
A FUNCTIONAL PROGRAMMING LANGUAGE
WITH CONTEXT FREE GRAMMARS AS DATA TYPES

by

Violet R. Syrotiuk

Technical Report 85-12

August 1985

A Functional Programming Language

with Context Free Grammars as Data Types

by

Violet Rose Syrotiuk

B.Sc., The University or Alberta, 1083

A THESIS SUBMI'M'ED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

THE FACULTY OF GRAD~ATE STUDIES

Department of Computer Science

We accept this thesis as conforming

to the required standard

THE UNIVERSITY OF BRITISH COLUMBIA

October 1084

© Violet Rose Syrotiuk, 1084

Table of Contents

1. Introduttion ... 1

1.1 Lexical Conventions 1

1.1.1 Identifiers l

1.1.2 Keywords 1

1.1.3 Constants 2

1.1.4 Strings 2

1.1.5 Separators ... 2

1.2 The BNF or Kaviar ... 2

1.2.1 .A Kaviar Program.......... 3

1.2.2 Type Definitions 3

1.2.2.l Context Free Data Types ... 3

1.2.2.2 Sub-Data Types .. 6

1.2.3 Function Definitions 8

1.2.3.1 Recursive Functions .. 8

1.2.3.1.1 Interpreting a Recursive Function 10

1.2.3.1.2 Interpreting Recursive Expressions 11

1.2.3.2 Unification Functions 13

1.2.3.2.1 Finding a Uni5er .. . 14

1.2.3.2.2 Evaluating Unification Expressions' 16

1.2.4 Invocation Expressions 17

ll

1.2.4.1 Preparing Input for a Kaviar Program 18

1.3 Built in Funetions ... 18

1.4 How to Run a Ka viar Program 19

1.5 Implementation Restrictions and Details 20

1.6 Location of the Interpreter ... 20

1.7 Sample Programs 21

Bibliography ~............... 22

A User's Manual for the

Functional Programming Language Kaviar

1. Introduction

Kaviar is a functional programming language which has context free grammars as

data types. Applications mot1t natural for such a language are those involving symbolic

manipulation. Examples of these might include symbolic integration or differentiation,

trans(ormation of grammars and so on.

Backus-Naur Form, abbreviated as BNF, is a well know meta-language for specify

ing the concrete syntax of a programming language. The intent of this manual is to

present the BNF of Kaviar and explain how its constructs are built and the operation of

the interpreter.

For a discussion of the evolution of the idea of using context free grammars for the

specification of data types consult (Syrotiuk,1984).

1.1. Lexical Conventions

There are five classes of tokeru1: identifiers, keywords, constants, strin~, and other

separators. Each class is discussed below.

1.1.1. Identifiers

An identifier is a sequence of lower ca.,e letters and digits; the first character must

be an alphabetic letter. The dash - counts a., a letter.

1.1.2. Keywords

The following identifiers are reserved for use as keywords, and may not be used

otherwise:

1

type
sub-type
IS
default

2

Other identifiers that are reserved, because they are the names of predefined func-

tions which may not be redefined are:

read
eq
ne
It

1.1.3. Constants

le
gt
ge

add
subtract
multiply
divide

There are only two kinds of constants available: the integer constants of the

predefined type Nat, and the two constants of the predefined type Bool, T and F, for

true and false.

1.1.4. Strings

A string is a sequence of characters surrounded by double quotes, as in 11
•••

11
•

1.1.5. Separatol'I

Blanks, tabs, newlines and comments, collectively called white ,pace, are ignored

except as they serve to separate tokens. Some white space is required to separate other

wise adjacent identifiers, keywords and constants.

The characters /• introduce a comment, which terminates with the characters •/.

Comments may be nested and may appear anywhere in a Kaviar program.

1.2. The BNF of Kaviar

The following sections present the BNF of Kaviar in understandable chunki along

with examples and an informal explanation.

3

1.2.1. A Kaviar Program

A Kaviar program is a sequence of type definitions, followed by a sequence of func

tion definitions.

<Program> ::=- <Definitions> { <lnvocation_Exprs> }

<Definitions> ::== <Type_Defns> <Function_Defn.s>

The type definitions precede function definitions only to enhance the speed of the type

checking capabilities of the interpreter.

Once all the definitions have been completed, the invocation expressions follow,

enclosed within braces.

The next section describes the definition of types.

1.2.2. Type Definitions

Context free data types as well as sub-types, which may be non-context free, are

accomodated by Kaviar.

<Type_Defns> ::= <Context_Free_Types> <Sub_Data_Types>

The context free types are defined by a context free grammar, while sub-types are

defined by predicates.

Since sub-types are, essentially, restrictions on context free types, they follow the

definition of these types to simplify ensuring the predicate operates over some previously

defined context free type.

Considered first will he the definition of context free types.

1.2.2.1. Context Free Data Types

Each context free type definition can be viewed as defining only one of the nonter

minals Ni, 1<i<k, N={N 1,N2, ••• ,Nd of a grammar, G. Recall that there is no

restriction on the number of alternatives a single nonterminal may have. That is, a non-

4

terminal Ni may appear on the left band side or arbitrarily many production rules.

In Kaviar, each alternative is further named by a par,er. This facilitates, when

given a terminal string w, derived from a nonterminal { w I N; - • w } finding which

alternative of Ni w was derived from. The parser names for each alternative or N; must

be distinct so that the alternative used in deriving w can be uniquely determined.

As an example, consider the familiar LISP symbolic expression, or S-expression. Its

recursive definition is:

Basis: An atom is an S-expression.
Recursive Construction Rule: Ir , 1 and , 2 are S-expressions, so is (, 1., 2).

Closure: Only those values that result from finitely many applications
or the recursive construction rule to the basis values are S-expressions.

An equivalent context free grammar over the atoms z and 1/ is:

s-expr - atom
s-expr - (s-expr . s-expr)
atom - x
atom-+ y

As just described, each alternative or a given nonterminal, N;, is further named by a

parser. A nonterminal symbol will begin with <, followed by the nonterminal name, Ni,

a colon, the parser name and then the closing >. Terminal symbols are strings and so

will be enclosed within double quot.es. Then, the grammar for S-expressions becomes:

<s-expr:atom> -+ <atom:a>
<s-expr:list> - "(" <s-expr:car> 11

•
11 <s-expr:cdr> ")11

<atom:x> - "x"
<atom:y> - "y"

Since this form is lengthy, it is abbreviated by

type s-expr
{

<atom> - <at.om:a>;
<list> - "(" <s-expr:car> "." <s-expr:cdr> ")"

}

type atom
{

}

<x> - 11x
11

;

<y> - "y"

5

and this is exactly the form the BNF for context free types in Kavia, generates. The

interpreter converts this abbreviated form to the lengthier form.

The BNF r or a context free type, then, is:

<Context_Free_Types> ::= <Context_Free_Type> I
< Context_Free_Type> < Context_Free_Types >

<Contcxt_Free_Type> ::= type <Type_Name> { <Alternative> }

<Type_Name> ::= <Identifier>

<Alternative> ::= <Production> I
<Production> ; <Alternative>

<Production> ::= < <Parser> > - <Rewrite_Rule>

<Rewrite_Rule> ::= <Null_Rule> I
< Non_N ull_Rule >

<Null_Rule> ::= >.

<Non_Null_Rule> ::= <Terminal> I
<Nonterminal> I
<Terminal> <Non_Null_Rule> I
<Nonterminal> <Non_Null_Rule>

<Terminal> ::== < String>

<Nonterminal> ::= < <Type_Name> : <Selector> >

<Selector> ::== <Identifier>

This allows (or an arbitrary num her of context free data types.

Notice that nonterminal symbols on the right hand side or the production l'llle are

composed of two parts: a type name and a selector. The type name must be the name

of a context free type, already defined or to be defined by <Context_Free_Type>, or

6

one of the two predefined types, Nat or Bool. The selector is an identifier. Its use will

become clear when recursive functions are disc wised. Selector names for all the nonter

minals appearing on the right hand side of a given alternative must be distinct.

Sub-type definitions follow context free type definitions. The next section describes

these types.

1.2.2.2. Sub-Data T7pe1

Suppose Ni i8 a context free type and

P(x : Ni) : Bool

is a defined total predicate. By

R = P(Nd

a decidable subset

{ X IX E L(Nd n P(x) = T }

of L(Ni) can be specified. Then R is called a ,ub-type of Ni. That is, a sub-type res-

tricts a context free type Ni to only those values which satisfy the predicate P. These

sub-types can be non-context free.

In K aviar, a sub-type is specified as:

<Sub_Data_Types> ::= <Sub_Data_Type> I
<Sub_Data_Type> <Sub_Data_Types>

<Sub_Data_Type> ::= sulrtype <Type_Name>
(< Context_Free_Type_Name>)
= <Predicate> ;

<Context_Free_Type_Name> ::= <Identifier>

This allows for any number of sub-types the user wishes to define.

As mentioned already, the sub-type is a decidable subset of a context free type

hence <Context_Free_Type_Name> must be the name of one of context free_-_types.

The BNF of the predicate that must be satisfied is given by:

<Predicate> ::== (<Predicate>) I
-, <Predicate> I
<Function_Name> I
(<Predicate>) n <Predicate> I
(<Predicate>) U <Predicate>
-, <Predicate> n <Predicate> I
-, <Predicate> U <Predicate> I
<Function_Name> n <Predicate> I
< Function_N ame > U <Predicate>

<Function_Name> ::= <Identifier>

7

That is, the predicate is an arbitrary logical formula. The (unctions referenced in the

(orm ula are restricted to be unary over a context free data type, being the same type the

sub-type is defined over. In addition, these (unctions must have as their result type the

predefined type Boo/. This is so that the predicate itself can evaluate to true or false.

Comiider the following context free type number defined as being a natural

number:

type number
{

<n> - <Nat:n>
}

and suppose the subset to be specified is, say, a number corresponding to the months of

the year.

{ x I x E L(n um her) n ((x > 5 n x < 12) = T) }

that is, that is :i is a number, but is also within the range one to twelve. This sub-type

may be specified as:

sub-type month(number) = ge-one n le-twelve;

So the functionality of ge-one and le-twelve must be:

ge-one(x : num her) : Bool
le-twelve(x : number) : Bool

Now that the construction of types has been dealt with, a discussion of how to

define functions that operate over these types appears in the next sections.

1.2.3. Function Definitions

Function definitions in Kaviar have the form:

<Function_Defns> ::= <Fcn_Defn> I
<Fcn_Defn> <Function_Defns>

<Fcn_Defn> ::= <By_Recursion> I
<By_Unification>

8

Functions may be defined by one of two methods: by recursion, or by unification. Each

method will be discussed in turn, accompanied by an example.

1.2.3.1. Recur■ive Function•

The BNF of recursive functions is:

<By_Recursion> ::= <Function_Name> (<Typed_Variable_List>)
: <Result_Type> { <Case_Stmts> }

<Typed_Variable_List> ::= <Identifier> : <Type_Name> I
<Identifier> : <Type_Name> , <Typed_ Variable_List>

<Result_Type> ::= <Identifier>

<Case_Stmts> ::= <Case_Stmt> I
<Case_Stmt> ; <Case_Stmts>

<Case_Stmt> ::= is- <Parser> (<Identifier>)
- <Recursive_Exprs>

<Parser> ::= <Identifier>

<Recursive_Exprs> ::= <Recursive_Expr> I
<Recursive_Expr> <Recu.rsive_Exprs>

<Recursive_Expr> ::= <Number> I
<String> I
<ldimtifier> I
<Truth_ Value> I
<Selector> < <Identifier> > I
< Function_N ame > (< Rec_Par _List>)

<Rec_Par_List> ::= <Recursive_Exprs> I
<Recursive_Exprs> , <Rec_Par_List>

Suppose a recursive (unction was to be defined which tak~ an arbitrary S-

expression and reverses it. The functionality of the function would be:

9

reverse(s : s-expr) : s-expr

IdealJy, a <Case_Stmt> should be given for each alternative of the type of the

identifier in the parameter list to take care of any derivation or that type. The type ,.

ezpr was defined as:

type s-expr
{

<atom> - <atom:a>;
<list> - "('' <s-expr:car> ".11 <s-expr:cdr> ")"

}

which has two alternatives. Ir the value or , is an atom, reversing an atom yields itself

so the <Case_Stmt> would be:

is-atom(s) - s

Ir the value of ,, however, is a list, reversing a list consists of concatenating the

reverse of the tail end of the list, given by the derivation or the nonterminal <s

expr:cdr >, with the reverse of the head of the list, given by the derivation of the non

terminal <s-expr:car>. Hence, the <Case_Stmt> would look like:

is-list(s) - "(" reverse(cdr<s>) "." reverse(car<s>) ")"

where the selectors car and cdr select the values corresponding to the derivations of

their nonterminals. The operation or selectors will be discussed in more detail in section

§1.2.3.1.2.

So the complete function is:

reverse(s : s-expr) : s-expr
{

is-atom(s) - s;

}
is-list(s) - "(" reverse(cdr<s>) "." reverse{ car<s>) ")"

If the function defined has more than one parameter a <Case_Stmt> which

operates over any of the identifiers could be given, but only the <Recursive_Exprs > of

the first applicable parser found will be evaluated. The notion of what an applicable

parser is will be discussed in the next section, §1.2.3.1.1.

10

Of course, each function defined must be given a unique name. Kaviar permits no

operator, or function, overloading. The identifiers present m the

<Typed_Variable_List> are the only ones that may appear within the function. The

type of a given identifier in this list may be a context free type name, a sub-type name

or one of the predefined type names. Likewise for the result type of the function.

Ber ore entry to the function each parameter is checked to ensure it is of the correct type.

If it is not an error will report the value at fault.

1.2.3.1.1. Interpreting a Recursive Function

If all the parameters of a function are of the correct type, the interpreter proceeds

to determine the <Case_Stmt> to execute. Suppose the function rever,e is invoked

as:

reverse("(" "x" 11
."

11y" ")")

The terminal string 11
(

11 "x" 11
." "y" ")" E L(s-expr) so for the duration of the function

the identifier , has this value. The parsers used in the body of a recursive function must

be valid for the type of the identifier it operates over. For example, the type of , is ,

ezpr so the only pal'8ers that may operate on , are those that appeared in the definition

in the type ,-ezpr. Looking back at the definition of ,-ezpr the available parsers are

found to be atom and lid.

If the type of the identifier is a sub-type, the applicable parsers are those of the

context free type the sub-type is defined over. For example, if an identifier had type

month which is defined over the context free type number, the only applicable parser

would be n.

If the type of the identifier is the predefined type Bool, two parsers are available r or

use. They are true and /ol,e just a., if the type Bool had been defined a.,:

type Bool
{

}

<true> -T;
<false> - F

No parsers are provided for type Nat beca~e there are an infinite number of them.

11

The interpreter steps through the <Case_Stmts> of the function one by one until

the applicable one is found. How is a <Case_Stmt> determined applicable!

First, the <Parser> of the <Case_Stmt> is extracted, call it pa!•er. Then the

alternative with this parser name is extracted from the type definition. This might be

<type:parser> - fJ

Then, the interpreter tries to determine whether the value of the identifier, the parser is

operating over, can be derived starting from this rule. If so, the <Case_Stmt> is then

termed applicable. The interpreter would then go on to execute the

<Recursive_Exprs> of this <Case_Stmt>.

Otherwise, the interpreter would move on to the next <Case_Stmt> to determine

if it is applicable. If the interpreter exhausts all of the <Case_Stmts> without finding

one to be applicable an error will result.

Supposing an applicable parser is found, the next section describes how its

< Recursive_Exprs > are evaluated by the interpreter.

1.2.3.1.2. Interpreting Recur1ive Expreuiona

There are six types of recursive expressions. ·The expressions oc:curnng are

evaluated in sequence from left to right and the results concatenated together. The final

result must be of type <Result_Type>. Numbers of type Nat, truth values of type

Bool and strings require no interpretation. The interpretation of an identifier is the

value assigned to it on entry to the function.

Selectors must operate on the same identifier as the parser, and can only be the

12

ones present in the alternative of the parser. For example, the alternative li,t of type

,-ezpr is:

<list> - ''(1' <s-expr:car> "." <s-expr:cdr> 11
)

11

On entry to rever,e, the value of, was set to"(" "x" "." "y" ")". The interpreter can

determine that this value was derived from the alternative <list>, so the only selectors

that may be active in the <Case_Stmt> with parser li,t are car and cdr since they

are the ones that appear in the definition of the alternative. Recall, each:.nonterminal on

the right hand side of the production rule has the form:

< <Type_Name> : <Selector> >

The <Selector> may be used as a function that operates over the value of the identifier

the parser was applicable to. The effect of a selector, as used in the following extract

from the function reverae

is-list(s) - 11
('' reverse(cdr<s>) 11

." reverse(car<s>) 11
)"

is to select, from the value of the identifier, the subtree corresponding to the derivation

of the nonterminal. The type of the :rnbtree will, of course, be <Type_Name>. For

example, the derivation tree of the value of a is:

< s-expr:list >
!

