 

unaffected by this operation. Other efficiency measures result from the use of 

hierarchical constraint propagation in the system. 

The Mapsee-3 knowledge base has been designed to operate ideally in a sig­

nal processing environment. The input to such an environment consists of one or 

more signals whose intensity varies over time or space. The objective of the sys­

tem is to segment the signal(s) into primitives, segmenting in such a way that 

each primitive can be interpreted meaningfully. A wide variety of domains can be 

looked at as signal processing environments, including areas such as the interpre­

tation of sound waves, and spectral analysis, in addition to computational vision. 

----::-:r •.......--··· 
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In its current implementation, however, Mapsee-3 is somewhat limited 

because of the assumption that the domain can be ideally segmented; that is, we 

assume no noisy data. As a result, we know what the th<i primitives are, and we 

know that. they are correct. So we do not have to deal with one of the causes of 

ambiguity noted in the previous chapter. It was observed that ambiguity is 

caused by at least two different factors: a segmentation process that has to deal 

with noisy data, and image primitives which are underconstrained when it comes 

to interpretation. In this dissertation, we are concerned only with undercon­

strained image primitil'es. 

In many respects Mapsee-3 is a sequel to Mapsee-2, the schema-based sketch 

map interpretation program which was summarized in the previous chapter. For 

example, the Mapsee-3 composition hierarchy is similar to the one used in 

Mapsee-2 (see Figure 2.lA). The main point of departure from Mapsee-2 is the 

use of discrimination graphs which form a knowledge representation dimension 

by themselves. This enal-,les Mapsee-3 to be more modular in representation and 

control than Mapsee-2. 

The Mapsee-3 interpreter operates in a data-driven manner. After a segmen· 

tation process that constructs images, an image-to-scene mapping process maps 

primitives into object classes which are the leaves of a composition hierarchy in 

the scene domain. Thereafter, interpretation is guided by two modular processes: 

composition and discrimination. Composition ensures that each primitive is sub­

sequently represented at each level of composition, starting at the leaves of the 
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hierarchy and gradually working to the top. Discrimination graphs, on which the 

discrimination process operates, express possible refinements or interpretations at 

each le,·el or composition. Using the principle of least commitment, this process 

uses I.he spatial relations found by the composition process as a way of refining 

the interpretation of each primitive. 

Composition can also be considered as the process that searches for spatial 

constrain ls between primitives. The constraints found are represented in the form 

of an interpretation graph. Discrimination is then the process that propagates 

these constraints over this graph until a consistent situation is arrived at. In 

MapsC'c-3, discrimination has been implemented by means of a network con­

sist.ency algorithm which uses the principle of least commitment. 

lo s<>cl-ion 3.2 we explain the representation of the system. We discuss the 

unit. of knowledge representation, and the knowledge representation dimensions. 

In section ;~.3 we discuss the three stages of the Mapsee-3 control: segmentation, 

image-to-scene mapping, and interpretation. With the focus on interpretation, we 

discuss the t.wo romponents of this process: composition and discrimination. The 

l\fapsee-3 knowledge base can be subdivided into a natural and an unnatural con­

stituent.. While the former must be provided by the user, the latter can be con­

structed automatically from the former. The construction algorithms are dis­

cussed in section 3.4. A summary of the design is given in section 3.5. 

Chapter 3 08 

3.2. Representation 

3.2.l. Schemata 

The unit or representation in Mapsee-3 is the schema. A schema in Mapsee-3 

1s a list of attributt~value pairs which describe the schema's internal properties 

and its constraints on other schemata. Two categories of schemata are dis­

tinguished: image schemata and scene schemata. The first category can be subdi­

vided in six (somewhat domain-dependent) classes: points, links, lines, chains, 

patches, and regions. The second category is subdivided in two (domain­

independent) classes: object classes and relations. 

In most schema-based vision systems, only object classes are represented as 

schemata. Relations are generally represented by the schema's attributes. The 

reasons for representing relations as schemata are twofold: 

l) It leaves the user-implementer with the choice of creating an object- or relation­

based system. This is particularly important with respect to procedural attachment. 

In Mapsce-3, the user can decide to which kind of schemata to attach part of the 

control. 

2) Relations can be of any arity, while the constraints with other schemata remain 

binary. In object-based systems, it is more difficult to represent higher order rela-

tions. 
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As this dissertation focuses primarily on the representatioa of scene 

knowledge, we describe only the scene schema and its attributes. The reader is 

referred t.o Appendix D for a complete description of all classes of schemata and 

their syntax. The following attributes can be found in every scene schema X: 

I) A schema-label: uniquely identifies an object class or relation to the •ystem ( e.g. 

•S99). 

2) type: indicates whether the schema represent. an object class or relation. 

3) composit-ion level: each scene schema i, embedded in a composition hierarchy. 

4) discrimination level: each schema is also embedded in a discrimination graph, the 

concept or which is explained in section 3.2.2. 

5) links-in: the list of schemata which have pointers directed at X. 

6) links-out: the list of schemata to which X has pointers. 

7) mandatory components: the list. of schemata that enter in a "must-be-parts" rela­

tion with X. 

8) other components: the list of schemata that enter in a "may-be-parts" relation 

with X. 

9) mandatory super-components: the list of schemata that enter in a "must-be­

part-of" relation with X. 

ID) other super-components: the list of schemata that enter in a "may-be-part-or' 

relation with X. 

11) discriminations: X's ,uccessors in the di,crimination graph. 

12) generalization,: X's parents in the discrimination graph. 
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13) methods: a schema can represent both declarative and procedural knowledge. 

The schema's methods are procedures which are "owned" by the schema. Each 

Mapsee-3 method consist• of a fonction that takes one or two arguments. A more 

det,ailed explanat,ion ol the operation of methods is provided in section 3.3.1. 

14) instances: during interpretation each schema can be instantiated zero or more 

times. Each instantiation is represented as a uniquely identifiable unit. A scene 

schema instance Y has the following attributes: 

a) instance label: uniquely identifies Y to the system. 

b) iinverse: Each relation in Mapsee-3 has an inverse. If Y is an instantiation of 

a relation, then it must have an inverse which is an instantiation of the inverse 

of Y's parent schema. 

c) parent: the schema Y is an instance of. 

d) ilinks-out: the instance equivalent of "links-out". 

e) ilinks-in: the instance equivalent of "links-in". 

f) icomponents: the established components of Y. 

g) isuper-<:omponents: the established super-<:omponents of Y. 

h) labels: the list or current interpretation(,) or Y. At the time of creation Y 

inherits the label of its parent X. This label can be replaced by any of X '• suc­

cessors in the discrimination graph, if the situation requires it. 

i) idepicted-by: each schema in,tance is depicted by one or more image primi-

tives. 

15) inverse: see iinverse. 
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16) depicted-by: see idepicted-by 

In Mapsee-3 schemata never point directly at other schemata of the same 

type. The only exception to this rule is for the discrimination and generalization 

attribute. These attributes are taken to be internal properties of the schema. A 

concrete example from the sketch map world illustrates the constraints (see Fig­

ure 2.IA and 8). A goo-system, for instance, is a mandatory component of the 

world; that is, the geo-system schema points at a "must-be-part-of" schema 

which, in turn, points at the world schema. The "must-be-part-of" schema has an 

inverse which represents a "must-be-parts" relation. The latter serves as an 

intermediary between the world and the geo-system schema. The geo-system's 

discriminations, on the other hand, are the landmass and waterbody schemata, 

both of which are object classes. 

Mapsee-3 differs from Mapsee-2 in its representation of the scene knowledge. 

In Mapsee-2 some schemata are treated as labels, whereas others are treated as 

object classes with an internal structure. In Mapsee-3 each schema can be treated 

either way. The representation of image schemata, on the other hand, is very 
\ 

similar to the one used in Mapsee-2 (see Appendix D for a syntactic description). 
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3.2.2. The Knowledge Representation Dimensions 

The knowledge base of which the schemata are a part is organized along 

three dimensions: composition/aggregation, discrimination/generalization, and a 

dimension in which the relations are represented that map image primitives into 

scene interpretations and vice versa . 

- Composition/ Aggregation 

Schemata are embedded in a Composition hierarchy by means of a "parts" 

and "part-or' relation. The former points the schema to its components, the 

latter at its super-schema.(ta) in the hierarchy. Composition relations can be 

either of the "must-be" or "may-be" kind provided the distinction is explicit. 

\ 

The composition hierarchies in Mapsee-3 occur either in the image or in the scene 

domain, but they never cross the image/scene boundary. The Mapsee-3 composi­

tion hierarchy in the scene domain is based on spatial or time relationships. Two 

schemata in such a relationship must have a common super-schema further up in 

the hierarchy. 

We can also look at a composition hierarchy from a different point of view. 

Together with the relations on which it is based, it forms a graph. Each node in 

this graph is a schema, and each link is a predicate. The graph forms a closed 

world in the sense that it contains all and only those predicates that are true. 

Any predicate which is not in the hierarchy is false in this world. Figure 2.lA, for 
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instance, shows an example from the sketch map world. 

Part -of (ahore ,geo -system) is true, but Part-of (mountain ,road-system) is 

false. The graph can therefore be seen as a model constraint graph. The schemata 

are the variables, their label the domain. 

An interpreted image with schema instances at different levels of composi­

tion consists of an interpretation graph in which the nodes are schema instances 

and the links represent constraints between these instances. Each image primitive 

is represented by one or more instances at diff~rent levels of composition. For 

instance, in Figure 2.lA an image primitive interpreted as a mountain will also 

depict an instance of a mountain-range at the next level up, and an instance of a 

geo-system at the level beyond that. These instances are all part of an interpreta­

tion graph. This graph is constructed by a composition process that operates 

along the composition/aggregation dimension. We will discuss this process in the 

control section of this chapter. 

- Discrimination/ Generalization 

Image primitives may be ambiguous when it comes to interpreting them. 

Suppose a particular image primitive p can be interpreted by each one of two 

different schemata A and B. In the hypothetical approach, we would have to 

instantiate ea.ch of these schema.ta. as a. possible hypothesis. The ambiguity 

approach, on the other hand, requires at least one additional schema that can 

represent p in a. non-hypothetical way. This schema., A/ B, represents intension-
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ally the set consisting of A and B. 

Figure 3.1 shows a. simple OR graph consisting of A / B and its elementary 

schema.ta. We ca.II this graph a discrimination graph. Each link can be thought of 

as the constraint necessary to specialize A / B into one of the schema.ta it inten­

' ' sionaHy reprt'Sents. If we follow the principle of least commitment, then p will be 

represented at first as an instance of A / B. IC a constraint represented by one of 

the arcs eminating Crom A / B is found then A / B will specialize into the schema 

at the tail of the arc. 

The structure of the discrimination graph determines whether the system 

can use the ambiguity approach at all times during the interpretation process. 

For instance, by means of the discrimination graph in Figure 3.1 the ambiguity 

approach can be used to interpret p . This is the case, because both the possible 

interpretations for p and all their possible combinations are explicitly represented 

in the graph. Figure 2.5 is an example of a discrimination graph for which this is 

not the case. In this example, p is a closed line segment which depicts either a 

road, coastline, or lakeshore. Initially p can be interpreted as an instance of a 

road/shore schema. However, if at a certain point in the interpretation process, 

the constraints are such that lakeshore and road are the only possible interpreta­

tions then we are in trouble. There is no schema which 
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uniquely represents the combination road/lake~hon:. As a r::sult we have to 

represent p as a road/ shore with two possible (hypothetic::!) interpretations . 

• A/B 
I\ 

I \ 
I \ 

I \ 
I \ 

I \ 
I \ 

I \ 
I \ 

I \ 
I \ 

I \ 
I \ 

I \ 
I \ 

/ \ 
I \ 

I \ 
I \ 

I \ 
I \ 

I \ 
I \ 

I \ 
I \ 

I \ 
• A 8 B 

Figure 3.1: A simple discrimination graph 

The structure of the discrimination graph thus determines what the 

approach to the ambiguity problem must be. If p has n possible interpretations 

and we construct a two-level discrimination graph with a source node which 

intensionally represents the n interpretations then we opt for an approach 

which is mainly hypothetical. If, on the other hand, we construct a discrimina­

tion graph which not only represents then interpretations but all possible com­

binations as well, then we opt for the ambiguity apprm:ch. As well, we can con­

struct a graph which constitutes a compromise between the two approaches. In 

Chaf'.er 4 we will see that Mapsee-3 tloes the latter. 
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The idea or discrimination graphs is not new. They are identified in early AI 

systems such as EPAM (Feigenbaum, 1963; Simon and Feigenbaum, 11J64). In 

Mapsee-3, their use is therefore not novel in concept, but in application: the 

reprCS<!ntation of visual interpretations that are hypothetical and ambiguous. The 

term discrimination was chosen beeause of its application. In Mapsee-3, the graph 

is used to visually discriminate between different schemata. Because context is 

used as a discriminating factor, one way or looking at the discrimination graph is 

to see it as a similarity graph. The links in the graph represent similarity in 

appearance between the schemata represented. If we replace A/ B in Figure 3.1 

by the schema shore , A by coastline , and B by lakeshore then we have cre.a.ted 

the discrimination graph shown in Figure 2.4. In sketch maps a shore, lakeshore, 

and coastline are all depicted by a closed line segment. Only by taking the con­

text into consideration can we discriminate between a coastline and lakeshore. If 

the shore surrounds a landmass it becomes the former, if it surrounds a water­

body it becomes the latter. Thus, discrimination comes close to what Brachman 

(HJ82) calls "value restriction". However, discrimination graphs distinguish them­

selves from specializatio11 hierarchies in that there is no universal implication. An 

object class may appear in many different ways in the image. In the sketch map 

world, for instance, a road may be depicted by many differently shaped line seg­

ments. The line segment may be closed, or it may run off the picture frame on 

one or both sides. 

The Mapsec-3 interpreter expects each discrimination graph to be orthogonal 

to the composition hierarchy; that is, each discrimination graph is located at a 
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particular level o( composition. This is done to keep the system as modular as 

possible. Orthogonality can be easily achieved because o( the additional require­

ment that the lea( nodes or the composition hierarchy are equidistant from the 

top node. For composition hierarchies that do not satisfy the latter requirement, 

we can create dummy schemata at the missing levels. Although these dummy 

schemata are essentially undefined interpretations, the system will treat these 

schemata as being redundant, and it can disregard their presence. 

As mentioned before, a schema instance's interpretation is expressed by one 

of the instance's attributes, called its label. The main advantage of such a 

representation is that refinement of interpretation of a particular primitive does 

not result in a restructuring of the interpretation graph. For instance, in Figure 

2.1B, a primitive depicting a shore is represented in the interpretation graph as 

an instance of a shore and is labeled shore as well. Ir the interpretation needs to 

be refined to coastline then all we need to do is replace the label shore by the 

label coastline . This lea,·es the value of the composition attributes of the 

instance unchanged. Thus, the composition and discrimination process operate 

independently from each other. This results in modularity in control, which the 

Mapsee-2 system did not have. 

A last point with respect to discrimination graphs is that many nodes do not 

represent natural object classes. The road/shore object class in Figure 2.5 is such 

an example. The graph therefore consists of a natural and an unnatural consti­

tuent. The subgraph containing the shore, coastline, and lakeshore forms the 
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natural constituent in Figure 2.5. Natural constituents have to be provided by 

the user. However, in order to take the burden away from the user, we can pro­

vide algorithms by means of which we can automatically construct unnatural 

constituents. In section 3.4, we will discuss the algorithms for constructing the 

unnatural constituents in the discrimination graphs of the Mapsee-3 system. 

- Image-to-scene mapping 

As mentioned before, composition hierarchies do not cross the image/scene 

boundaries. The connection between image and ·scene is provided by the relations 

"depicts" and "depicted-by". In general, image primitives constructed at different 

levels of detail in the image can depict schemata at different levels of composition 

in the scene, as in the system created by Browse (IQ82). In Mapsee-3, image prim­

itives depict schemata only at the composition leaf level in the scene. At this 

level each schema instance is depicted by one image primitive. 

3.3. Control 

In its most rudimentary form, Mapsee-3 is a sequence of three processes: aeg­

mentation , image -to -scene mapping , and interpretation . 

Segmentation is tbe process by which primitives are created from input data.. 

These primitives serve as a basis for interpretation and they are presumed 
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correcl. We thus avoid a number of low level vision issues which, as mentioned 

before, this dissertation does not address. 

Discrimination graphs are based on a categorization of image primitives with 

respect to a particular characteristic (e.g. shape). Image-to-scene mapping puts 

each image primitive in such a category and it creates an instance of an abstract 

schema at the composition leaf level which uniquely represents the particular 

category to which the primitive belongs. 

This dissertation focuses on the interpretation process. It ensures that each 

image primitive is represented at all levels of composition and with an appropri­

ate interpretation. An interpreted image consists of an interpretation graph in 

which each node represents a schema instance and each link a constraint between 

two different instances. Because a schema can be an object class or a relation of 

any arity, the graph is actually a super-graph. 

Interpretation consists of two processes: composition and discrimination . 

Composition represents each image primitive at all levels of composition, while 

discrimination ensures that each image primitive is represented at an appropriate 

level of discrimination at all times. As mentioned before, another way of looking 

at composition and discrimination is to see composition as the process that con­

structs the interpretation graph and discrimination as the process that propagates 

consistency over this graph. 
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Both composition and discrimination arc modular processes with composi­

tion being the only process, that operates in the composition/ a~regation 

dimension. The same holds for the discru.iir.aticn process in the 

discrimination/ generalization dimension. The modularity of both processes is 

further enhanced by the fact th .. t they c::n::iot directly ir.voke each o!her. Two 

different queues serve as a buffer between the processes. 

Figure 3.2 shows a flow chart of the control structure of the interpreter. 

Interpretation takes place in cycles. During each cycle, one schema instance is 

matched and linked with a schema instance at the next higher level of composi­

tion. Composition is subdivided in two stages: completion and assembly. 

Discrimination, a constraint propagation process, is implemented by means of a 

hierarchical arc consistency algorithm which is invoked twice during an 

interpretation cycle. 

3>icompletion l---3'! >.ssembl y 

success 

Figure 3.2: Flow chart of the intP-rpretation process 
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In this chapter we look at composition and discrimination from a conceptual 

point of view. The actual implementation is discussed in Chapter 4. A formal 

description of the interpreter is provided in Appendix E. 

3.3.1. Composition 

Image-to-scene mapping results in a number of schema instantiations at the 

composition leaf level, one for each image primitive. The objective of composition 

is to represent these leaf level instances at each of the other levels of composition, 

ihereby establishing different relationships between the instances. Composition is 

a data-driven process. During each cycle of interpretation one schema instance is 

represented at the next higher level of composition. 

Composition is subdi,·ided in two stages: completion and assembly. The rea­

son for this subwvision is that for one instance to be a component of a super­

instance both instances must match in two different ways. First or all, the lower 

instance must establish a re13.tionship with another instance at the same level of 
I 

composition, which has already been established as a component of the super-

instance. Secondly, the labels of the lower instance must be compatible with 

those of the super-instance. The first match is achieved by the completion pro­

cess, the second match by the discrimination process. Once both types of match 

have succeeded, the lower and super-instance can be linked in an operation taken 

care of by the assembly process. 

-
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lo order to obtain a match between an instance and a super-instance the 

completion process invokes the latter's methoda. These methods are functions 

which are stored as the value of tbe "method" attribute of the super-instance's 

parent. Once invoked, these functions search for a relationship between the com­

pleting component and an instance which is already established as a component 

of the super-instance. These functions are specific for the domain in which they 

operate and together form a domain-dependent aspect of the representation 

which the user must provide when creating the knowledge base. 

The list of schema attributes described in section 3.2.1 show that each 

schema instance has a parent and that each schema is embedded in a composition 

hierarchy. This hierarchy can be followed by tracing the schema's component 

attributes. 

The first step in the completion of a schema instance S; is to fetch the 

super-component{s) of its parent S. Let us assume for the moment that there is 

only one super-component, which we call SS. The objective of the completion 

process is to find an in8tance SS; of SS of which S; can become a component. 

SS; is a valid super-component for S; if an existing component C; of SS; can be 

found that can enter in a relationship with S;. Schema SS has methods wit!:. L!:.e 

power to search for and establish such relations. The completion process can 

invoke these methods when it attempts to complete S; to SS;. 

In the case that SS does not yet have a single instance then the completion 

process has the power to create a new instance SS; which becomes a completion 
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candidate for S;. The same is done when S; £ails to match with any or the exist­

ing instances or SS. 

An example will be helpful to further clarify composition. Suppose, we want 

to interpret a simple sketch consisting or two towns connected by a road (Figure 

3.3). We will be using the composition hierarchy in Figure 3.4. In this example we 

bypass the fact that there exists a relational level in between the two object class 

levels. The segmentation process has constructed three primitives: two blobs and 

a line. We assume that the blobs serve as a cue for town and line for road. As a 

result, two town instances (town-I and lown-2) are created and one road 

( road -1). The details of the composition process will be somewhat dependent on 

the sequence in which we complete these instances; the final result, however, 

should alw:i.ys be the same. 

Blob-1 Blob-2 

@ ® 
Line-I 

' Figure 3.3: Two towns connected by a road 

Chapt<r l 114 

Road 

Figure 3.4: A composition hierarchy for Figure 3.3 

If we complete town -1 first, then town -l becomes a component of road­

system. No road-system thus far exists, so we create one: road-system -1 of 

which town -1 becomes a oomponent. The completion of road-I results in the 

invocation of road-system's methods. Roau-system owns several methods, i., 

particular one that establishes whether one of road-l's ends is close to 

town -l's location. If this is the case, then a spatial relation "road-townp" is 

established between road-I and town-I and road-I becomes a component of 

road -system -1. 

