
Specification and Initialization
of a Logic Computer System

Anthony J. Ku.,alik

Technical Report 85-10

July 1985

Specification and Initialization
of a Logic Computer System

Anthony J. Kuaalik

Computer Science Department
Univer ·ity of British Columbia

Vancouver, B.C., Canada V8T 1W5

Technical Report 85-10
July 1985

ABSTRACT

A logic computer system consists of an inference machine and a coru
patible logic operating system. This paper describes prospective mode!s
for a logic computer system, and its hardware and software components.
The language Concurrent Prolog serves as the single implementation,
specific ation, and machine language. The computer system is represented
as a logic programming goal logic_computer_,,ystem. Specilication of the
system corresponds to resolution of this goal. Clauses used to solve the
goal - and ens uing subgoals - progressive ly refine the machine, operating
system, and computer ~ystem desig ns. In addition, the accumub.tion of
all clauses describing the logic operat ing sysLem constitute its implemen
tation. Logic computer systems with vastly different fundamental charac
teristics can be concisely specified in this manner. Two contrasting exam-
p les :ire given and discus ed . n important characteristic of both peri-
pheral devices o.nd the overall computer sys em, whether they are ,est.::t.rt
ab le or perpetual, is examined. As well a method for operational ioi t i::d i
zation of the logic computer system is presented. The ·ame clauses which
incrementally specify characteristics of the computer system also describe
the manner in which this initialization takes place.

- 2 -

1. Introduction

In general, an operating system can be regarded as enhancing the set. of services
and capab il it,ies provided by underlying computer hardware. A "logic operat ing system"
fulfills this role for a logic inference machine and is implemented in a logic programming
language. An inference machine and a compatible logic operating system constitute a
"logic computer system".

An importaut. aspect of logic programs is that axioms (the program. st:.i.tements) can
be read two ways: declaratively or operationally. A single logic programming language
can be used for both specification and implementation. The duality permits the 5::1,me

axioms which describe a model to be used in implementing a progr:1m conforming to the
model.

The exp ressi-ve power of logic programs allows many conventional notions to be
adapted to logic inference mac hincs and their operating systems. For example, principles
of object-oriented programming work well in a logic programming environment [I ahn82,
ShTa.83, ZaniM]. Ho,vever, the properties of logic programming languages ruay suggest
new techniques and idea ls . A lso, not a ll traditional concepts may be accommodated well
within a "logical" context.

This paper presents models for a logic computer system and its two constituents, a
logic operating ystem and a logic inference machine. Possible designs for the logic com
pu er system are exp lored . The underlying hardware is assumed to be a Concurrent
Prolog m:1chine. Two alternate views of the computer system and peripheral devices are
examin cl. The pn.per suggests th.at the operating system can be implemented by accu
mulating cl::i.uses from progressive model refinement. Further, a method is described for
the opern.l.ional initialization (ubootstrapping") of the entire logic compu er system. The
same langu:i.ge, Concurrent Pro!og, is used as imp lementation, specific::i.tioa, and machine
language.

Langu:1ge characteri. tics uti lized within the work - guards, data.flow control, etc. -
ar not pecu liar o Concurrent Prolog but are present in a Dllillber of other coucurr ·nt
logic programm ing language ' . Cons quent ly, the ideas developed in his paper are appli
cab le for th most part to related languages such :l.S PARLOG [Cl0r84:.1] :i.nd CH
[Ueda85].

The remainder of this section introduces the language Concurrent Prolog and sur
veys related work. Section 2 describes the abstr;,1 t Concurrent Pro log machine and g .. n
eral characteristics of the operating ystem. ection 3 concerns p cifi ·ation of thc.lo:;ic
computer system and discusses contrasting designs. The initializa iou of th 0 logi oru
pu er system is the subject of Section 4. Section 5 concludes the paper and suggests
areas of further study.