11
(" <s-expr:car> 11

•
11 <s-expr:cdr> 11

)"

! l
<atom:a> <atom:a>

! l
"x" "y"

The selector returns the value of the subtree. So car<a> = ".i"and cdr<a> = "y".

Ir the expression is a function invocation, its parameters are first evaluated and

then the function is called. The result of the fu.nction is then concatenated to the par

tial result.

When all of the expressions on the right hand side of the arrow have been

evaluated the resulting terminal string is checked to see if it is of type <Result_Type>

and if so, it is returned, otherwise an error is reported.

13

The evaluation of

reverse(II(I I llx II II. II lly II II) II)

would then proceed a., follows. The par8er ia-li,t(,) would be found applicable. Its

expressions are:

"(
11 reverse(cdr<s>) "." reverse(car<s>) ")"

The string "(" becomes the partial result. The parameter to reverae, ctlr< ,>, is

evaluated, yielding "y11
1 so reverse("y11

) is invoked. It returns "y11 a., ~a result. This

result is concatenated onto the partial result, the partial result now becoming "(" "y".

Continuing in this fa.,hion the final result is the terminal string "(" "y" " " "x" ")",

which is or type ,-expr.

Now that the operation or recursive functions is understood, the next sections

describe the second type of function definition - by unification.

1.2.3.2. Unification Functions

Functions may, alternatively, be defined by unification. The BNF for these types

of functions is:

<By_Unification> ::== <Function_Name> (<Type_Name>)
: <Result_Type> { <Unif_Clauses> }

<Unif_Clauses> ::= <Clause> I
default - < U nif_Exprs >

<Clause> ::= <Schema> - <Unif_Exprs> I
<Schema> - <Unif_Exprs> ; <Clause> I
<Schema> - <Unif_Exprs> ; default - <Unif_Exprs>

<Unif_Exprs> ::= <Unif_Expr> I
<Unif_Expr> <Unif_Exprs>

<Uni(_Expr> ::== <Number> I
<String> I
<Identifier> I
<Truth_ Value> I
<Function_Name> (<Uni(_Par_List>)

<Unif_Par_List> ::= <Unir_Exprs> I
<Unif_Exprs> , <Unif_Par_List>

<Schema> ::= <String> I
<Identifier> I
<String> <Schema> I
<Identifier> <Schema>

14

Unification can be intuitively looked at as being pattern matching. In Kaviar,

unification is restricted since matching is done at only the top-most. level. In other

words, the pattern must be at the <Rewrite_Rule> level. None or the nonterminals in

the <Rewrite_Rule> are expanding when trying (or a match.

All unification functions are unary since otherwise it would be impossible to tell

what the <Schema> o(a given <Clause> should be unified against.

The next section describes how to build a <Schema> so that the interpreter will

be able to successfully unify expressions.

1.2.3.2.1. Finding a Unifier

Finding a unifier consists of finding an expression (or each identifier symbol occur

ring in the <Schema> so that when these expressions are substituted (or their -~spec

tive identifiers the value o(the original parameter results. To do this successfully, the

16

<Schema> must mimic the form of the alternatives of the type.

Ideally, there should be a <Clause> for each alternative of the type so that all

possible derivations of the type may be handled. The <Schema> is built by specifying

a string for every terminal symbol in the <Rewrite_Rule> and an identifier for every

nonterminal symbol.

The definition of S-expressions was given as:

type s-expr
{

<atom> - <atom:a>;
<list> - "(" <s•expr:car> "." <s-expr:cdr> ")11

}

A unification function which reverses arbitrary S-expressions would have the func

tionality:

reverse(s-expr) : s-expr

so the schemas of the c1auses should mimic the alternatives of ,-ezpr since this is the

type of the parameter.

The right hand side of the alternative <atom> has only one nonterminal, so the

schema would consist of only one identifier. Reversing an atom yields itself so the

<Clause> would be:

atom - atom

The right hand side of the second alternative, <list>, contains terminal and non-

terminal symbols. Working from left to right, simply copy terminal symbols and assign

nonterminal symbols distinct identifiers. So for <list> the <Schema> would be:

"(II I 1 II•
11 I 2 11

) II

Reversing a list requires concatenating the reverse of the tail end of the list with the

head of the list. Thus the complete function would be:

16

reverse(s-expr) : s-expr
{

atom - atom;
11
(" , 1

11
." , 2

11
)" -

11
(" reverse(, 2) 11

." reverse(, 1) 11
)"

}

The interpreter finds a unifier by going through the <Unif_Clauses> of the func

tion one by one trying to find which <Schema> the value of the parameter can be

unified again.st.

The alternative the parameter value wa., derived from is what the -<Schema> 1s

compared to. For example, the alternative the terminal string 11
("

11x" 11
."

11y" 11
)" was

derived from is:

<list> - 11
('' <s-expr:car> "." <s-expr:cdr> 11

)
11

Identifiers can be unified against nonterminal symbols and terminal strings must match

exactly.

If unification can take place, the interpreter proceeds to evaluate the

<Unif_Exprs> to the right of the arrow, binding any identifiers in the <Schema> to

the value of the subtree the nonterminal they stand for derives. It makes sense that the

only identifiers that can appear in the <Unif_Exprs> are those that appeared in the

<Schema>.

If the reserved word default is found instead or a <Schema> the <Unif_Exprs>

to the right of the arrow will be evaluated immediately.

If no <Schema> can be unified against the interpreter will indicate failure.

Assuming a unifier is found, the interpreter goes on to evaluate the unification

expressions. The next section describes this.

1.2.3.2.2. Evaluating Unification Expreuion1

The unification expressions are evaluated in the exact same manner as recursive

expressions, except for the fact that the selector functions cannot be used.

17

Once all the types and functions are defined there must be some way or using all

these definitions. The next section describes the invocation expressions.

1.2.4. Invocation Expreuion1

The BNF of the invocation expressions is:

<lnvocation_Exprs> ::= <lnvoc_Expr> I
<lnvoc_Expr> ; <Invocation_Exprs>

<lnvoc_Expr> ::= NI I
<String> I
<ldentiller> I
read (<Typed_ Variable_List>) I
<Function_Name> (<Parameter_List>)

<Parameter_List> ::== <Parameters> I
<Parameters> , <Parameter_List>

<Parameters> ::== <Parameter> I
<Parameter> <Parameters>

<Parameter> ::== <String> I
<Number> I
<Identifier> I
<Truth_ Value> I
<Function_Name> (<Parameter_List>) I

Input may be prepared for a Kaviar program by placing sentential forms in a data

file, each one terminated by the character 11
.". The values may be read from the data

file by issuing a read{ i 1 : t 1 , ... , i 11 : t,.) invocation expression. The value read will be

associated with the identifier ii if its type is indeed ti.

For example, the data file for the read statement:

read(, 1 : s-expr, , 2 : s-expr)

might look like:

11(11 IIX !I II• II "y II II)" •

"y" .

When a string is given as an invocation expression it will simply be written -to stan

dard output. Similarly, when an identifier is given the value associated with it by some

read statement will be written to standard output.

18

When NI is encountered a newline will be written to standard output.

As in interpreting recursive and unification expressions, parameters to a function

are first evaluated, if necessary, and then the function is invoked. Upon return, the

result of the function will be written to standard output.

1.2.4.1. Preparing Input for a Kaviar Program

Since all terminal symbols, except the constants of type Nat and .Boo/, must be

quoted in a data file, typing all the quotes can be quite tedious. A program named

prepare is provided to rid this annoyance.

Prepare reads from standard input and writes to standard output. It quotes all

terminal symbols except constants or the predefined types and the character, 11
•

11
, which

separates terminal strings from one another. It leaves quoted symbols untouched.

Suppose a data file containing terminal strings or type ,-ezpr is required. Then

input to prepare might look like:

(X 11
•

11
(y 11

•
11 X)).

(y".11x).

Note that since the 11
•

11 is used to separate symbolic expressiou from one another it

must be quoted to that it is not mistaken for the character that separates terminal

strings from one another. The output or prepare would be:

"(II "x II II." II(" lly" "." "x II ")" ")" •

"(II lly H II• II "x II II) 11 •

1.3. Built in Functions

There are several built in r unctions available. The ba.,ic arithmetic functions all

have two parameters of type Nat with result type Nat. They are:

add(x, y)
subtract(x, y)
m utiply(x, y)
divide(x, y)

/• X + y
/• X. y
/• X • y

19

Divison is integer division in which the fractional part is truncated. The expression

tlivide(z,11) produces the remainder when z is divided by II, and thus is zero when 'I/

divides z exactly.

The other built in functioll5 take two arb,uments of type Nat and produce a Boo/

result. They are:

eq(x,y)
ne(x,y)
le(x,y)
lt(x,y)
ge(x,y)
gt(x,y)

1.4. How to Run a Kaviar Program

A Kaviar source program is expected to come from standard input. All output is

directed to standard output. There are three options available.

The -q option removes double quotes from values the invocation expressions write

to standard output. This makes the output look tidier.

The -, option stops sub-type checking. In normal circumstances the interpreter

verifies that something is a sub-type by evaluating a predicate. When this option is

given it will bypa~ evaluating the predicate. Once a program is f uJly debugged this

option might be used to enhance the speed of the interpr~ter.

And finally there is the -d option. Ir the Kaviar program has any read statements

in it the interpreter expects that a data file has been prepared. The name of this file is

to be given immediately after the tl as m:

-dname

20

1.6. Implementation Restriction• and Details

The following are restrictions which have been arbitrarily set. To change these lim

its, the constants need only be changed and the interpreter recompiled.

No more than the first SIG_CHARS (12) characters of an identifier is significant,

although more may be used.

At most MAX_CF _TYPES (50) and MAX_SUB_TYPES (50), context free and

sub-types, respectively, may be defined in any one source program. ;A.lso1 at most

MAX_FCN (50) functions by either method may be defined.

The maximum number of parameters that a recursive function may be defined with

is MAX_P ARS (IO).

The maximum length of a string is MAX_STR_LEN (256) counting the opening

and closing quotes. There is currently no way of including double quotes within a string.

The character % must not be used in strings since the Unix routine print/ is used for

output and the % introduces a conversion specification. Also, the character \ must not

be used in strings since it introduces an escape sequence which could cause the inter

preter to malfunction.

The interpreter does no checking for overflow in evaluating the built in functions.

Behaviour of the interpreter in these cases is system dependent.

Although the symbol - has been used throughout the BNF for an arrow, the

implementation recognizes an arrow as the concatenation of the characters = and >.

Similarly, the symbol U and n have been used for logical or and and, respectively, but

the implementation recognizes the characters I and & for these connectives.

1.8. Location or the Interpreter

The interpreter lives in the directory /ubc/guest/kanda/kaviar.

21

1.7. Sample Programs

Some sample programs are located in the directory /ubc/guest/kanda/tests.

Blbllography

(Syrotiuk,1984j.

Syrotiuk, V.R., "A Functional Programming Langua,e with Context Free Grammars as

Data Types," M.Sc. TAe•ia, Deportment of Computer Science, Univerril1 of BrilvA Colum

hia, October, 1984.

1

Abstract

Specifying data structures is important in programming languages. One approach

uses initial algebr.1.5, but constructing specifications using them is difficult and hampered

by restrictions. The recursive term algebra approach, uses recursive definition along

with basic operations implied by the definition itself to induce an algebra of terms. Such

a recursive definition may be transformed into an unambiguous context free grammar.

These grammars are used to define data structures in a functional programming

language named Kaviar. Provisions are made for non-context free data structures as

well. This approach avoids the difficulties encountered in using the initial algebra

method.

11

Table of Contents

Abstract ... 11

List of Tables viii

List of Figures ... ! ,........ ix

Acknowledgements x

1. Introduction 1

1.0 Framework ... 1

1.1 An Alternative Approach 1

1.2 Implementation 2

1.3 Evaluation of the New Approach .. 2

1.4 Overview 2

2. Formal Specifications of Data Abstractions 3

2.0 Introduction 3

2.1 The Role of Specifications 3

2.2 The Specification Unit ... 4

2.3 The Need for Data Abstraction ... 5

2.4 Properties of Specifications of Data Abstractions 8

2.5 Criteria for Evaluating Specification Methods .. 10

2.6 Algebraic Preliminaries .. 11

2.6.1 Signatures ,!... 11

2 .6.2 Algebras 12

Ill

IV

2.6.3 Homomorphisms and Isomorphisms 13

2.6.4 Word Algebra., and Initial Algebras .. 15

2.6.S Defining Specifications Using Initial Algebra., ... 17

2.6.6 Further Reading .. 18

2.7 The Programming Language OBJ ... :···.. 19

2.7.1 The Structure of OBJ Objects _... 19

2.7.2 Definition of OBJ Operaton ... ;........ 20

2.7.3 The Form of OBJ Equations .. 21

2.7.4 Evaluation in OBJ ... 22

2.7.5 Other Features of OBJ .. 23

2.8 Introducing a New Technique ,... 23

· 3. An Alternative Approach .. 24

3.0 Introduction 24

3.1 Evaluation of the Algebraic Approach 24

3.1.1 Formality and Constructibility ... 24

3.1.1.1 The Problem of Infinite Sets of Equations 24

3.1.1.2 Problems when the Church-Rosser Property is Absent 27

3.1.2 Comprehensibility and Minimality .. :............. 28

3.1.3 Range of Applicability and Extensibility .. 28

3.1.4 Conclusions of the Evaluation ~ ;..................... 28

3.2 The Recunive Term Algebra Approach 29

3.2.1 Term Algebra., versus Initial Algebras .. 29

3.3 Data Types a., Context Free Gramm an .. --: ... 32

3.4 Sub-Data Types ... 35

V

3.5 A Language Based on this Approach ... 36

4. The Functional Programming Language Kaviar ... 37

4.0 Introduction 37

4.1 Lexical Conventions ... 37

4.1.1 Identifiers ... 37

4.1.2 Keyword.8 ... 37

4.1.3 Constants ... 38

4.1.4 Strings .. 38

4.1.5 Separators .. 38

4.2 The BNF or Kaviar .. 38

4.2.1 A Kaviar Program .. 38

4.2.2 Type Definitions .. 39

4.2.2.1 Context Free Data Types .. 39

4.2.2.2 Sub-Data Types .. 41

4.2.3 Function Definitions ... 43

4.2.3.1 Recursive Functions .. 43

4.2.3.2 The Parsing Method or Earley .. 45

4.2.3.2.1 Conventions .. 46

4.2.3.2.2 Terminology .. 46

4.2.3.2.3 Informal Explanation or Earley's Algorithm 47

4.2.3.2.4 Earley's Parsing Algorithm ... 48

4.2.3.2.5 Example or the Operation or Earley's Algorithm 50

4.2.3.2.6 Modifications Required. to Earley's Parsing Algorithm-;-.... 51

4.2.3.2.7 Type Checking Sub-Data Types .. 53

VI

4.2.3.2.8 Interpreting a Recursive Function•......••........................ 53

4.2.3.2.9 Interpreting Recursive Expressions 54

4.2.3.3 Unification Functions 56

4.2.3.4 Finding a Unifier ... 57

4.2.3.5 Evaluating Unification Expressions ... 59

4.2.4 Invocation Expressions .. 59

4.2.5 Built in Functions ... _;.............. 60

4.3 How to Run a Kaviar Program .. 61

4.4 Implementation Restrictions and Details ... 61

4.5 Evaluating this Approach .. 62

5. Evaluation or the Recursive Term Algebra Approach 63

5.0 Introduction 63

5.1 Formality and Constructibility 63

5.2 Comprehensibility and Minimality .. 68

5.3 Range of Applicability 68

5.4 Extensibility 68

5.5 Possible Research ... 69

6. Further Research and Conclusions 70

6.0 Introduction 70

6.1 Possible Extensions to Kaviar 70

6.1.1 Paramete1·ized Types•...........•...•.......•.•.......•.............•....... 70

6.1.2 N-ary Unification Functions 71

6.2 A Possible Application of this Method ... -.::.. 71

6.3 Conclusions 72

vii

Bibliography ... 73

List of Tables

Table I: Parse Lists for G with w=(x.y) ... 51

Vlll

r

List of Figures

Figure 1: A c9ncept and all programs which implement the concept correctly

Figure 2: A concept, its specification and all programs derived from the

3

specification 3

Figure 3: OLD_STACK before PUSH ... 6

Figure 4: NEW _ST ACK after PUSH 6

Figure S: Sequence of stack configurations 26

ix

Acknowledgements

My thanks to Dn. Akira Kanda and Harvey Abramson for their guidance, patience

and cooperation, not to mention financial support. The enthusiasm and encouragement

of my parents, Vera, Alan and Myron kept my motivation high. I could not ask for

better friends than I have found in Steve, Denise, Brent and Bob. Gracia., Eric, por lo

tiempo pasado, ya lo tiempo que ha de venir.