If, however, we complete town -2 before road-I, then the comp:;siticn 

process follows a different course. If we complete town -2 to roa::1-sys:cc then 
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the road-system will find that it has no method to establish a relationship 

between town -l and town-2. As a result, it creates a new instance 

road-system -2 of which town -2 becomes a component. If we now complete 

road -l then the road-system finds that road-l can be a component of both its 

instances. Since road-I can be a component of one road-system instance only, 

road-system will merge road -system -2 and road -system -l into one new 

instance road -system -1 of which road -l becomes a component. 

Composition becomes more complex when discrimination graphs get 

involved. Figure 3.5 illustrates such a situation. We will use this 

composition/discrimination graph to reinterpret Figure 3.3 with the difference 

that we now take line-1 to be an ambiguous feature serving as a cue for a road 

and a river. Using the principle of least commitment, line-1 causes an instantia­

tion of road/river: road /river-I. If we complete road /n·ver-l it will complete 

to road/river-system. With not a single instance created at the second composi­

tion leHl, road/ river -1 becomes a component of road/ river -system -1. 

Town -I, however, wants to complete to road-system. Now it is not sufficient to 

say that. beca.use road-system has no instances, we must create a new one. 

Town-l can become a component of road-system, as well as of any generaliza­

tion or discrimination (if there are any) of road-system. 

-.:-. 

Cb■a::cr 3 

·----------­........ ....... I 
''-- . ...... ......... , 

. -----­.... ......... 
"--... ........ ........... 

Roa 

Figure 3.5: A composition hierarchy and discrimination graphs 

at two levels of representation 

C6 

Abstract schemata such as road/river-system can inherit the methods of 

their descendents in the discrimination graph under certain circumstances. We 

will discuss these inheritance rules in section 3.4.4. It is suffi:i.ent for the 

moment to assume that road/ river-system inherits road-system's "road-townp" 

method. Completion of town -1 to road/river-system enables the latter to use 
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road-system's "road-townp" method to establish the T-junction. As a. result 

town -I becomes a. component of road /rit•er-system -l. 

From this example we can infer that an instance does not necessarily com-

plete to an instance of its super-schema. Given an instance S; of a schema. S, 

what is the set of schemata to which S; can potentially complete! Let SS be the 

super-schema of S in the composition hierarchy. Let the discrimination set of SS 

be a I! the possible discriminations and generalizations of S in the discrimination 

graph in which S is embedded. We indude SS in this set and call the set D. Let 

the superdi.scrimination set of SS be the set of all schemata which have an ele­

ment of D as a possible discrimination. We call this set SD. The completion set 

for S; are the instances in D u SD. If no matching instance in this set ca.n be 

found then S; becomes a component of a. newly created instance of SS. 

As an example consider the discrimination graph in Figure 3.6. SS 's discrim­

ination set is given by the dotted line, the snperdiscrimination set by the dashed 

line. The arrows show the direction of discrimination in this graph. 
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\---- ----------------
\ . ,------- - ; 
\ j 

discrimination &at 

superdlscrlmlnatlon set 

Figure 3.6: A discrimination and superdiscrimination set 

We can also infer from the example in Figure 3.5 that completion proceeds 

in a non-hypothetical manner. Thanks to the existence of abstract schemata 

rnch as road/ river and road/ river-system there is no need to create two 

hypothetical instances road -1 and rivu-1 and to pursue them as such. Thus, 

no hypotheses can enter in the composition/ aggregation dimension. 

Completion does not actually link S; and SS;, but this is done during 

assembly which is postponed until a co:np.itibility check has been made 
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between the label(s) or S, and SS,. Such a compatibility check involves opera­

tions in the discrimination/generalization dimension ·and belongs therefore to the 

domain or the discrimination process to which we turn next. 

3.3.2. Discrimination 

Io section 3.2.2, we looked at discrimination graphs as a representation for 

"look alike" schemata that could be discriminated only when placed in a proper 

context. Upon instantiation a new instance inherits the schema label or its parent 

as label. Thus, in Figure 3.5 road /river-I will start out with road/river as label 

and town -I with town as label. The discovery or a relation "road-townp" causes 

both instances to become a component of the same super-component: 

road /river-system -1. In the model constraint graph represented by the compo­

sition hierarchy in Figure 3.5, Part-of (town ,road /river-system) is false. Com­

patibility of labels is achieved by replacing the labels of road /river-system -I 

and road/ rit•er -I by one or their successors in the discrimination graph: road­

system and road. 

We will formally describe and treat discrimination as a constraint satisfac-
1 

tion problem. In the following section we will therefore describe a general algo-

rithm that deals with constraints organized in hierarchical form, as they are in 

the discrimination graph. 
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3.3.2.1. Hierarchical Arc Conalatency 

In section 2.3.2.3 the Constraint Satisfaction Problem (CSP) was defined as 

a situation with n variables each with a domain and a set of constraining rela­

tions. A solution to this problem consists of &II possible n-tuples such that each 

n-tuple is an instantiation of the n variables satisfying the relations. Several 

kinds of algorithms were discussed. Some algorithms, such as depth-first back­

track always solve the problem, whereas others such as network consistency algo­

rithms, do not provide that guarantee. 

The problem with algorithms such as depth-first backtrack is that they are 

exponential in the domain size which is particularly damaging in computational 

vision problems where domain sizes are generally very large to begin with. Net­

work consistency algorithms such as arc consistency are considered to be useful 

because they are generally polynomial in the domain size. 

Additionally, arc consistency is attractive, b~ause: 

l. In the best possible case, arc consistency solves the CSP. Ir there is only one n -

tuple satisrying the relations for all n variables and if the 1.-ary (I. :5n) constraints 

are suffi~icnt to propagate this solution, the CSP is solved. 

2. In the worst possible case, arc consistency does not solve the CSP, but can serve 

as a useful preprocessor for depth-first backtrack. 

3. Arc consistency algorithms are simpler than depth-first backtrack. They have 
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been well researched, and their complexity is known (Maclrworth and Freuder, 

1982). 

4. The discrimination process can be implemented entirely by means or an arc con­

sistency algorithm. This process is the only one to deal with the 

discrimination/generali,ation dimension. Hence, there is modularity in both 

representation and control. 

The first two arguments are efficiency arguments. The last two arguments, 

however, strongly support the conceptual clarity of the system. For this reason, 

Mapsee-3 uses an arc consistency algorithm to do constraint propagation. How­

ever, in regular arc consistency algorithms the domain consists of label sets. This 

would not suffice for the discrimination graphs in. which labels are organized in a 

hierarchical form. Mapsee-3 therefore uses hierarchical arc consistency, a 

hierarchical version of arc consistency. 

Hierarchical arc consistency is a network consistency algorithm for hierarchi­

cally organized domains. The objective of a hierarchical representation is that for 

each variable instantiation we no longer have to explicitly represent all possible 

labels. This set is now represented implicitly by one or more abstract labels. The 

particular algorithm we will be discussing in this section is called HAC-3, a 

derivative or AC-3 described in Mackworth (Hl77c). Hierarchical arc consistency 

(HAC) is formally described in a concurrent paper (Mackworth, Mulder, and 

Havens, 1985). As HAC-3 is used in Mapsee-3, we will discuss this topic in some 
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detail here as well. In this section AC-3 and HAC-3 will be described informally. 

A formal description is provided in Appendix A. 

AC-3 

We represent the CSP as a graph G with variables V, each with a domain 

D. G is consistent if all nodes and arcs are consistent. A node V, is consistent if 

the predicates applicable to V,- are true for all labels in D;. The arcs are con­

sistent if for each arc ( i ,j) each of the labels in D; is consistent with at least one 

label in D,-. 

AC-3 consists of two steps. In the first step, the consistency of each node 

and arc is tested. All inconsistent labels are deleted. In the second step all arcs 

pointing at a variable in the domain or which labels were deleted are revisited. 

Step 1 is repeated for each of those arcs. This process continues until all nodes 

and arcs are consistent or until the domain of each variable is empty. 

AC-3 is a very interesting algorithm for applications in computational vision. 

It does not build an explicit data structure for administering the compatibility 

between different labels of adjacent variables in the constraint graph, but instead, 

AC-3 searches for a compatible label in the domain of an adjacent variable, ter­

minating the search as soon as such a label is found. No data structure is created 

for administering the compatibility. The worst-case complexity of AC-3 is linear 

in the number of constraints and quadratic in the domain size (Mackworth and 

Frcuder, 1982). 
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Io the best possible case for AC-3, all but one label of each variable will 

eventually be deleted. In the general case, AC-3 is not guaranteed to solve the 

constraint satisfaction problem. However, as discussed in section 2.3.2.3 AC-3 is a 

useful preprocessor by means of which we can reduce the domain size before 

applying depth-first backtrack. 

HAC-3 

In AC-3 the domain of a variable is organized as a set of labels. Each instan­

tiation of a variable has this set or a subset of these labels in its domain. In 

HAC-3 the domain D is organized in a hierarchical form. Each node in this 

hierarchy stands for a label that is unique in D,-. The labels at the leaves of the 

hierarchy are the same (basic) labels that were represented in the variable domain 

in AC-3. The source node of the hierarchy intensionally represents the complete 

set of labels at the leaves of the hierarchy. Each intermediate node represents a 

subset of this set. 

HAC-3 is also a two-step algorithm. In the first step the hierarchical arc con­

sistency of each node and arc is tested. An arc ( i, j) is hierarchically arc con­

sistent, if each label in D,- is hierarchically arc consistent with at least one label 

in D;. A label pair ( m , n ) is hierarchically arc consistent if for all descendants d 

of min the hierarchy P(d,n) is true. For each label pair (m,n) that is not 

hierarchically arc consistent we replace m by those descendants d in the hierar­

chy such that ( d , n ) is hierarchically arc consistent. The second step in HAC-3 is 
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I 
In both HAC-3 and AC-3 the final label of a variable is determined entirely 

by the constraints present in the image. In HAC-3, however, the final label need 

not be a leaf label in the discrimination graph but can be any intermediate label 

as well. This appears to be a natural phenomenon. An example illustrates this. 

Under ideal observation conditions a hnman observer can specialize a picture of a 

car up to its make and year. Such a recognition, however, would not be possible 

for the same car covered with snow. 

This is a major advantage of HAC-3 over AC-3 and depth-first backtrack 

where a unique final label is not possible unless it is a leaf label. In natural image 

understanding one cannot always discriminate down to the leaves of the graph as 

the snow covered car demonstrates. HAC-3 mimics this behavior. Another advan-

tage of ILA.C-3 over AC-3 is one of efficiency. Compared to AC-3 the domain size 

of HAC-3 is generally smaller. As a result, there can be an increase in time 

efficiency. In Chapter 5 we will discuss some experimental data obtained from 

Mapsce-3 which actually show an improvement in time efficiency of HAC-3 over 

AC-3. 
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3.4. Setting up a Knowledge Base for a Particular Domain 

We have now discussed the Mapsee-3 representation and control. However, 

we havr not yet shown how to actually construct a knowledge hase for a particu­

lar domain. On!' part of the knowll'dge ba.s'! ha.s to be provided by the user, 

whercn.s t.he other part is a11tomat.ically constructed by the system. 

The very st.rkt modularity requirements of the Mapsee-3 system impose a 

number or rcst.ridions on the ways in which we can construct the different 

knowledge rcpresrnt.atinn dimensions. Most important of all, the 

disrrimination/gencmlization dimension must represent. the knowledge about pos­

sible ambiguities in interpret.at.ions. In order to prl'Servc modularity in representa­

tion and control we must prevent hypothetical interpretations from being intro­

dur<'d along any or the othrr dimrnsions. 

In tll<' imagl'-1.o-srene dim('nsion we have t.o ensure that for every image 

primili,·e I.here exists an (abstract) schema in the scene which intensionally 

repr<'senl.s all possible interpretations or this primitive. H we map the primitive 

into this schema, we obtain an interpretation that is ambiguous but is not 

hypothetical. 

In the composition/aggregation dimension we have to ensure that the map­

ping of an interpretation at one particular level of composition never leads to an 

instantiation or a schema at an adjacent level that is hypothetical. This can be 

prevented if we ensure that there are no composition relations of the "may-be" 
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kind. In t.he sketch map world, for instance, a road is a mandatory component of 

a road-system. A primitive interpreted as a road must therefore be part of a 

road-system as well. tr the road interpretation is non-hypothetical then the road­

system inl.i,rpret.ation cannot he hypothetical either. Because the composition pro­

cess in Mapse!'-3 is entirely <lat.a-driven, all "part-or' relations in the Mapsce-3 

irnpl<>m.-ntation are of the "must-he" kind. 

Given all lhrse constraints on the structure of the knowledge ba.se, its con­

st rud ic,n is not a trivial matter. lo particular, the presence or schemata which do 

not r<'pr<'sent nat.nral concepts complicate matters. Doth natural and unnatural 

conc<'pls h,we lo he embedded in a composition hierarchy. In order lo relieve the 

us<'r from th<' h11rden or having to construct the complete knowledge base, we 

haH ,k,igni,rl a number or algorithms that enable us to automatically construct 

lh<' unnat.11ral ronsl.il11ent. of the knowledge base. 

In 1 he next three sections. we discuss the construction of the Mapsce-3 

knowledge bn.si,_ In the first section we discuss the information that has to be pro­

vide.d by th<' us<'r and the constraints which must be satisfied. In the second sec­

tion we discuss the construction or the discrimination graphs located at the leaf 

level or the Mapse!'-3 composition hierarchy. lo the third section we discuss the 

algorithm by means of which the remainder of the knowledge base is constructed. 
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3.4.l. The Basie Composition Hierarchy and Diserlmlnation Graphs 

Mapsee-3 requires the presence of a segmentation process that cumulates in 

the formation of a number of (image) primitives. For any particular domain the 

user must categorize the primitives with respect to one or more characteristics 

that are of interest ( e.g. shape, texture). Each primitive category must map into a 

particular set of interpretations. This mapping scheme must also be provided by 

the user. 

Each interpretation is represented as a schema. The user must provide the 

information for all natural schemata as follows: 

I. An internal structure for t'ach schema. This struct-ure consists of a list of 

a.Hr,bute--value pairs which conforms in format with the syntactic rules for schemata 

provided in Appendix D. The user is also responsible for providing the schema's pro­

cedural knowledge, its methods. 

2. The composition hierarchy and discrimination graph(,) in which these schemata 

are em bedded. In an aggregation direction only "must-be-part-of" links are allowed. 

Discriminal,ion graphs must be orthogonal to the composition bit'rarchy. 

3. The set of image primitive categories depicted by each schema and vice t1ersa. 

The reader in need of a concrete idea of what the Mapsee-3 composition 

hierarchy and discrimination graphs look like at this stage is invited to look 
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ahead to Figure 4.-1. As mentioned before, the image primitives in Mapsee-3 map 

into schemata at the composition leaf level only. This is not a general constraint 

on the knowledge base but it simplifies its construction. 

From here on we will refer to a natural schema as a basic schema. The com­

position hierarchy containing basic schemata is referred to as the basic composi­

tion hierarchy. All discrimination graphs embedding basic schemata are basic 

discrimination graphs. Unnatural schemata will be referred to as abstract sche­

mata. 

3.-t.2. Constructing an Abstract Discrimination Graph at the Composi­

tion Leaf Level 

While describing the concept of discrimination graphs, we pointed out that 

they can represent any approach, be it a hypothetical approach, an ambiguity 

approach, or any position in between. The Mapsee-3 system takes an intermedi­

ate position that comes very close to an ambiguity point of view, closer than a.oy 

of the vision systems reviewed in Chapter 2. All the different sets of basic 

interpretations that can arise for any image primitive category are represel!t~:! !>y 

a single schema. At the start of the interpretation process, each primitive can 

therefore be represented by a single (abstract) schema. However, not all combina­

tions of basic interpretations are explicitly represented. In intermediate situations 

in the interpretation process, a primitive sometimes depicts more than one 
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interpretation. 

The Mapsee-3 discrimination graphs are OR graphs which are binary in a 

discrimination direction. Neither condition is a general constraint on the 

approach. The only reason for imposing these constraints is to obtain an improve­

ment in the time efficiency of the network consistency algorithm operating on 

these graphs. The leaves of the graph represent basic schemata, whereas most of 

the other nodes in the graph represent abstract schemata which intensionally 

represent the basic schemata that descend from them. The network consistency 

algorithm operating on the graph follows a principle of least commitment. For 

this reason the set of basic schemata intensionally represented by each node must 

be a subset of the set represented by its ancestor(s). 

The first discrimination graphs to be constructed are the discrimination 

graphs at the composition leaf level. These graphs come first, because the compo­

sition leaf level is the point of entry in the scene domain for the image-to-scene 

mapping process. At this point, only the basic discrimination graphs are given as 

they were constructed by the user. In Figure 4.4, level 1 is the composition leaf 

level and contains only one basic discrimination graph that consists of more than 

one node. The abstract discrimination graphs will become an extension of these 

graphs. 

No abstract schemata have yet been created. As a first step, we take each 

primitive category and create an abstract schema which intensionally represents 

the set of basic schemata depicted by the category. In the example in Figure 3.7, 
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for instance, we have assumed the existence of four different primitive categories: 

one depicts a town, a second one depicts a road or shore, a third one a road, 

river, or shore, and a fourth one a road or river. As the town is a basic schema 

which already exists, we only have to create three abstract schemata: a 

road/shore, a road/river/shore, and a road/river. 

Next, we create abstract discrimination graphs which are binary OR graphs. 

These graphs are constructed such that the source nodes of the basic discrimina­

tion graphs become the leaves and all abstract schemata are contained in the 

graphs. As well, the graphs are constructed such that the descendants of each 

abstract schema represent an exclusive subset of the set of basic schemata 

represented by their ancestors. The latter has also been motivated by an efficient 

operation of the network consistency algorithm operating on the graph. 

The algorithm that constructs the abstract discrimination graph at the com­

position leaf level consists of three steps: 

Step l. Order the abstract schemata by the size of the set of basic schemata they 

intensionally represent. Call this ordered list AS . 

For each element s in AS do: 

Find the schema that repreoent• the largest •ubset of a . Call this schema 8 1. If 

the setsize of s I is less than half the size of a 

then execute step 2, 

else execute step 3. 
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Step 2. Split the set represented by a into two disjoint •ubsets or approxi-

mately equal site, and create two new abstract schemata s 3 and s 4. Each 

or these schemata represents one or the subsets. Create a discrimination 

link bet.ween s and it.s two siblings and insert the siblings into AS at a 

location that corresponds to their setsize. 

Step 3. Find the schema , 2 representing the exclllllion or the sets 

represented by s and s 1• Ir this schema does not exist 

then create it and insert it into A.S at the proper location. 

Create a discrimination link between , and its siblings a I and s 2. 

The graph that results from this construction is not necessarily unique. One 

may find more than one s 1. In this case one can arbitrarily take one of these 

schemata to be s 1. Depending on the s I chosen the result will be different. 

Figure 3.7 is a simple example of the construction of discrimination graphs. 

The basic schemata in this figure are: lotllff , road , river , and shore . The 

abstract schemata are (ordered by setsize): roadJn·ver /shore, road /shore, and 

road /river. Two discrimination graphs result from this construction. One con­

sists of a single schema: tou•n . The other contains all other schemata. Note the 

ambiguity in the construction. Road /river /shore could also have been linked 

with road/ river 
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Figure 3.7: A construction example of a discrimination graph 

3.4.3. Embedding Abstract Schemata la a Composition Ilierarcby ■ad Con­

structing Abstract Discrimination Grapbs at Maltl-lenls or Composition 

Thus far we have created abstract discrimination graphs at the composition 

leaf level only. For modularity reasons alone, it is necessary to embed each of 

the abstract schemata in these graphs in a composition hierarchy as well. li this 

were not the case, then we would face the problem that interpretations could 

never be developed along the composition/ aggregation dimension without 

becoming hypothetic.:I. Figure 3.8 can serve as a., illustration of this problem. 
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Figure 3.8: A one-to-one mapping situation 
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Figure 3.9: A many-to-one mapping situation 
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Suppose that coastline and lakeshore are basic schemata embedded in a 

basic composition hierarchy. Coastline is a mandatory component of landmass 

and likewise lakeshore is a component of waterbody. Also suppose th.a shore is 

a,, abstract schema which intensionally represents coastline and l.ikeshore and 

wi: have j--.ist constructed the abstract discrimination graph contail.bg shore, 

coastline, and lakeshore. Shore is not yet in a composit::;n hierarchy. Without a 
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super-schema there is only one way to represent shore at the next higher level. 

We replace shore by its two (hypothetical) descendants both of which have a 

super-schema. However, this means that 1hore becomes a component of two 

hypothetical super-schemata: landmass and waterbody , only one of which can be 

the correct one. In other words, without a super-schema for shore we can only 

represent shore at a higher level by introducing a hypothetical schema. The only 

way to avoid this problem is to find or create a super-schema at level / +l of 

which shore is a mandatory component. 

In the composition/aggregation dimension basic schemata map from one 

level of composition to the next one up in one of three ways: one-ti:rone, many­

t<r0ne, or one-ti:rmany. Figure 3.8 illustrates a one-t<r0ne mapping situation. 

Each of the shore's descendants maps into a different super-schema. Shore can­

not map into either landmass or water6ody without introducing a hypothetical 

schema. We must therefore create a new (abstract) schema at level I +l 

(geo -system) which intensionally represents landmass and waterbody. Shore 

becomes a mandatory component of geo -system . Using the algorithm for creat­

ing abstract discrimination graphs we create a new abstract discrimination graph 

at. level / +l which contains geo - system, landmass, and waterbody . We thus 

effectively project the discrimination graph at level I onto level / +l. 