1.1. Language

The best-known logic _programming language, Prolog [Rous75, Warr77j, is a poor
candidate as a pecification, yst.ems programming, and mach.ine language: it doC>s not
allow the expression of concurrent. computatior1s without, resort t,o side-e!rects. [n Lhis
work, Concurrent Prolog [Shap83a], hereafter denoted "CP", is used because it is power
ful, concise, and supports concurrent computation. Many effective programming con
;tructs and techniques, such as objects, clas:1 hierarchies, stream communications, and
message-passing can be clean ly realized using the language [Shap83a, Shap83c, SbTa83,
TaFu83, I-li CF81l]. GP has a lso been employed in a wide variety of app lic tions
!FuTK83, I-lira83, S hSh83, HeS h8-1, Kusa84.a ShMi84]. On the whole, results favor its

- 3 -

use for systems programming, and for expression of high-level or complex concepts. The
kernel language, KLl, of ICOT's parallel inference machine is a superset of CP
[FKTU84J. A prospective architecture for a CP machine has also appeared [Shap83b].

It is assumed that the reader is familiar with CP. An in-depth description, includ
ing a computational model, is provided by Shapiro [Shap83a]. Papers by Shapiro
[Shap83c] and Shapiro and Takeuchi [ShTa83} provide summaries. A condensed intro
duction is also provided in Appendix A. The following iable summarizes the manner in
which CP embodies familiar computational concepts.

Concept

Process

System

Process state

Process computation

Process communication

Process synchronization

1.2. Related Work

Concurrent Prolog Construct

Unit goal

Conjunctive goal

Value of arguments

Goal reduction

Unification of shared variables

Suspending unification of read-only variables

Shapiro [Shap83c] bas demonstrated the feasibility of CP as an operating system
kernel language. Jn the paper, a num her of common, representative operating system
functions are implemented in CP. A high-level specification of an operating system with
a "reboot" capability is given by way of a concise CP program. The operation of a peri
pheral device is described as a CP process, with the device content regarded as an argu
ment int.he process state. It is proposed that the cleanest way to achieve communica
tion with peripheral devices in a CP machine is to have devices consume or generate CP
streams.

The use of formal logic, particularly temporal logic, in the specification and
verification of computer components is not uncommon. Prolog has also been employed
in this capacity [UeKa83]. Suzuki [Suzu83] uses CP as a specification and verification
tool. His work, however, concerns only hardware components, and not software or
high-level system characteristics.

Presentations of ICOT's prototype inference machine PSI [UYYT83, YYTN83] and
its operating system, SIMPOS [Ha Yo83, TYUK84], do not make use of logic programs in
their high-level descriptions. Furthermore, the design of PSI is not suited to the proli
feration of small-sized processes characteristic of CP. The machine language, KL0, and
the implementation language, ESP, are forms of Prolog with depth-first search, back-

. tracking, and "cut" [Chik83]. Hence, some fundamental aspects of SIMPOS are incom
patible with a CP environment.

2. Hardware and Opera.ting System Characteristics

2.1. Abstract Machine

The logic computer system is targetted for a CP machine. Since such hardware
does not exist, it is necessary to define and assume hardware properties and capabilities.
However, logic inference machines are still in the very early stages of their evolution.
Many architectural proposals exist in the literature with little consensus on t.heir relative

- 4 -

merits. Hence, the hardware description is general in nature and independent of imple
mentational details.

As demonstrated by the ICOT's PSI [YYTN83J, a logic inference machine can
display couventional features, such as interrupts, sequential execution, ancl reliance on
side-effeds. However, current trends toward more "intell igent" hardware often place
function ality previously assigned to lower levels of an operating system with.in ban.lware.
This again is demonstrat.ed by PS(which h().!j firmware instructions to handle process
sw itching, creation, deletion, and synch ronization [UYYT83].

It is only natural for a logic inference machine to have characteristics of a higher
level than those of conventional computers. Logic programming languages are high-level
languages. A machine which executes such a language would certainly have greater
capabilities and complexity.

The hardware model is as follows. A CP machine has a multi-processor
configurat.ioo, consisting of an arbitrary number of individual processing elements. Each
proce:,s of a conjunctive goa l system can be thought of as executing on an individual
processor. "Generic processors 0 can undertake the reduction of arbitrary goals. The
machine is responsible for mapping processes to available processorsl. Hardware sup
ports th efficient access and propagation of shared variable bindings . In this discussion
a (1proce:sor' is o. generi c processor, unless stated otherwise.