X

Introduction

1. Framework

Specifications provide a means of abstracting ideas to reduce a problem to a more

manageable and comprehensible size, making more apparent solutions to problems.

In programming languages, the function and procedure are commonly seen abstrac

tions. Recently, an additional, powerful aid to abstraction ha., been identified - the data

abstraction. A specification of a data structure should supply a representation indepen

dent characterization of the structure so the user need not be concerned with implemen

tation details.

Six criteria which a technique for specifying such a characterization should satisfy

are outlined.

The development of the initial algebra technique is described along with a program

ming language, 0 BJ, which uses initial algebras for specifying data types.

1.1. An Alternative Approach

In evaluating the initial algebra approach for the specification of data types it is

found that such specifications are often very difficult to construct. Indeed, there are

several restrictions imposed on the user.

These problems stimulated the search for an alternative method of specification.

The recursive term algebra approach recunively defines not only a set of terms, but also

basic operations over them. In other words, recursive definition induces an algebra of

terms. The same algebra may be generated by an unambiguous context free grammar.

Hence, context free grammars are used to specify data types.

The treatment of non-context free data structures is also discussed.

1

2

1.2. Implementation

A functional programming language, named Kaviar, ha., been designed and imple

mented. It uses context free grammars for the specification of data types. Sub-types,

which may be non-context free, are defined by means of predicates which restrict some

context free type.

Functions may be defined by one of two methods: by recursion, or by unification.

A full description of the language, some examples, and the operation of the inter

preter is given.

1.3. Evaluation of the New Approach

The rec11l'!ive term algebra approach is evaluated with respect to the criteria.

Specifying data types using this approach overcomes the difficulties or the initial algebra

method.

1--'• Overview

Chapter 2 provides the framework. Chapter 3 first evaluates the initial algebra

approach. Then, the recursive term algebra approach is formally presented. The pro

gramming language Kaviar is described in Chapter 4. Chapter 5 evaluates this new

approach. Finally, Chapter 6 proposes possible extensions to the method, an application

of the method and some conclusions.

2. Formal Specifications of Data Abstractions

2. Introduction

This chapter introduces the notion or specifications in connection with abstract

data types. Some criteria are established for evaluating the practical potential or

specification techniques. One particular technique, the initial algebra approach is dis

cussed along with a programming language based on it, OBJ.

2.1. The Role of Specifications

Programming is a problem solving activity. Consequently, a correct program

implements a concept that exists in someone's mind. The concept can usually be imple

mented by many programs a situation depicted in Figure 1, but, realistically, only a

small, finite number are or interest.

Concept
l · · · l

P 1 · · • P,.

Figure 1: A concept and all programs
which implement the concept correctly.

Since programs can become quite complex, a ,pecification or what a program is

intended to do should be given before the program is actualJy coded. This philosophy is

described by Figure 2.

Concept
l

Specification
l · · · l

Qi ... Q,,.

Figure 2: A concept, its specification and
all programs derived from the specification.

The purpose or the specification is to aid the understanding of the concept involv:ed, and

to increa.,e the likelihood that the program, when implemented, will perform the

intended function. So far, no mention of what exactly a specification is and how it can

3

4

satisfy these goals has been given. The next sections serve to answer these questions.

2.2. The Specification Unit

The nature of a specification 1s largely dependent on the program unit being

specified. A specification of too small a unit does not correspond to any useful concept,

just as the program comment

x := x + l; /• Increase x by 1 •/

does not convey much information. The specification unit should correspond naturally

to a concept, or ab,traction, found useful in thinking about the problem to be solved.

In many of the existing programming languages there appear several implicit

abstractions which are built into the language. The notions of arrays and records are

examples of these, but perhaps the most commo~ly wied kind of abstraction is the func

tional or procedural abstraction in which a parameterized expression or group of state

ments is treated as a single operation. When a function or procedure is made wie of, the

programmer 1s concerned only with what it does, not with the algorithm that is exe

cuted.

Multiprocedure modules are also important in system design. Here, procedures are

grouped together because they interact in some way. They may share certain resources

as well as information. Considering the entire group of procedures as a module permits

all information about the interactions to be hidden from other modules. Other modules

obtain information about the interactiom only by invoking the procedures in the group.

The purpose of hiding not only requires making visible certain essential properties of a

module but making inaccessible certain irrelevant details that should not affect other

parts of a system.

Although functions, procedures and modules offer a powerful aid to abstraction

they alone are not enough. An additional kind of abstraction has been identified - the

data abatraction. It is comprised of a group of related functiom or operations that a.ct

5

upon a particular class of objects. There is one constraint - the behaviour or the objects

can be observed only by applications of the operations. As with other methods of

abstraction, the programmer is not concerned with how the data objects are represented.

Instead, the operations on the objects are regarded as atomic even though several

machine instructions may be necessary to perform them.

Some examples of data abstractions are segments, processes, files, and abstract dev

ices of various sorts, in addition to the more ordinary stacks, queues, and symbol tables.

Multiprocedure modules are also used in the implementation of data abstractions.

Each procedure in the module implements one of the operations. The module as a whole

implements the specified properties of the abatract type. The word abstract, as used here

refers to a data type that is supposed to be independent of its representation, in the

sense that details of how it is implemented and the representation of the type itself are

to be actually hidden or shielded from the user. The user is provided with certain opera

tions and so only needs to know what they are supposed to do, not how they are done.

Thus, a specification provides a means of describing the abstractions a programmer

can make use or to solve the problem at hand. Since the need and importance or func

tional and procedural abstractions are well known while the need for data abstraction is,

· perhaps, less understood, the next section attempts to explain their necessity.

2.3. The Need (or Data Abstraction

& an example of the problems which crop up when the data abstraction is ignored

and the operations in the group are given input/output specifications independently of

one another, consider the following specification for the operation PUSH for stacks of

integers.

PUSH : STACK X INTEGER - STACK

The input/output specification defines the output value of PUSH (the stack object

returned by PUSH) in terms or the input values of PUSH (a stack object and an

6

integer). This can be done by defining a structure for stack objects and then describing

the affect of PUSH in terms of this structure. In Pascal, a stack of integers might be

defined as:

type STACK== record
TOP : integer;
DATA : array [1..100) of integer

end;

where the record selector TOP points to the topmost integer in the stack. Then, assum-

ing PUSH is a function, the meaning of,

NEW_STACK :== PUSH(OLD_STACK, i)

that is, a description of the result of its execution could be stated as 1

for all j { 1 < j < OLD_STACK.TOP
- NEW_STACK.DATA[j] == OLD_STACK.DATAUJ
& NEW _STACK.TOP == OLD_STACK.TOP + 1
& NEW_STACK.DATA[NEW_STACK.TOP)-= i}

In words, and by example, if OLD_STACK is as shown in Figure 3, then executing, say

NEW_STACK = PUSH(OLD_STACK, 4)

results in Figure 4.

TOP:
DATA:

2
1
2

100

TOP:
DATA:

3
1
2
3

100

Figure 3: OLD_STACK before PUSH Figure 4: NEW_STACK after PUSH

That is, all or the entries in OLD_STACK are copied to corresponding index positions in

NEW_STACK, The top or the stack in NEW_STACK becomes one greater than that

or OLD_STACK and then the new top or stack entry is set to the integer input parame-

ter, 4.

1 Ignoring for the moment the behaviour of PUSH when the stack is full, that is, when
OLD_STACK.TOP=-100.

Ir the specification for POP is

POP: STACK - STACK X INTEGER

and, again, assuming POP is a function, the meaning of

i == POP(STACK)

could be stated as:

i == STACK.DATA[STACK.TOP) & STACK.TOP== STACK.TOP - 1

7

There are several things wrong with these specifications. The major flaw is that

they do not describe the concept of stacklike behaviour. For example, a-theorem stating

that POP returns the value most recently PUSHed on the stack can only be inferred

from the details of the specifications. This method of deriving theorems is undesirable

because the programmer must get involved with the detail (which is really implementa

tion information), rather than stating the concept directly.

Another problem is that the independence of the specifications of PUSH and POP

is deceptive. A change in the specification of one is almost certain to lead to a change in

the specification or the other. For example, in addition to being related through the

structure chosen for the stack, the specifications or PUSH and POP are also related in

their interpretation of this structure - the decision to have the selector TOP point to the

topmost integer rather than, say, to the first available slot.

Ir a data abstraction such as ST ACK is specified as a single entity, much of the

extraneous detail concerning the interactions between the operations can be eliminated,

and the effects of the operations can be described at a higher level. Some specification

techniques for data abstractions, such as the initial algebra and recursive term

specification techniques to be presented in later sections, use input/output specifications

to describe the effects or the operations. The difference is these specifications are

expressed in terms of abstract objects with abstract properties instead of the very

specific properties used in the example above.

8

In some instances it may not even be necessary to describe the individual opera

tiom separately. Instead, the effects or the operations can be described in terms or one

another. For example, the effect of POP might be defined in terms or PUSH by

POP(PUSH(stack, i)) - i

which states that POP returns the value most recently PUSHed.

Now that the need for data abstractions has been established there are some pro

perties of them that should be pointed out. The next section presents some of these.

2.-i. Properties of Specifications of Data Abstractions

Specification techniques for data abstractions can be viewed as defining something

very like a mathematical di~cipline. Just the way in which number theory arises from

specifications, like Peano's axioms for the natural numbers, the discipline arises from the

specification of the data abstraction. The tlomain of the discipline, the set on which it

is based, is the class of objects belonging to the data abstraction, and the operations of

the data abstraction are defined as mappings on this domain. The theory of the discip

line consists of the theorems and lemmas derivable from the specifications.

The information contained in a specification of a data abstraction can be divided

into two parts. Information about the actual meaning or behavior of the data abstrac

tion is described in the ,emantic part. This description is expressed using a vocabulary

of terms or symbols defined by the 1vntoctic part.

The first symbols defined by the syntactic part of a specification identify the

abstraction being defined and its domain. Usually, an abstraction has a single class of

defined objects, and, typically the same symbol denotes both the abstraction and its

class of objects. Thus the objects belonging to the data abstraction ST ACK are referred

to as STACKs.

The remaining symbols introduced by the syntactic part name the operations or the

abstraction and define their input/output specification. For example operations of the

stack abstraction might include:

CREATE: - STACK
PUSH : STACK X INTEGER - STACK
POP: STACK - STACK
TOP : ST ACK - INTEGER
EMPTY : STACK - BOOL

9

Some observations should be noted about this example. First, more than one

domain appears in the specification. In practice, the specifications for many interesting

data abstractions include more than one domain. Normally, only one of these, here

STACK, is being defined with the remaining domains, here INTEGER and BOOL, and

their properties are assumed to be known.

The second observation is that the group of oper~tions can usually be partitioned

into three categories. The first is those consisting or operations that have no operands

belonging to the class being defined, but which yield results in the defined cla.-is. This

includes the constants, represented as argumentless operations, such a.-i CREATE. The

second category consists of those operations, like PUSH and POP, which have some of

their oper~nds in, and yield their results in, the defined class. Those operations, TOP

and EMPTY for stacks, whose results are not in the defined cla.-is make up the third

category.

A third observation is that the input/output specification or an operation does not

necessarily have to correspond to the way the operation would be programmed. For

example, POP might be programmed in a way which removes a value from a stack, and

returns both the new stack and the value.

The semantic part of the specification uses the symbols defined in the syntactic

part to express the meaning of the data abstraction. Two different approaches are used

in capturing this meaning: either an abstract model is provided for the class of objects

and the operations are defined in terms of the model, or the clai,s of objects is defined

implicitly through descriptions of the operations.

10

Equipped with the idea of what a specification is, there remains the problem or

devising a method or using them. The next section establishes some criteria for evaluat

ing such methods.

2.5. Criteria for Evaluating Specification Method,

Lisk.ov and Zilles [Lisk.ov&Zilles,1978) have outlined a number or requirements an

approach to specification should satisry to be userul. The criteria, described below,

include practical as well as theoretical considerations.

This first criterion should be satisfied by any specification technique.

1) Formality. A specification method should be formal. Specifications themselves

should be written in a notation which is mathematically sound. This allows

the formal specification techniques to be studied mathematically, so that other

interesting questions such as the equivalence of two specifications may be set
.

and answered. For those interested in program verification this is especially

important.

The next three criteria address the construction of specifications.

2) Conatructibility. It should be possible to construct specifications without

much difficulty. Two aspects of the construction process are of interest here:

the difficulty or constructing a specification in the first place, and the difficulty

in knowing that the specification captures the concept.

3) Comprehenaibility. Properties or specifications which determine comprehensi

bility are size and clarity. Clear, small specifications are desirable since they

are usually easier to understand than larger ones.

4) Minimality. It should be possible, using the specification method, to construct

specifications which describe the properties or the concept precisely and unam

biguously in a way which adds as little extraneous information as possible. In

11

particular, a specification 11hould say what functions a program should per

form, but little, if anything, about how the functions are performed.

Flexibility and generality are is11ues addressed by the last two criteria.

5) Range of Applicability. There is a cla1111 of concept! a.,11ociated with each

11pecification technique which can be described in a natural and straightfor

ward way, thus satisfying the criteria dealing with construction. Concepts

outside of this clas11 can only be defined with difficulty, if they can he defined

at all. Clearly, the larger the class of concepts which may be easily described

by a technique, the more u11eful the technique.

6) E:itenaibility. It i11 desirable that a minimal change in a concept result in a

similar small change in its specification. This criterion especially impacts the

constructibility of specifications.

A position has been reached where a specification technique may be examined. The

technique of interest is an algebraic one. It is the precursor to the recursive term algebra

technique introduced in Chapter 3.

2.6. Algebraic Preliminaries

Algebraic ideas have shown up in connection with abstract data types. Before intro

ducing such a specification technique it is perhaps worthwhile reviewing some algebraic

fundamentals. Those already familiar with these fundamentals can move on to §2.7 with

no loss of continuity.

2.8.1. Signatures

In programming terms, a ,ignature corresponds to a collection of declarations,

declaring types, constants and procedures:

INTEGER, BOOL, STACK : type

CREATE : function() result STACK
PUSH: function(STACK,INTEGER) result STACK
TOP : functio:n(STACK) result INTEGER
POP : function(STACK) result STACK
EMPTY : function(STACK) result BOOL

12

Notice that the types are just named, nothing is said of what they consist of.

Bodies of procedures are not given. They can be viewed u being like the / or ward refer

ence, of Pascal. Constants are regarded as functions with no arguments.

Henceforth, following usual mathematical practice, the word ,art will be used for

type, and operator for function names.

More formally, a signature E, is a pair <S,O> consisting of a set of sorts

S ={, 1 · • • •n } , and a set or operators 0={ w1 • • • Wn } each with given input and out

put sorts. That is, the operators have the form S • XS. For example, the operations or

the stack abstraction may include:

CREATE: - STACK
PUSH: STACK X INTEGER - STACK
TOP : STACK - INTEGER
POP : STACK - STACK
EMPTY : STACK - BOOL

Notice this data type, a stack or integers, involves several different sorts, including

truth values or sort BOOL, integers of sort INTEGER, and stack states or sort STACK.

All things or sort ,i are lumped together into a set called the carrier of sort 'i.

Unfortunately, signatures alone are not enough to specify a data type since they do

not fully describe what is going on. For this, an algebra is needed.

2.8.2. Algebru

When an usociation between some particular set with the sort and some particular

function with each operator is made an algebra is the result. That is, an algebra is a

signature together with a function taking sorts to sets and another function taking

operators to functions.

13

An 1-inde-zed family of ,et, is a function from / -to sets. If NATURAL={0,1,2, ... }

then a function mapping O to {a,b}, 1 to {a,c,d}, 2 to 0 and so on is a NATURAL

indexed r amily of the set of letters.

Then, more formally, if E is a signature, a E-algdra A is an S-indexed family of

sets, IAI, denoting the carrier of A, together with an S • XS-indexed family of func

tions wu,, :nu,,-(IA , .. -IA l,)whereuES',and,es.

An ,-sorted E-algebra A is, essentially, a collection As of carriers, one for each ,

1n a set S of sorts together with a collection of operations, that is functions, among

them.