Figure 3.9 illustrates a many-t<rone mapping situation. Both of ,hore 's des­

cendants map into one super-schema, geo - system . In this situation there is no 

need to create a new abstract super-schema for ahore . All of shore 's hypotheti-

Chi,pter J IC~ 

cal interpretations are a component of geo -system. Shore must therefore 

become a mandatory compon:nt of ceo -system i:s well. 

I -~-- SLq / l ---;,,-- ~- T -- --- ,,., I 
• ~ --~------. SL 

ss2 ........... ' ·1; 1. .,.,,.--,.,, . 
__ ... ! 

O_.,,,.... ---------. ;SL~ ss1 ---- I . . 
l evel l+.I,_. 1 1 • 

s 

L level l 

--------·­... ... ...... ...... .......... ......... 
........ 

Ll / 

Figure 3.10: A one-to-many mapping situation 

Figure 3.10 illustrates the most complicated mapping, a one-to-many map­

ping. One of S's descendants, L;, is a mandatory· component of two super­

schemata: SLu and SL;.2• S cannot become a component -0f any of the SL 

schemata without introducing hypothetical schemata. However, the creation of 

just one super-:chem a for S at level I+ 1 is an inadequat.: solution as well. 
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Once again, the reason is modularity . 

As mentioned before, an interpretation is represented in .Mapsce-3 as a 

schema-instance. Each instance is embedded in an interpretation graph which 

rellects the structure or the composition hierarchy in which the instance's parent 

schema is embedded. For example, an instance or schema L, in Figure 3.10 is 

embedded in an interpretation graph which, among other things, contains an 

instance of schema SL, ,I. An instance of schema L;, on the other hand, will find 

itself in an interpretation graph with an instance of schema SL;,, and an instance 

of schema SL; ,2• As the interpretation graph reflects the composition hierarchy, 

the composition process is responsible for constructing and altering the structure 

of this graph. 

The discrimination process, on the other hand, can only operate in the 

discrimination/generalization dimension and it cannot change the structure of the 

interpretation graph. In order to preserve modularity in control, we have to 

prevent that an operation in the discrimination/generalization dimension necessi­

tates a change in the structure of the interpretation graph. This would happen if 

S had only one super-schema SS . If during interpretation a schema-instance 

with label S refines its label to L;, then S's super-component SS would be 

required to split into two instances, one with label SL;,,, and another with label 

SL; ,2• This split would require a change in the structure of the interpretation 

graph. S must therefore have at least as many super-schemata as any of its des­

cendants in the discrimination graph. 
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The same modularity requirement is reflected in the construction or the 

discrimination graphs at level I +l. The only way to avoid changes in the struc­

ture of the interpretation graph is to ensure that all super-schemata of descen­

dants from S generalize to at least one super-schema of S. In the reverse direc­

tion each super-schema of S must map into one super-schema of each of S's des­

cendants. In this way it is guaranteed that a label refinement in an interpretation 

graph which contains inst-ances of S, SS 1, and SS2 always enables us to find new 

labels for each of these instances without having to change the structure of the 

graph. 

We will now discuss the algorithm by which the projection of an abstract 

schema onto level / +l and t.he subsequent construction of a discrimination graph 

at that level can be done. The reader can verify that for the basic mapping situa­

tions illustrated in the Figures 3.8 and 3.10 the application of this algorithm 

results in the situation illustrated in these figures. The situation in Figure 3.Q is 

dealt with correctly as well. However, a redundancy is created because shore 

becomes a component of a newly created (abstract) generalization of geo -system 

rather than geo -system itself. 



Chapter 3 1011 

The Projection Algorithm 

- Subdividing the discrimination graphs into subtrees 

The first step in projecting & discrimination graph from level I onto level 

I +l is a subdivision of each discrimination graph into two-level subtrees. Each 

node in the graph and its direct descendants in a discrimination direction form a 

subtree. The next step is to assign & level number to each node in the discrimina­

tion graph. The leaves of the graph become level I, their parents level 2 etc. In 

case of conflict the highest level number prevails. The projection takes place sub­

tree by subtree, beginning with all trees with source node at level 2, because all 

leaves at level I are already contained in a basic composition hierarchy. Next the 

trees at level 3 etc. 

- Projecting subtrees from composition level I to level 1+1 

Each subtree ST consists of a source schema S and a set of leaves L. L has 

q elemc,nts: L 1>··· .. ,L9 • A discrimination link d;,1 connects S with L; (lSi Sq). 

n; "must-be-part-of" links eminate from each L; (l:Si :Sq). The set of super­

schemata in the composition hierarchy of L; we call SL;. SL, has r elements: 

SL; ,1, ..... ,SL; ,r ( r = n; ). Figure 3.11 shows the situation. 
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Figure 3.11: An illustration of the projection algorithm 

The projection algorithm consists of two steps: 

1. Create a new set of super-schemata SS and create a "must-be-pan-of" lint 

betweea S a:id each elemcilt of SS. SS bas t elements: SS 1, ..... ,SS, (t = max 

n; {1,e;isqH. 

2. For e:,ch set SL; (lsisq) do: 



Chapter 3 111 

Create new diocrimination links connecting SL; with SS. Each of these links 

represents d; ,I at level / + l. The elemen~ in both sets are connected in the fol­

lowing way: 

SL; ,I connects with SS 1, SL; ,2 connec~ with SS 2, •.•.. ,SL; ,, connects with 

ss,. 

tr,. < t 

then create additional links that connect SL;,, with SSk for each poosible 

value or k (r <k :5t ). 

Figure 3.11 shows there is a one-to-one mapping between SS and SL; for 

the elements I - (r-1), and a one-to-many mapping from SL;,, to the elements 

SS, - SS1 • This algorithm guarantees that there i5 a unique mapping between SS 

and SL; (1:5i ;Sq) for each d;, 1 . 

By means of this algorithm one automatically constructs abstract composi­

tion hierarchies and abstract discrimination graphs at multiple levels of composi­

tion. The only complication with respect to Mapsee-3 is that the "must-be-part­

or' links themselves are represented as schemata. In Mapsee-3, object class levels 

alternat.e with composition relation levels. The projection algorithm works well in 

that situation, but does not provide economy of representation. Figure 3.0 is an 

example of such a situation. In the projection algorithm that was actually used to 

construct the Mapsee-3 knowledge base, some efficiency measures were taken. 

These measures were implemented as preprocessors of the general projection algo-
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rithm and they are not essential to the general understanding of the projection 

algorithm . The reader is therefore referred to Appendix C for a description of 

these measures. 

3.4.4. Method Inheritance 

The discussion of how to automatically construct abstract schemata at 

different levels of composition has now been completed. Most of the attributes of 

abstract schemata are easy to generate as they ·depend directly on the location of 

the schema in the composition hierarchy or discrimination graphs. However, this 

is not the case for the schema's methods. 

Many schemata own methods. As discussed before, they are used to search 

for and establish relationships between components of the schema which owns the 

method. Methods are central to the interpretation process because the relation­

ships they create form the constraints on the operation or both the composition 

and discrimination process. In Mapsee-3 only basic schemata own methods 

because they have to be provided by the user. Methods apply to one or more 

schemata at one particular level or composition only. 

Because or their central importance to the composition process, abstract 

schemata need methods as well. Fortunately, it is possible to provide procedures 

by means of which we can automat.ically determine whether or not a method of a 

particu Jar schema can be inherited by any of its generalizations in the 
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discrimination graph. The goal of methods is to create relationships between 

instances at a lower composition level. Two or more instances can enter in a rela-

tionship if the primitives depicted by the relationship satisfy particular con­

straints, and if the labels of the respective instances are not neutral with respect 

to each other. An example will illustrate how to determine inheritance. 

In Figure 3.12 we are faced with the question whether or not a T-junction 

can exist between the line segments shown. The spatial configuration of the line 

segments allows for the formation of such a junction. Most spatial relationships 

in the Mapsee-3 implementation consist of T-junctions of one Corm or another. 

The stem of the T-junction has three possible interpretations: road, river, or 

mountain. For the bar, there exist only two possible interpretations: road, or 

river . For any pair of interpretations, the Mapsee model constraint graph deter­

mines whether particular pairs of interpretations can coexist under the spatial 

situation shown and whether a T-junction can be formed. Coexistence and T­

junction formation rules can be expressed by means of a matrix, an example of 

which is shown in Table 3.1. The possible interpretations for the stem of the Tee 

are the rows of the matrix, the bar interpretations Corm the columns. Each cell in 

the matrix can assume one of three values: 

+ if the interpretation in the corresponding row can form a T-junction with the 

interpretation in the corresponding column. 

- if the interpretation in the corre,ponding row cannot coexiot with the interpreta-

tion in the corresponding column under the spatial situation shown. 
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• if tlie interpretation in the corrcsfOcding row cannot for:n a T-j~nctio:i, but can 

coexist with the interpretation in the corresponding column. 

Road/river/mountain 

Figure 3.12: An example of a T-junction in a sketch map 

Road River Mountain Shore Bridge-side Town 
Road + - - . - + 
River - + + + + -
Moun1ain . . + . . . 
Shore - - - - - -
Bridge-side . . • • . • 
Town . . • . • . 

Table 3.1: A T-junction matrix 
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Road I River 
Road + 
River + 
Mountain • • 

Table 3.2: A T-junction matrix for Figure 3.12 

Road I River 

Road I + 
River + 

Table 3.3: The T-junction matrix for two road/rivers 

A T-junction can only be formed in Figure 3.12 if ea.ch of the possible 

interpretations for the stem can form a T-junction with at least one of the possi­

ble interpretations for t.he bar and is not indifferent with respect to any of these 

interpretations (i.e. no •). Table 3.2 shows the situation in Figure 3.12. No T­

junction can thus be formed because mountain is indifferent to both road and 

rsver . 

This example shows the essence of determining whether a particular method 

can be inherited by an abstract schema. Sets of basic schemata form an abstract 

schema. The possible interpretations for the stem of the Tee define the abstract 

schema road /river /mountain; the bar interpretations define the abstract schema 

road /river . A road/river/mountain and a road/river cannot form a T-junction. 

Table 3.3, on the other hand, shows that two road/rivers can. T-junction 
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methods are owned by schema.ta such as road-system and river-system. We can 

set up a simple procedure for determining whether this method can be inherited 

by any of road-system's or river-system's generalizations in the discrimination 

graph. 

Each method M can create a relation R at composition level / . A method 

M owned by a sC'hema S can potentially be inherited by any of the generaliza­

tions G of S in the discrimination graph containing S and G. With the matrix 

representation it is easy to determine whether G inherits M from S. 

I. Take the set or components or G at level /. Call this set GC. 

2. Create the set BD consisting of the union or all basic descendants or GC ,n 

their respective discrimination graphs. 

3. Create a matrix MTR. Each row and column entry is formed by an element of 

BD . 

4. Fill in the values or MTR ( +,-, or •) such that each row entry represents the 

source or R and each column entry the object. 

5. If MTR cont.ains no • then M can be inherited by G , otherwise it cannot. 

In this example we have used a binary relation. The same procedure can be 

used for n -ary relations. The matrix becomes n -dimensional in such a. case. 
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3.5. Discrimination Vision 

We have now discussed the main features or the Mapsee-3 design. The 

schema synt-ax provides a general format for representing knowledge about a par­

ticular domain. Composition hierarchies and discrimination graphs are userul for 

many different domains. Once the user has provided these hierarchies for a par­

ticular domain, the processes of composition and discrimination can operate on 

them. The only domain-dependent aspeet of the representation are the schema's 

methods, which are invoked by the composition process. However, the user has to 

provide (write) them. As well, if a particular domain requires additional domain­

dependent schema attributes, it is up to the user to provide such attributes and 

the retrieval functious operating on them. The user, however, only needs to pro­

vide the natural constituent of the knowledge base. The projection algorithms 

take care of the unnatural constituent. 

The objectives of the system design are conceptual clarity and efficiency. 

The former objective is reached because of the efforts to keep representation and 

control or the system modular and uniform. In particular, hypothetical and ambi­

guous interpretations are represented in one knowledge representation dimension: 

the discrimination graphs. Efficiency results partially from the representation 

chosen and partially from the algorithms used. In the interpretation graph, com­

peting hypotheses are all represented in the domain of a single variable. Invalida­

tion of a hypothesis results in only deletion or replacement of a label and not in a 

major restructuring of the interpretation graph. The latter would be the case in 
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an interpretation graph where competing hypotheses are represented by different 

variables. Mapsee-2 was an example or such an approach. 

The hierarchical arc consistency algorithm provides efficiency as well, and 

docs so in two different ways. First of all, the principle of least commitment. helps 

to keep the number of labels in the variable domains as small as possible. Furth­

ermore, hierarchical arc consistency does not maintain an explicit representation 

of all possible combinations of hypotheses, most of which will be eliminated dur­

ing the interpretation process. If competing hypotheses a.re spread over different 

variables, then at the very least we have to partially represent the possible com­

binations. 

The model that underlies the design described in this chapter interprets 

image primitives by means of schema instances which at first have an extreme 

generic and unspecified interpretation. As more and more constraints are 

discovered during composition, this interpretation becomes more and more 

specific until a final characterization or the scene is obtained. Because or this con­

tinuing process of interpretation refinement along a discrimination graph we call 

this particular approach to model-based vision: discrimination t1ision. 

Summary of Mapsee-3's main features: 

1. Image primitives are interpreted in terms or schemata which can be treated either 

as: 
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a. object classes or relations with an internal structure. 

b. at.om ic labels. 

2. Three knowledge representation dimensions are distinguished: 

composition/aggregation, discrimination/generalization, and image-to-scene map­

ping. The discrimination/generalization dimension provides a means of representing 

all possible forms of ambiguity as they arise from the image in an explicit declara­

tive form in the permanent knowledge base or the system. This knowledge base con­

sists or a natural and unnatural constituent. The latter can be constructed aut-0mat­

ically rrom the former. 

3. An interpretation process that consists or two modular components: compo,,ition 

and discrimination. Both processes are simple and modular, because ambiguous and 

hypothetical interpretations are represented in one dimension only. A one­

dimen,ional representat.ion also enables us to entirely describe discrimination by 

means or a network consistency algorithm. 

The implementation of Mapsee-3 is described in the next chapter. 
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4. DESCRIPTION OF MAPSEE-3 

4.1. Introduction 

Like its predecessors, Mapsee-3 is a program for interpreting sketch maps. 

Sketch maps are a useful domain because of their simple semantics, which makes 

an attractive testbed for particular representational formats. A mixture of 

natural and conventional knowledge is necessary for interpreting sketch maps 

such as the one in Figure 4.1. Objects such as roads, rivers, and shores could 

have been taken from an aerial photograph by tracing their course. On the other 

hand, for the drawing of objects such as mountains and bridges, conventions exist 

which are only indirectly related to their natural appea.ra_nce. 

Mapsee-3 is an implementation of the design described in the previous 

chapter. The program is roughly divided in three parts: aegmentation, 

image -to -scene mapping , and interpretation . Segmentation is a process that 

constructs the primitives and the cues for the interpretation process. All cues are 

based on the shape of the primitives. During image-to-scene mapping, all cues 

computed are systematically checked, and a.re then used to create generic 

instances of schemata at the leaf level of the composition hierarchy. One instance 

is created for each primitive. Interpretation is the process of composition and 

discrimination as described in Chapter 3. 
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Figure 4.1: Lower Mainland of British Columbia 

In sketch maps the primitives are the line segments and regions. In the scene 

domain, a line segment can be interpreted as one of the following object classes: 

Chapter 4 IU 

road, river, lakeshore, coastline, bridge-side, mountain, or town. Each of these is 

a component of one or more super-classes such as road-system and geo-system. A 

region, on the other hand, can be interpreted as rnainlar,d, island, lake, or ocean. 

Each class forms a node in a discrimination graph. For instance, the classes shore, 

lakeshore, and coastline are embedded in one graph. 

Ma.psee--3 recognizes two kinds of relationships: composition and spatial rela­

tionships. Composition relations are "part-of" and "parts" relations. The former 

a.re all of the "must-be" kind. Most spatial relationships in Mapsee-3 are depicted 

by T-junctions, such as "road-road-tee", a junction between two roads, and 

"river-shore-tee", a junction between a river and a shore. 

All Mapsee-3 primitives are categorized with respect to shape. Thus, the 

discrimination graphs are a.II based on similarities in shape characteristics of the 

different object classes. Towns, for instance, are characterized by blobs, whereas 

bridge-sides are depicted by three connected straight line segments, the two outer 

lines of which are symmetric with respect to the middle line. Most shape 

categories do not uniquely determine a particular object class. The final interpre­

tation of a particular line segment is therefore partially the result of the shape 

category to which it belongs, and partially the result of the spatial relationships 

in which it enters with other line segments. 

Ma.psee-3 was implemented in Franz Lisp on a Vax 11/780 running Unix 

4.2BSD. Maya data structures (Havens, 1978) were used for representing sche­

mata. 
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4.2. Input 

The input to Mapsee is a plot program. Each plot consists of a. sequence of 

plotter commands .{Draw-lo(x,y) and Move-to(x,y) from the current posi­

tion}. Each sequence of Drau, -to commands is called a chain . 

4.3. Segmentation 

Six different types of schemata are maintained in the image: points, links, 

lines, chains, patches, and regions. Each of these types has a very simple struc­

ture.1 Figure 4.2 shows an example of a line instance. In the Mapsee-3 implemen­

tation, segmentation is a semi context-free process at best. Both representation 

and control are tuned to the sketch map world. The types of image schemata 

used illustrate this phenomenon. The main purpose of segmentation is to build a 

reasonable shape description for each chain and to find the regions adjacent to 

each chain. Two different levels of representation can be distinguished in the 

image: The Sketch level and the Line /region level. 

1Tlac rc2dcr i, referred Lo ApptDdix D for a. dncripLioa of tb syatadic ttra.chrc of u.cb ty~ or image 1Chem& 
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•instance• •line 
deviance 19.6902 
lnparam ((0.0920 . 0.9957) 9.2944) 
length 0.0769 
components (•line-2 •line-179) 
deviant •point-88 
chn •chain-2 
ends (•point-6 •point-177)) 

Figure 4.2: An instance of a line schema 

4.3.1. The Sketch Level 

lH 

Two different types of representation are maintained at the Sketch level. 

First of all, the sketch is represented as a set of interconnected points (chains) as 

given in the input. The points arc also represented in a 32 x 32 array which cov-

ers the whole image. Each cell in this array is a pointer to the list of points in the 

area covered by the cell. By means of this representation, questions about prox­

imity of other chains to a certain point can be quickly answered. 

4.3;2. The Line/region Level 

For each of the chains a line hierarchy is built. Its construction is illustrated 

in Figure 4.3. A chain of (interconnected) points is drawn from A to B. The top 

line of the hierarchy (line 1) connects the end points of the chain. 
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Each of its two successors (line 2 and 3) co!lnects on:: of the end points of its 

predecessor with the point of wuimal distance i..-1 the curve approximated by 

the predecessor. This distance is called the de,•ianc:, of the line. Line 2 has the 

lines 4 and 5 as successors, and line 3 is succ::ed::d by the lines 6 and 7. This 

binary tree is continued until ~l the points in the chain .ire covered. :::n this way 

each chain can be described at any desired level of detail. 

This representation has several disadvantages, however. For one thing, a 

small change in the shape of a line segment can bring about large changes in 

the line hierarchy. A better technique for representing the shape of fa1e seg­

ments has been recently proposed by Mackworth and Mokhtarian (1984). 

A 

Figure 4.3: A line hierarchy 
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4.3.3. The Region Formation Process 

The region formation process starts with a query as to whether the picture 

as a whole is empty. IC the answer is negative, then the picture is subdivided into 

four square subpatches and the query is repeated for each of the subpatches. If a 

patch is empty, then no further subdivision is made. However, this subdivision of 

patches does not continue ad infinitum . Region refinement stops when a patch 

size of I/ R 2 of the total picture area is reached. For all examples shown in 

Chapter 5, an R value of 8 was chosen. Each set of four-connected empty 

patches d efi ncs a region . 

The region formation process is conservatively biased. The reason for this 

bias is that in free hand sketches lines which are supposed to join may leave a 

small gap. \Ve want to prevent a region "leakage" through these gaps. For exam­

ple, leakage through a shore line that is not properly closed would cause a land­

mass to be interconnected with a waterbody. This would have disastrous effects 

on the interpretation process. The decision at which patch size to stop segment­

ing is a heuristic decision. The image data structures and procedures were inher­

ited virtually unchanged from Mapse~l (Mackworth, IQ77b). 
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4A. Image-to-scene Mapping 

As mentioned before, the segmentation process culminates in the computa­

tion or a number of shape attributes for each chain. By means of these attributes, 

the image appearance of all the objects at the leaf level or the composition hierar­

chy in the scene domain can be described. The shape of a mountain, for instance, 

is constrained by means of six attributes. All these attributes are constructed on 

the level at which the chain is described by two lines only (see Figure 4.3). The 

six attributes are specified as follows: 

l. The angle between the two lines has to remain within certain bounds. 

2. The deviance of each line has to be very small. 

3. The line length or both lines has to be approximately equal. 

4. The angle or each line with the vertical has to be small. 

5. The angles in 4 have to be approximately equal as well . 

6. The y-coordinate of the intersection point or the two lines has to be greater 

than the y-coordinate or one of its end points (We do not want mountains upside 

down). 

Each schema at the composition leaf level is described in terms of the attri­

butes just mentioned. Table 4.1 shows this description. In this figure "+" means 
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must-be-there, "-" means must-not-be-there, and "•" means may-be-there. Most 

of the attributes shown in the figure represent a set of attributes. The mountain 

shape attribute, for instance, stands for the logical AND of the six attributes 

mentioned above. The potential closure attribute represents the fact that a chain 

which is only partially visible in the image may actually be closed. This is always 

the case when it runs off the edge on both sides. Towns are uniquely described by 

the blob attribute. 