Each physical peripheral device has associated with it a special "device processor".
This processor provides an inLerface between the remainder of the CP machine and the
device. Viewed by other processing elements, a device processor supports a single,
chara.cteristic perpetual process called a "device process" (DP). A DP is logically indis
tinguishable from 0th.er OP processes and describes the operation of a device processor
an d peripheral device without recourse to side-effects. The state or contents of the dev
ice is represented by process arguments. Software access to a peripheral device (through
its device processor) is achieved by communicating with the corresponding DP using CP
streams. Device processes may vary in specific protocol details. A device process exists
independently of the operating system processes; it exists whenever its device processor
is active.

A device processor may be any type of machine. It must, however, support an
interface consistent with the remainder of the CP machine. Its execution as a perpetual
proc'ss must be describable by a CP program. The actual program is dependent on the
specification of the entire logic c.omputer system (as discussed in Section 3). For
insta.uce, a. terminal display may have associated with it a device process described by

tty_d£3play({C!i(l.r ,' Cha rStrm/, Di:JplayedChars} :
tty_di1Jplay(CharSlrm?, [Char,' DisplayedChars/).

Program (a): Terminal Display Device Process

Here, the first argument is an input stream of characters. The second argument, Lhe
local state1 represen ts the characters that appear on the physical display.

The machine language of the CP machine may be CP, in wLich case its operation is
describ d by a meta-interpreter. Alternatively, the hardware may execute a logic-bMed
lirnguage in which higher- level logic-based systems programming languages can be

1. Sh:i.piro [Sh:i.p83bj presents an a llern:i.te view in which CP programs a.re augmented with
process- to-processo r mapping not.a.tions. The concepts presented in this pa.per would not be ad
versely affected by such a. change.

- 5 -

specified (cf. ESP and KL0 [Chik83I). A CP interpreter is then written in this low-level
language, but viewed as part of the machine. In either case, unification and goal reduc
tion are provided by the machine model.

2.2. Operating System

The operating system design follows principles of multi-process structuring (pro
gram structuring using multiple concurrent processes). Several characteristics of CP
make t.bis appro ach a.Uract ive: large numbers of small processes, easily attained int.erpro
cess ~o mm unicat ion , dynamic process creation and destruction, and the ability to hare
dat.a structures among processes.

Th e logic operating system is composed of small , complement.ary, and cooperating
s<'ners. Each server provides a ompact set of r elated services to other processes.
S rY ers are construct.ed as CP obj ects [ShTa83), or as obj ct hi er archies . They may
dynamically create and d troy constit uent processes. Servers communicate via object
based protocols using message-passing over streams. They may call on the utilities of
devices and other servers in their operation. Progressively more substantive services are
generated in this manner. Clients normally communicate directly with the server
responsible for the utility being sought. Servers may be transient (dynamically created
to fill a temporary need, then removed) or permanent (created at system initialization
for the duration of system execution).

T hr operating system do es not include a kernel. A process abstract ion (process
creatio n, execut ion, and destruction) is already provided by goal reduction. Unification
provides com munication dat a transfer, and synchronization mechanisms. Hence, capa
bilities traditionally ascribed to a kernel are captured by the metalanguage and incor
porated into the CP machine model.

In a conventional operating system, the bu.lk of the software cannot access physical
1/0 hardware directly. A device driver is i11troduced to provide an interface. Here,
directly accessible devices are provided by the machine model. Clients may access a
peripheral device by communicating with its corresponding device process. The operat
ing system need only assist in identifying the appropriate stream. Servers are typically
present to provide an alternate interface or addit,ional functionaljt.y. During system ini
tialization (discussed in Section 4), the operating system obtains a channel to each deYice
process. These channels are preserved for the duration of system execution.

The logic operatin g system is not designed for a particular proposed or prototype
inference machin e. Rat.her, it only presumes the previous basic hardware model. Any
CP machine, or emulator, conforming to the model should be capable of executing the
operating system program.