The index set S for the stack example above is {INTEGER,BOOL,STACK}. An

S-sorted algebra A for this sort would have three carriers ArNTEGER, AsooL, and,

AsTACK, and some of its operators, more precisely stated, are

PUSH : AsrACK X ArNTEGER - AsrAcK
TOP : AsTACK - ArNTEGER
CREATE : - AsrAcK

Each wEOu,, is called an operation of A and is named by w. n>.,, is the set of

names of constants of A of sort ,. For example, n>.,STACK ={CREATE},

nSTACK,/NTEGER ,STACK-={PUSH }, OsTACK,INTEGER ..,.{TOP} and n.,, ==0 otherwise.

For the characterization of the data type to be independent of representation the

algebra must be initial. Before discussing what this means the notions of homomor

phism and isomorphism should be understood.

2.8.3. Homomorphisms and Iaomorphism11

Suppose there are two algebra., which are rather similar in that evaluating in one

gives analogous results to evaluating in the other. If in the first algebra evaluating an

expression like plua(z,time,(z,u)) with variable s bound to a and J/ bound to::6 gives

result c, then evaluating the same expression in the second algebra with the correspond-

14

ing binding, z to /(a), g to J(b), should give the corresponding result J(c). It is then

said that / is a homomorphiam from the first algebra to the second one.

The integers modulo n consists of a set of n elements {0,1, ... ,n-l} and a.n opera

tion called addition modulo n which may be described as follows. Imagine the numbers

0 through n-1 as being evenly distributed on the circumference of a circle. To add two

numbers h and k, start at' h and move clockwise k additional units around the circle.

h+k will be the end point.

For example, the integers modulo 6 can be transformed into the integers modulo 3

by the function /,

(0 1 2 3 4 5)
/=012012

as may be verified by comparing their tables below.

+ 0 1 2 3 4 5 + 0 1 2 0 1 2
0 0 1 2 3 4 5 Replace 0 0 1 2 0 1 2
1 1 2 3 4 5 0 X 1 1 2 0 1 2 0
2 2 3 4 5 0 1 by 2 2 0 1 2 0 1
3 3 4 5 0 1 2 f(x) 0 0 1 2 0 1 2
4 4 5 0 1 2 3 - 1 1 2 0 1 2 0
5 5 0 1 2 3 4 2 2 0 1 2 0 1

Eliminating duplicate in(ormation, for example 2+2=1 appears four separate times

in the table, gives:

+ 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

The dictionary says that two things are iaomorphic if they have the ,ame ,truc

ture. Consider the two groups G 1 and G 2 with their operations denoted by + and •,

respectively.

+ a 1 2 • e a b
0 0 1 2 e e a b
1 1 2 0 a a b e
2 2 0 1 b b e a

G 1 a.nd G 2 are different but isomorphic. Indeed, if in G 1 0 is replaced by e, 1 by a and

15

2 by b, then G 1 coincides with G 2 • In other words there is a one-to-one correspondence

(~ 1 ~)
e a I,

transforming G 1 to G 2• It is called an isomorphism from G 1 to G 2•

So, if two groups are isomorphic, this means there is a one-to-one correspondence

between them which transforms one of the groups into the other. Now if G and H are

any groups, it may happen that there is a function which transforms G into H although

this function is not a one-to-one correspondence. In this case, the function is a

homomorphism.

More exactly, if G and H are groups, a homomorphism from G to H is a function

/: G - H such that for any two elements, a and 6 in G:

f(ab) == f(a)f(b)

If G and H are groups, a bijective2 function / : G - H with the property that for

any two elements a and 6 in G

f(ab) == f(a)f(b)

is called an isomorphism from G to H.

Now with some idea of what homomorphisms and isomorphisms are, it is possible

to return to the problem of finding a unique characterization of a data type using alge

bras.

2.8.4. Word Algebras and Initial Algebras

For any algebra there is a word algebra with its elements for a given sort consisting

of all the expresBions in the signature denoting elements of that sort. For example, for

the number signature:

S == {NUMBER}

2 A funet,ion I : A-B iii called bijeet,ive ii it ii both injective &nd surjeetive. Tha.t is, ii ea.eh ele
ment ol A ha..s exactly one partner in B a.nd each element in B has exactly one pa.rtner in A

n>.,NUMBER = {ZERO,ONE}
nNUMBEn ,NUMBER ,NUMBER = {PLUS,TIMES}
nu ,, = 0, otherwise

16

the set or numbers of the word algebra would be "ZERO", "ONE",

"PLUS(ZERO,ZERO)" and so on. The operations build larger expressions from smaller

ones. The expressions could be reverse Polish, represented by trees or whatever. The

representation is not the issue because all these expression algebras will be isomorphic.

The key idea is that r or any given interpretation of the operators there is a unique value

for each expression. The interpretation is just another E-algebra, A, aitd the evaluation

of the expressions is just a unique homomorphism from the word algebra to A. An alge

bra having this unique homomorphism property is called the initial S-algebra.

In other words, / is an initial E-algebra if and only if for any E-algebra, A, there

is a unique homomorphism /:I-A.

The word algebra is initial because there is just one way of creating the given

expression using the operators described. Thus 11TIMES(ZERO,PLUS(ZERO,ONE))11

can only be created by applying the operator TIMES to the two expressions "ZERO"

and "PLUS(ZERO,ONE)".

Initiality characterizes the isomorphism class or an object. This means it character

izes an object abstractly, that is, independent of representation or only in terms of its

structure.

As another example, the data type of natural numbers, NATURAL, can be charac

terized by the initial E-algebra:

S = {NATURAL}
n>.,NATU1UL = {0}
nNATURAL,NATURAL == {succ}
nu,, = 0, otherwise

The basic idea is that every natural number and all further operations of interest

upon natural numbers can be expressed in terms of just two basic ones, SUCC and 0.

lnitiality provides the key to unique characterization. There is no committment to

17

thinking or integers as strings or decimal, or binary, or Roman characters. To know the

natural numbers, is to know the operations occurring in them and how they are com

bined. Further operations are obtained by recursive definitions expressed algebraicalJy

with equations, and based on initiality.

Given all or these definitions the next section describes how a specification for a

data type is constructed.

2.6.6. Defining Specifications using Initial Algebras

In the initial algebra approach a ,pecification is defined to be a triple <S,O,E>,

where S is the set of sorts, n is the set of operators of the type and E is a set or equa

tions which the algebra is to satisfy. The initial algebra that satisfies only what E

requires and no more is chosen.

For example, the operators and equations or the stack abstraction are given below:

CREATE : - STACK
PUSH : STACK X INTEGER - STACK
POP : STACK - STACK U {ERROR}
TOP : STACK - INTEGER U {ERROR}

TOP(PUSH(s, i)) = i
POP(PUSH(s, i)) = s
TOP(CREATE) = ERROR
POP(CREATE)= ERROR

The set or equations specify when two expressions yield the same value. If an equa-

tion contains variables, such a., , and i, the equation holds whenever each variable is

replaced by aif expression or the correct type. For example, the third equation

POP(PUSH(s, i)) =- s

specifies that

POP("PUSH(CREATE, 1)) = CREATE , and
POP(PUSH(PUSH(CREATE, 1), 2) = PUSH(CREATE, l)

The equations can be used in combinations to derive all the expressions which compute a

particular value forming the equivalence class representing that value.

18

Using this approach, two expressions yield distinct results unless there is some

sequence of applications of the equati(?ns which shows the expressions to be equal.

The definitions or some data abstractions require the use of conditional equations,

that is, equations which do not hold for all possible substitutions o(expressions for the

variables, but which hold only (or substitutions which satisfy some condition. The

specification below (or integer sets illustrate_s conditional equations.

EMPTY: - SET
INSERT: SET X INTEGER - SET
REMOVE: SET X INTEGER - SET
HAS : SET X INTEGER - BOOLEAN

INSERT(INSERT(s, i), j) = if i=j then INSERT(s, i }
else INSERT(INSERT(s1 j), i)

REMOVE(INSERT(s, i), j) == if i==j then REMOVE(s1 j)
else INSERT(REMOVE(s1 j), i)

REMOVE(EMPTY, j) = EMPTY
HAS(INSERT(s, i), j) = if i=j then TRUE else HAS(s, j)
HAS(EMPTY, j) = FALSE .

The second equation is a good example o(a conditional equation. There are two

distinct outcomes that are possible when a REMOVE follows an INSERT. If the integer

being REMOVEd is the same as the one being INSERTed, then that INSERT has no

effect. If, however, the integer being REMOVEd is distinct· from the integer INSERTed,

then the REMOVE and the INSERT can be permuted.

2.6.6. For Further Help

If these brief explanations have not succeeded in their intent, the following ref cr

ences could be con.suited for further examples and elucidation: (Meseguer&Goguen,1983},

[Burstall&Goguen,1982J, [Goguen,Thatcher&Wagner,1978}, and

(Goguen,Thatcher,Wagner&Wright,1975}.

An overview of a programming language developed on these algebraic ideas will

now be given.

19

2.7. The Programming Language OBJ

In OBJ (Goguen&Tardo,1979), algebras are the method for specification of data

types. -This is ba.,ed on the notion that algebraic isomorphism captUl'es independence of

representation and the idea that initial algebras embodies it.

OBJ resembles more traditional languages in permitting definitions of operations

and then evaluation of expressions. It differs in ways including: operations are defined in

modules (objects) and have a different character in that operator symbols do not denote

procedures in the usual sense, because they are defined implicitly by algebraic equations

(using the initial algebra model). There is no assignment function, nor any assignable

variables. There are no side effects, statements, or gotos. It is very strongly typed, sup

ports sub-types and handles coercions, overloaded operators and errors in a rigorous, sys

tematic manner.

The next section presents how data types, or objects, are defined in OBJ.

2.7 .1. The Structure of OBJ Objects

The syntax for objects is inspired by the notation r or presenting initial many sorted

algebras. It is intended that an object denote a particular many sorted algebra.

An OBJ object is a means for declaring an abstract data type. There are three built

in objects, INT for integers, BOOL for booleans and ID for identifiers. User defined

objects begin with keyword OBJ and end with JBO. Objects are subdivided into sort,

operation and · equation sections. The sorts and operators together constitute a signa

ture. Eacb. operator declaration indicates its argument sorts, its target sort and its syn

tactic form. The equation section begins with a declaration or the variables to be used,

including their sorts. A skeleton of the structure or an object is:

OBJ <name>

JBO

SORTS <new sorts> / <old sorts>
OK-OPS ...
FIX-OPS ...
ERR-OPS ...
VARS ...
OK-EQNS ...
EQNS ...
ERR-E<~NS ..

20

The SORTS line gives the sort names involved in the object. There are three

different types of operators; OK-OPS are used .for ordinary situations, FIX-OPS are for

recovery situations and ERR-OPS are for exceptional or error situations.

The next section describes how these operators may be defined.

2.7 .2. Definition of OBJ Operator■

Operators are used in expressions, where an expression is either a constant opera

tor, or . an operator together with its arguments (which are also expressions). Every

expression has a sort, the sort of its operator. Operators are declared in a manner com

monly used in algebra:

G: INT, INT - INT
CREATE : - INT

The syntax of the operator is determined by its form to the left of the colon.

Prefix form is assumed, so G would be invoked as G(2,G(4,5)). It is possible to customize

the syntax of operators using underscores to indicate where the respective arguments go.

For example, i(an operator were defined as,

PUSH_ ON_: INT, STACK -STACK

it would be invoked as,

PUSH 2 ON CREATE

Coercions are permitted with the form:

21

indicating S 1 is to be a sub-sort of S 2• Note that the ability to customize syntax is not

only a syntactic issue. The coercion above means that all items, but not necessarily

operations, or sort S 1 are also of sort S 2 which is clearly a semantic statement.

Operating overloading, that is, distinct operaton with the same syntactic (orm, are

permitted:

_ + _: BOOL, BOOL - BOOL
_ + _ : INT, INT - INT

Specifying the signature has now been taken care of, but what of _the equations?

The next section describes their form.

2.7.3. The Form of OBJ Equations

Each variable used in the equations must be listed, following the keyword VARS,

together with its sort, as, for example:

VARS
I, J: INT;
Rl, R2: RECORD;

Equations are pairs of expressions of the same sort separated by an equal sign, such

as (G(0,J)=J). Each equation is of some particular sort and its constituent expressions

must be unambiguous.

Conditional Corm is allowed for equations. The condition must be of sort BOOL

and appears following an IF in the Corm:

(G(I,J) _- J IF (I=-0))

The conditional equation applies only if its conditional expression evaluates to true.

An example of specification of the ractorial (unction is:

OBJ FACTORIAL
SORTS/ INT BOOL
OK-OPS

F: INT -INT
ERR-OPS

NEG-ARG : - INT
VARS

JBO

I: INT
OK-EQNS

(F(0).,. 1)
(F(I) - I • F(I-1) IF (I>0))

ERR-EQNS
(F(I) == NEG-ARG IF (I<0))

22

Now with some knowledge or how specifications are built in OBJ, the next section

describes evaluation.

2.7 ·•· Evaluation in OBJ

OBJ evaluates, that is derives the value or, expressions by using the equations as

rewrite rules. To apply a rule, first find a unifier must be round. This means that the

interpreter tries to find an expression (or each variable symbol occurring on the left side

or the rule so that when these expressiowi are substituted Cor their respective variables,

the original expression results. Ir the expression is conditional, evaluating the condition

after substituting the expressiowi of the unifier Cor the variables must yield true.

When OBJ finds a rule with which it can unify an expression, it replaces the

expression with one it obtains Crom the right side or the rule by substituting the expres

sions or the unifier Cor their respective variable symbols. In most cases, OBJ applies

rules fir.,t to the innermost nested sub-expressions until no more rules apply, that is,

until those sub-expressions are reduced or in what is called normal Corm. For example,

evaluation of F(3) omitting trivial steps, proceeds as:

F(3)
3 • F(2)
3 • (2 • F(l))
3 • (2 • (1 • F(0)))
3•(2•(1•1))
3•(2•1)
3 • 2
6

Evaluation is complicated by the error facility. It has been proven (Goguen,1977) the

above evaluation order correctly implements specifications containing error operators,

provided all ERR-EQNS are tried beCore OK-EQNS.

23

OBJ evaluation computes, for any given expression, a reduced expression represent

ing its equivalence class, and this expression is taken as a representative or the entire

class. For example, the reduced value of expression F(3) is the expression 6.

In visualizing the connection between OBJs operational semantics and its initial

algebra semantics, consider initial algebra semantics in terms of "word" algebras. With

no equations, each word or expression, would denote a distinct value in the intended

semantic domain. The equations identify those expressions which are to have equivalent

meaning in the intended semantic domain.

2.7 .5. Other Features of OBJ

Hidden operators are supported by OBJ. An operator may be declared hidden by

placing (HIDDEN) after its syntactic definition. Hidden operators cannot be used outside

the object in which they were declared, but may be used freely within it.

There are several evaluation modes some of them being: PERMUTING which

remembers intermediate values resulting from successful rule applications to an expres

sion, ~nd RUN-WITH-MEMORY where all intermediate values for all evaluations are

remembered, as though all operators were PERMUTING.

2.8. Introducing a New Technique

Now that an algebraic specification technique has been observed, along with a pro

gramming language baaed on this technique, Chapter 3 will evaluate this method with

respect to the criteria outlined earlier. It will then supply an altemative specification

technique - one based on recursive term algebras.

3. An Alternative Approach

3. Introduction

This chapter discusses the problems with the initial algebra approach to

specification within the context established by the criteria given in Chapter 2. Then an

approach based on recursive definition will be outlined along with how this method of

definition can be realized as an unambiguous context free grammar.

3.1. Evaluation of the Algebraic Approach

The algebraic method or specification or data abstraction is, essentially, non

constructive. It characterizes a type by certain properties. In review, a data type is

defined by its operations only. The operations are given as mappings satisfying certain

relations. For an algebraic specification the axioms are allowed to be of a very restricted

Corm only. For example, only those function and predicate symbols are admitted which

stand for explicit operations on the data type. The existential quantifier does not occur

and the axioms have the form or equations with left and right-hand sides built according

to specific rules [Guttag,1975). This method will now be evaluated with re9pect to the

six criteria outlined in §2.5.

3.1.1. Formality and Constructibility

First off, there is no question as to the formality of the algebraic approach to the

specification of data types. Underlying it is a well developed mathematical theory. Con

structibility is, however, an issue, a difficulty admitted by the designers or OBJ

(Goguen&Tardo,1979). Problems that commonly arise are pre9ented below.

3.1.1.1. The Problem of Infinite Sets of Equations

A well known argument against non-constructive methods is that it is very difficult

24

25

to find the characterizing set of axioms, or, in the case of algebraic axioms, the set of

relations between the operations of the type. For the algebraic specification, it might

not only be difficult but impossible to find a presentation of a type by operations and

relations.