Potential Visible Mountain Bridge-side 
closure closure shape shape blob 

Town - + - - + 
Road • • * ' • -
River • - * ' * -
Mountain • - + - -
Bridge-side • - - + -
Shore * • • * -

Table 4.1: Shape attributes of the schemata at the composition leaf level 

Most attributes are mutually exclusive, or can go together in certain ways 

only. The mountain-, bridge-, and blob-shape are mutually exclusive. The same 

holds for potential and visible closure. Table 4.2 shows all the possible combina­

tions of attributes. The set of basic schemata that can satisfy these attributes can 

be found by replacing the "•"'sin Table 4.1 by a"+" or"-" in all possible ways. 

An abstract schema is created for each set of basic schemata in Table 4.2. 
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For each chain, the image-to-scene process checks the value of each or the 

attributes in Table 4.2, and creates a (non-hypothetical) instance of the 

corresponding abstract schema (class). 

Sets of basic Potential Visible Mountain Bridge-side 
schemata closure closure shape shape 

Town - + - -
Road/river - _ l - -
Road/>lhore - + - -
Road/river/shore + - - -
Ro:i.d/river/brid1!:e-side - - - + 
Road/river/mountain - - + -
RO:l.d/ river/ moun lain/sh.ore + - I + -
Ro:i.d/ river /bridge-side/shore + I - l - + I 

Table 4.2: Possible combinations between shape attributes 

4.5. Interpretation 

4.5.1. The Basic Composition and Discrimination Graphs 

In Mapsee-3 object classes and relations are represented by schemata. Figure 

4.4 shows the basic composition and discrimination graphs for the domain. These 

hierarchies have to be provided by the user. Any schema embedded in these 

hierarchies is called a basic schema. Five different levels of composition can be 

distinguished: 

blob 

+ 
-
-
-
-
-
-
-
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I. Object level 

2. Super-object level 

3. System level 

◄. Geo-syst.om level 

5. World level 

R~lat.ional levels exist between all levels of composition. Each arc in Figure 

4.4 stands for two composition relations: a part -o J and a parts relation. The 

former is of the "must-be-part-or' type. 
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Figure 4.4: The basic composition hierarchy and discrimination graphs 
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(object '•Sg2 'schema 
schema-label '•Sg2 
type 'object 
domain 'scene 
name 'road-system 
dee-level 3 
spec-level l 
lab(\lS '( •Sg2) 
links-in '(•S40 •S75 •S77 •Sllli •S335 •S335i) 
links-out '(•S40i •S75i •S77i •S111 •S335 •S335i) 
parts '( •S40i •S75i •S77i) 
part-of '(•S111) 
~pecializations 'oil 
generalizat.ions '( •S86 •S88) 
internal-methods 'nil 
methods '(M300 M301 M302 M313) 
disambiguating-methods '(M313) 
semi-disamb-methods '(M302 M313) 
completed-system-methods '(M335) 
M300 '(road-road-tee (•S54) (•S54)) 
M301 '(road-town-tee (•S54) (•S20)) 
M302 '(road-O\'er-bridgep (•S54) (•S52)) 
M313 '(mergcp (•S54) (•S54)) 
M335 '(incomplete-roadsystemp ( •Sg2)) 

) 

Figure 4.-5: The road-system schema 
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Figure 4.5 shows the internal structure of the road-system schema. Each 

schema is identified by a unique schema label (e.g. •Sg2). In correspondence with 

the scene schema syntax, each scene schema has the following attributes: 

l. a composition level (dee-level) 

2. a discrimination level (spec-level) 

3. The list of schemata it points at (links-out) 
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4. The list or adjacent schemata pointing at the schema (link..-in) 

5. The potential components or the schema (parts) 

6. The super-schema(ta) it must be a part or (par~or) 

7. its specializations (in the discrimination graph) 

8. its generalizations (in the discrimination graph) 

9. Different types or methods (to be discussed in section 4.5.4) 

A schema always has itself as a label. When an instance is created, it will 

initially be assigned the label of its parent schema. Thus, a goo-system instance 

will have the label geo -system at the start. When the interpretation process 

proceeds, however, the discrimination process may refine the label. Discrimination 

does not affect the description of an instance, except for its label. A goo-system 

instance can obtain the label(s) of any of its discriminations (see Figure 4.4). 

Figure 4.6 below shows the internal structure of the "part-or' schema *S77. 

It connects a road with a road-system. Its inverse ( *S77i) connects a road-system 

with a road. Like the object schemata, the "parts" and "part-of" schemata are 

embedded in a discrimination graph. 

Chapter -C 

(object '•S77 'schema 
schema-label '•S77 
type 'relation 
domain 'scene 
name 'part.-of 
dee-level 2.5 
spec-level l 
labels '( •S77) 
links-in '( •S54) 
links-out '( •S92) 
parts 'nil 
part-of '( •S92) 
specializations 'nil 
generalizations '( *S69 •S71) 
inverse '•S77i 

Figure 4.6: A relational schema 
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4.5.2. Constructing the Abstract Discrimination Graph at the Compo­

sition Lear level 

Figure 4.7 shows the abstract discrimination graph at the composition leaf 

level. The abstract schemata are given in Table 4.2. The graphs are the result of 

applying the algorithm given in section 3.2.4, as the reader can verify. The only 

ambiguity in the graph results from the fact that road /rivu /shore could also 

have been subdivided as road /river and shore. The construction results in two 

discrimination graphs. One graph consists of a single node: town . The other con­

tains the remainder of basic and abstract schemata. 
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Figure 4.7: The discrimination graphs at the composition leaf level 

4.5.3. Constructing the Abstract Composition Hierarchy and Discrimination 

Grai;hs 

In the basic Composition hierarchy (Figure 4.4), not all schemata arc 

represented at all levels of composition . For instance, short! is not represented 

at levels 2 and 3, whereas road, ri\'er, mountain, and town are not repres.:nted 
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at level 2. Our first move is therefore to create dummy representations for each 

of these objects at each of the missing levels. In this w::y the hierarchy obtains 

uniform depth. Figure 4.8 is the result. The dummy rc;:::rnsenlalions carry the 

same name as their component, except that a • has teen added. Thus, river 

becomes a component of rfrer•. 

//·' 
lav.,l 5 
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Ceo-sy~t~:n 
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/ 

,/i.wel 

,.,· 

/'level 3 

.J 

composition 
disc.r1m1nation 

, .,. World 
, ,, 

/ 

Shor,(.---r • Rive,- • Road[ • )( 
/ '-..._ Bridge-side • • To1/ 

~ level 1 Lakashore 

/ 
Lnt•-1n-ra.nge 
tam 

:rteain 

Figure 4.8: The basic composition hierarchy and di:;crimination graphs 

with dummy representations at each level of composition 
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The creation or dummy representations does not affect the orthogonality o( 

the dimensions, because the meaning o( a dummy representation at a particular 

level of ~-omposition is that it is undefined. If a particular instance obtains a 

dummy interpretation, then we have essentially created an undefined interpreta­

tion in the interpretation graph. One can either accomodate such an interpreta-, 
tion (which is what Mapsee-3 does), or remove ii. Suppose A is a component or 

B and B is a component of C. If B becomes undefined then we can remove B 

by making A a component or C directly. 

Applying the projection algorithm given in Appendix C, we create the 

discrimination graphs for level 2. This must be done in two steps because there is 

a relational level in between level I and 2. Discrimination graphs are also created 

at this relational level. Figure 4.9 shows the result. The intermediate relational 

level is not shown in this figure. Similarly, we project level 2 onto level 3 (Figure 

4.10). 

Note that each instance of superroad /river /bridge becomes a component of 

two different instances of road /river-system. This is the consequence of the 

modularity criterion. Superroad /river/ bridge's discrimination bridge has two 

super-schemata. Any generalization or bridge must therefore have at least two 

super-schemata as well. 

The projection rules do not require the creation or any abstract schemata a.t 

level 4 (Figure 4.11). As a result no projection from level 4 onto level 5 is 

required, because all links are part or the basic composition hierarchy (Figure 
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Figure 4.12: The composition hierarchy and discrunination graphs 

for levels 4 and 5 
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4.6.4. Methods 

In a Mapsee-3 schema, all attributes beginning with M followed by a number 

are methods. The value of such an attribute is a monadic or dyadic function 

which, upon successful application, creates an instance of a unary or binary (spa­

tial) relation. Examples of methods can be found in Figure 4.5. For each of the 

arguments of the function, the owner schema provides a list of schemata, whose 

instances can fill these arguments. In Figure 4.5, for instance, the method M300' 

(road-road-tee) takes two arguments. Each of these arguments must be an 

instance of •S54 (road). 

A successful application of a method results in the instantiation of a schema 

representing a relation. A successful application of road-system's "road-road-tee" 

method, for instance, results in an instantiation of •S300 (road-road-tee)'. This 

instance will link two road instances. 

The inheritance scheme for methods discussed in section 3.4.4 has not been 

implemented as such. When represented in matrix format, the Mapsee-3 relations 

show very particular patterns. A number of method types have therefore been 

created, each one of which corresponds to a particular matrix pattern. Each type 

has its own inheritance rules and the application of these rules has the same 

result as the general inheritance scheme. 

In correspondence with the syntax, a distinction is made between internal 

and external methods. The former kind represents monadic, the latter dyadic 
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functions . All other types correspond to pa.rticula.r matrix patterns. Table 4.3 lists 

a.II methods and their types. 

Regular methods a.re characterized by a matrix containing one cell with a 

"+" value a.nd "*"'s in the other cells. Ta.hie 4.4 shows an example of such a. 

relation (road-road-tee). For semi-disambiguating methods, the matrix contains 

one or more rows or columns with one "+" and "-"'s otherwise. The "roa.d-over-

bridge" method (Table 4.5) owned by the road-system schema is an example of 

this. Disambiguating methods are characterized by a matrix in which one cell has 

a "+" value, when the remainder of the matrix cells have "-"'s. The "mountain­

mounta.in-tee" method (Table 4.6) examplifies this case. For all three method 

types it is assumed that they are able to establish a positive relationship. If the 

relationship is negative then all the "+"'s in the matrix must be replaced by "-

"'s and vice versa. 

Disambiguating methods ca.n be inherited by all generalizations of the sche­

mata to which the method applies. There is :i, restriction, however, for semi­

disambiguating methods. One of the instances serving as an argument in the 

method's function must have a unique basic label. In the method's matrix, this 

label must represent a. column or row which contains no "*"'s. If this condition is 

satisfied, then the method ca.n be inherited by a. generalization of the owner 

schema. In the example in Table 4.5, the second argument of the function "road­

over-bridge" must have bn'dge a.s label. If this is the case, then any generaliza­

tion of the road-system schema can inherit this method. Finally, regular methods 
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cannot be inherited by any abstract schemata. 

Completed-system methods form a category by themselves. They are disam­

biguating methods with an additional constraint: can only take effect after image 

interpretation has been completed. Mapsee-3 is strongly data-driven. A schema's 

method cannot search or investigate chains that have not already been involved 

in the composition process. For instance, it can happen that a road has the shape 

of a bridge-side. Originally such a chain will be interpreted as a 

road/river/bridge-side. With one cycle of the interpretation process completed, 

this road/river/bridge-side will not be refined to a bridge, because there is no 

matching bridge-side. Completed-system methods have the ability to determine 

such things as: "single bridge-sides cannot be bridge-sides". As a result, the 

road/river /bridge-side will be forced to specialize, to a road/river. However, such 

measures can be taken only a/ Lu we have visited all chains. For this reason 

interpretation goes through two cycles with completed-system methods being 

applied in the second cycle. 

The methods listed in Table 4.3 perform the following operations. All 

methods ending with "-tee" form a T-junction between two components. For 

instance, "road-road-tee" forms a relation between two roads. The "road-over­

bridge" method imposes the road interpretation on any chain crossing a pair of 

chains forming a bridge. The "bridge-side/bridge-side" method imposes a relation 

with the same name on any pair of matching bridge-side-shaped chains. The 

disambiguating nature of this relation causes the interpretation of both chains to 
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be refined to bridge-side. The "surface-overlap" method ensures that geo-system 

components with overlapping regions become a component of one and the same 

goo-system instance. This method does not create a relation. The "single-world" 

method cnsur<!:; that all geo-system instances become a component of one world 

instance, while not creating a relation either. 

The "merge" method merges schema instances that have become redundant. 

No relation is created. "lsland-inside-waterbody" imposes the island label on a 

geo-system which is surrounded by a waterbody and vice versa. "Lake-inside-, 
landmass" follows the same principle. Ir a shore is cut off by the picture frame on 

both sides and one or the geo-systcms adjacent to the shore is a landmass then 

the geo-systcm on the other side must be a waterbody. This interpretation is 

imposed by the "landmass-beside-waterbody" method. The last three methods 

create a relation. The "not-roadp" method deletes the road label from any chain 

whose end points are adjacent to a chain interpreted as a river. The "not-rivcrp" 

mdhod docs the same for a river label when it is adjacent to a road. The 

completed-system methods were explained before in this section. 
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External 

Internal 

Road 
River 
Ilrid~side 
Shore 
Mountain 
Town 

Method type Method name 
Road-road-tee 
Road-town-tee 

Regular 
River-river-tee 
River-under-bridge 
River-shore-tee 
River-mountain-tee 

Semi-disambi11:uating Road-over-brid11:e 
Mountain-mountain-tee 
Bridge-side/bridge-side 

Disambiguating Surface-overlap 
Single-world 
Merf;e 
lsland-inside-waterbody 

Regular Lake-inside-landmass 
Landmass-beside-waterbodv 

Disambiguating 
Not-roadp 
Not-riverp 
Incomplete road-system 

Completed-system Incomplete river-system 
Incomplete brid!!:e 

Table 4.3: Methods 

Road River BrldS?:c-side Shore Mountain 

+ * * • • 
* • * * • 
* * • * * 
* * * * * 
* * * * * 
• • . • * 

Table 4.4: Road-road-tee method 
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0 wner schema 
Road-system 
Road-system 
River-system 
River-system 
Geo-system 
Ge<rsvstem 
Road-system 
Mountain-range 
Bridge 
Geo-system 
World 
all 
World 
World 
World 
Geo-system 
Geo-system 
World 
World 
World 

I Town 

* 
• 
* 
* 
* 
• 
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Road River Bridge Shore Mountain Town 
Road * * + * * * 
River * * - * * * 
Bridge * * - * * • 
Shore * • - * * * 
Mountain * * - • * • 
Town • * - I * * * 

Table 4.5: Road-over-bridge method 

Road River Bridge Shore Mountain Town 
Road - - - - - -
River - - - - -
Brid~ - - - - - -
Shore - - - - -
Mountain - - - - + -
Town - - - - - -

Table 4.6: Mountain-mountain-tee method 

4.5.5. Composition and Discrimination 

The control flow of the Mapsee-3 interpreter has been discussed in Chapter 3 

and is shown once more in Figure 4.13. The interpreter is formally described in 

Appendix E. Control alternates between the interpreter's two main constituents: 

composition and discrimination. The latter is shown as HAC (hierarchical arc 

consistency) in Figure 4.13. Both processes take their input from and return their 

output to two different queues. Composition owns a completion queue; discrimi­

nation owns a consistency queue. These queues form the means of communication 
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between the two processes. 

The image-to-scene process bas pushed a number of instances on the con­

sistency queue, one for each primitive. All of them are instances of schema.ta a.t 

the composition leaf level. These instances also form the beginning of the 

interpretation graph. The interpretation process operates in cycles. With an 

interpretation for each primitive at each level of composition as the goal, each 

cycle consists of taking a schema instance from the completion queue and return­

ing a new instance which represents the previous instance at the next higher level 

of composition. This also has the result of extending the interpretation graph 

with one or more instances and relations. 

Each instance starts out with the label of its parent. As each instance gets 

represented further up the composition hierarchy, more and more spatial rela­

tions are embedded in the interpretation graph. If the current label of an instance 

becomes incompatible with all of the labels of one of its neighbors then hierarchi­

cal arc consistency, using the principle of least commitment, will replace the label 

by one of its successors in the discrimination graph. For example, a road/shore 

inst.a.nee (see Figure 4.9) can obtain the label coastline. 

Apart from being data-driven, the interpreter operates in a breadih-11rst 

manner. At first, all instances at the object level are represented at the super­

object level. Next, all super-object level instances are represented at the system 

level. This process continues until the world level is reached. 
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The line sketch at the image level i.., Figure 4.14 shows a river flowing 

under a bridge. This is the only interpretation allowed by the Map:;ee semantics. 

No objects other than rivers are permitted under bridges. I-fawever, each of the 

chains is ambiguous at the start of the interp.·etation process. The bridge-sides 

can be interpreted as a rnad, river, or bri!!~e-side, \,!Jerel!S the other two chains 

can be either a road, or a river. Abstract schemata e:tist for each of these 

interpretation combinations. The image-to-scene process has therefore created 

the instances: Rd/rv/brs-1 & 2, and Rd/rv-1 & 2. In order to provide the 

reader with a somewhat more detailed description of the interpretation process, 

we will follow the completion of the first two instances to the next level of 

composition up. For a complete description of the i..,terprc:i.ti-:m of Figure 4.14 

the reader is referred to Appendix B. 

,; 

~ Completion +•-•vJ eJ 
failure 

success 

Figure 4.13: Flow chart of the interpretation process 
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Nam<! a.bbreviations 
Name Abbreviation 

Road/river/bridge-side Rd/rv/brs 
Road/river /bridge Rd/rv/br 
Road/river Rd/rv 
Road/river• Rd/rv• 
Road/river-system Rd/rvsys 
River-system Rvsys 
Road-system Rdsys 
Landmass Lm 
World Wrld 
River Rv 
River• Rv• 
Bridge-side Brs 
Bridge-side/bridge-side Brs/brs 
River-under-bride:e Rv/u/br 

Table 4.7: Name abbreviations in the interpretation graph 

4.5.6. An Example 

Table 4.7 shows the name abbreviations used for the object classes and rela­

tions needed for Figure 4.14. In this example we follow the interpretation process 

only for the two chains representing the bridge-sides. We exclusively concern our­

selves with the events taking place at composition levels l and 2. We disregard 

the existence of a relational level in between. Segmentation of Figure 4.14 results 

in the creation of one region and four chains. Table 4.2 shows that bridge-side­

shaped chains without potential closure can depict three different scene objects: a 

road, river, or bridge-side. The image-to-scene mapping process therefore creates 

two instances of the road/river/bridge-side schema at composition level l, 
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rd/rv/bra-l and rd/rv/bra-2 (see Figure 4.15). Upon its creation each 

instance inherits the labels of its parent: rd/rv /hrs (shown in brackets). Both 

instances are pushed onto the completion queue by the image-to-scene mapping 

process. This triggers the start of the interpretation process. 

Rd/ rv / bra -l is picked first. The completion process uses the model con­

straint graph (see Figure 4.Q) in order to find the super-schema of Rd /rv /brs 

( which is Rd/ Rv /Br). Next, it searches for an instance in Rd/ Rv /Br's super­

discrimination set for instances to which a method applies enabling 

Rd/ Rv / Brs -l to become a component of this . instance. The criterion for a suc­

cessful application is that the super-instance has a component that can form a 

spatial relation with Rd/ Rv / Brs-1. Rd/ Rv / Brs -l must become a component 

of the super-instance whose methods succeed in establishing such a spatial rela-

tion. 

In this example not a single instance has yet been established at level 2. The 

default rule therefore prevails. A new instance of Rd/ Rv / Br is created: 

Rd/ Rv / Br -l with the label of its parent. No links between Rd/ Rv / Brs -l and 

Rd/Rv/Br-l are yet established. First, we must ensure that the label of 

I 
Rd/Rv/Brs-l is compatible with the label of Rd/Rv/Br-1. Hence, the com-

pletion proc':!l!s pushes the link to be established on the consistency queue. At this 

point the completion stage is over and HAC is invoked for the first time (see Fig­

ure 4.13). HAC tests and makes consistent the· label of Rd /Rv / Brs -l 
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with the label or Rd /R v /B r-1. 

part-of/parts 
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Figure 4.15: Illustration of an interpretation graph, stage 1 
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IIAC tests Part-of(Rd/Rv/Br.,-1,Rd/Rv/Dr-l). lt takes the labels of 

both instances and check whether Part-of (Rd/ Rv / Brs ,Rd/ Rv /Br) is in the 

model constraint graph. If this is the case, then consistency is established. If not, 

a replacement candidate is searched for using the discrimination graph. A 

replacem,•n t label for which Part-of ( replacement ,Rd/ Rv /Br) is true consti­

tut.es a valid randidate. Failure to find a replacement candidate means failure for 

the whole interpretation process. lo this example the label Rd/ Rv / Brs is con-

sistent. 

Assembly is next. This simply means that the two instances are now linked 

to each other, marking the beginning of the interpretation graph . Although we 

tested whrther Rd/ Rv / Brs -l was consistent with Rd/ Rv / Br-l, we have not 

yet done the opposite test. We therefore invoke HAC for a second time before 

returning to complete the next instance. Rd/rv/br-l is inserted into the com­

pletion queue' after Rd /rv /brs -2. 

Completion of the seeond hair of the bridge is more interesting. The comple­

tion process invokes the "bridge-side/bridge-side" method. This method is a 

disambig,ialing method (sec Table 4.3), owned by the bridge schema. Because 

disambiguating methods can he accessed by all or the owner schema's generaliza­

tions, fl d / rv / br can use this method lo establish this relation between any two 

instances representing matching bridge-side-shaped chains. Io addition, HAC now 

has to test the spatial relation P (Rd /Rv / Brs ,Brs / Brs) as well. The model con­

straint graph in Figure 4.9 docs not show any spatial relations. Only P (brs ,brs) 



Chapter 4 155 

is t.rue. The label of Rd/ Rv / Bra -2 is therefore refined to bridge -aide. The label 

of the other bridge-side is refined likewise. 