3. Specification of the Logic Computer System

The logic computer system model has two components, a hardware (ma.chine)
model and an operating system model. The latter builds upon the machine model. The
hardware model, in turn, is an extension of the computational model of the chosen
logic-based machine language, in this case CP.

A logic computer system can be represented by a goal

lo gic_c omputer _system.

Specification of the system can be viewed as the process of resolving this goal. The
resulting proof tree represents progressive refinements in the operating system and
hardware models . To illustrate, the following clauses could describe the overall sy~tem:

logic_computer_.,ystem :-
di,,k(Di.,kStrm? },
tty_keyboard{ Ttyl<eyStrm? },
tty_ di:,play{ TtyDi.,pStrrn? },

- 6 -

operating_sy:,lem((Di.,kStrm, TtyK eyStrm, TtyDi:,pSlrm}} I
true.

logic_computer _system :-
otherwise I logic_computer_sy:,tem.

Program (b): Logic Computer System Specification

This concise program specifies the components of the system, and the existence and style
of communication channels between peripheral devices and the operating system. It also
describes operational characteristics of system initialization (to be discussed in Section 4).
Clauses for the subgoals disk(Di8kStrm?}, tty_,keyboard(TtyKeyStrm ?), and
Uy_disp/ay(TtyDiBpStrm?) provide more detail regarding these components of the
hardware model. The operating system model is further developed by clauses for the
subgoal

operating_syBtem(DeviceStrmLi11t}

(see Program (e) of Section 4, for example). The same language, CP, is used throughout.
The accumulation of clauses from recur.,ive refinement of the operating system mode l is
a program which implements the operating system.

Execution of the computer system also corresponds to construction of the proof tree
rooted with goal loyic_computer_sy11tem. By nature of the applicat ion, the proof (execu
t ion) never terminates successfully; a computer system is intended to be always execut
ing (cf. perpetual processes[vVarr82]).

Program (b) succinctly specifies many properties of a logic computer system:

a) The components of the syst m are a disk (file storage device), terminal keyboard, ter
minal display, and opcrat,ing system all functioning simultaneously.

b) Communication between the operating system and each device is over a single
stream. Message transfer is initiated by the operating system. Given the most intui
tive producer / consumer assignments for the relationships among the system com
ponents individual exchanges are eager [TaFu83, HiCF84] between opera.t ing system
and disk, and operating system and display. They are lazy between operating system
and keyboard. Despite the one-way nature of the communjcation channels, message
replies can be realized easily using incomplete messages [Shap83c, ShTa83].

c) Subgoals describing devices and the operating system are placed within the guard of
the first clause. This guard system represents the computation normally being exe
cuted. Failure of one of these subgoals causes the resolution of the entire guard to be
abandoned, and computation to proceed using the second clause (the semantics of
otherwise) [ShTa83]. This alternate clause, however, simply re-invokes the goal
logic_ ompnler_syslem, restarting the previous computation, and hence the entire
computer system. Tbe syst m is thus said to "restart (reboot) on failure".

4) Since the subgoals di:ik{DiBkStrmP}, etc. are with in a guard failure of any or them
causes the abandonment of the entire computation represented by the clause. Prior
to failure, changes to the state (contents) of devices are represented in Lhe histories
(st.reams) bou_nd to DiskStrm, etc. Upon failure, reBults of t_be attempt to resolve the
guard, including the bindings of these streams, are all abandoned. When th.e second

- 7 -

clause succeeds, the resolution of logic_operating_.,yatem begins again, but as if the
computation preceding the error had never taken place. To correctly reflect the
correspondence between procedural and declarative semantics, devices must therefore
be "restarted". This means operationally resetting the device to the state it was in
(or an equivalent) at the start of the failing guard computation. Hence, devices are
"restartable".

e) A grave software error which results in failure of the subgoal operating_ayatem(. . .)
- an operating system "crash" - causes the system to be reinitialized as described in
c) and d) [Shap83c].