The question is whether the method is generally applicable, that is, is it possible to

find such a finite specification for an arbitrary data type! An example adapted from

[Majster,1977) to show that this is not the case is presented. The operators for the

integer stack abstraction and its equations are:

CREATE: - STACK
PUSH: STACK X INTEGER - STACK
POP: STACK - STACK U {ERROR}
TOP : STACK --+ INTEGER U {ERROR)

TOP(PUSH(s, i)) =- i
POP(PUSH(s, i)) =- s
TOP(CREATE)= ERROR
POP(CREATE)= ERROR

To allow traversal of the stack stepwise from the top to the bottom and the ability

to return to the top element from an arbitrary position the following additional opera

tions are required. They perform, respectively, movement down the stack by one posi

tion, yield the contents of the stack at the current position, and position to the top or

the stack.

DO\tVN: STACK --+ STACK U {ERROR}
READ: STACK--+ INTEGER U {ERROR}
RETURN: STACK - STACK U {ERROR}

Now a finite characterizing set of relations between sequences of operations must be

found. Needed first are1:

POP(CREATE) = ERROR
READ(CREATE)= ERROR
DOWN(CREATE) = ERROR
POP(DOWN(s)) :a ERROR
PUSH(DOWN(s)) = ERROR
POP(PUSH(s, i)) = ir PUSH(s, i)=ERROR then ERROR else s

1 .ABsume the result or an operation applied to ERROR is ERROR.

26

READ(PUSH(s, i)) =- if PUSH(s, i)==ERROR then ERROR else i

These seven relations, however, are not yet sufficient, a.,, for example, they do not

express the fact that for a stack object consisting ol n elements the (n+1) fold applica

tion ol DOWN would cause an error.

Hence, the relation2

is needed tor k==0,1,e,9 ..• , that is, infinitely many relations.

Application of RETURN always causes positioning to the top element of the stack.

Again, infinitely many equations of the r orm

RETURN(DOWN)"'(PUSH)"(i 1, ••• , i,.)==(PUSH)"(i 1, ••• , i,.)

for all m> 1 and m <n are needed. That is, the position in the stack by first PUSHing n

elements onto it, Figure S(a), then moving DOWN the stack m positions {m< n}, Figure

S(b), followed by a RETURN, Figure S(c), is the same as just PUSHing the n elements.

- ,. ,. - ,_

- , ___

t" t" t"

t 1 f I I 1

(a) (b) (c)

Figure 5: Sequence of stack configurations in
performing RETURN(DOWN)"' (PUSH)"(i 1, •• • , i,.)

The specification is still not complete. The effect ol the READ operation is only

determined for objects of the form PUSH(s, i), that is, stacks that have had integers

PUSHed onto them. An arbitrary stack object is,

(DOWN)'(PUSH)'(i,, ... , i,)

with q< ,, hence the equations,

2 Take (PUSH)"(i 11 ••• , i,.) to
PUSH(··· PUSH(CREATE ,ii)··· i,.)

be short hand lor

27

READ(DOWN)9 PUSH(, ,i)=READ(POP)9 PUSH(, ,i)

tor q> 0 are required. What this says is that given an arbitrary stack, of size r, the

same ~lement is retrieved. in moving DOWN the stack q times (q< r) and then perform

ing the READ as when those q elements are POPped off the stack and then READ.

Three infinite sets of equations have already been produced. The problem is in

determining whether any such equations have been omitted. Many other examples of

specifications that require infinite sets of equations to express equivalences can be easily

constructed.

Infinitely many relations might not be a handicap as long as the relations could be

given in a parameterized form such as

A(m,n): RETURN(DOWN)"'(PUSH)"(i 1_, ••• , i,.)=(PUSH)"(i 1, ••• , i,.)

Note, however, that in the theory developed r Qr ~he algebraic technique the finiteness of

the set of axioms is an important assumption.

3.1.1.2. Problems when the Church-RoHer Property is Absent

In the algebraic approach, as pointed out by Klaeren (Klaeren,1980], there is neither

a general procedure which decides whether a certain set of algebraic axioms determines a

unique operation, nor is it possible to give computation rules for the evaluation of opera

tions. An obvious idea is to interpret the axioms as rewriting rules as done in the OBJ

language. This, however, can lead to problems because systems of algebraic equations do

not, in general, possess the Church-Rosser property [Meseguer&Goguen,1983), meaning it

may be possible to get different results if the equations are applied in different ways.

It is possible, however, to give sufficient restrictions on the form of the axioms

(Guttag&Horning,1978] to make sure that they define a unique total operation which can

be computed by using the axioms as rewriting rules.

28

3.1.2. Comprehenaibility and Minimality

Considering the problems just mentioned it appears the comprehensibility and

miniIIl_ality of the specification suffer greatly. In an attempt to avoid the problems of

infinite sets of equations and to give sufficient restrictions to make the operations total

the size of the specification grows and becomes unclear. Quite often avoiding incon

sistency results in somewhat unnatural specifications. The user becomes trapped into

giving these details and attenti•on to the problem to be solved strays.

3.1.3. Range of Applicability and Extenaibility

Using the algebraic approach an uncountable domain, such as the real numbers,

cannot be defined without using an uncountable set of primitive constructors.

The onus is on the user not to introduce. operations that lead to the generation of

infinite sets of equations. In addition, if the axioms are interpreted as rewriting rules,

the form of the axioms must be restricted to make sure they define a unique total opera

tion if consistent results are expected.

Overall then, the addition of a new operation to n may mean augmenting the set of

equations considerably. Hence, extending a specification may involve much effort.

3.1. •• Conclusions of the Evaluation

There appear to be some difficulties in using non-constructive techniques for the

specification of data types, to which the initial algebra approach, as a member of this

class, is subject.

In particular, the difficulties surrounding the construction procedure limits this

technique to those well versed in algebra.

The next section introduces an alternative approach, using recursive term ~lgebras,

for which it wil] be shown that these difficulties can be either reduced or completely

29

eliminated.

3.2. rhe Recursive Term Algebra Approach

In order to get a non-constructive specification o(a data type one usually has to

use some constructive description to find the relations or axioms. Constructive methods

explicitly state the appearance o(objects and how the operations affect them. A con

structive algebraic method, using recursive term algebras, will now be investigated. It is

based on the work o(Kanda and Abrahamson (Kanda&Abrahamson,1983].

3.2.1. Term Algebru venu• Initial Algebru

In the initial algebra approach, a specification is defined to be the triple <S,O,E>,

where S is a set of sorts, n is the set of opera~oi:s o(the type, and E is the set of equa

tions which the algebra has to satisfy.

To guarantee the uniqueness· of the specification <S,O,E> the initial ~lgebra which

satisfies E as the specified data type is chosen. This specificaition method is based on the

philosophy that carrier sets (sets obtained as the interpretation of sorts) of a data type

should be induced from the equational properties of the operations.

An alternative specification method based on an alternative philosophy accepts only

recursively defined sets. Recursive definition not only defines a set of terms but also

basic operations over them. That is, it induces an algebra of terms.

How do these methods compare!

Consider the following recursive definition of the natural numbers, NATURAL.

Basis : O is a NATURAL.
Recursive Construction Rule: Ir n is a NATURAL then so is s(n).
Closure : Only those values that result from finitely many applications of

the recursive construction rule to the basis (unction values are NATURALs.

This definition gives a set of terms over {O,s,(,),}. The operations of NATURAL

from the recursive definition may now be induced. Notice closure ensures if n is a

30

NATURAL then either it is O or it is a(m) for some unique NATURAL m. This pro

perty gives a predicate, IS-ZERO on terms such that3:

IS-ZERO(n) = T, if n==O
== F, otherwise

The recursive construction rule shows how to compose and decompose terms. This

gives rise to the following two operations on terms:

SUCC(n) =- s(n)

PRED(n) =-= m, if n=s(m)
= undefined, otherwise

An algebra over the terms of NATURAL has been obtained.

Note partial operations like PRED4 are bound to show up, consequently partial

algebras. To overcome any problems this might possibly cause, it is only necessary to

agree that undefinedness propagates throughout expressions. All operations of term

algebras can be made total by adding undefined to ea~h sort and making undefinedness

propagation explicit. For example:

IS-ZERO(n) = T, if n=O
= undefined, if n=undefi.ned
= F, otherwise

SUCC(n) =- s(n), if n,'undefi.ned
== undefined, otherwise

PRED(n) == m, if n=s(m)
= undefined, otherwise

Term algebras canonically obtained from recursive definition, a., above, will be

called recuraivs term algebra,.

Comparing this with the initial algebra specification below:

S == {NATURAL}
0>.,NATURAL == {0}
ONATVRAL,NA.TURAL == {s}
Ou,, = 0, otherwise

s Assume recursive term algebras have the sort BOOL as a carrier.
4 PRED is a partial operation because it is not possible to perform PRED(O).

31

E=0

the set or natural numbers {0, s(0), s(s(0)), ... } and the successor function can be given as

the in_~erpretation o(NATURAL and ,, respectively. Notice that the predecessor func

tion cannot be obtained because the initial algebra will not give any operations not

already in n. To get PRED in the initial algebra specification, a new initial algebra

<S,O' ,E' > must be given, as,

S = {NATURAL}
0, ">..,NATURAL = {0}
0, NATURAL ,NATURAL - {s,p}
O' u,, = 0, otherwise

which includes the symbol p for the predecessor operation. This, however, is not good

enough because there are now too many terms representing the same natural number.

For example, ,(OJ, ,(p(,(O))), and p(,(,{O))) all denote one. So a set or equational

axioms is needed which enforces different terms· denoting the same object to be equal.

Since the initial algebra approach only works for total algebras, the predecessor opera

tion must be totalized with the aid or undefined elements. The set E' of axioms that is

sufficient, is

s(undefined) = undefined

p(0) = undefined
p(undefined) == undefined

ok(O) == T
ok(s(n)) = ok(n)
ok(undefined) == F

IF-EQUAL(T, n, m) = n
IF-EQUAL(F, n, m) == m
IF-EQUAL(undefined, n, m) == undefined
IF-EQUAL(ok(n), p(s(n)), undefined) = IF-EQUAL(ok(n), n, undefined)
IF-EQUAL(ok(n), s(p(s(n))), undefined) = IF-EQUAL(ok(n), s(n), undefined)

Really, all E' is doing is characterizing the r ollowing four properties:

1) PRED(0) is undefined
2) undefinedness propagates
3) PRED(SUCC(n)) = n
4) if n~0 then SUCC(PRED(n)) = n

32

The initial algebra satisfying E' interprets NATURAL, p and a to be the set of

natural numbers, and the predecessor and successor functions respectively.

In recursive term algebra specification, one need only make sure that a recursive

definition of terms provides a unique representation r or each element of the intended set.

Then, a sufficient collection of operations follows automatically.

It is well known th·at there are some structures for each element of which it 1s

impossible to provide a unique representation such as a finite power set. A discussion on

how to handle these structures can be found in §7 of [Kanda&Abrahamson,1983).

In contrast, in the initial algebra specification, enough operations for the data type

to be specified have to be chosen. Then by equat.ional axioms, different terms are forced

to denote the same object to form an equivalence class.

The equations E of the specification should not be used to define operations, but

only for expressing certain properties such as commutativity, a.,sociativity and so on.

The set O should be kept as small a., possible.

As presented, the recursive term algebra approach might be criticized to be lacking

in abstractness since the specification is dependent on term representations. The view

taken here is that abstractness is finitely establishable properties of a finitely decidable

collection of finitely examinable (concrete) objects. From this viewpoint, the method is

sufficiently abstract.

Given that it has been decided to use recursive term algebras for the specification

of data types, the next sections present how this form of definition can be realized as an

unambiguous context free grammar.

3.3. Data Type• as Context Free Grammar•

The three ba.,ic elements of a recursive function definition are: a bui, whic·h states

that certain values are, by definition, values of the function for given arguments, a

33

recuraive conatruction rule which tells how to determine other values of the function

from known values, and an understanding (or statement) that the function takes on only

those values that result from finitely many applications of the recursive construction rule

to the basis r unction values.

A formal grammar is a four-tuple G-=(N,T,P,E) where:

N is a finite set of nonterminal symbols
T is a finite set of terminal symbols
N and Tare disjoint, N n T = 0
P is a finite set of productions
E is the start symbol, E ti, (N UT)

Each production in P is an ordered pair of strings, o, P,

in which w, t/, and t/J are possibly empty strings in (NUT)• and A is E or a nonterminal

letter. A production is usually written as:

Q - fJ
Given this, a context free grammar G=-(N,T,P,E) is a formal grammar in which all

productions are of the form

{
A EN U {E}

w E (NUT)• - {>.}

The grammar may also contain the production E->-, where >. represents the empty

string. That is, in context free grammars only one nonterminal is allowed to appear on

the left hand. side of the production. The right hand side of the production contains a

rewrite ru)e that can be formed by concatenating an arbitrary number of symbols chosen

from the nonterminals and terminals.

Ir G is a formal grammar, a string of symbols in (NUT)• U{E} is known as a sen

tential form. If o-fJ is a production of G and w=,t,o,p and w' =-t/> P'f/J are sentential

forms it is said that w' is immediately derived from w in G. This relation is indicated

by writing w-w'. Ir wi,w2, ••• , w,. is a sequence of sentential forms such that

34

w1-w2- ••• -w11 it is said that w11 is derivable from w1• This relation is indicated by

writing w1- • w11 • The sequence w1,w2, ••• , w11 is called a derivation of w11 from w1

accordillg to G.

The language L(G) generated by a formal grammar G is the set of terminal strings

derivable from I::

L(G)=-{wE T' IE-' w}

If wEL(G), it is said that w is a string, a sentence, or a word in the language generated

by G.

Given these definitions, how is recursive definition connected to context free gram

mars!

The terminal productions can be viewed as providing the basis of the recursive

definition whereas the nonterminal production rules may be seen as the recursive con

struction rule~ Closure r ollows automatically from the definition of - • .

For example, the basis for the recursive definition of the natural numbers,

NATURAL, is:

Basis: O is a NATURAL.

From this the terminal production rule,

NATURAL- 0

may be built since zero is the only basis function value. The recursive construction. rule

for NATURAL is:

Recursive Construction Rule: If n is a NATURAL then so is s(n).

A nonterminal production rule describes this comtruction process. It is:

NATURAL - s(NATURAL)

The grammar, G, containing these two production rules gives a set of terms over

{O,s,(,)}. In other words, the language generated by G is the set of terminal strings,

35

where T={O,s,(,)} and E=NATURAL.

Formally speaking then, recursive definition of sets is an unambiguous context free

grammar. This has a few interesting results.

First, the data types are algebras over context free languages. Theoretically, an

unambiguous context free grammar is important because it provides a computationally

complete set of basic operations over the language it generates. This means that from

the basic operations of term algebras, by iterative use of function composition, condi

tional definition and general recursive definition, it is possible to recursively define all

partial computable functions over the terms recursively defined. If a decidable set is

non-context free, there is no obvious way of providing a computational basis from a

grammar of the set.

Second, algebras generated by unambiguous context free grammars are not just

many sorted algebras. Each nonterminal N of a grammar G corresponds to a sort of

the algebra Alg(G) generated by G. The carrier set of Alg (G)N of this sort in Alg{G)

is the language L(N) = { w I N - • w } . Therefore, if G has a p!oduction rule N 1-N 2

then L(N2)CL(Ni).

The importance of non-context free decidable data structures should not be

neglected. The next section describes how these should be handled.

3.f. Sub-Data Types

In formal language theory it is well known that any decidable set S is a decidable

subset of some context free set, CF. Also, it is easy to observe that a function f:S-CF

is computable if and only if it is the restriction of a computable function /:CF-CF.

This indicates that the computability over S is inherited from that over CF, thus the

data structure S should be treated within the structure of CF.

36

3.6. A Language Baaed on thla Approach

An alternative specification technique for data structures in which recursive

definition can be realized a., unambiguous context free grammars has been given. In the

next chapter, Chapter 4, this idea will be developed into a programming language, tak

ing into account sub-data types as well.

4. The Functional Programming Language Kaviar

•· Introduction

The functional programming language that has been developed with context free

grammars a., data types has been named Kaviar.

Backus-Naur Form, abbreviated as BNF, is a well know meta-language for specify

ing the concrete syntax of a programming language. The intent of this chapter is to

present the BNF of Kaviar and explain the operation of the interpreter. _

4.1. Lexical Convention,

There are five classes of tokens: identifiers, keywords, constants, strings, and other

separator.,. Each class is discussed below.

f.1.1. Identifiers

An identifier is a sequence of lower case letters and digits; the first character must

be a letter. The dash - counts as a letter.

f .1.2. Keywords

The following identifiers are reserved for use as keywords, and may not be used

otherwise:

type
sub-type
IS

default

Other identifiers that are reserved, because they are the names of predefined func-

tions which may not be redefined are:

read
eq
ne
It

le
gt
ge

add
subtract
multiply
divide

37

38

•.1.3. Conetantl

There are only two kinds of constants available to the user: the integer coDBtants

of the··predefined type Nat, and the two constants of the predefined type Bool, T and

F, for true and false.