After assembly the interpretation graph consists of three objects and three 

relations (two composition and one spatial). During the second HAC invocation, 

Rd/ Rv / Br-1 finds its label inconsistent and refi~es it to bridge. 

The completion of the two bridge-sides demonstrates how interpretation 

works. In the breadth-first strategy, we first complete all level 1 instances to level 

2. Next, we complete all level 2 instances to level 3 etc. Figure 4.16 shows the 

interpretation graph for all instances up to composition level 2. The reader is 

referred to Appendix B for a detailed description of the other levels. The Figures 

4.16 - 4.19 show the different stages of the interpretation graph. 
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4.6. Summary 

In this chapter the implementation or Mapsee-3 has been described. A seg­

menlation process takes a set or plotter commands as input, and creates a set or 

image primitives in the form or chains and regions. An image-to-scene mapping 

provides the connection between the image and the scene domain. Each image 

primitive is represented by one schema-instance at the composition !ear level. 

The interpretation process creates an interpretation graph consisting of 

schema-instances and their constraints. A composition process constructs this 

interpretation graph such that each image primitive depicts at least one instance 

at each level or composition in the scene domain. At the same time, a discrimina­

tion process maintains consistency between the labels or the instances in the 

interpretation graph. 

The Mapsee-3 knowledge base has been constructed in such a way that 

interpretation can take place mostly from an ambiguity point of view. Object 

classes and relations are represented as schemata. The Mapsee-3 knowledge base 

is organized along three orthogonal dimen~ions: composition/aggregation, 

discrimination/generalization, and a dimension that provides the connection 

between the image and the scene. For each dimension Mapsee-3 has a dimension­

specific process. 
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In the next chapter we will discuss the experimental results of trial runs or 

the system. 
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6. RESULTS AND DISCUSSION 

S.I. Introduction 

This chapter is divided into four sections. In section 2 we report the results 

of selected test runs of Mapsee-3. In section 3 we discuss the results reported in 

section 2. In section 4 we look at how we can relax some or the constraints of the 

Mapsee-3 design, thereby generalizing the design rules. In section 5 we broaden 

the discussion and discuss the place of discrimination vision in a general-purpose 

signal interpretation system. 

6.2. Results 

Mapsee-3 has been successfully tested on 10 different examples. Different 

examples with a varying number of chains were needed in order to obtain some 

performance measures for the hierarchical arc consistency algorithm and for the 

overall time complexity of the system. The Figures 5.1 - 5.10 show the different 

sketches. Apart from Figure 5.8, all examples represent real ma.ps. In the Figures 

5.11 and 5.12 which show the segmentations of Figure 5.2 and 5.5 respectively, 

color has no meaning. However, this is differep.t for the Figures 5.13 - 5.22 which 

show the interpretations of the sketches. Table 5.1 shows the color scheme used 
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for these figures. 

Primitive Interpretation Color 
Shore Magenta 
Coastline 
Lakeshore 

Chain 
BridJ?;e-side 
Road Red 
River Cvan 
Mountain Yellow 
Town 
Landmass Green 
Mainland 
Island 

Region 
Waterbody Blue 
Ocean 

1 

Lake Cvan 

Table 5.1: Interpretation color scheme 

The Figures 5. 13 - 5.22 show the interpretation results at the highest compo­

sit.ion level (the world level). The world instance is the only instance at that 

level. The pictures show all the chains and regions depicted by the instance 

together with their respective interpretations. The label in the lower left corner of 

each pict.ure is the label or the instance. 

The Mapsee-3 graphics support system enables us to look at any instance at 

any desired level or composition. The Figures 5.23 - 5.28 show some of the 

geo -s11stem level instances of the Lower Mainland of B.C. (Figure 5.5). The Fig­

ures 5.29 - 5.33 show some or the Lower Mainland instances at the system level. 

The Figures 5.34 - 5.38 show instances of some of the spatial relations. 
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Figure 5.1: Ashcroft B.C. 
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Figure 5.4: Houston B.C. Figure 5.5: Lower Mainland B.C. 
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Figure 5.11: segmentation of Fraser Valley 

Figure 5.10: Spences Bridge B.C. 

Figure 5.12: segmentation of Lower Mainland 
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Figure S.21: Sbuswap interpretation 

Figure 5.22: Spences Bridge interpretation 
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Figure S.23: Landmass of Lower Mainland 

Figure 5.24: Howe Sound 
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Figure 5.25: Indian Arm Figure 517: Boundary Bay 

Figure 5.26: Gambier Island Figure 5.28: Keats Island 
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Figure 5.29: Lower Mainland road-system Figure 5.31: Shore of Indian Ann 

Figure 5.30: Lower Mainland river-system Figure 5.32: Coastline of Gambier Island 
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Figure 5.33: Shore of Lower Mainland Figure 535: T-junction of rivers 

Figure 534: T-junction of roads Figure 536: A road crossing a bridge 



Chapter 5 117 

Figure 5.37: A pnction between a road and town 

Figure 5.38: T-junction between a river and shore 
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For each of the examples the behavior of HAC-3 was compared with the 

behavior of AC-3. For both HAC-3 and AC-3 each label comparison was counted 

as one iteration. During the test run, the HAC-3 iterations were counted, while 

the behavior of AC-3 was simulated. In order t\) count the iterations for AC-3, 
' 

each label was expanded into its representation at the leaves of the discrimina-

tion graph. 

The results are shown in two different ways. Figure 5.39 shows the HAC and 

AC iteration count plotted against the number of chains for each example. 1 Fig­

ure 5.40 shows the iterations plotted against the number of (scene) schema­

instances in the final interpretation of each example. Note that the number of 

chains is a measure for the complexity of the input, the number of instances is a 

measure for the complexity of the output. These measures have been plotted 

against each other in Figure 5.42. 

During discrimination the system spends all of its time on label testing and 

propagation. During composition, on the other hand, most of the time is spent on 

method application. In figure 5.41 we have plotted the number of chains against 

the number of external methods applied during each test run. The latter has been 

taken as a time complexity measure for the system as a whole. 

Table 5.2 shows the correlation coefficient and the residual variance resulting 

from a best linear fit between the number of-chains and the iteration counts for 

1Two dill'crcnt. c;u.mple, botb hue H cbajos In order 1-o avoid confusion, the ,mallc11L AC-3 nlue got! with I-he 
11m.a.ll~t. HAC-3 ,·J.lne . 
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' AC-3 and HAC-3 in Figure 5.3{1. The Tables 5.3, ·5.4, and 5.5 show the same data 

for the Figures 5.40, 5.41, and 5.42 respectively. 

For the purpose of discussion in the next section, we should note the follow­

ing phenomena in the results shown: 

I. An instance's label is not always refined to a lear level label. The magenta geo-

system in the Figures 5.17 and 5.27, for instance, has not refined its label at all. 

Similarly, the Lower Mainland shoreline in Figure 5.33 has not been maximally 

refined . 

2. Regions 11·hich are not connected during segmentation can still become part or 

one and the same gco-system. As an example, compare the lake in the Lower Main-

land in Figure 5.12 with Figure 5.17. As well, areas too small for a region t-0 be 

formed can still become a geo-system. Figure 5.28 illustrates this phenomenon. 

3. lu the iteration counts plotted in the Figures 5.39 and 5.40, HAC-3 docs con­

sistently bct,ter than AC-3. Both appear to be highly correlated with the number or 

chains. 

4. The met.bod count is also highly correlated with the number or chains. However, 

the Lower Mainland with its 46 chains is a potential indicator that the relationship 

may be non-linear. 

5. The number or chains is highly correlated wit-h the number or instance• in the 

interpretation graph. 
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HAC-3 AC-3 

Correlation Coefficient 0.99 0.95 

Residual Variance 3.45 11.818 

Tahle 5.2: Number or chains veraua iteration count 

HAC-3 AC-3 
Correlation Coefficient 0.99 0.97 
Residual Variance 544.74 1208.{l 

Table 5.3: Number or instances versus iteration count 

Correlation Coefficient I 0.94 
Residual Variance 13.018 

Table 5.4: Number of chains versus method count 

Correlation Coefficient o_gg 

Residual Variance 2.1721 

Table 5.5: Number of chains versus number of instances 
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6.3. Discussion or Results 

6.3.1. Robustness 

One criterion for evaluating a system is its robustness, that is, its ability to 

cope with errors such as inappropriate segmentation. If we compare the Lower 

Mainland segmentation (Figure 5.12) with its interpretation (Figure 5.17) then we 

can observe that under certain conditions Mapsee-3 will merge a number or non­

connected regions into one goo-system. The merging of the regions or the lake 

examplifics this process. Because or a conservative bias, the segmentation process 

stops prematurely. The interpret.at ion process, however, overcomes the problem 

when it not.ices that all regions are surrounded by a shore. 

This dissertation would not be balanced without mentioning some problems 

as well. With respecl to robustness, there is a particular form or interpretation• 

driven segmentation that is not achieved. The formation of junctions is an impor• 

tant aspect of segmentation. The decision whether or not to form a junction is 

made in the interpretation process, using parameters with fixed values. For a 

"road-road-tee", for instance, the distance between the end point of the stem and 

the bar has to be below a certain maximum. U this distance is exceeded in a slop­

pily drawn sketch then the junction is not found. Obviously, a form or 

interpretation-driven dynamic thresholding is needed, but this has not been 

implemented. 
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6.3.2. Gracerul Degradation 

Perhaps one of the most elegant foatures of Mapsee-3 is that interpretations 

degrade gracefully as the information content or the image diminishes. By a 

diminishing information content we do not mean a poorer quality of picture. 

Rather, we mean objects displayed in an image under such conditions that they 

cannot be recognized beyond a certain level of discrimination. 

This phenomenon is a natural one. This was illustrated in the example dis­

cussed before. Under favorable conditions we can recognize a car up to its make 

and year. This is not possible if the car is covered with a foot of snow. Mapsee-3 

shows exactly this phenomenon. The goo-system in Figure 5.17 is in reality a 

waterbody connected with the waterbody on the left. The shore adjacent to the 

waterbody and the chain adjacent to the goo-system are actually one and the 

same chain, but this cannot be seen in the picture. 

The chain adjacent to the goo-system in Figure 5.17 could be interpreted as 

road, river, or shore . No constraints are available to decide upon the correct 

interpretation. In the road and river case the geo-system would become a land­

mass. In the shore case it would become a waterbody. As the system is unable to 

decide between landmasa and waterbodll it follows the principle of least commit­

ment and remains at geo -system . As mentioned before, some well known vision 

systems such as ACRONYM do not follow this principle. 
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S.3.3. Domain Independence 

The design of Mapsec-3 is largely domain-independent. The three knowledge 

representation dimc!}sions and the unit of knowledge representation, the schema, 

provide only a format in which domain-dependent knowledge can be insc-rted. 

The processes operating on the different knowledge representation dimensions, are 

also larg<>ly domain-independ~nt. 

The image-to-scene process can deal with any domain that produces features 

each of which depicts one or more models. The discrimination process is a con­

straint propagation process which is domain-independent. Composition is also 

largely domain-independent. It does not need to know about any particularities of 

a schema. as long as it can access the schema's composition relation. The only 

domain-dependent aspect of composition is formed by the schema's methods. The 

methods themselves require expert knowledge of the structure and constraints of 

a particular domain. 

A further sign of domain-independence of the Mapsee-3 scene knowledge 

base is provided by the fa.ct that some of the design principles underlying the 

Hearsay-II speech understanding system (Erman and Lesser, 1980) are very simi­

lar to the one's underlying Mapsee-3. The design principles of the Hearsay-II sys­

tem have been applied to a wide variety of signal processing domains. The 

Hearsay-II blackboard consists, among other things, of a multi-level composition 

hierarchy. Hearsay-H's knowledge sources can be compared with Mapsee's 
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methods, because both contain domain-dependent knowledge. As well, Hearsay-II 

has, like Mapsee-3, a data driven control structure. Hearsay-Il does not use 

discrimination graphs, but it is easy to argue that they would be useful in the 

speech understanding domain. Like line sketches, speech wave forms allow for 

many possible local interpretations. There a.re many words that sound alike but. 

which have different meanings. Discrimination graphs could be based on similari­

ties of that nature. 

The Mapsee-3 image knowledge base, on the other hand, is rather domain­

dependent. The schemata used are intended to describe line sketches. They are 

only domain-independent to the degree that they can be used for any line sketch 

domain, be it sketch maps or line drawings of human faces. However, as we men­

tioned before, this dissertation has focused on the representation of the scene 

domain. The image schemata were inherited from the Mapsee-2 system. 

5.3.4. Modularity 

Mapsee-3 is very modular in both representation and control. Its knowledge 

representation dimensions are orthogonal. For each dimension there is a particu­

lar process that operates in that dimension only. It should be emphasized that, as 

a result of the fact that ambiguous and hypothetical interpretations are 

repr<.-sented along one knowledge representation dimension only, more process 

modularity can be achieved than would have b~en the case with a hypothetical 
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approach. A comparison between Mapsce-2 and Mapsee-3 will show why. 

Figure 5.43 shows a sketch consisting or a shore line and a mountain. Figure 

5.44 shows the composition hierarchy these concepts are embedded in. In 

Mapsee-2 a closed iine-segment forms a cue for a shore only. Hence, shores arc 

always non-hypothetical. A shore becomes a component or two geo-systems, an 

inner- and an outer-goo-system. The mountain shaped line-segment, on the other 

hand, depicts·several objects including a mountain. As a result, the mountain is 

hypothetical. The modularity problem starts when a hypothetical mountain-range 

completes to goo-system. The inner-goo-system's label has to be refined to land­

mass , but at the same time the shore's label has to be refined to coastline . All 

these discriminations are hypothetical, because the mountain-range is hypotheti­

cal. However, the shore label is non-hypothetiq.l. In order to resolve this contrad­

iction, the discrimination process has to be interrupted in the middle or con­

straint satisfaction in order to create a new hypothetical instance for shore with 

the label coastline. O~ce the interpretation graph has been adapted, discrimina-

tion can continue. 

In Mapsee-3 this never happens. The mountain-range completes as a 

"road/river/mountain-range" which is non-hypothetical. All three objects: road-
', 

system, river-system, and mountain-range require the goo-system to become a 

landmass, and shore is refined to coastline . No interruption or the constraint 

satisfaction process is required and no structural changes in the interpretation 

graph are asked for. The interactive behavior between composition and discrimi-

.. 
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nation is symptomatic for the hypothetical approach. 
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Figure 5.43: An island with a mountain 
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Figure 5.44: Composition hierarchy for the island/mountain example 

S.3.S. Efric.ieacy 

Mapsee-3 is effi::ient with respect to two different measures. The first one 

is the hierarchical representation of the domain of each variable as opposed to a 

set representation. HAC-3 operates on the former, AC~3 on the latter. A 

second measure is the complexity of the interpretation graph itself. The next 

two subsections deal with each of these measures. 
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5.3.5.1. HAC-3 versus AC-3 

For all examples HAG-3 outperforms AG-3. Intuitively, this can be explained 

by the fact that the domain size is always smaller for HAC-3 than AG-3. The one 

except.ion to this rule occurs, naturally, when AG-3 has only one label in its 

domain. As long as the domain size in HAG-3 remains small, we can expect a 

good performance for this algorithm. HAC-3 will compare even more favorably 

to AC-3 when the number of levels in the graph increases. The Mapsee-3 discrim­

ination graph consists or a maximum of four levels. For most chains, however, 

only two or 1.hree levels are used. 

Th~'Oretically, HAC-3 does not always outperform AC-3. A formal study of 

the time complexity behavior of HAG-3 for binary discrimination graphs is 

ri,port.c<l in Markworth, Mulder, and Havens (1985). If we define a as the domain 

size, and e as th<· number of arcs in the interpretation graph, then both AC-3 

and JL<\C-3 are of 0( a3e ). Asymptotically, however, the time complexity of HAC 

is ,Ja 3e compared to 2a 3e for AG-3. However, in an appropriately structured 

discrimination graph, it is reasonable to assume that there is only one label active 

in each variable's domain. With n defined as the number of nodes in the graph, 

the worst case complexity for HAC under the specified condition is 0(( e + 3n /2) 

log a) which is remarkably better than AC-3's 0( a3 e ). 

For both HAC-3 and AG-3 the number of chains and the iteration count are 

highly correlated. This is not very surprising, because both algorithms are linear 
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in the number of instances in the interpretation graph, if the graph is planar2. 

This will usually be the case in Mapsee-3. As well, there is a linear relationship 

between the number of chains and the number of instances in the interpretation 

graph. The value of the correlation coefficient in Table 5.5 demonstrates this. For 

each chain there can be no more instances than there are levels in the composi­

tion hierarchy (9 in Mapsee-3). Each chain can be involved in a few spatial rela­

tionships as well. This adds about 3 instances per chain. Hence, one can expect 

about 12 instances in the interpretation graph for each chain. Figure 5.42 shows 

the correctness of this rough calculation. 

As a result of the hierarchical representation, the domain size in HAC-3 will 

remain fairly constant. If we can treat the domain size as a constant then we can 

expect a strong linear relationship between the number of chains and the itera­

tion count .. Figure 5.39 shows this is the ca.•e. In AC-3, on the other hand, the 

domain size is not constant.. It starts out large and gradually decreases in size as 

interpretation progresses. As a result, we can expect much more variance in the 

AC-3 iteration count. Indeed, the residual variance is considerably larger for AC-

3 than it is for HAC-3 (Table 5.2). 

~bi!- wu proved for AC-3 in M:a.ck•orth ud Fr~•d"r (1Q82), ud HAC-J', prop~ga.t.ioa behavior ie ideotic~I t.o 
AC-3 
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5.3.5.2. Complexity ot the Interpretation Graph 

In the previous subsection we argued that the number of nodes in the 

~lapse<'-3 interpretation graph is linear with respect to the number of chains in 

the image. In this respect the ~lapsee-3 approach is a major departure from 

Mapsee-2, in which each hypothesis and possible combination bet ween dilferent 

hypotheses is represented as a node in the interpretation graph . In particular, in 

relatively underconstrained images this leads to an exponential growth oi of the 

interpretation graph, as the number of chains increases. 

5.3.6. Overall Complexity of the Interpretation Process 

A good indicator of the complexity of the interpretation process is the 

amount of search that needs to be done. In Mapsee-3 most of the search is done 

by external methods. Hence, we have used the number of times an external 

method was applied during a trial run as an indicator of the overall time taken 

by the system. 

In Mapsee-3 an external method establishes a spatial relationship between 2 

chains. The number of pairwise comparisons one can make between n chains is 

polynomial in the number of chains. The correlation coefficient in Table 5.4, how­

ever, indicates a high correlation. A visual inspection of Figure 5.41 reveals, that 

the good linear fit is mainly due to the images with a relatively small number of 
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chains. The Lower Mainland, on the other hand, with its 46 chains appears to 

deviate from this pattern , possibly indicating a polynomial trend . Although no 

attempt was made in Mapsee--3 to curb a potential explosion in the number or 

method applications, this is possible. In Mapsee-3 relations can be established 

between adjacent chains only. Hence, one can restrict the number of applicable 

instances in a schema's superdiscrimination set by considering only those methods 

of instances that are depicted by an adjacent chain. 

5.4. Generalizing Mapsee-3 

5.4.1. Constructing an Abstract Composition Hierarchy with Relaxed 

Restrictions 

Starting out with a basic composition hierarchy and basic discrimination 

graphs at the composition leaf level, we construct a.n abstract composition hierar­

chy with discrimination graphs at each level of composition. In the sections 3.2.2 

and 3.2.3 the construction is subjected to a number of restricting assumptions. 

These arc: 

I. Only "must-be-part-of" links could be used for projection. 

2. The discrimination graphs had to be orthogonal to the composition hierarchy. 
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3. Image feature~ were cues for schemata at the composition leaf level only. 

The first restriction is a conH,nicnt one because in geographic maps the 

majority or the constraints arc organized in a bottom-up direction. For instance, 

road-systl'rr,s, riVl'r-systcms, and mountain-ranges are all mus! -be -part -of a 

gco-systcm, but gco-systcm itself has no mandatory components at all. In princi­

ple, there is no problc-m in projecting the discrimination graph along "must-be­

parts" links as well. "May-be" links, however, have to be excluded from the pro­

cess as they reintroduce hypothetical interpretations. 

Thc,re arc strong objections to lifting the second restriction. It would remove 

the orthogonality (and thus the modularity) or the composition and discrimina­

tion process. Ir a discrimination results in a change of composition level this 

necessitates additional completion. It should be observed, however, that ortho­

gonality is not. very much of a restriction. If orthogonality docs not come natur­

ally, we can always manipulate the composition hierarchy such that orthogonality 

is achieved. 

The third restrict.ion is not very much of a restriction either. In Mapsee-3 

cues are formed at one level or detail only, and they have access to the composi­

tion leaf level only. In principle, there should be no problem with cues formed at 

mult.iple lt•vels of detail with access to different levels of composition (See Browse 

(l!J82) for an example of such a system). The discrimination hierarchies can still 

be constructed level by level starting at composition level l. Wit.h "must-be-
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parts" links accounted for as well, the project.ion process becomes bi-directional. 

First we projt'ct level I onto level 2 using "must-be-part-of". Next we project 

lt•vcl 2 onto level I using "must-be-parts", thereby avoid!ng class duplication. In 

the following stage we project level 2 onto level 3•etc. There is only one complica­

tion. We first have to construct abstract discrimination graphs at all levels of 

composition accessed by cues. In the restricted approach, we had to do this for 

the composil-ion leaf level only. When projecting one level onto the next, we have 

to merge the projected discrimination graph with the one that already exists at 

that level. 