f) Serious hardware errors, which would be expected to operationally require reinitiali
zation of the system, can cause exactly that: they can be treated as failure of the goal
representing the malfunctioning device. The effect on the system is demonstrated in
c) and d) above. Thus hardware errors can be handled cleanly within the logical
framework.

g) Power failure, whether deliberate or unforeseen, can be treated as serious hardware
error . Another subgoal, power_up, could be added to the first guard system in Pro
gram (b). Resolution or this predicate suspends while adequate power levels are sus
tained , but fails if they decline. Subsequent reduction, that using the second clause,
is seen to suspend until power is again available.

h) A manual restart capability {for control by humans) could be implemented as tem
porary cessation or power, or as a separate signal taken as indicating goal failure.

Alternate specifications of the computer system are possible. For example, each
subgoal representing a device could have as an extra argument the initial state of the
device. A more contrasting example is:

logic_computer _aystem :
di.,k(Diskin, DiskOut?),
tty_keyboard(TtyKeyln, TtyKeyOut?),
tty_di.,play(TtyDispln, TtyDispOut'I),

· operating_system({Diskin'!, DiskOut, TtyKeyln?, TtyKeyOut, TtyDispln'I, TtyDispOutj).

Program (c): Alternate Logic Computer System Specification

Though it may not appear so at fir3t glance, the computer sy3tem 3pecificd by thi3 pro
gram is much different in character from the previous one. In particular:

i) Communication betwee n. operating system and devices is still over CP streams. How
ever, separate input and output streams are used. More care in synchronization of
messages is therefore necessary. Further, the placement of read-only annotations
(assuming significance to the variable names) implies that the generation of messages
is lazy [TaFu83, CIGr84a, HiCF84]. For instance, a request cannot be sent to disk
until the device process partially instantiates Di3kln. Similarly, di8k cannot generate
an output message until operating_ay8lem or one of its subprocesses partially instan
tiates Di8kOut.

j) There is no provision for reinitialization; failure of a goal means failure and termina
tion of the entire system. Once initiated, the computer system is 11 perpetual".

Jc) Devices are perpetual; that is, the result of the computation is never "undone" as in
the case of a restartable device (see item d)). Certain devices, such as file storage, are
naturally conceptualized as perpetual. A logic computer system which has any per
petual component must itself be perpetual.

- 8 -

I) The subgoal represent,ing the operating system cannot be allowed to fail. Therefore,
the operating system must be very robust and able to always intercept subgoal
failure. Techniques for this are known (er. railure within a user shel.l program
[Shap83c, ClGr84b]).

m) As the system is perpetual, hardware errors cannot be treated as high-lev I goal
failure. They can, however, be represented by suspension2. For example, if a
hardware error occurs in a device, it may be treated 83 srupension of the gout reduc
tion r epresenting the device . Operationally, it is the responsibility of the offending
physical hardware to re-e8tablish its state to that immediately preceding tbe error
before the device computation can be seen to continue.

As demonstrated, different characteristics are possible for the logic computer system.
These characteristics are concisely specified by CP program.s. The two logic computer
system examples are consistent with the hardware and operating system dencriptioru
given in Section 2.

Certain combinations of properties of the previous two programs are problematic.
For example a naive mi.xt1ire of "restartable" and "perpetual" devices is not viable
because of the corn mit, operator's effect on the propagation of variable bindings . That is,
in the program

logic_computer _.,y:,tem :
reJtartable_part(CommonStrma),
perpetual_part(CommonStrma).

reatartable_part([DiakStrmj) :
tty_keyboard(TtyKeyStrm?),
tty_di play(TtyDiilpStrmt),
operating_syatem([DiskStrm, TtyK eyStrm, TtyDispStrmj) I
true.

restartable_part(CommonStrms) :-
otherwiae I reatartable_part(CommonStrma).

perpetual_part([DiakStrmj) :-
disk(DiskStrm?).