4.1.4. String•

A string is a sequence of characters surrounded by double quotes, as in " ... ".

•.1.5. Separator,

Blanks, tabs, newlines and comments, collectively called white apace, are ignored

except as they serve to separate tokens. Some w bite space is required to separate other

wise adjacent identifiers, keywords and constants.

The characters / * introduce a comment, which terminates with the characters • /.

Comments may be nested and may appear anywhere in a Kaviar program.

4.2. The BNF of Kaviar

The following sections present the BNF of Kaviar in understandable chunks along

with examples and an informal explanation.

•.2.1. A Kaviar Program

A Kaviar program is a sequence of type definitions, followed by a sequence of func

tion definitions.

<Program> ::== <Definitions> { <lnvocation_Exprs> }

<Definitions> ::== <Type_Defns> <Function_Defns>

The type definitions precede function definitions only to enhance the speed of -the type

checking capabilities of the interpreter.

39

Once all the definitions have been completed, the invocation expressions follow,

enclosed within braces.

The next section describes the definition of types.

4.2.2. Type Definition,

Context free data types as well as su~types, which may be non-context free, are

accomodated by Kaviar.

<Type_Oefn.s> ::== <Context_Free_Types> <Sub_Data_Types>

The context free types are defined by a context free grammar, while sub-types are

defined by predicates.

Since sub-types are, essentially, restrictions on context free types, they follow the

definition of these types to simplify ensuring the -predicate operates over some previously

defined context free type.

Considered first will be the definition of context free types.

4.2.2.1. Context Free Data Type1

Each context free type definition can be viewed as defining only one of the nonter

minals Ni, 1< •"<k, N ={N 1,N 2, ••• , Nt} of a grammar, G. Recall that there is no

restriction on the number of alternatives a single nonterminal may have. That is, a non

terminal Ni may appear on the left hand side of arbitrarily many production rules.

In Kaviar, each alternative is further named by a paraer. This facilitates, when

given a terminal string w, derived from a nonterminal { w I Ni - • w } finding which

alternative of Ni w was derived from. The parser names for each alternative of Ni mu.st

be distinct so that the alternative used in deriving w can be uniquely determined.

As an example, consider the familiar LISP symbolic expression, or S-expression. Its

recursive definition is:

Basis: An atom is an S-expression.
Recursive Construction Rule: If , 1 and , 2 are S-expressions, so is (, 1., 2).

Closure: Only those values that result from finitely many applications
or the recursive construction rule to the basis values are S-expressions.

An equivalent context free grammar over the atoms :i and 11 is:

s-expr - atom
s-expr - (s-expr . s-expr)
atom - x
atom -Y

40

As just described, each alternative of a given nonterminal, Ni, is further named by a

parser. A nonterminal symbol will begin with <, followed by the nonterminal name, Ni,

a colon, the parser name and then the closing >. Terminal symbols are strings and so

will be enclosed within double quotes. Then, the grammar for $-expressions becomes:

<s-expr:atom> - <atom:a>
<s-expr:list> - "(" <s-expr:car> "." <s-expr:cdr> 11

)
11

<atom:x> - "x"
<atom:y> - "y"

Since this form is lengthy, it is abbreviated by

type s-expr
{

<atom> - <atom:a>;
<list> - "(" <sexpr:car> 11

." <s-expr:cdr> ")"
}

type atom
{

}

<x> - 41x";
<y> - "y"

and this is ex~ctly the form the BNF for context free types in Kaviar generates. The

interpreter converts this abbreviated form to the lengthier form.

The BNF for a context free type, then, is:

<Context_Free_Types> ::=- <Context_Free_Type> I
< Context_Free_ Type> < Context_Free_ Types>

<Context_Free_Type> ::= type <Type_Name> { <Alternative> } ..

<Type_Name> ::= <Identifier>

<Alternative> ::= <Production>

<Production> ; <Alternative>

<Production> ::- < <Parser> > - <Rewrite_Rule>

-- <Rewrite_Rule> ::== <Null_Rule> I
< Non_N ull_Rule >

<Null_Rule> ::== X

<Non_Null_Rule> ::= <Terminal> I
· <Nonterminal> I

<Terminal> <Non_Null_Rule> I
<Nonterminal> <Non_Null_Rule>

<Terminal> ::- <String>

<Nonterminal> ::== < <Type_Name> : <Selector> >

<Selector> ::= <Identifier>

This allows for an arbitrary number of context free data types.

41

Notice that nonterminal symbols on the right hand side of the production rule are

composed of two parts: a type name and a selector. The type name must be the name

of a context free type, already defined or to be defined by <Context_Free_Type>, or

one of the two predefined types, Nat or Bool. The selector is an identifier. Its use will

become clear when recursive functions are discussed. Selector names for all the nonter

minals appearing on the right hand side of a given alternative must be distinct.

Sub-type definitions follow context free type definitions. The next section describes

these types.

f .2.2.2. Sub.;Data Types

Suppose Ni is a context free type and

P(x : N;) : Bool

is a defined total predicate. By

R- P(Nd

a decidable subset

{ X IX E L(N;) n P(x) == T }

42

of L(Ni) can be specified. Then R is called a ,ub-type of Ni. That is, a sub-type res

tricts a context free type Ni to only those values which satisfy the predicate P. These

sub-types can be non-context free.

In Kaviar, a sub-type is specified a.,:

<Sub_Data_Types> ::== <Sub_Data_Type> I
<Sub_Data_Type> <Sub_Data_Types>

<Sub_Data_Type> ::== sub-type <Type_Name>
(<Context_Free_Type_Name>)
- <Predicate> ;

<Context_Free_Type_Name> ::-= <Identifier>

This allows for any number of sub-types the user wishes to define.

As mentioned already, the sub-type is a decidable subset of a context free type

hence <Context_Free_Type_Name> mu.st be the name of one of context free types-.
.

The BNF of the predicate that must be satisfied is given by:

<Predicate> ::= (<Predicate>) I
..., <Predicate> I
<Function_Name> I
(<Predicate>) n <Predicate> I
(<Predicate>) U <Predicate>
..., <Predicate> n <Predicate> I
..., <Predicate> U <Predicate> I
<Function_Name> n <Predicate> I
<Function_Name> U <Predicate>

<Function_Name> ::== <Identifier>

That is, the predicate is an arbitrary logical formula. The functions referenced in the

formula are restricted to be unary over a context free data type, being the same type the

sub-type is defined over. In addition, these functions mu.st have as their result type the

predefined type Boal. This is so that the predicate itself can evaluate to true or false.

Consider the following context free type number defined as being a natural

number:

type number
{

<n> - <Nat:n>

43

}

and suppose the subset to be specified is

{XI Xe L(number) n x<S = T}

that is, that is :i is a number, but is also less than five. This sub-type may be specified

as:

sub-type It-five(number) == lessS;

So the functionality of le115 must be:

less5(x : number) : Boo)

Now that the construction of types has been dealt with, a discussion of how to

define functions that operate over these types appears in the next sections.

4.2.3. Function Definitions

Function definitions in Kaviar have the form:

<Function_Defns> ::= <Fcn_Defn> I
< Fcn_Defn > < Function_Def ns >

<Fcn_Defn> ::= <By_Recursion> I
<By_Unification>

Functions may be defined by one of two methods: by recursion, or by unification. Each

method will be discussed in turn, accompanied by an example.

-6.2.3.1. Recursive Function■

The BNF-~of recursive functions is:

<By_Recursion> ::= <Fuoction_Name> (<Typed_Variable_List>)
: <Result_Type> { <Case_Stmts> }

<Typed_Variable_List> ::=- <Identifier> : <Type_Name> I
<Identifier> : <Type_Name> , <Typed_ Variable_List>

<Result_Type> ::= <Identifier>

<Case_Stmts> ::= <Case_Stmt> I
<Case_Stmt> ; <Case_Stmts>

<Case_Stmt> ::= is- <Parser> (<Identifier>)
- <Recursive_Exprs>

<Parser> ::= <Identifier>

<Recursive_Exprs> ::= <Recursive_Expr> I
< Recursive_Expr > <Recursive_Exprs >

<Recursive_Expr> ::=- <Number> I
<String> I
<Identifier> I
<Truth_Value> I
<Selector> < <Identifier> > I
<Function_Name> (<Ree_Par_List>)

<Rec_Par_List> ::=- <Recursive_Exprs> I
<Recursive_Exprs> , <Rec_Par_List>

44

Suppose a recursive function was to be defined. which takes an arbitrary S-

expression and reverses it. The functionality of the function would be:

reverse(s : s-expr) : s-expr

Ideally, a <Case_Stmt> should be given for each alternative of the type or the

identifier in the parameter list to take care or any derivation or that type. The type ,.

ezpr was defined as:

type s-expr
{

<atom> - <atom:a>;
<list> - u('' <s-expr:car> 11

." <s-expr:cdr> 11
)"

}

which has two alternatives. If the value or , is an atom, reversing an atom yields itself

so the <Case_Stmt> would be:

is-atom(s) - s

If the value of ,, however, is a list, reversing a list consists of concatenating the

reverse of the tail end of the list, given by the derivation of the nonterminal <s

expr:cdr~, with the reverse of the head of the list, given by the derivation of the non

terminal <s-expr:car>. Hence, the <Case_Stmt> would look like:

is-list(s) - "(" reverse(cdr<s>) 11
." reverse(car<s>) 11

)"

45

where the selectors car and cdr select the values corresponding to the derivations of

their nonterminals. The operatiQn of selectors will be discussed in more detail in a fol

lowing _section.

So the complete function is:

reverse(s : s-expr) : s-expr
{

is-atom(s) - s;
is-list(s) - "(" reverse(cdr<s>) 11

•
11 reverse(car<s>) ")"

}

If the function defined has more than one parameter a <Case_Stmt> which

operates over any of the identifiers could be given, but only the <Recursive_Exprs> of

the first applicable parser found will be evaluated. The notion of what an applicable

parser is will be discussed in a later section.

Of course, each function defined must be_ given a unique name. Kaviar permits no

operator, or function, overloading. The identifiers present an the

<Typed_Variable_List> are the only ones that may appear within the function. The

type of a given identifier in this list may be a context free type !lame, a su~type name

or one of the predefined type names. Likewise for the result type of the function.

Before entry to the function each parameter is checked to ensure it is of the correct type.

If it is not an error will report the value at fault.

If the type of an identifier is a context free type, Ni , the interpreter can determine

whether the value, w E L(Ni) by running Earley's algorithm on it. A digression will now

be taken to explain the operation of Earley's algorithm.

,.2.3.2. The Paraing Method of Earley

Earley's algorithm, developed in the early seventies, [Earley,1970),

(Aho&Ullman,1972), [Graham&Harrison,1976), provides a means of determining __ whether

a terminal string w can be derived by some context free grammar. That is, whether

wEL(G).

46

4.2.3.2.1. Convention•

The following conventions will be used to represent various symbols and strings

concerned with a grammar while discussing Earley's algorithm.

(1) The lowercase letters a,b,c and d will represent terminal symbols, as will the

digits 0,1, ... , 9.

(2) The capital letters A,B,C and D represent nonterminal symbols.

(3) U, V, ... ,z represent either nonterminal or terminal symbols.

(4) The Greek letters o.,/J, ... represent strings of nonterminal and terminal sym

bols. X denotes the null string, and I: represents the start symbol.

(5) u,v, ... ,z represent strings of terminal symbols only.

Subscripts and superscripts do not change thes~ ~onventions.

4.2.3.2.2. Terminolog7

Let G=(N,T,P,I:) be a context free grammar and let ,,r--a 1 a2 • • • a", n> 0,

a-EE , be the input string. An item or the Corm:

(1) A production A -x 1 • • • X,,. in P such that a portion of the input string

which is derived from its right side is currently being scanned.

(2) A point in that production called the metasymbol, denoted by the symbol •

not in N or I:, which shows how much of the production's right side has been

recognized so far. The integer le can be any number ranging from zero, m

which case • is the first symbol, through m+1, in which case it is the last. A

production of the form A-o•ft will be called a dotted rule.

(3) A pointer i, O<i<n, back to the position in the input at which that -instance

o(the production was first looked for.

47

For each integer j, O<j< n, a set o(items I; will be constructed such that

[A-a•.8,i) is in I; for O< i<j i(and only i(for some 1 and 6, E- • 1A 6, ,-• a 1 • • • ai

and a~.• ai +l · · · a;. In other words, if the dotted rule A-a•.8 is in I; then work is

proceeding on a potentially valid parse in that it is known that there is a sentential form

1A6 where ,-• a 1 a 2 · • • a,. Furthermore, A-a•/J indicates that a-• a, +l · • • a;.

Nothing yet is known about fJ or 6. That is, A-afJ could be used in some input

sequence that is consistent with· w up to position ;.

The number o(distinct items in I; is determined by the grammar and the input

string. The _sequence of lists / 0, / 1, ••• , I,, will be called the pane lists for the input

string w.

4.2.3.2.3. Informal Explanation of Earley_'•_Algorithm

Earley's algorithm works on any context free grammar. The grammar need not be

in any normal form. The (unction or the algorithm is to form the parse lists.

The operation of the algorithm is as follows. An input string a 1 • · • an is scanned

from left to right. As each a; is scanned, a set of items for I; is constructed which

represents the condition of the recognition process at that point in the scan. In general,

parse list I; is operated on by processing the items, in order, performing one or three

operations depending on the form of the item.

The predictor operation is applicable when the form of the item is [A-a•B.8,il,

that is, when there is a nonterminal to the right or the metasymbol. It causes the addi

tion o(a new item o(the form [B-•1,j] to I; for each alternative of that nonterminal,

here B. The metasymbol is placed at the beginning of the production in each new item

since none of its symbols has yet been scanned. The pointer is set to j since the item

was created in I; .

Thus the predictor adds to I; all productions which might generate substrings

beginning at a; +l · In other words, it indicates which rules might possibly generate the

48

next portion of the input since the dotted rules introduced by the predictor represent

rules that could be used in the derivation since their left hand sides occur in valid sen

tential r orms.

The ■canner serves to update those dotted rules (or partial subtrees) whose

ezpectetl next element is the next input symbol. In other words, the scanner is applica

ble just in the case the item has the form (B-a•a,8,i] that is, when there is a terminal to

the right of the metasymbol. It compares that symbol with 1; and if they match the

metasymbol is moved over one in the item, as in (B-aa•,8,i], to indicate--that· that termi

nal symbol has been scanned and then adds the item to I; . The pointer remains the

same because the item is not being created, only updated.

The third operation, the completer, has as its role to update those productions

whose ezpectetl next element is a nonterminal .w~ich generates a suffix of the input read

thus far. That is, the completer is applicable to an item if its metasymbol is at the end

of its production, as in (A-a•,i}. It goes to the parse list /i indicated by the pointer

and looks r or all items from it that have the nonterminal on the left hand side, here A,

to the right of the metasymbol as occurs in (B-a•A.8,k). It moves the metasymbol over

the nonterminal in these items [B-oA•,8,k) and adds them to I;. Ji can be thought of

as the parse list being operated on when A was being looked for. It has now been found,

so for all the items in /i which caused search for an A the metasymbol must be moved

over it in them to show that it has been success(ully scanned.

Earley's algorithm is, in effect, a top down parser in which all the parse lists gen

erated represent possible parses carried along simultaneously.

j.2.3.2.j. Earley'• Parsing Algorithm

Input: A context free grammar G=(N,T,P,E) and an input string w=a 1a2 ·_: ·a,. in

E'.

Output: The parse lists / 0, / 11 ••• , /,. •

Method: First, construct / 0 as follows: 1

(1) If E-a is a production in P, add (E-•o,0) to / 0 •

Now perform steps (2) and (3) until no new items can be added to / 0•

(2) If [B---r•,0) is in / 0 add [A-aB•.8,0] for all [A-a•B,8,0) in / 0•

49

[3] Suppose that [A-a•B.8,0) is an item in / 0• Add to I 0, for all productions

in P of the form a-,, the item [B-•i,0).

Now construct I; , having constructed / 0, / i, ••• , l; _1•

[4) Scanner. For each [B-a•a,8,i) in /; _1 such that a =a;, add [B-aa•,8,i)

to I;.

Now perform steps (5) and [6) until no new items can be added.

[5) Completer. Let [A-a•,i) be an item in I; . Examine /i for items of the

form [B-o•A.8,k). For each one found, add [B-aA•.8,k] to I; .

[6] Predictor. Let (A-a•B.8,i] be an item in I;. f.'or all B---y in P, add

[B-•--y,j) to I; .

The algorithm, then, is to construct I; for O<j< n.