5-4.2. Relaxing the Discrimination Constraints 

- n-ary constraints 

In HAC-3 we use unary and binary constraints only. Cao IIAC-3 deal with 

n -ary constraiut.s? In Mapsee-3 constraints are represented as relations. For the 

algorithm, it makes no difference whether a variable has one, two, or n neigh­

bors. Hence, HAC-3 has no problem dealing with n -ary constraints. 

One way of creating higher-order relations is to have methods that create 

higher-order relations out of lower-order ones. Often this is computationally 

expensive to achieve. In some cases, however, it may be possible to create higher­

order relations directly by means or image cues created at a coarse level of detail. 

For instance, one can think of a 3-tuple relatiom, consisting of a bridge, the road 
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crossing it, and the river passing under it. A cue for such a relation could he con­

structed a.t a coarse level of detail in the image. 

- Generalizing the discrimination graph to a directed acyclic r,raph 

Mapsee-3 uses a.n exclusive OR graph. The reason for this choice lies in 

HAC-3. If there were more than one path from an intermediate label in the graph 

to a leaf, then the number of iterations necessary to reach the leaf would explode. 

This is caused by the use of the P-or predicate in HAC-3.3 The only informa­

tion provided by P -or is whether there is a successor label that is consistent. It 

docs not tell us which path leads to this successor label. We can solve this path 

identification problem by compiling the knowledge about the path. We can then 

associate with each P-or a. particular branch that we need to follow in order to 

reach the consistent successor label. With this correction, HAC-3 can efficiently 

operate on any directed acyclic graph. 

5.4.3. Method Generalization 

In Mapsee-3 abstract schemata have no methods of their own. By means of 

the method inheritance mechanisms discussed in section 3.2.6, abstract schemata 

have access to the methods of their descendants in the discrimination graph. It 
\ 

would be attractive, if abstract schemata had their own abstract methods. It 

~be ruder ,bo~ld consult. Appendix A for a. proper 1:111dema.ndia1 of the ruction. of lbi, p~dic:a.Le 
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would increase the efficiency of discrimination vision. The following example 

clarifies why this is the case. 

A road/river-system schema can apply the "road-road-tee" method to two of 

its components only if both components are already interpreted as road. Simi­

larly, the "river-river-tee" method can he applied only if both components are 

rivers. If both constituents of a potential T-junction are labeled road /river then 

the road/river-system schema has no power to enforce any relation. Yet under 

these conditions we already know that a T-junction will eventually he established 

because road and river are never neutral with respect to each other in a T-

junction. 

If the road/river-system schema had a method that could establish a 

road/river-road/river-tee then both constituents of the junction would become 

part of the same road/river-system instance immediately. Currently, in Mapsee-3, 

both constituents do not join together until the "geo-system" level has been 

reached. From there it takes many more method applications and instance 

merges before both junction constituents are finally joined in one road- or river­

system instance. Hence, abstract methods enahl~ us to establish relations in a 

much earlier stage of the interpretation process than would he the case without 

them. 

The problem with abstract methods is, that it is hard to establish them 

automatically when we create abstract schemata. Method generalization has to he 

anticipated in advance. For the basic schemata classes of methods would have to 
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be de6ned. By investigating the matrix for each class of methods it can be esta­

blished, whether or not the method can be generalized. 

Returning to the example above, all T-junction methods can form a class. 

Both the road-system and river-system schema own a T-junction method. The 

sub-mat.rix for T-junctions in Table 3.2 for road and river interpretations only 

contains no "•"'s. This implies that the "road-road-tee" and "river-river-tee" 

method can be generalized to a "road/river-road/river-tee" method. Similarly we 

can infer that for a T-junction the stem of which is a road /river /mountain and 

the bar or which is a road /river, we cannot generalize the T-junction method 

because the "•" between mountain and road shows that no T-junction can exist 

between these two interpretations. The problem remains that in anticipation of 

method generalization we have to define classes in advance. 

5.5. Discrimination Vision in Context 

5.5.1. Discrimination Vision and Similar Concepts 

The concept that comes closest to discrimination is probably Tsotsos's con­

cept or similarity links (e.g. Tsotsos et al, 1980). Both discrimination and simi­

larity links relate classes that have similarities in their respective descriptions. 

Doth relate classes that comprise a discriminatory set, that is, only one class can 

Chapter & zu 

be instantiated at any one time. The difference between the two concepts is that 

similarity links relate classes at the same level of speci6city in an is-a hierarchy.' 

Discrimination graphs relate classes at the same level of composition. As well, 

they may include a specialization hierarchy. Visual similarity is only one of t.he 

possible properties inherited in a specialization hierarchy, and not all visually 

similar objects are embedded in a specialization hierarchy. 

The idea or combining a specialization hierarchy with the principle of least 

commitment was first proposed by Marr and Nishihara (1976). An implementa­

tion or this idea by means of a constraint satisfaction algorithm was one or the 

features of Mapsee-2 (Havens et al, 1984). In Mapsee-2, however, the constraints 

were represented procedurally, in contrast with the declarative representation 

used in Mapsee-3. The idea of representing and automatically constructing unna­

tural dasses at multiple levels or composition can be found in Mapsee-3 only. 

5.5.2. Discrimination Vision in a general-purpose Signal Interpretation 

System 

In Mapsce-3 we assume that the image features resulting from a segmenta­

tion proces:; are correct. The program deals with only the fact that these features 

are ambiguous when regardisg interpretation. By choosing line sketches we have 

avoided the problem of an image formation process which delivers unreliable 

+r'bi, ill~ ,p~cu.l1u1.ion h,~n.rchy wilb aniveru.l impliu.tioo 
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features as a result of noisy data. In a general-purpose signal interpretation sys­

tem such features could exist. Hence, we have to raise the question how discrimi­

nation vision would be affected if we have to work with features which are possi­

bly incorrect or may~e even non-existent. 

It is obvious that Mapsce-3 does not have the mechanisms to deal with a 

noisy image formation process. The issues involved in the design of a system with 

a knowledge base that interacts with such a noisy image formation process are 

very complex. Attempts to solve that problem are on the frontier of current 

research in computational vision. 

One way to deal with potentially incorrect or non-existent features is to con­

sider the features themselves as hypothetical. This means, however, that all the 

original schema invocations in the scene have to be hypothetical as well. Unless 

there are ways of grouping the original hypotheses we would be forced back into 

a hypothetical approach. 

Some researchers assign certainty values to different hypotheses raised by a 

single feature. Such a value is based on the assumption that one feature will more 

commonly give rise to a certain hypothesis than another. With such an approach 

we can group objects suggested with equal certainty by a particular feature into a 

discrimination graph. We thus reduce the number or hypothetical invocations, 

but. at the same time we maintain the advantages of discrimination vision. One 

result of such an approach would be that common situations are dealt with in an 

efficient manner. Uncommon situations would require some backtracking and 
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take more time to be resolved. 

6.8. Summary 

In this chapter we have discussed the performance of th~ discrimination 
I 

vision approach as implemented in the Mapsee-3 'system. Mapsee-3 is robust, but 

this does not imply that the discrimination vision approach is more powerful than 

a hypothetical approach. The main advantages or discrimination vision are con­

ceptual clarity and efficiency. The former is reflected in the modularity and uni­

formity of the system, and in the separation between domain-dependent and 

domain-independent knowledge. The efficiency of the system has been demon­

strated by means of several measures such as the number of iterations required 

by different algorithms and the number of instances in the interpretation graph. 

Additionally, the discrimination vision approach is domain-independent to the 

extent that it should be applicable to any signal processing domain. The compati­

bility between the Mapsee-3 design principles and those of the Hearsay-II system 

(Erman and Lesser, 1980) support this point of view. 
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8. SUMMARY AND FUTURE DIRECTIONS 

8.1. Summary 

' ! 
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This dissertation bas addressed the problem of representing visual interpre-

tations that are ambiguous and hypothetical. Ambiguity is caused by at least two 

factors: a segmentation process that has to deal with noisy data, and image prim­

itives which are underconstrained when it comes to interpretation. We have only 

concerned ourselves with the latter factor. 

Hypothetical and ambiguous interpretations have a close relationship. On 

the one hand, we can maintain a separate representation for each possible 

interpretation of an image primitive. Such an interpretation is hypothetical. On 

the other hand, we can join different possible interpretations in a discrimination 

graph. As a result, we can merge some interpretations into one, more abstract, 

interpretation. Such an interpretation is ambiguous. lo most model-based vision 

systems, we find a mixture of hypothetical and ambiguous interpretations. The 

former are maintained along a composition/aggregation dimension, the latter 

along a specialization/generalization dimension. The representation or ambiguous 

and hypothetical interpretations along different knowledge representation dimen­

sions causes problems with modularity in representation and control, and with 

efficiency. 
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I 
A schema-based program for interpreting sketch maps, Mapsee-3, bas been 

designed and implemented which solves these problems. Conceptual clarity has 

been the criterion for the design. This is reflected in 

I. the modularity in representation, 

2.- the modularity in control, 

3. uniformity of the representation, 

4. strict separation between domain-dependent and domain-independent knowledge. 

Most important or all, the knowledge about ambiguous and hypothetical 

interpretations is represented along one knowledge representation dimension: a 

discrimination/generalization dimension. This dimension is realized by discrimi­

nation graphs which form a hierarchical representation of object classes with 

similarities in visual appearance. The key idea behind this representation is the 

existence or an abstract object class for each possible combination of local 

interpretations that can arise Crom the image. This class enables us to represent 

ca.ch image primitive by means or one (abstract) object class. In Mapsee-3, an 

object class is represented as a schema, which consists of a list of attributes. The 

interpretation(s) of ea.ch image primitive are expressed by one of the schema's 

attributes, its label. A single label implies an ambiguous interpretation, whereas 

multiple labels make I.he interpretation hypothetical. 
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Discrimination graphs are reminiscent of specialization hierarchies, but they 

are different in at least two respects: discrimination graphs often form categoriza­

tions of object classes which are unnatural, and there is no universal implication 

in discrimination graphs. The presence of unnatural object classes is caused by 

the fact that many object classes with visu:i.J similarities cannot be joined in a 

(natural) spccialization hierarchy. However, the unnatural constituent of a 

discrimination graph can be constructed automatically once its natural counter­

part is known. 

The Mapsec-3 knowledge base is organized along three dimensions: a 

composition/aggregation dimension, a discrimination/generalization dimension, 

and a dimrnsion that contains the relations which connect image primitives with 

object dass~s in the scene. These dimensions are constructed orthogonally to each 

other. Object classes are embedded in hoth a composition hier~rchy and a 

discrimination graph. Discrimination graphs are constructed for one part.icular 

lt,vcl of composition only. A discriminat.ion graph can therefore never contain 

object classes from di(fcrcnt levels of composition. Furthermore, the scene domain 

can be accessed only through object classes at the composition leaf level. All 

these factors enhance modularity in representa.tion. Finally, the knowledge 

representation dimensions merely provide a general format for representing 

knowledge about particular (scene) domains. This enhances domain-independence 

of the system. 
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The Mapsee--3 control is subdivided in three stages: segmentation, image-t<r 

scene mapping, and interpretation. A segmentation process takes a. set of plotter 

commands as input, and creates a set of image primitives in the form of chains 

and regions. An ima.ge-t<rscene process provides the connection between the 

image and the scene domain. Ea.ch image primitive is represented by one 

( abstract) object class at the leaf level of the composition hierarchy in the scene 

domain. Interpretation is guided by two modular processes: composition and 

discrimination. Composition subsequently represents image primitives in terms of 

different object classes at different levels of composition in a. bottom-up manner 

and discrimination ensures that each object class obtains an appropriate interpre­

tation. A hierarchical a.re consistency algorithm achieves this. The composition 

process can only create and a.It.er data. structures a.long the 

composition/aggregation dimension. The same is true for the discrimination pr<r 

cess along the discrimination/generalization dimension. Thus, Ma.psee--3 also 

achieves modularity in control. 

Hierarchical a.re consistency is an arc consistency algorithm that uses the 

principle of least commitment as an operating principle. It operates on a. discrimi­

nation graph the domain of which is hierarchically organized. Hierarchical a.re 

consistency relines the label(s) of an object class a.long its discrimination graph up 

to a level justified by the constraints found in the image. Although hierarchical 

a.re consistency does not solve the constraint satisfaction problem, it enables us to 

stop the interpretation at a level of discrimination which is not a. leaf level in the 

discrimination graph. This feature reflects a. natural phenomenon in human 
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information processing which cannot be achieved either by arc consistency or 

depth-first backtrack. 

Mapsee-3 is e!Ticient for two reasons. Both result from the use of discrimina­

tion graphs which enable us to construct an interpretation graph in which com­

peting hypothetical interpretations are represented by one variable. The interpre­

tations themselves form the labels in the domain of the variable. In most cases 

the invalidation of a particular hypothesis results in the deletion or replacement 

of a label, not in a structural change of the interpretation graph. The latter is the 

case in many model-based vision systems. The other reason is the hierarchical 

organization of discrimination graphs. Such an organization enables us to 

represent the domain of each variable in hierarchical manner rather than as a set. 

As a result, the number of labels that has to be represented in the domain of 

each variable is relatively small. 

The model that underlies the Mapsee-3 design interprets image primitives by 

means of object classes whose interpretation is at first extremely generic and 

unspeci6ed. As more and more constraints are discovered in the image, this 

interpretation becomes more and more specific. Because of this continuing process 

of interpretation refinement along a discrimination graph, we call this particular 

approach discrimination vision. 

1• .-
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8.2. Future Directions 

1. Generalization to other domains. 

The basic representational format of Mapsee-3 is domain-independent. It 

would therefore be natural to try out different domains. Line drawings of human 

bodies as used by Browse in his dissertation (Browse, 1982) would be a possibil­

ity. As well, a system could be designed that can interpret line sketches from 

more than one domain. This would increase the number of levels in the discrimi­

nation graph. However, a real test of Mapsee's _domain-independence would come 

from an implementation in a different signal processing domain such as speech 

interpretation. 

e. Top-down control strategy. 

The Mapsee-3 control strategy is mainly data-driven. In particular, the com­

position process works along the composition hierarchy in a direction from leaf to 

top. The constraints in the sketch map domain are the prime motivation for this 

strategy. Most of the constraints are pointing upwards along the composition 

hierarchy. For example, mountain-ranges and road-systems are all mandatory 

components of a landmass, but a landmass itself has no mandatory components 

at all. One of the few suitable situations for implementing top-down control is 

the situation with a river-system and a bridge as its component. In such a situa­

tion we know there must be two rivers, both of which flow under the bridge. Line 
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sketches or human bodies would also be a suitable domain for experimentation 

with a more mixed control strategy. 

3. Extensions towards the re,1/ world. 

This would entail abandoning the domain of line sketches and reaching in 

the direction or the outside world. A good intermediate solution would be to stick 

with the geographic world but to seek a richer input. Such a solution could be 

found in the interpretation of digitized geographic maps. Without having to deal 

wit.h the complexity of the real world, one would be able to use edge detection 

and region formation techniques which reintroduce the problem of hypothetical 

image features. Such input material would enable us to experiment with discrimi-

nation vision in the context of a more general-purpose vision system. 

4- Automatic construction of a generalized composition hierarch'!/. 

More work needs to be done in order to develop algorithms for automatic 

construction of an abstract composition hierarchy from a basic composition 

hierarchy and uasic discrimination graphs at different levels of composition. In 

the discussion in section 5.4, we have sketched a construction solution only for a 

situation in which image primitives at different levels of detail are mapped into 

different levels of composition. Formal projection algorithms for such a situation , 
have yet to be elaborated . Furthermore, the question of how to automatically 

create abstract methods is very much an open issue. 
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5. Instance hierarchiea. 

In Mapsec-3, instance links connecting schemata with their instances only 

exist in the temporary data base constructed during interpretation. This is the 

case, because Mapsec-3 represents object classes only, not individuals. Mapsee-3 

does .not permanently store any knowledge about the particular scenes it has 

interpreted. A system which amalgamates each new interpretation in its per­

manent knowledge base such that future recognition of the same scene can be 

done more efficiently would constitute another worthwhile future enterprise. 

6. Dynamic thresholding 

The problem of dynamic thresholding was raised in s.ection 5.3.1. Mapsee-3 

uses fixed thresholds for forming T-junctions. We have argued that the value of 

such thresholds should be dynamically controlled by the interpretation process. 

For instance, if we already know that a particular chain is a road then we should 

relax all the parameters by means of which this road can form junctions with 

road compatible object classes. Knowledge-driven thresholding constitutes 

another realm for future research. 
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6.3. Conclusion 

Discrimination graphs are a better way of representing ambiguous and 

hypothetical interpretations in a model-based vision system than specialization 

hierarchies. They enhance modularity, uniformity, domain-independence, and the 

efficiency or the system. As well, the hierarchical arc consistency algorithm is an 

efficient. and natural means or propagating consistency over these graphs. 
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APPENDIX A 

HIERARCHICAL ARC CONSISTENCY 

This appendix provides a formal description of the algorithms AC-3 and 

HAC-3 referred to in section 3.3.2.1. 

AC-3 

Restricting ourselves to unary and binary constraints, we represent the con­

straint satisfaction problem as a graph G in which the nodes are variables, and 

the links are constraints on these variables. Each variable V; has a domain D; of 

labels. Different forms of consistency can be defined over the gnph. The particu­

lar forms we describe are node consistency and arc consistency. 

Node consistency for node V; in graph G can be defined as: 

(x) P;(x) 

where x is a label in D; and P; is a unary predicate on V;. 

G is node consistent if all nodes in G are node consistent. The following pro­

' 
cedure tests node consistency: 
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procetlure NC(i) 
D,+-D; n z I P;(.r) 

1 BEGIN 
e FOR i +-1 UNTIL n DO NC{i) 
s END 

An arc(i,j) is consistent, if: 

1) its source node V, is node consistent 

2) its goal node V; is node consistent 

3) each x E D; is consistent with at least one y ED;-

A directed graph G is arc consistent if all of its arcs are arc consistent. 

AC-3 is an iterative procedure where each iteration consists of an updating 
I 

of the labels of a particular variable V under' the constraints of a particular 

predicate. IC one or more labels of V are deleted during an iteration then all the 

variables that constrain V are considered next. The labels of those variables are 

tested under the constraints defined by the predicate that relates them to V. 

The basic action in arc consistency is to remove any z E D; for which rule 3 

does not hold. This action is embodied in the Boolean procedure REVISE. 

Appendbt A 

pracetlure REVJSE{iJ"J 

1 BEGIN 
t DELETE+- /"'6e 
S for each z E D; DO 
4 IF there ,°4 no y ED; 1uch that P;; (z ,!I) THEN 
5 BEGJN 
6 

7 
8 
9 END 

tlelete :,; from D; 
DELETE+- true 

END 

10 return DELETE 
11 END 

1321 

The effect of any deletion bas to be propagated to all nodes whose values 

could be affected by the deletion. This is done in the following procedure called 

AC-3 in Mackworth (1977c): 

Procetlure AC-S 

1 BEGIN 
e FOR i +- 1 UNTIL n DO NC{i) 
S Q+- (i,j)l(i,j)Eam(G),i,j,j 

' 5 
6 
7 
8 
g 

10 

11 

REPEAT UNTIL Qi, empty 
BEGIN 

END 

,elect a111J <lelcte any arc {k,m) from Q 
if REl'fSE(k.m} 1/,011 

Q+-Q u ((i,k) I (i,k) E arcs(G),i 'F k,i rm) 
END 

lf!E,VD 
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HAC-3 

In AC-3 the domain or a variable is organized as a set of labels. Each instan­

tiation or a variable has this set or a subset of these labels in its domain. In 

HAC-3 the domain D is organized in a hierarchical form. Each node in this 

hierarchy stands for a label that is unique in G. The labels at the leaves of the 

hierarchy are the same (basic) labels that are represented in the variable domain 

in AC-3. The source node of the hierarchy intensionally represents the complete 

set of labels at the leaves of the hierarchy. Each intermediate node represents a 

subset of this set. We refer to a. leaf label in the hierarchy a.s a. basic label. An 

intermediate label will be called an abstract label. In IIAC-3 the domain of each 

variable still contains one or more labels. The difference with AC-3 is that in 

HAC-3 any label can be either an abstract or basic label whereas in AC-3 ea.ch 

label must be a basic label. 

In AC-3 the constraints between two variables V, and V; with domains D; 

and D; are represented in the predicate P,;. Such a representation takes the 

form or a truth table. Table Al is an example or such a table. In the example, V 1 

is a geo-system surrounded by a shore ( V 2). V I has four possible labels, V 2 has 

two. P 12 represents the "outer-shore" constraint; that is, V 2 surrounds V 1. A 

geo-system can only be surrounded by a shore if the geo-system is an island and 

the shore a coastline or when the geo-system is a lake and the shore a lakeshore. 

In order to make the arc from VI to V 2 consistent, AC-3 would eliminate the 

labels mainland and ocean from the domain of VI in this example. 
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An abstract label pair ( m , n ) is hierarchically arc consistent if the set of basic 

lab<'ls descending from m is arc consistent with the set of basic labels descending 

from n . An arc ( i, j) is hierarchically arc consistent if each label in D, is 

hierarchically arc consistent with at least one label in D;. 

In HAC-3 we compile P;; into two new predicates: P-and;; and P-or;;. 

For any label pair ( m , n ) I ( m E D; ,n E Di) P-and;; expresses whether or not 

the pair is hierarchically arc consistent. For any label pair 

(m ,n) Im ED; ,n ED;) P-or;; expresses whether or not al least one of m's 

dcscend:mt.s is hierarchica.lly arc consistent with n. 