Program (d): Inconsistent Logic Computer System Specification

any bindings made to DiskStrm by resolution of the goal

operating_system([Di.,kStrm, TtyKeyStrm, TtyDispStrmj)

will not be known to diak prior to commitment. But commitment to a clause to reduce
the goal

restartable_part([DiskStrmj)

(i.e. the second clause) occurs only after failure of the guard computation which gen
erated the bindings to DiskStrm (the first one). Therefore, the di:,/. process never
receives any messages. Making

operating_system([DiskStrm, TtyK eyStrm, TtyDiapStrmj)

a subgoal of

2. The_ suspension or goal reduction is a fundamental capability in CP. In fact, Shapiro's original
computational model for CP [Shap83aJ treats goal failure as infinite suspension.

- 9 -

perpetual_part(/DiakStrm/)

alters the symptoms, but does not rectify the underlying problem.

3.1. Representation of Errors

Since the CP machine has a distributed architecture, representing a hardware error
as suspension is easier in some respects than representing it as goal failure. With the
goal-failure scheme, knowledge of an error cannot remain local and must be distributed
to, and acted upon, by processors responsible for other goals of tb.e current conjunctive
system. The error-as-suspension approach allows knowledge of an error occurrence to
remain restricted to a single device processor.

Error-as-suspension can also be used for restartable devices, in particular for less
serious errors. For example, the computer system should not be reinitialized just
because the lineprinter is suddenly out of paper. It is preferable to consider the line
printer as suspended in its response to the message which motivated the error condition.
The device process will be seen to continue after paper is added.

Errors of less gravity can be handled by message replies for both restartable and
perpetual devices. For instance, output of character Char may be achieved by sending
the message out{Char,Reply) to the terminal display. To indicate that there was a prob
lem in doing this, the terminal display could bind Reply to the constant error.

3.2. Perpetual versus Restartable Devices

Certain peripheral devices are more naturally conceptualized as perpetual devices.
For example, with file storage the most up-to-date state (cont,ent) should always be
maintained. Restartable file storage would require that on reinitialization the entire
informational content of the device be eliminated, reverting back to some initial state.
However, to be useful file storage must be nonvolatile across hardware error, power
failure, and other sources of reinitialization. It seems best, then, that file storage be per
petual.

l\fost other peripheral devices can be conceptualized as either perpetual or restart
able. For example, on reinitialization the screen of a restartable terminal display can be
cleared, reestablishing an initial state; a line printer can generate a page eject to ensure
t,hat any output will be at the top of clean paper. However, even though characters
have disappeared from the screen, they were present at some specific point in time with
certain characters preceding and following; the fact that the line printer generated a par
ticular page of output cannot be later refuted. Therefore, in a more abstract sense,
these devices can also be regarded as perpetual. With this view, the initial state of a res
tartable device is actually an equivalence class of states. For a terminal display, for
instance, all members of the class may be represented by clear screens.

The initial states of restartable devices are not restricted to those given in the
examples. Instead or a clear screen, the initial state of a terminal display could, for
instance, involve having the string "wake me" displayed in the lower right corner. The
initial state or a restartable file storage device could include predetermined files and their
contents.

4. Initialization of the Logic Computer System

A device process ex.ists independently of the operating system servers; it exists
whenever its device processor is active. The purpose of system initiali7,ation is to initiate
the permanent servers (see Section 2.2) of the operating system, and establish

- 10 -

communication channels to each device process. Communication via shared variables is
declaratively simple (see Programs (b) and (c)). Its practical use, however, requires opera
tional initialization.

The following is a simple but effective mechanism for establishing communication
channels from the operating system to each device process. It assumes that the CP
machine represents variables as pointers into memory accessible by all processors and
globally addressable (not necessarily global, multi-ported memory). The logic computer
system is taken to be of the style in Program (b); in particular, devices are restartable, a
single st.ream exists to each device, and communications are initiated by the operating
sy tern . Finally , it is assumed that each device process is able to accept a message of the
form init(DeviceType} and respond by unifying DeviceType with a ground term identify
ing its type.

On initialization, e-ach device processor has a separate, predetermined variable that
it tries to access, waiting for it to be instantiated. N l/0 devices, devicel through devi
ceN are a.'3sumed to exist. The "number" of each device is set by physical marripula
tion3. The first N variable addresses are used by the N devices. Device i tries to access
the ith variable. The 0pera·tion of ea,ch de-vice - devicd>'f is used as an example - a.t this
point i.s describable as resolution of the goal

deviceM(DeviceM'? }.