Since the number of parse lists constructed 1s of bounded size, it 1s easily

shown that Earley's algorithm terminates.

If the underlying grammar is unambiguous, then this algorithm can be exe

cuted in 0(n 2) reasonably defined elementary operations when the input is of

length n.

In all cases; it can be executed in 0(n 3) reasonably defined elementary opera

tions when the input is of length n. For proofs of these and all other complexity

1 Before adding an item to a parse list it is important to ensure that it is not a duplicate since
this could lead to unbounded growth of the list.

so

figures regarding Earley's algorithm see [Aho&Ullman,1972].

4.2.3.2.5. Example of the Operation of Earley'• Algorithm

Consider the following grammar G for generating symbolic expression., with

the productions numbered as shown:

1: s-A
2: S - (S . S)
3:A-x
4:A-y

and let w =- (z . 11) be the input string. Since E-S, the items

(S-•A ,0) and

[S-•(S.S),0)

(1)

(2)

are the fir5t to be added to / 0• The predictor is applicable to the first or these

items. Operating on (1) it produces

[A -ez ,OJ and

IA-•11 ,OJ'
IO is now complete so move on to construct / 1• The scanner is applicable to (2)

since the terminal to the right of the metasymbol matches a 1==(. The item

[S -(•S.S),OJ
is added to / 1. Notice that the metasym bol has been moved over one in the item to

indicate that the symbol has been scanned. The predictor now causes

(S-•A ,lJ and

(S-•(S.S),lJ

to be add~d. The predictor is once again applicable to (3) and adds

[A -•z ,II and

[A -•y ,II
to / 1. No further items can be added to / 1.

In constructing / 2 note that a 2==z and so the scanner adds

(3)

51

to I 2• The completer is applicable to this state becall!e the meta.symbol is at the

end of its production. It goes back to the .pane list indicated by the pointer, in this

case / 1, and looks for all states from / 1 which have A to the right of the meta.sym

bol. The only item meeting these specifications is [S-•A,l] in / 1 and so:

[S-A •,l} (4)

is added to / 2 moving the metasym bol over A in the item. Considering (4) causes

the completer to reexamine / 1, this time searching for items with the metasymbol

preceding S in them. It can add one more item to / 2

[S-(S •.S),1)

This completes / 2•

A complete run or the algorithm on grammar G is given in Table I:

Table I: Parse Lists fol' G with w=(x.v)

In /, [,.

S-•A,OJ · S-(•S.S),Oj A-x•,l\
S-•(S.S),OJ S-•A.lj S-A•,l
A-•x,01 S-•(S.S),l] s-(S•.S),O]
A-•y,O A-•x,l'

A-•v 1
I. J. J.

S-(S.•S),O] A-y•,31 [S-(S.S)•,OJ
S-•A,3] S-A•,3
S-•(S.S),3J S-(S.S•),OI
A-•x,3)
A-•y,3]

It is possible to determine membership in the language by inspecting the items

or the last parse list. If no item of the form [E-a•,O] is in I,., then w is not in

L(G).

4:.2.3.2.8. Modification■ Required to Earle7'• Parsing Algorithm

Recall that in Kaviar all production rules are named by parsers. Their r orm

1s:

52

Also, all nonterminals in /J have selector names and have the rorm < B:,; >.

Because or this, Earley's algorithm requires some adjustments. The algorithm that

works is given below.

Input: A context rree grammar G=-(N,T,P,E) and an input string

Output: The parse lists I 0, I 1, ••• , I,..

Method: First, construct I O as follows:

[I] Ir <E:pi >-a is a production in P, add (<I::::pi >-•o,0) to 10•

Now perform steps [2] and [3] until no new items can be added to I 0 •

[2] Ir [<B:pi >-1•,0J is in IO add (<A:p; >-a<B:,, >•/J,0] ror all

(<A:p; >-o•<B:a1: >/J,0] in 10•

[31 Suppose that [<A:pi >-o•<B:,; >/J,0) is an item in 10 • Add to 10, for all

productions in P or the form <B:p1: >-1, the item [<B:p1 >-•1,0J.

Now construct I; , having constructed I 0, I 1, ••• , I; _1•

[41 Scanner. For each (<B:pi>-o•a/J,i] in 1;_1 such that a=a;, add

[<B:pi >-oa•/J,il to I;.

Now perform steps (SJ and [6] until no new items can be added.

[5) Completer. Let [<A:pi >-a•,i) be an item in /;. Examine /i (or items o(

the .c form [<B:p; >-o• <A:p, > /J,k]. For each one round, add

(<B:p; >-a<A:p1: >•/J,k] to I;.

•
[6J Predictor. Let [<A:pi >-o•<B:p; >/J,iJ be an item in I;. For all

<B:p1 >-"fin P, add [<B:p1 >-•"f,j] to I;.

It is now known how the interpreter determines whether an input string is gen

erated by some context Cree grammar but what i(it is a sub-type! The next section

describes this process.

53

•.2.3.2.7. Type Checking Sub-Data Types

If the type of the identifier in the <Typed_Variable_List> is a sub-type, S;, the

interp~eter can determine whether the value is Qf the correct type by first running

Earley's algorithm . with E being the name of the <Context_Free_Type_N ame> the

sub-type is defined over. Then, the functions in the <Predicate> are interpreted

resulting in some logical formula. If this resulting logical formula evaluates to true the

type of the value is indeed S; . ·

•.2.3.2.8. Interpreting a Recunlve Function

If all the parameters of a function are of the correct type, the interpreter proceeds

to determine the <Case_Stmt> to execute. Suppose the function reverae is invoked

as:

reverse("(" ux" "." "y" ")")

The terminal string 11
(

11 11x" 11
." "y" 11

)" E L(s-expr) so for the duration of the function

the identifier , has this value. The parsers in a given <Alternat,ve> must be valid for

the type of the identifier it operates over. For example, the type of , is ,-ezpr so the

only parsers that may operate on , are those that appeared in the definition in the type

,-ezpr. Looking back at the definition of ,-ezpr the available parsers are found to be

atom and li,t.

If the type of the identifier is a sub-type, the applicable parsers are those of the

context free type the sub-type is defined over. For example, if an identifier had type It

five which is defined over the context free type number, the only applicable parser

would be n.

If the type of the identifier is the predefined type Bool, the user has two parsers

available for use. They are true and /al,e just as if the type Boo) had been defined as:

type Bool
{

}

<true> - T;
<false> - F

No parsers are provided for type Nat because there are an infinite number or them.

54

The interpreter steps through the < Case_Stmts > or the function one by one until

the applicable one is found. How is a <Case_Stmt> determined applicable!

First, the <Parser> of the <Case_Stmt> is extracted, call it por,er. Then the

alternative with this parser name is extracted from the type definition. This might be

< type:parser > - ~

Then, if an item of the form [<type:parser>-.8•,0J is found on the last item list, I,.,

for the value of the identifier the parser is operating over, then the alternative

<type:parser>-~ was the one the value was derived from. This <Case_Stmt> is

then termed applicable. The interpreter . 'f!Ould then go on to execute the

<Recursive_Exprs> of this <Case_Stmt>.

Otherwise, the interpreter would move on to the next <Case_Stmt> to determine

if it is applicable. If the interpreter exhausts all of the <Case_Stmts> without finding

one to be applicable an error will result.

Supposing an applicable parser is found, the next section describes how its

<Recursive_Exprs> are evaluated by the interpreter.

•.2.3.2.9. Interpreting Recunive Expreuion•

There are six types of recursive expressions. The expressions occurring are

evaluated in sequence and the results concatenated together. The final result must be of

type <Result_Type>. Numbers of type Not, truth values of type Bool and strings

require no interpretation. The interpretation of an identifier is the value assigned to it on

entry to the function.

Selectors must operate on the same identifier as the parser, and can only be the

ones present in the alternative of the parser. For example, the alternative li,t of type

55

,-ezpr 1s:

<list> - "(" < s-expr:car > ". 11 < s-expr:cdr > ") 11

On entry to reverae, the value of, was set to"(" "x" "." "y" ")". The interpreter can

determine that this value was derived from the alternative <list>, so the only selectors

that may be active are ct1r and ctlr since they are the ones that appear in the definition

of the alternative. Recall, each nonterminal on the right hand side of the production

rule has the form:

< <Type_Name> : <Selector> >

The <Selector> may be used as a function that operates over the value of the identifier

the pa?!er was applicable to. The effect of a selector, as used in the following extract

from the function reverae

is-list(s) - 11
(

11 reverse(cdr<s>) "." .re..vel'!e(car<s>) 11
)

11

is to select, from the value of the identifier, the subtree corresponding to the derivation

of the nonterminal. The type of the subtree will, of course, be <Type_Name>. For

example, the derivation tree of the value of , is:

< s-expr:list >
l

"(" <s-expr:car> 11
•

11 <s--expr:cdr> 11
)

11

l l
<atom:a> <atom:a>

l l
"x" "y"

The selector returns the value of the subtree. So car<,> =s ":i" and cdr<,> ,... "u".

Ir the expression is a function invocation, its parameters are first evaluated and

then the function is called. The result of the function is then concatenated to the par

tial result.

When all of the expressions on the right hand side of the arrow have been

evaluated the resulting terminal string is checked to see if it is of type <Result_Type>

and if so, it is returned, otherwise an error is reported.

56

The evaluation of

reverse("(" 11x" 11
." "y" 11

)")

would -then proceed as follows. The parser i,-li,t{a) would be found applicable. Its

expression., are:

"(" reverse(cdr<s>) "." reverse(car<s>) ")"

The string "(" becomes the partial result. The parameter to reverae, cdr< a>, is

evaluated, yielding "y", so reverse("y") is invoked. It returns "y" as a result. This

result is concatenated onto the partial result, the partial result now becoming "(" "y".

Continuing in this fashion the final result is the terminal string "(" "y" "." "x" 11
)",

which is of type a-ezpr.

Now that the operation of recunnve functions is understood, the next sections

describe the second type of function definition• by unification.

4:.2.3.3. Unification Function■

Functions may, alternatively, be defined by unification. The BNF for these types

of functions is:

<By_Unification> ::=-= <Function_Name> (<Type_Name>)
: <Result_Type> { <Unif_Clauses> }

<Unif_Clauses> ::=- <Clause> I
default - <Unif_Exprs>

<Clause> ::=- <Schema> - <Unif_Exprs> I
<Schema> - <Unif_Exprs> ; <Clause> I
<Schema> - <Unif_Exprs> ; default - <Unif_Exprs>

<Unif_Exprs> ::= <Unif_Expr> I
<Unil_Expr> <Unif_Exprs>

<Unif_Expr> ::= <Number> I
<String> I
<Identifier> I
<Truth_ Value> I
<Function_Name> (<Unif_Par_List>)

<Unif_Par_List> ::=- <Unif_Exprs> I
<Unif_Exprs> , <Unif_Par_List>

<Schema> ::= <Stri.ng> I
<Identifier> I
<String> <Schema> I
<Identifier> <Schema>

57

Unification can be intuitively looked at as being pattern matching. In Kaviar,

unification is only one way meaning variables may only occur in the <Schema> and

not in what it is being matched against.

All unification functions are unary since otherwise it would be impossible to tell

what the <Schema> of a given <Clause> should be unified against.

The next section describes how to build a <Schema> so that the interpreter will

be able to successfully unify expressions.

4.2.3.4. Finding a Unifier

Finding a unifier consists of finding an expression for each identifier symbol occur

ring in the <Schema> so that when these expressions are substituted for their respec

tive identifiers the value of the original parameter results. To do this successfulJy, the

<Schema> must mimic the form of the alternatives of the type.

Ideally, there should be a <Clause> for each alternative of the type so that alJ

possible derivations of the type may be handled. The <Schema> is built by specifying

a string for every terminal symbol in the <Rewrite_Rule> and an identifier for every

nonterminal symbol.

The definition of S-expressions was given as:

type s-expr
{

<atom> - <atom:a>;
<list> - u(" <s-expr:car> "." <s-expr:cdr> u)"

}

A unification function which reverses arbitrary S-expressions would have the func

tionality:

reverse(s-expr) : s-expr

58

so the schemas of the claW!es should mimic the alternatives of ,-ezpr since this is the

type of the parameter.

The right hand side of the alternative <atom> has only one nonterminal, so the

schema would consist of only one identifier. Reversing an atom yields itself so the

<ClaW1e> would be:

atom - atom

The right hand side of the second alternative, <list>, contains terminal and non-

terminal symbols. Working from left to right, simply copy terminal symbols and assign

nonterminal symbols distinct identifiers. So for <list> the <Schema> would be:

"(" 1 1 "." 1 2 ")"

Reversing a list requires concatenating the reverse of the tail end of the list with the

head of the list. Thus the complete function would be:

reverse(s-expr) : s-expr
{

atom - atom;
11
(", 1 "." • 2

11
)" -

11
(" reverse(, 2) "."reverse(, 1)

11
)"

}

The interpreter finds a unifier by going through the <Unif_Clauses> of the func

tion one by one trying to find which <Schema> the value of the parameter can be

unified against.

The alternative the parameter value was derived from is what the <Schema> is

compared to. For example, the alternative the terminal string 11
(" "x" 11

." "y" 11
)" was

derived from is:

<list> - 11
(" <s-expr:car> 11

." <s-expr:cdr> ")"

Identifiers can be unified against nonterminal symbols and terminal strings must match

exactly.

If unification can take place, the interpreter proceeds to evalu-ate the

<Unif_Exprs> to the right of the arrow, binding any identifiers in the <Schema> to

59

the value of the subtree the nonterminal they stand r or derives. It makes sense that the

only identifiers that can appear in the <Unif_Exprs> are those that appeared in the

<Schema>.

IC th~ reserved word default ia found instead of a <Schema> the <Unif_Exprs>

to the right of the arrow will be evaluated immediately.

Ir no <Schema> can be unified against the interpreter will indicate failure.

Assuming a unifier is round, the interpreter goes on to evaluate the unification

expressions. The next section describes this.

4.2.3.6. Evaluating Unification Expreuion■

The unification expressions are evaluated in the exact same manner as recursive

expressions, except for the fact that the selector f.unctions cannot be used.

Once all the types and functions are defined there must be some way of using all

these definitions. The next section describes the invocation expressions.

4.2.4. Invocation Expressions

The BNF of the invocation expressions is:

<lnvocation_Exprs> ::== <lnvoc_Expr> I
<lnvoc_Expr> ; <lnvocation_Exprs>

<lnvoc_Expr> ::= NI I
<String> I
<Identifier> I
read (< Typed_ Variable_List >) I
<Function_Name> (<Parameter_List>)

<Parameter_List> ::== <Parameters> I
<Parameters> , <Parameter_List>

<Parameters> ::,_. <Parameter> I
<Parameter> <Parameters>

<Parameter> ::== <String> I
<Number> I
<Identifier> I

60

<Truth_Value> I
<Function_Name> (<Parameter_List>) I

Input may be prepared for a Kaviar program by placing sentential forms in a data

file, each one terminated by the character 11
•

11
• The values may be read from the data

file by issuing a read(z 1 : t 1 , ••• , z. : '•) invocation expression. The value read will be

associated with the identifier zi if its type is indeed ti .

For example, the data file for the read statement:

read(, 1 : s-expr, , 2 : s-expr)

might look like:

"(II_ IIX II 11 • II lly II 11) 11 •

"y" .

When a string is given as an invocation expression it will simply be written to stan

dard output. Similarly, when an identifier is giv~n the value associated with it by some

read statement will be written to standard output.

When Nl is encountered a newline will be written to standard output.

As in interpreting recursive and unification expressions, parameters to a function

are first evaluated, if necessary, and then the function is invoked. Upon return, the

result of the function will be written to standard output.

•.2.s. Built in Function•

There are several built tn functions available to the user. The basic arithmetic

functions all have two parameters of type Nat with result type Nat. They are:

add(x, y)
subtract(x, y)
mutiply(x, y)
divide(x, y)

/• X + y
/• X • y
/• X • y

Divison is integer division in which the fractional part is truncated. The expression

divide{z,y) produces the remainder when z is divided by y, and thus is zero ·when JI

divides z exactly.

61

The other built in functions take two arguments of type Nat and produce a Boal

result. They are:

eq(x,y)
ne(x,y)
le(x,y)
lt(x,y)
ge(x,y)
gt(x,y)

/• X - y •/
/• X ,'= 1 •/
/• X < y •/
/• X < y •/
/• X > y •/
/• X > y •/

,.a. How to Run a Kaviar Program

A Kaviar source program is expected to come from standard input. All output is

directed to standard output. There are three options available to the user.

The -q option removes double quotes from values the invocation expressions write

to standard output. This makes the output look tidier and would be used when the user

is sure the program is working correctly.