With P;; given, we can automatically construct P-an.d;; and P-or,; for 

each pair of labels, irrespective or their location in the hierarchy. An example will 

show how this is done. For this purpose we have expanded the labels in Table Al 

iuto a hierarchy. Figure Al shows the result. The constructed P-and 's and 

P-or 's are shown in Table A2. For illustrative purposes we have expand<-d the 

predicates into a 4-tuplc (e.g. P-and,;kl ). The indices k and I indicate the level 

in t.he hierarchy whereby k = level number in D;, and / = level number in D;. 

I'-and;; 11 is identical to I';; in Table AL This is the basic table. The other 

tables are constructed by properly AND ing and OR ing together different values 

from the basic table. 
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p .. 
I ,J Lakeshore Coastline 

Island 0 I 
Mainl:uid 0 0 

Lake 1 0 
Ocean 0 0 

Table Al: A truth table representing the constraints between 
two variables in AC-3 

P-and,- ,; ,l,I Lakcshore Coastline 

lsln.nd 0 I 

Mrunl~nd 0 0 

Lake I 0 
Ocean 0 0 

P-and;,;,z,t Lakeshore I Coastline 

La.ndm:iss 0 0 
Waterbody 0 0 

P -or,-,; ,2,1 Lakeshore Coastline 

Lanornass 0 I 
Waterbody I 0 
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P-and,- ,; ,2,2 Shore 

Landmass 0 
Waterbody 0 

P -or, ,j ~ I Shore 

Landmass 1 
Wa,erbody 

P-and,- ,;,3,1 Lakeshore j Coastline 

Geo-system 0 0 

P-or;,;,3,1 Lakeshore Coastline 

Geo-system I 1 

P -and,-,; ,3,2 Shore 

Geo-system 0 

P-or,- ,i ,3,2 Shore 

Geo-system 1 

Table A2: P-and and P-or truth tables for the hierarchies in Figure Al 
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J. j 

A Geo-system 

. " I \ 
I \ 

I \ 
I \ 

I \ 
I \ 

I \ 
I \ 

I \ 
/ \ 

f Landmass ! Waterbody 
I\ I\ 
I \ I \ 
I \ I \ 
I \ I \ 
I \ I \ 
I \ I \ 
I \ I \ 
I \ I \ 
I \ I \ 
I \ I \ 
I \ I \ 

• • • • 

level 3 

Shore ,. level 2 
I\ 
I \ 
I \ 
I I 
I \ 
I \ 
I \ 
I \ 
I \ 
I \ 
I \ 

• • level 1 

Island Mainland Lake Ocean Lakeshore Coastline 

Figure Al: The labels of two variables expanded into 
a d.i.scriminatioo hierarchy 

We can now discuss the HAC-3 algorithm. It is similar to AC-3 except that 

the procedure REVISE is different. A label pair {(m ,n) m € D,, n € D) is 

consistent if P -and,.. is true. If this is not the case then we test P -or_. If 

this is false as well then we have to delete m from D;. If P-or_ is true, how­

ever, then we replace m by its successors in the hierarchy and we repeat the 

sequence of tests for each of the successors. We continue this testing until we 

have found one or more successors k for which P-andtn is true. We call this 

procedure HACREVISE-
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Procedure HA CREVISE(i,j) 

1 BEGIN 
e DELETE<- faue 
9 Ql <- D; 
,I ND<- emply 
5 WHILE Ql non-emply DO 
6 ,elect and delete any element :,; from Q 1 

7 Q 2<-D; 
8 M.4 TCH <- fal•e 
9 WHILE QI! non-empl!f and not MATCH DO 
JO ,elecl and delete any element y from QI! 
11 IF P -and;; {:i:,y) THEN 
11! BEGIN 
19 append z lo ND 
1-1 MATCH<- true 
15 END 
16 END 
17 
18 

19 IF nol MATCH THEN 
/!O BEGIN 
e1 Q 2<-D; 
£2 WHILE Q2 non-empty and not MATCH DO 
f!9 ,elect and delete any element y from QI! 
e,4 IF P-or;; {z,y) THEN 
25 BEGIN 
/!6 append all ,ucceuor, of z to Ql 
/!7 MATCH<- true 
es END 
/!9 END 
90 
91 
92 
99 
9,1 
95 
96 

END 

DELETE+- true 
END 

97 Di<- ND 
98 return DELETE 
99 
,I0END 

:138 
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It is pr<>ferahle to organi1.c the domain of IIAC-3 a, an OR graph. This will 

prcV<>nt the existence of more than one path hetwl'en two nodes when traveling in 

a discrimination direction. Multipli, paths can cause an explosion in SC'arch, 

h<'<·ausi· /' or T<'qni_res us lo follow each path until a eonsist.ent la.be! is found. 
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In this appendix an in-depth discussion of the interpretation process for the 

example, in Figun· 4.14 is provided. The interpretation scheme is shown in Figure 

4.13. Table -1.7 shows t.he name ahhreviations used for the object classes and rel:.­

tions . lnterprl'tat.ion takes place in three stages: segmentation, image-to-scene 

mapping, and intrrprct.a.tion. The segmentation process segments the image into 

primitiv<>S and cu<>s. The segmentation of Figure 4.14 results in t.he creation of 

one region an<l four ehains. Thi' image-to-scene process places each one of the 

chains inl,o a shape catrgory and invok<'S the abstract schema depicted by this 

shap!' eaf.rgory. Four sehrma instances are created at the composition leaf level: 

Rd/R11//Jrs -I for chain-I, Rd/Rt1/Brs-2 for chain-2, Rd/Rv-l for chain-3, 

and Rd /H11 2 for chain--1 (Figure 4.15). The name inside the brackets is the 

l:lbel of the instance. All instancl'S are inserted in this order in a completion 

qU<'U<'. 
I 

' 
The int1·rpn•tation proc~-ss consists or two processes: composition and 

discrimination. Compo,sition consists of two steps: completion and assembly. 

Discrimination is equivalent to hierarchical arc consistency, implemented as 

IIAC-3. Both the composition and discrimination processes take their input from 

a qu!'ue. Composition has a completion queue, discrimination a label consistency 

qm•ue, abbreviated as k-que,u,. The composition and discrimination process com-

munirnt<' with <':td1 other by pushing clements on each other's queue. Figure 4.13 
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shows how the processes alternate. The interpretation process is initiated by the 

appearance of schema instances on the completion queue. 

Completion tak<.>s place in a depth-first or breadth-first manner, depending 

on whether we treat the completion queue as a stack, or whether we order 

instances by composition level. The first element on the queue is always picked 

first. In this example we will follow a breadth-first strategy. The interpreter in 

Appendix E also follows a breadth-first strategy. 

completion-queue: Rd/ Rv / Brs -l, Rd/ Rv / Brs -2, Rd/ Rv -l, Rd/ Rv -2. 

Rd/ Rv / Brs -1 is selected for completion a~d is deleted from the queue. It 

completes to Rd/ Rv / Br .1 A matching instance is therefore looked for among 

the instances in the superdiscrimination set of road/ river/ bn"dge . As none is 

found, the default rule takes effect. That is, a new instance Rd /Rv /Br-I is 

created. 

This is the first step in the scheme shown in Figure 4.13. Rd/ Rv / Brs -1 is 

not yet linked to Rd/ Rv / Br-1. First, we have to test the consistency of the arc 

which will connect t.he two instances. The arc (Rd/Rv/Brs-1. Rd/Rv/Br-1) 

is pushed on the le-queue and HAC-3 is invoked.2 This is the second step shown 

in Figure 4.13. HAC-3 takes elements from the le-queue and pushes elements on 

1There i, a. level or compo:,it.ioo rda.tion:, between every two levd, of compo,ition_ Completion alway:, involve, t.he 
crn.t.ion or •put-or ud 1, •put.t• reh.Lio.o~ liol:ing two io11b.oce11 &t a.djue:::it. compo1iLion level:, For ~uon, of 11implici­
Ly, how~ver, we will a.ct.~ if one compo,it.ion object level connects with the oc:,cl one up di ... ertly 

:Sec Appendix A for t!le o:act algorithm 

Appendix B HZ 

this queue if label refinements take place. HAC-3 continues to operate until the 

le-queue is empty. In the current case there is only one element on the queue. 

P-and(Rd/Rv/Brs-1,Rd/Rv/Br-l) is true. Thus, consistency bas been esta­

blished. 

Step 3 in the interpretation scheme (Figure 4.13) is assembly. This results in 

the linkage of Rd/Rv/Brs-1 and Rd/Rv/Br-1. Rd/Rv/Br-1 is inserted into 

the completion queue. Instances a.re ordered by composition level. Thus 

Rd/ Rv / Br -1 is inserted at the end of the queue. 

Up to now consistency has been tested in one direction only (from 

Rd/ Rv / Br$ -1 to Rd/ Rv / Br -l). During the second HAC test (step 4 in Figure 

4.13) we push the arc (Rd/Rt> /Br-I. Rd/Rv /Brs-1) on the le-queue. As is the 

case in the previous test, there is immediate consistency. No label changes have 

taken place so far, but we have now completed a. cyele in the interpretation 

scheme as illustrated in Figure 4.13. 

completion-queue: Rd/ Rv / Brs -2, Rd/ Rv-1, Rd/ Rv -2, Rd /Rv / Br-1. 

Rd/ Rv / Brs -2 is next. for completion. A matching instance is looked for 

once more in the superdiscrimination set of road /river /bridge. Rd /Rv /Br-I is 

found and tried. Road /river /bridge has access to the "bridgesidep/bridgesidep" 

method. This schema successfully applies this method to Rd/ Rv / Brs -1 & 2. As 

a result, an instance or the bridgesidep / bridgesidep relation is created which will 

eventually link Rd/Rv/Brs-1 & 2. The arcs (Rd/Rv/Brs-2. Rd/Rv/Br -- 1), 
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(Rd/Rv/Brs-1. Rd/Rv/Brs-2), and (Rd/Rv/Bra-2. Rd/Rv/Brs-1) are 

now pushed on to le-queue. The first arc does not cause any problem, the second 

one does. The bridgesidep / bridgesidep relati~n cannot exist between two 

road/river /bridge sides. P (Rd/ Rv / Brs ,Brs / Brs) is false. HAC searches the 

discriminat.ion graph to find a consistent discrimination. Rd/ Rv / Brs is special­

ized to bridge -side. The same occurs for Rd/ Rv / Brs -2 when the third arc is 

tested. 

M label changes take place, HAC-3 pushes all the schemata that have arcs 

pointing at Rd/ Rt,/ Brs -1 & 2 onto the le-queue. As a result, the arc 

(Rd/ Rv / Br-1 . Rd/ Rv / Brs -1) is pushed onto the le-queue. During the next 

HAC invocation , the label of Rd/ Rv / Br-1 is relined to bridge , because only 

P-and (bridge ,bridgeside) is true. As a result of all the label changes 

Rd/Rv/Brs-1 and Rd/Rv/Br-1 are inserted back into the completion queue. 

However, the latter is already on the queue. 

Next, assembly not only establishes the link between Rd/ Rv / Brs -2 and 

Rd/ Rv / Br-l, but the spatial relations between Rd/ Rv / Brs-l & 2 as well. 

During the second HAC test we push the arc (Rd/Rv/Br-1. Rd/Rv/Brs-2) 

on the le-queue, but this has no further effect. 

completion-queue: Rd/ Rv / Brs -1, Rd/ Rv -1 & 2, Rd/ Rv / Br-l. 

Rd/ Rv / Brs -1 has already been completed once. It is our first case of what 

is called post-completion. The reason for post-completion is the label refinement. 
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of Rd/ Rv / Brs -1 to bridge -aide which bas just taken place. & a result of this 

refinement methods may now apply which did not apply before. Application of 

new methods may result in the establishment of new relations, further label 

refinements, or the merge of one or more instances in Rd /Rv /Brs-l's super­

discrimination set. The lat.ter may happen because Rd/ Rv / Brs -1 may now 

complete to instances other than Rd/Rv/Br-1. & Rd/Rv/Brs has only one 

super-schema, this implies that the super-instances must be one and the same. 

Hence, they must be merged. 

Nothing of this kind happens in this case. Rd/Rv/Brs-1, because of it.s 

label, now completes to bridge . We have to search bridge 's superdiscrimination 

set for a matching instance, other than Rd/ Rv / Br-1, but none is found . 

completion-queue: Rd/Rv-1 & 2, Rd/Rv/Br-l. 

Rd/Rv-1 is next. It will complete to the newly created Rd/Rv•-l. It will 

still take some time, before the river -under -bridge relation involving chain-3 is 

found. "River-under-bridge" is a regular method and we need the help of a nega­

tive relation to constrain chain-3 to be a river. Actually, this docs not happen 

until we reach the landmass schema at level 4. 

completion-queue: Rd/Rv-2, Rd/Rv•-1, Rd/Rv/Br-l. 

The completion of Rd/ Rv -2 proceeds in exactly the same manner as the 

completion of Rd/Rv-l. Thus, Rd/Rv-2 becomes a component of the newly 
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created instance Rd/ Rv•-2. The current situation is shown in Figure 4.16. 

completion-queue: Rd/Rv• - 2 & I , Rd/Rv /Br-l. 

All level I instances have now been completed and we continue with level 2. 

We can discuss the compll'tion of both Rd /Rv•-2 & lat the same time because 

the processes are similar. Rd/ Rv•-2 becomes a component of a newly created 

instance Rd/ Rvsys -l, Rd/ Rv• -l becomes a component of Rd/ Rvsys -2. At 

this point we have no way of knowing that Rd/ Rvsys-l &. 2 should be one and 

the same instance. 

completion-queue: Rd/ Rt•/ Br -1 , Rd/ Rvsy.~ -2 & l. 

The completion of Rd/ Rv / Br -l (with label bn.dge) is the next level 2 com­

pletion. The completion path of an instanl'e, however, is determined by the 

instance's label, not by the parent schema. As a result, Rd/Rv/Br-l now com­

pletes as if it were an instance of bridge . Its two super-schemata arc 

road -system and river -system . 

Let us assume that Rd/Rv/Br-l completes to road-system first. It will 

try to match any of the instances in road -syslem 's superdiscrimination set. 

There are two instances in this set: Rd/ Rvsys -2 & I. Neither can successfully 

apply any method. Hence, a new instance Rdsys -1 is created. During the follow­

ing assembly Rd/ Rv / Br-1 is linked with Rdsys -l. The second HAC invocation 

docs not result in any label changes. 
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complet.ion-queue: Rdsys -1, Rd/ Rv.sys -2 & I. 

Rd/ fl"/ Br - l still has to complete for a second time, to river-system. A:s 

we t1xplained before, the road /river-system schema has no access to the "river­

under-bridge" mi-thod, because it is a regular method. This means that this 

m<>thod only applil'S t-0 two instances, one with the label bridge -side , the other 

with the label river. It does not apply to any generalizations of river (e.g. 

Rd/ Rv ). Rd/ R,, / Br-1 therefore completes to the newly created instance 

R1,sys -J. The current situation is shown in Figure 4.17. 

completion-queue: Rvsys-1, Rdsys - l, Rd/Rvsys-2 & l. 

We can now start completion from level 3 to level 4. Rvsys -l completes to 

landmas.,. As there arc no instances created at level 4 yet, Rvsys -l will become 

a component of the newly created instance Lm -l. 

completion-queue: Rdsys -1, Rd/ Rvsys -2 &. l, Lm -1. 

Rdsys -l (with label road -system) completes to Lm -1 as well, because both 

fldsys -1 and Rvsys -l share the same component, and thus the same chains and 

region. 

completion-queue: Rd/ Rvsys -2 & l, Lm -l. 
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Rd/ Rvays -2 will also complete to Lm -1, because the region surrounding 

chain-3 overlaps with the region depicting Lm -l. This is checked by the method 

"surface-overlap". This part of the completion has no effect on the labels or any 

of the instances involved. The landmass schema, however, has internal methods 

it can apply to its components. Of particular interest in this case is the very 

powerful "not-roadp" met.hod. The not -roadp relation is imposed on any com­

ponent of the landmass which represents a chain whose end point comes close to 

a river or bridge. The result of this operation is that the not -roadp relation is 

imposed on Rd/ Rv•-l. 

The label road/ rit>er• cannot. coexist with not -roadp . During the next 

HAC invocation a chain of specializations will therefore take place: Rd/ Rv,. -1 to 

river•, Rd/ Rv -1 to river, and Rd/ Rvsys -2 to "·ver -system. All three 

instances are inserted into the completion queue for post-completion. After 

assembly and a second HAC invocation Rd/ Rvsys -2 is linked with Lm -1. 

completion-queue: Rd/Rv-l, Rd/Rv•-l, Rd/Rvsys-l, Lm-1. 

Post-completion of Rd/ Rv -l has no effects. However, when we post­

complete Rd/ Rv•-l, we a.re faced with the situation that Rd/ Rv -1 now has the 

label rit•er, and Rd /Rv / Br-l bas the label bridge. When Rd /Rv•-1 attempts 

to match Rvsys -l, the "river-under-bridge" method is applied successfully. 

Although the labeling is stable, Rd/ Rv • -1 is not allowed to be part of two 

super-instances. These two super-instances (Rd/ Rvsys -2 and Rvsys -1) will 

- ,_- y- ..... 
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therefore merge into one newly created super-instance, which will be a structur­

ally modified Rvsys -l. 

As a result of this structural change, we have to insert the "new" Rt•sys -1, 

and, recursively, all of its super-components into the completion queue. This 

recursion is necessary because some "high level" schemata may have methods 

that apply far down in the hierarchy (e.g. "not-roadp"). Figure 4.18 shows the 

current situation. 

completion-queue: Rvsys -l, Rd/ Rvsys -l, Lm -l. 

Post-completion of Rvsys -l with its two components has no further effects. 

The completion of Rd/ Rvsys -l proceeds in a way totally symmetric to the com­

pletion of Rd/ Rvsys -2. "Not-roadp" will cause Rd/ Rv•-2 to specialize to 

river•, and, finally, Rd/ Rvsys -1 will also merge with Rvsys-l, leaving the 

latter with three components: two rivers and a bridge. At this point we will 

bypass all the intermediate states of the completion queue, and we will start with 

the completion at level 4. 

completion-queue: Lm -l. 

Lm -1 completes to a newly created instance of world, Wrld-l, and this 

constitutes the end of the first interpretation cycle, in which all chains have been 

depicted up to the world level. 
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The second cycle is rather trivial for this particular example. The 

"completed-system" methods are now deblocked. As a result, particular checks 

are made. The "incomplete-river-systemp" method, for instance, will check for 

en.ch river-system, or one of its generalizations, whether their components can 

act.ually be rivers, or bridges. A chain can depict a river, only if one of the follow­

ing conditions is satisfied: 

I. It. makes a. T-junction with another chain which can be labeled as a river. 

2. (t. makes a T-junction with a chain labeled as a bridge-side. 

3. It makes a T-junction with a chain labeled as mountain. 

4. It makes a T-junction with a chain labeled as shore. 

5. It runs of the edge on one or both sides. 

If none of these conditions is satisfied, a nol -riverp relation is imposed on 

the inst3nce concerned. During the next. invocation of HAC the label of the 

instance is refined. This exn.mple shows the rules for river -system. Compatible 

rules exist for road-systems and bridges. 

The second cycle runs in exactly the same way as the first. Label changes 

cause the completion process to be reinvoked which, in turn, reinvokes HAC elc . 

Figure 4.19 shows the final interpretation graph. 
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APPENDIXC 

The Mapsee-S Projection Algon·thm 

The only rc,ason that the Mapsee-3 projection algorithm devin.tes from the 

general projection algorit.hm discussed in section 3.2.5 is that this algorithm is 

inelfirient in many-lo-one mapping situations. In Mapsee-3 there exists a compo­

sition relation level between two object class levels. A projection from object class 

level I to object class level I +I must therefore be done in two stages. First we 

project object class level I onto composition relation level I +0.5. Next we project 

composition relation level I +0.5 onto object class level I +l. In the first stage 

there are only two kinds of mapping situations: one-to-one, or one-to-many. For 

both cases the general projection algorithm works fine. In the second stage there 

a.re a.lso two kiuds of mapping: one-to-one, or many-to-one. For this reason we 

use a different algorithm. This a.lgorithm does efficient many-to-one mapping. It 

also takes advantage of the fact that no one-to-many mapping can occur. 

The Mapsee-3 projection algorithm has three stages. In the first stage we 

subdivide the disnirnination graph into subtrees. In the second stage we project 

each subtree from level I to level I +0.5. In the third stage we project subtrees 

from level I +0.5 to level I+ I. 
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- Subdi11iding the discrimination graphs into subtrees 

The first step in projccling a discrimination graph from level l onto l<.'vel 

l +I is a subdivision of each discrimination graph into two-level subtrees. Each 

node in the graph a'nd its direct descendants iu a discrimination direction form a 

subtree. The next step is the assigning of a level number to each node in the 

discrimination graph. The leaves of the graph become level 1, their parents level 

2 etc. In case· of conflict the highest level number prevails. The projection takes 

place subtree by subtree. All trees with source node at level 2 are projected first, 

because all leaves at level l arc already contained in a basic composition hierar-

chy. Next the trees at level 3 etc. 

- Projecting subtrees from composition level I to level l+O. 5 

For this stage we use the general projection algorithm specified in section 

3.2.5. For the convenience of the reader it will be repeated here. 

Each subtree ST consists of a source schema S and a set of leaves L . L has q 

elements: L 1>-----,L,. A discrimination link d;,1 connects S with L; (l:Si :Sq). n; 

"must-be-part-of" links eminate from each L; (l:Si :5q ). The set of super­

schemata in the composition hierarchy of L; we call Sf,,. SL; has r elements: 

SLi, 1, ..... ,SLi,, (r = n; ). Figure CI shows the situation. 
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Figure Cl: Ao illustration of the general projection algorithm 
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Figure C3: A decrease in arity as dealt with by the 

general projection algorithm 
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Figure C4: An example of two super-schemata which are a 

discrimination of another 
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Figure C5: The solution of Figure C4 as provided by the general 

projection algorithm 
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Figure C6: The desirable solution to the problem illustrated in 

Figure C4 
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The projection algorithm consists of two steps: 

1. Create a new set of super-schemata SS and create a "must-be-part-of" link 
between S and each element of SS. SS has t elements: SS ••·····•SS1 (t = max 
n; {l:5i :5q }). 