The -, option stops sub-type checking. In normal circumstances the interpreter

verifies that something is a sub-type by evaluating a predicate. When this option is

given it will bypass evaluating the predicate. Once a program is fully debugged this

option might be used to enhance the speed of the interpreter.

And finally there is the -d option. Ir the Kavia.r program ha., any read statements

in it the interpreter expects that the user has prepared a data file. The name of this file

is to be given immediately after the ti as in:

•••• Implementation Reatriction• and Detaila

The folJowing are restrictions which have been arbitrarily set. To change these lim

its, the constants need only be changed and the interpreter recompiled.

No more than the first SIG_CHARS (12) characters of an identifier is significant,

although more may be used.

62

At most MAX_CF _TYPES (50) and MAX_SUB_TYPES (50), conteJ1.-t free and

sub-types, respectively, may be defined in any one source program. Also, at most

MAX_fCN (50) functions by either method may be defined.

The maximum length of a string is MAX_STR_LEN (256) counting the opening

and closing quotes. There is currently no way of including double quotes within a string.

Also, the character% should not be used in strings since the Unix routine print/ is used

for output and the% introduces a conversion specification.

The interpreter does no checking for overflow in evaluating the built in functions.

Behaviour of the interpreter in these cases is system dependent.

Although the symbol - has been used throughout the BNF r or an arrow, the

implementation recognizes an arrow a., the concatenation of the characten =- and >.

Similarly, the symbol U and n have been used (qr logical or and and, respectively, but

the implementation recognizes the characters I and & for these connectives.

•.5. Evaluating this Approach

Having introduced an alternative method for data abstraction, along with a pro

gramming language using this method, it is time to evaluate it. Chapter 5 does tthis

evaluation and provides a comparison with the initial algebra approach.

5. Evaluation of the Recursive Term Algebra Approach

6. Introduction

As promised, this chapter will evaluate the recursive term algebra approach for

speci(ying data types. It will follow the criteria given in §2.5 and show its superiority

over the initial algebra approach by means of examples.

6·.1. Formality and Constructibility

The formality of the recursive term algebra approach for specifying data types can

not be disputed.

Constructing specifications 1s a straightforward task. One need only translate a

recur!live definition to an unambiguous context free grammar by means described in §3.3.

Once again, consider the integer stack abstraction. In Kaviar, this might be

defined as:

type stack
{

}

<error> - "error";
<empty> - "empty";
<not-empty> - <li8t:data>

The alternative <error> is introduced for error handling.

A non-empty stack's contents is described by the type liat:

type list
{ .

<int> - <Nat:n>;
<list-of-int> - <Nat:hd> <list:tl>

}

One other type is needed to describe the values the data portion a non-empty stack may

be. It is:

type data
{

<empty> - "empty";
<list> - <list:list-of-int>

63

}

The basic operations of a stack are:

__ CREATE : - STACK
POP: STACK - STACK U {ERROR}
PUSH : STACK X INTEGER - STACK

64

In Kaviar these operations would be written a., functions. The CREATE operation

creates an empty stack. This function may be written as:

create(Bool) : stack
{

def a ult - "empty"
}

The PUSH operation might be written as:

push(s : stack, i : Nat) : stack
{

}

is-error(s) - s;
is-empty(s) - i;
is-not-empty(s) - i data<s>

As usual, the result of an operation applied to ERROR is ERROR. PUSHing a value

onto an empty stack yields a stack containing that single value. If the stack is not

empty, PUSHing a value onto it corresponds to prepending the value to the stack.

The POP operation could be written as:

pop(s : stack) : stack
{

}

is-error(s) - s;
is-empty(s) - "error";
is-not-empty(s) - take-ti(data<s>)

take-ti(I : list) : data
{

}

is-int(I) - "empty";
is-list-of-int(I) - tl<I>

If the stack is empty is it not possible to POP a value off it, so an error results. If the

stack is not empty POPping off a stack with only one element yields an empty stack,

whereas if the stack has more than one element, take the tail end of it.

In §3.1.1.1 is was shown that the addition of the operations

DOWN : STACK - STACK U {ERROR}
READ: STACK - INTEGER U {ERROR}

--RETURN : STACK - STACK U {ERROR}

65

which perform, respectively, movement down the stack by one position, yield the con-

tents of the stack at the current position, and position to the top or the stack, led to the

generation of infinite sets of equations.

To define these operatiom in Kaviar, the stack abstraction must first be modified

to include the position information. This might be done as:

type stack
{

}

<error> - "error";
<empty> - "empty" "I" <Nat:pos>;
<not-empty> - <list:data> "I" <Nat:pos>

where the vertical bar separates the elements of the stack from the position information.

This change affects the definitions or the basic operations. CREATing an empty

stack must also set the position information to zero, as in:

create(Bool) : stack
{

default - "empty" "I" 0
}

A PUSH operation places an element on the top or the stack and must now also

increment the position information so that it points to this new top element. The

modifications required are:

push(s : stack, i : Nat) : stack
{

}

is-error(s) - s;
is-empty(s) - i "I" 1;
is-not-empty(s) - i data<s> "I" add(pos<s>, 1)

Similarly, POP removes the top element from the stack and so must decrement the

position information to point to the new top element. Thus POP must be modified as

follows:

pop(s : stack) : stack
{

is-error(s) - s;
is-empty(s) - "error";
is-not-empty(s) - take-ti(data<s>) "I" subtract(pos<s>, 1)

66

Now that the stack abstraction includes the position information, definition of the

operations DOWN, READ and RETURN may proceed.

DOWN could be implemented a.s:

down(s : stack) : stack
{

}

is-error(s) - s;
is-empty(s) - "error";
is-not-empty(s) - set-ptr(eq(pos<s>, 1), data<s>, pos<s>)

set-ptr(b : Bool, I : list, n : Nat) : stack
{

is-true(b) - "error";
is-false(b) - I "I" subtract(n, 1 ") -

}

Ir the pointer is at the bottom of the stack already, moving down results in an error.

Otherwise decrement the position information.

The introduction of DOWN, however, requires additional changes to PUSH and

POP to take care of the fact that

POP(DOWN(s)) = ERROR, and
PUSH(DOWN(s)) == ERROR

So before PUS Hing or POP ping it is necessary to check that the position information

points to the top of the stack. If it does not, an error must result. The changes needed

are:

push(s : stack, i : Nat) : stack
{

}

is-error(s) - s;
is-empty(s) - i "I" 1;
is-not-empty(s) - test-top(eq(count(data<s>, 0), pos<s>),

i data<s> "I" add(pos<s>, 1))

pop(s : stack) : stack
{

1- .

is-error(s) - s;
is-empty(s) - "error"; ·
is-not-empty(s) - test-top(eq(count(data<s>, 0), pos<s>),

take-t)(data<s>) "I" subtract(pos<s>, 1))

test-top(b : Bool, s : stack) : stack
{

}

is-true(b) - s;
is-false(b) - "error"

67

RETURNing the pointer to the top of the stack simply requires setting the position

information to point to the top of the stack, or equivalently to the num.ber of elements

in the stack. A function which implements RETURN might be written as:

return(s : stack) : stack
{

}

is-error(s) - s;
is-empty(s) - "error";
is-not-empty(s) - data<s> "I" count(data<s>, 0)

count(I : list, n : Nat) : Nat
{

is-int(I) - add(n, 1);
is-list-of-int(I) - count(ti< I>, add(n, 1))

}

The function READ could be written in a similar fashion.

Thus using the recursive term algebra approach it is possible to compute invocation

expressions such as:

{
down(down(push(create(T), 4·)));
return(down(push(push(create(T), 5), 7)))

}

In fact, where in the initial algebra approach infinitely many equations such as

for k=0,1,2, ... and

RETURN (DOWN)"' (PUSH)" (j 11 ••• , i,.)=(PUSH)" (i 11 • •• , i,.)

for all m> 1, m <n often arise but are not permitted, using the recursive term algebra

approach they are computable.

68

From this example, it is evident the recursive term algebra approach provides a

simpler and effective means or defining an algebra.

5.2. Comprehensibility and Minimality

In the initial algebra approach, adding a new operation requires the equational

axioms to be reworked so that different terms are forced to denote the same object,

forming the equivalence clas·s. Hence the addition of an operation causes the

specification to grow reducing both the comprehensibility and minimality of the

specification as defined in §2.5.

In contrast, adding a new operation to operate on a term algebra specification does

not disturb the specification at all. It may, however, affect some or the other functions

defined, as DOWN affected PUSH and POP. This, however, will be true in any

specification technique. Because adding new operations does not affect the specification,

it remains the same size and stays comprehensible and minimal.

5.3. Range of Applicability

Applications most natural to this specification technique are those involving sym

bolic manipulation. Examples might include symbolic integration or differentiation,

transformation of grammars and so on.

5.4. Extensibility

Suppose a specification had to be changed. If the changes caused new basis values

to be added to the recursive definition, this would correspond to the addition more ter

minal production rules in the grammar. Likewise, if the recursive construction rule was

extended the result would be the addition of a new nonterminal production rule in the

grammar.

69

Also, changing an existing specification to carry more information, as the position

information was added to the stack abstraction, can be done without much effort.

Thus, extending the specification is a simple task. In the initial algebra approach

this involves rewriting the equational axioms which can involve considerable work.

6.6. Pouible Research

Given that is has been shown the recursive term algebra approach is .a viable

method for the specification of data types, Chapter 6 proposes some extensions and an

interesting application of the method.

6. Further Research and Conclusions

8. Introduction

This chapter proposes some extensions to the recursive term algebra approach for

the specification of data types. Also, an interesting application of this method is

presented. Some conclusions then r ollow these proposals.

8.1. Pouible Exten1ion1 to Kaviar

It might be interesting to investigate and implement the following ideas.

8.1.1. Parameteri11ed Types

By introducing variables over types, that is, nonterminals, it is possible to define

parameterized types. For example, if S is a type variable then:

type s-expr(S)
{

<atom> - S;
<list> - 11

(" <s-expr(S):car> 11
." <s-expr(S):cdr> 11

)"

}

defines a type or parameterized symbolic expressions. It might be suitable to define such

types using two level grammars.

Definition or parameterized types would allow for the introduction of polymorphic

runctions. A function such as revefflal of an S-expression could now be defined as:

reverse(-_-- , : s-expr(S)) : s-expr(S)
{

is-atom(s) - s;
is-list(s) - 11

(
11 reverse(cdr<s>) 11

." reveffle(car<s>) 11
)

11

}

making it applicable to all S-expressions not just, say, to $-expressions whose atoms are

numeric.

70

71

6.1.2. N-a.ry Uni&cation Function,

The current implementation of Kaviar requires functions defined by unification to

be unary only. By introducing additional syntax to accomodate n-ary functions the use

fulness or these functions might be increased. Semantic issues become more complicated,

however.

8.2. A PoNible Application of this Method

Given that data types are equivalent to context free grammars, logic programming

provides, in the logic grammar notation, a simple and convenient means of specifying

and, because of the procedural interpretation of Horn clause logic, implementing data

types.

Logic grammars were first introduced by Colmerauer [Colmerauer,1978}. His

metamorpho,i, grammar, strictly more powerful than a context free grammar, is a collec

tion of rewriting rules which can mechanically be translated into Horn clauses, hence, to

a logic program. Subsequent work baa added several different logic grammar formalisms,

and a modification of the definite clauae grammar, [Abramson,1984) may be used to

specify context free data types.

A logic program can translate grammatical notation into Horn clauses, generating

the selector functions car and cdr, and the parsers atom and li,t for S-expressions.

These functions and predicates may be combined by the user to write other functions

over S-expressions.

The logic grammar formalism may also be used to define sub-types.

Using these idea.,, a typed logic programming language may be imposed over a

typeless one to aid the reliability of large scale logic programs. A type free logic pro

gramming language ideally suited to this is Prolog.

72

6.3. Conclu1ion1

The initial algebra approach has been proposed as a method for the specification of

data types. It was found, however, that it is often quite difficult to construct

specifications using this technique.

This spawned the idea that recursive term algebras should be used instead. The

algebras generated by recursive definition were found to be expressible as unambiguous

context free grammars.

A functional programming language was then developed around the idea.

Evaluation of the recursive term algebra technique showed it to be superior to the

initial algebra technique.

Bibliography

!Abramson,1984J.

Abramson, H., "Typing Definite Clause Translation Gramman and the Logical Specification

of Data Types are Unambiguous Context Free Gramman," Proceeding, of t/ae International

Conference on Fifth Generation Computer S111te,u, Tokyo, Japan, November ~0, 1084.

!Aho&:Ullman,1972J.

Aho, A.V. and Ullman, J.D., The Theor11 of Parting, Tranllation and Compiling, Volume 1:

Parsing, pp. 320-330, Prentice-Hall, Inc., Englewood Clilfa, New Jersey, 1072.

!Burstall&:Goguen, 1982J.

Burstall, R.M. and Goguen, J.A., "Algebras, Theories and Freeness: An Introduction for

Computer Scientists," Uni11ernt11 of Edinburgh, Department of Computer Science, Internal

Report CSR-101-Bt, February 1982.

I Colmerauer, 19781.

Colmerauer, A., "Metamorphosis Grammars," in Natural Language Communication wit/a

Computer,, ed. Bole, L., Springer-Verlag, 1978.

!Earley, 1970J.

Earley, J., "An Efficient Context-Free Paning Algorithm," Communication, of the A.CM,

vol. 13, no. 2, pp. 94-102, February 1970.

1Goguen,1977J.

Goguen, J.A., "Abstract Erron for Abstract Data Types," Proceeding, of the IFIP Working

Conference on the Formal De,criplion of Programming Concept,, pp. 21.1-21.32, August,

l<J77.

/Goguen&Tardo,1979J.

Goguen, J.A. and Tardo, J.J., "An Introduction to OBJ: A Language for Writing and Test

ing Algebraic Program Specifications," Specification, of Reliable Software Conference

Proceeding,, Cambridge, Massachusetts, April 1970.

73

74

jGoguen,Thatcher&Wagner,19781,

Goguen, J.A., Thatcher, J.W., and Wagner, E.G., "Initial Algebra Approach to

Spec_~ficatioo, Correctness and Implem~ntation ot Abstract Data Types," in Current Trend,

in Programming Metlaodolog11, ed. Yeh, R., vol. 4, pp. 80-140, Prentice-Hall, Englewood

Cliffs, New Jersey, 1978.

jGoguen,Thatcher,Wagner&Wright,1975).

Goguen, J.A., Thatcher, J.W., Wagner, E.G., and Wright, J.B., "Abstract Data Types aa

Initial Algebraa and the Correctnesa or Data Repreaentationa," Proceedingi of tAe Confer

ence on Computer Graplaic,, Pattern Recognition, antl Data Structure, pp. 89-93, sponsored

by UCLA Extension in participation with the IEEE Computer Society and in cooperation

with the ACM Special Interest Group on Computer Graphics, Loa Angeles, California, May

14-16, 1975.

jGraham&Harriaoo,1976).

Graham, S.L. and Harrison, M.A., "Parsing or General Context-Free Languages," in

Advance, in Computer,, ed. Yovits, M.C., vol. 14, pp. 77-139, Academic Press, New York,

New York, 1976.

jGuttag,1975).

Guttag, J.V., "The Specification and Application or Programming ot Abstract Data Types,"

Computer Systems Research Group report CSRG-59, University or Toronto, 1975.

jGuttag&Horning,1978j.

Guttag, J.V. ·and Horning, J.J., "The Algebraic Specification or Abstract Data Types," Acta

Informatica, vol. 10, pp. 27-52, 1078.

IJ<anda&Abrahameoo,1983j.

Kanda, A. and Abrahamson, K., "Data Types as Term Algebras," Uniuerlit11 of Briti,h

Columbia, Department of Computer Science, Technical Report 89-t, March 1983.

IKlaeren, l 980J.

Klaeren, H.A., "An Abstract Software Specification Technique based on Structural

75

Recursion," ACM SJGPLAN Notice, vol. 15, no. 3, pp. 2~34, March 1980.

ILiskov &Zilles,1978J.

Liskov, B.H. and Zilles, S., "AD Introduction to Formal Specifications or Data Abstrac

tions," in Cu"ent Trend, in Programming Met/aodolog11, ed. Yeh, R., vol. 1, pp. 1-32,

Prentice-Hall, Englewood Cliffs, New Jersey, 1078.

!Majster, 19771.

Majster, M.E., "Limits or the Algebraic Speciftcation or Abetract Data Types," ACM SIG

PLAN Notice,, vol. 12, no. 10, pp. 37-42, October 1977.

1Meseguer&Goguen,1983J.

Meseguer, J. and Goguen, J.A., "lnitiality, Induction and Computability," Computer Sci

ence Laborafor11, Computer Science and Teclanolo111 Divilion, SRI International, CSL Techn

ictJl Report 1~0, Menlo Park, California, Decembert 1983.