2. For each set SLi (l:5i :5q) do: 
Create new discrimination links connecting SL; with SS. Each of these links 
represent d; ,I at level l + l. The elements in both sets are connected in the fol­
lowing way: 
SLi I connects with SS 1, SL; 2 connects with SS 2•·····•SLi , connects with 
ss,·. · · 
If r < t 

then create additional links that connect SLi r w ii.h SSk for each possible 
value of/,; (r <k :5t ). ' 

- Projecting subtrees from composition level l +0.5 to level I +l 

In this stage some efficiency measnres are introduced. A "must-be-part-of" 

link connects two object class schemata. As a result each subtree leaf at level 

I +0.5 can have at most one super-schema at level / +l. As well, different "must­

be-part-of" links can point at the same super-schema. This causes a decrease in 

the arity of the subtree at level I+ l. In the extreme case the arity is reduced to 

one. Figure C2 shows such a situation. The general projection algorithm deals 

inefficiently with this situation (Figure C3). Irrespective of the label to which S is 

refined. SS I will always be refined to SUPL 1. A merge between SS I and SUPL 1 

would therefore be appropriate. 

Figure C4 shows another situation in which the general projection algorithm 

leads to inefficiencies. Discrimination graphs are not necessarily of uniform depth. 

As a result. the super-schemata of two different leaves at level I +0.5 may be 
I , 



Appendix C 2511 

discriminations from another at level / +l. Application of the general projection 

algorithm results in Figure CS. The existing link between SUPL I and SUPL,­

could have been used as a projection for d1 +o.s,i but this possibility bas not been 

taken advantage or.. A more efficient approach for such a situation is to find the 

most general schema in SUPL and to use that schema as super-schema for S. 

Figure C6 shows the result. 

Finally, ,ve can simplify the general projection algorithm by taking advan­

tage of the restriction that S can have at most one super-schema. The revised 

projection algorithm consists of three steps: 

I. Create the set SUPL con,isting of the union of all SL; (1:$:i :$;q ). 

For each element el in SUPL do: 
Check whether el is a. discrimination of any other element in SUPL. Ir this is 
the case then delete el from SUPL . 

Ir I SUPL I = l 
then execute step 2 
else execute step 3 

2. Create a "must-be-pa.rt-of" link between S and SUPL 1. 

3. Create a new schema SS 1 at level / +l and create a. "must-be-part-of' link 
between S and SS 1. 

For each L; (1:$:i :$;q) do: 
Ir L; 's super-schema. SL; 1 E SUPL 

then ucate a. discri.;,inaticn link between SL,-, 1 and SS 1• This link 
reprc,scnts d1 +0.5,i a.t level / + 1. 
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APPENDIXD 

SYNTAX OF THE MAPSEE-3 SCHEMATA 

A schema is either a scene schema or an image schema. 

<schema> <image-schema> or <scene-schema> 

A scene schema can represent an object class or relation. A scene schema can 

be described either by a list of attributes or by a single label that uniquely 

identifies the class or relation to the system. The former d·escription is useful if 

we want t.o look at the constraints that exist between a schema and its neighbors 

' in a constraint graph. The latter description is appropriate, if we want to treat a 

schema as an element in the domain of a variable for constraint satisfaction pur-

poses. 

The following attributes can be found in every scene schema X: 

l) A schema-label: uniquely identifies an object class or relation to the system ( e.g. 

•S99). 

2) type: indicates whether the schema. represents an object class or relation. 

3) composition level: each scene schema is embedded in a composition hierarchy. 

4) discrimination level: each schema. is also embedded in a. discrimination graph, the 

concept of which is explained in section 3.2.2. 

5) links-in: tlie list of schemata which ha.Ye pointers directed a.t X. 

6) links-out: the list of schemata to which X has pointers. 
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7) mandatory components: the list or schemata that enter in a "must,.be-parts" rela-

tion with X . 

8) other components: the list or schemata that enter in a "may-be-parts" relation 

with X. 

9) mandatory super-components: the list of schemata that enter in a "must-be­

part,.or" relation with X. 

10) other super-components: the list or schemata that enter in a "may-be-part,.or" 

relation with X. 

11) discriminations: X's successors in the discrimination graph. 

12) generalizations: X's parents in the discrimination graph. 

13) methods: a schema can represent both declarative and procedural knowledge. 

The schema's methods are procedures which are "owned" by the schema. Each 

Mapsee-3 method consists or a function that takes one or two arguments. A more 

detailed explanation or the operation or methods is provided in section 3.3.l. 

14) instances: during interpretation each schema can be instantiated zero or more 

times. Each instantiation is represented as a uniquely identifiable unit. A scene 

schema instance Y bas the following attributes: 

a) instance label: uniquely identifies Y to the system. 

b) iinverse: each relation in M .. psee-3 bas an inverse. Ir Y is an :nstantiatioo or 

a relation, then it must have an in,·erse which is an instantiation or the inverse 

or Y's parent schema. 

c) parent: the schema Y is an instance or. 

d) ilinks--out: the instance equivalent or "links-out". 
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' e) i1inks-io: the inst.ance equivalent or ulink:t-ln". 

r) icomponents: the established components or Y. 

g) isuper-components: the established super-components or Y. 

h) labels: the list or current interpretation(s) or Y. At the time of creation Y 

inherits the label or its parent X. This label can be replaced by any of X's sue-

cessors in the discrimination graph, ir the situation requires it. 

i) idepictcd-by: each schema instance is depicted by one or more image primi-

tives. 

15) inverse: see iinverse. 

16) depicted-by: see idepicted-by. 

<scene-schema> 

<schema-label> 
<type> 

<composition-level> 
<discrim ination-leYel > 
<links-in> 
<links-out> 
<mandatory-components> 
< other-com ponenls > 
< mandatory-super-components> 
<other-super-components> 

< <schema-label> <type> 
<composition-level>< discrimination-level> 
<links-in> <linb-out> 
<mandatory-components> <other-components> 
<mandatory-super-components> 
<other-super-components> 
<discriminations> <generalizations> 
< methods> <instances> 
<inverse> <depicted-by>> 
<schema-label> 
•S-positive integer 
object class 
relation 
positive number 
positive number 
<scene-sch em a>• 
<scene-schema>• 
<> or <scene-schema>• 
<> or <scene-schema>• 
<> or <scene-schema>• 
<> or <scene-schema>• 
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<discriminations> 
<generalizations> 
<methods> 

<internal-methods> 
<external-methods> 

<function-name> 
<instances> 
<inverse> 
<depicted-by> 
<scene-schema-instance> 

<instance-label> 
<iinverse> 
<parent> 
<ilinks-in > 
< ilin ks-out> 
<icomponcnts> 
< isu per-components> 
<labels> 
<idepicted-by> 

::= 

::= 

<> or <scene-schema>• 
< > or <scene-schema>• 
<internal-methods> 

1113 

::= <external-methods> 
::= < > or < <function-name <scene-schema>>• 

::= 
.::·= 

:~= 
!.!= 

<> 
< <function-name <<scene-schema>•> 

<<scene-schema>•>>• 
alpha-numeric string 
< > or <scene-schema-instance>• 
< > or <scene-schema> 
image primitive 
< <instance-label> <parent> <ilinks--in> 
<ilinks-out> <icomponents> <isuper-components> 
<iinverse> <labels> <idepictcd-by> > 
<instance-label> 
• S positiYe integer - positive integer 
<scene-schema-instance> 
<scene-schema> 
<scene-schema-instance>• 
<scene-schema-instance>• 
< > or <scene-schema-instance>• 
< > or <scene-schema-instance>• 
<scene-schema>• 
image primitive instance 

An image schema can represent a point, link, line, chain, patch, or region. 

<image-schema> <point-schema> 
<link-schema> 

::= <line-schema> 
.. -
.. -

<chain-schema> 
<patch-schema> 
<region-schema> 

The input to Mapsee-3 is a line drawing given as a set of plotter commands 

(e.g. plot (x,y) and goto (x,y)). For each point the coordinates are given. Each 

pair of connected points forms a link. A set of links forms a chain. A line hierar­

chy is created for every chain by following the procedure described in section 
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4.3.2. Each point instance is specified by its parent, coordinates, and the link it is 

part of (if any) . A link instance is specified by its start-point, end-point, parent, 

and the chain it is part of. 

< point-schema> ::= <•point <point-instances>> 
.. - •point. 

<point-instances> .. - < > or <point-schema-instance>• 
<point-schema-instance> .. - < <point-identifier> •point 

< ppart-of> <coords > > 
<point-identifier> 

< point-ident.ificr > .. - •point - positive integer 
<ppart-of> .. - <Ii nk-sc hem a-instance> • 
<coorcls> .. - real . real 

<link-schema> .. - <•link <link-instances>> 
.- •link 

< link-instances> .. - < > or <link-schema-instance>• 
<link-schema-instance> ::= < <link-identifier> •link 

<start-point> <end-point> 
< I part-of>> 

::;= <link-identifier> 
<link-identifier> ::= •link - positive integer 
<start-point> .. - real. real 
<end-point> .. - real. real 
<lpart-of> :;= <chain-schema-instance> 

A line instance is specified by its parent, end-points, the chain it is part of, 

its components in the line hierarchy (see section 4.3.2), the distance to the 

furthest point in its set ( deviance), some line parameters, its length, a.nd the 

point associated with the deviance (deviant). 
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<line-schema> 

<line-instances> 
<line-schema-instance> 

<line-identifier> 
<de,·iance> 
<lnparam> 
<length> 
<components> 

<deviant> 
<chain> 
<ends> 

::= < •line <line-instances>> 
::= •line 
::= <> or <line-schema-instance>• 
::= 

::= 

-
::= 

::= 

::= 

::= 

::= 

.. -
::= 

<line-identifier> 
< <line-identifier> •line 
<deviance> <lnparam > 
<lengt.h> <components> 
<deviant> <chain><ends> > 
•line - positi,·e integer 
posit.ive real 
r.,al . real . real 
positive real 
<<line-schema-instance> 
<line-schema-instance>> 
<point-schema-instance> 
<chain-schema-instance> 
< <point-schema-instance> 
<point-schema-instance>> 

Z85 

A chain instance is characterized by its parent, the top-line in the chain, the 

links that constitute a chain, the first link (forward), the last link in the chain 

(reverse), and a set of features (/ 1 ........ / •) that characterize the chain's shape. 

<chain-schema 

<chain-instances> 
<chain-schema-instance> 

<chain-identifier> 
<top-line> 
<links> 
<forward> 
<reverse> 
<fl> ... <fo> 

<•chain <chain-instances>> 
•chain 
<> or <chain-schema-instance>• 
<chain-identifier> 
< <chain-identifier> •chain 
<top-line> <links> <forward> 
<reverse> <f1 ....... .fn> > 
•chain - positive integer 
<line-schema-instance> 
<link-schema-instance>• 
<link-schema-instance> 
<link-schema-instance> 
True or False 

The image is subdivided into square patches. The patch formation process is 

described in sect.ion 4.3.3. R~gions consist of interconnected empty patches. Each 
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patch has four neighbors, and can be subdivided into four subpatches. The mid­

coordinates are the intersection point of the diagonals. Empty patches are part of 

a region. 

< patch-schema> .. - <•patch <patch-instances>> 
.. - •patch 

<patch-instances> .. - < > or <patch-schema-instance>• 
< patch-schema-instance> .. - <patch-identifier> 

-·- < <patch-identifier> •patch 
<neighbors> <subpatches> 
<mid-coords> <area> 
<where> <ptchpart-of> > 

<patch-identifier> .. - •patch - positive number 
<neighbors> .. - < <patch-schema-instance> 

<patch-schema-instance> 
<patch-schema-instance> 
<patch-schema-instance>> 

< mid-coords > .. - real. real 
<area> .. - positive real 
<where> .. - real 
<ptchpart-of> .. - < > or <region-schema-instance> 

<region-schema> .. - <•region <region-instances>> 
.. - •region 

<region-instances> .. - <> or <region-schema-instance>• 
<region-schema-instance> .. - <region-identifier> 

.. - < <region-identifier> •region 
<patches>> 

<region-identifier> .. - •region • positive integer 
<patches> .. - <patch-schema-instance>* 
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APPENDIXE 

THE MAPSEE-3 INTERPRETER 

The Mapsee-3 interpreter represents ea.ch image primitive at all levels of 

composition with an appropriate interpretation. Interpretation consists of two 

processes: composition and discrimination. The former, in turn, consists of two 

stages: completion and assembly. A flow chart of the interpretation process is 

provided in Figure 4.13. 

The composition process is constrained to operate m the 

composition/aggregation dimension just as discrimination is constrained to 

operate in the discrimination/generalization dimension. The modularity of the 

two processes is further enhanced by their means of communication. Neither pro­

cess can call the other directly. They communicate through two different queues: 

a completion queue and a consistency queue. The completion process has read 

and write access to the first queue and write access to the second queue. The 

discrimination process has read and write access to the consistency queue and 

write access to the completion queue. Control is switched between completion, 

discrimination, and assembly according to the flow chart in Figure 4.13. Discrimi­

nation is the equivalent of H.A.C. (Hierarchical Arc Consistency). 

Image-to-scene mapping results in the creation of a number of instances at 

the composition leaf level, one for each image primitive. The objective or compo­

sition is to represent these leaf level instances at each or the other levels of com­

position , thereby establishing spatial relationships between them. Completion of 

-. -,-
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an instance results in a representation or the instance at the next level up in the 

composition hierarchy. Discrimination, on the other hand, ensures that each 

primitive is represented at an appropriate level of discrimination. 

The interpreter is described by the following procedure: 

Procedure INTERPRET 

1 BEGIN 
2 
$ 

" s 

6 
7 

8 
9 

JO 
11 
12 

13 

1,1 

15 

IVHILE completion-queue non-empty 
BEGIN 

,elect and Je/,te fir,t element x from eompletion queue 
new-1uper-component1,new-relation1 ~ COMPLETE (x) 

IF HAC-9 THEN 
BEGIN 

ASSEMBLE (x ,new-,uper-component,,new-relation,) 
HAC-S 

IF neu~auper-componenla THEN 
((sc ) I sc E new -super -components ) in,ert 
,c into the completion-queue by compoaition level 

END 

ELSE return failure 

END 

16 return auccen 

17 END 

The procedure COMPLETE represents completion. It returns one or more 

super-components for x, found or created a.t the next higher level of composition. 

If new spati:Ll relations are created during completion then COMPLETE returns 
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these as well. HAC-3 represents discrimination. The procedure ASSEMBLE 

represents assembly. Composition is subdivided into completion and assembly, 

because we want to ensure that the labels of x are made consistent with those of 

its super-componen~(s) before we connect x with the existing interpretation 

graph. During the first invocation of HAC-3, the labels of x are made consistent 

with the labels of its super-component(s). The reverse is done during the second 

HAC:-3 invocation. This, however, can be done after assembly, because con-

sistency is symmetrical, i.e. if consistency can be obtained in one direction then it 

can also be achieved in the other. The ASSEMBLE procedure assembles x and 

the newly created spatial relations into the existing interpretation graph. An 

insertion by composition level in the completion queue will cause COMPLETE to 

operate in a breadth-first manner. A push-pop mechanism will result in a depth­

first operation. 

Procedure COMPLETE (x) 

0 BEGIN 
1 new-.,ttper-componenta ~ empty 
2 new-relation, +- empty 
S I+- neareal common generalization of the label, of z 

• s 
6 

1 
8 

For each auper-componenl • of I DO 
BEGIN 

merge-queue <- empty 
match +- fa(,e 
,di+- {{i) I ii, a11 in,tance of d, 

d E superdiscrimination .ct of•/ 

9 For each i E sdi DO 
10 BEGIN 
11 comp, <- COMPONENTS {i) 
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12 

JS 

Ji 
15 
16 
17 
18 

19 

20 

21 

22 

2.9 

2.J 
25 

!J6 

27 

28 

29 

so 

SJ 

!/2 

S!J 

s-4 

!JS 

!/6 

!/7 

For each j E comps DO 

IF SPA TIAL-RELA T/ON R(z,j} THEN 

END 

BEGIN 
match..,_ true 

r +- NEW-INSTANCE R{z,j} 
neu·-relation• +- new -relations U r 
puah {z, r J onto conai,tency-queue 
puah {z,i) onto con,i,tency-queue 
merge-queue +- i U merge -queue 

END 

IF match = fal,e THEN 
BEGIN 

i +- NEW-INSTANCE (a) 
pu,h (x.i) onto conai,tency-queue 
merge-queue+- i U merge -queue 

END 

a +- lat element of merge-queue 
B +- remainder of merge-queue 

for each b E B DO 
BEGIN 

a+- MERGE {a,b) 
END 

new-,uper-componenta +- a U new -super -components 
conai,tency-queue <- consistency-queue U ((a, n) 

I (a,n) E arcs(G), a 7" n} 
conai,tency-queue <- consistency-queue U (( n ,a) 

I ( n ,a) E arcs ( G ), a 7'o n) 

38 END 

99 return new-auper-eomponent,, new-relation, 

40 END 

no 
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Completion is a. data driven process. In order to 6nd the super-components 

of schema. instance :r, we 6rst investigate :r's labels. If :r has only one label, say 

v, then we only have to trace v 's super-schema in the composition hierarchy. 

However, if :r has 1i;iore than one label (say 11 and w) then we cannot just take v 

and w 's super-schema because this would introduce a hypothetical interpretation 

in the composition/aggregation dimension. Instead, we take the nearest common 

generalization of v and w in the discrimination graph, say I, and trace down / 's 

supcr-schema(ta.) instead. In this way completion takes place in a. non­

hypothet.ical manner. The two HAG-3 invocations in INTERPRET will ensure 

that any new super-component for :r will obtain again a proper and consistent 

label set. 

If a. schema I is a component of schema. s then an instance of I can he a 

component of at most one instance of s. Whenever an instance of I is compatible 

with two instances of s then this is a sign that the two instances should be 

merged. For this purpose a merge -queue is used. The potential set of instances 

to which :r can complete is determined by the superdiscrimination set of s . This 

was explained in section 3.3.1. 

In the lines 10 - 21 a search is initiated for a spatial relation between :r and 

an existing component j of a potential super-component for z. The Mapsee-3 

composition hierarchy is based on the premise that an instance can only become 

a component of a super-instance if a. spatial relationship exists between the 

instance and an existing component of the super-instance. The search for such a 
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relationship is carried out by the super-instance's methods which are invoked by 

COMPLETE. This is done by the subroutine SPA TIA.L-RELA TION, invokes 

all of d's methods in an attempt to establish a spatial relation between :r and j . 

If a method is successfully applied then a new instance of a spatial relation is 

created. Notice that only (z ,r) is pushed onto the consistency queue and not 

(r ,:r ). The latter is done during assembly. 

If no matching super-component can be found for :r, then a new instance is 

created for s which becomes the super-component for z. If j merge -queue I > 1, 

then all of its elements are merged into one. Tl).is is done in the lines 2g - 34. 

The procedure COMPLETE has been kept as simple as possible at the cost 

of sacrificing some detail and efficiency. The fact that there is a. level of composi-

tion relations between :r and s has been omitted. As well, 

SPATIAL -RELATION checks whether the spatial relation under investigation 

has already been created. The line 35 - 37 are necessary only when a merge 

between elements has actually ta.ken place. If this has not been the case then 

they are redundant. 

' , 
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procedure I/A C-9 

1 BEGIN 
/or i +- 1 until n DO NC{i) I! 

9 

-I 
REPEAT until con,i,tency-queue i, empty 

BEGIN 
5 ,elut and delete fir,/ arc {k,rn) from con,ialency-queue 

6 IF 1/ACREVISE(k,m) THEN 
1 BEGIN 
8 con,iatency-quwc +- consistency-queue U (( i ,k) 

9 

I (i ,I:) E arcs(G ), 
i,;l,k,i,;t,m) 

inaerl k into completion-queue by compo,ition level 

10 END 

11 END 

11! END 

173 

HAC-3 has already been described in Appendix A. The only additional point 

of interest is that HAC-3 inserts instance k into the completion queue whenever 

k's label(s) have changed. A subsequent complet'jon may reveal new spatial rela-

tions and may lead to new mergers between super-components. 

ASSEMBLE is a very simple procedure. It links the completing instance 

with its new super-components and it assembles the new relations. As the label(s) 

of the super-components have not yet been made consistent with the label(s) of 

their new components the appropriate links are pushed on the consistency queue. 

The label(s) of the super-components will then be updated during the second 

HA C-3 invocation in INTERPRET. 

Appendix E 

procedure ASSEMBLE (inalance, comp,, rel,) 

1 BEGIN 
f! for each rel E refs DO 
9 BEGIN 
,I link rel lo it, ,ource and de,linalion 
5 puah (,ourcc,rel) on conaiatcncy-queue 
6 puah (de,t,rel) on conai,tencg-qucuc 

1 END 

8 for each comp E comps DO 
9 BEGIN 
10 link inalance with comp and vice t1eraa 

11 

11! 

pu1Jh {comp,in,tance) on con1i1Jtency-queue 

END 

JS END 

274 

The Mapsee-3 interpreter is largely domain-independent. It can operate on 

any schema-based representation that adheres to the syntactic constraints 

specified in Appendix D. The only domain-dependent subroutine is 

SPATIAL -RELATION in the procedure COMPLETE . This routine invokes 

procedures which arc specific for the schema involved and the domain concerned. 