One processor, not a device processor, is designated the "initialization processor"4.
It begins the resolution of a predetermined (firmware) goal:

uperating_system{ [Devicel, ... , DeviceM, ... , DeviceNJ).

The variable addresses for Devicel through DeviceN are known by the previous conven
tion. However the operating system does not presuppose which variable will be used for
which device. Computation proceeds using the following program:

3. This setting is analogous to the vector or CSR address in the DEC PDP-11 architecture.

4. This designation and the number of devices, N, can be set in a variety of ways, from firmware
memory values to hardware jumpers.

- 11 -

operating_ayatem{ DeviceStrmLiat) :
init_aerver(DeviceStrmLiat'I, DetiiceReap),
permancnt_aerver-,{ DeviceReap'I }.

init_., erver{ {DeviceSlrm / DeviceStrmLiatl, DeviceReap) :
e.,tabliali_comm{ DeviceSlrm, E.,t CommStrm },
merge{ Ea tCommS trm'I, R eapStrm P1 DeviceReap),
init_aerver(DeviceStrmLiat'I, ReapStrm).

init_aerver(fl, fl).

eatabliali_comm(DeviceStrm1 ReapStrm) :-
send{ in.it(DeviceType), DeviceStrm, NDeviceStrm },
eat abliah_co mm(DeviceType'I, NDeviceStrm, ReapStrm }.

eatabliah_comm(DeviceType, DeviceStrm, R eapStrm) :
wait(DeviceType } I
send{ reg_device(DeviceType, DeviceStrm), ReapStrm1 fl).

permanent_aervera{ ReapStrm} :
file_aystem_aervera{ FSServerStrm),

uaer_servera(UaerServerStrm),
merge(fReqStrm?,FSServerStrm?, ... , UaerServerStrm?j, StrmServerReq),
atream_server{ StrmServerReq?, []).

atream_server(freg_device{ Device Type, DeviceStrm JI ReqStrmj, Server DB}:
atream_server{ ReqStrm?, favail(DeviceType ?,DeviceStrm)/ ServerDBj).

Program (e): Operating System Initialization

At some point in this computation, the subgoal

eatabliali_comm{ DeviceStrm, ReapStrm)

must be resolved for each device i. Consider the general case, device M, for which Devi
ceStrm is bound to DeviceM. Resolution of the goal

eatabliah_comm{ DeviceM, ReapStrm)

causes DeviceMto be bound to finit{DeviceType)/NDeviceM}and a process

eatabliah_comm{ DeviceType?, NDeviceM, Re8pStrm)

to be invoked. This last process suspends awaiting instantiation of DeviceType. It has
been arranged that DeviceM is a variable shared by the devicelvl and operatirig_ayatem
processes. Therefore, its binding is also known by deviceM. The device processor for
device M has been awaiting just such an instantiation. The program describing its
operation contains a clause similar to

de viceM(finit(ex ample_ type) IR eqStrmJ) :-
devic eM{ R eqStrm?, initial_conlent }.

(example_type would actually be replaced by an atom identifying the type of this device;
for example, termina/_di.,p/ay or line_printer. Likewise, initial_content would be the ini
tial state of the device.) Reduct.ion of the goal

- 12 -

deviceM(finit(Device Type }/ NDetriceMJ'I}

succeeds, binding Dev iceType to example_type. The su,tipended eJtabliali_comm process
can now resume execution. It place!! information necessary for further communications
with device Min an outgoing message destined for stream_aerver. Communication
betwe n_ device Mand the operating system is now established. The new variable NDev
iceM is lcuow u to both parties and will be used for the next exchange. The establish
ment of communication at system initialization, then, is primarily a matter of coordina
tion.

The following points can be made regarding initialization and Program (e):

a) The clauses for predicates [Jermanent_urvera and atream_urver are given in outline
form for purposes of clisc115sion. send, merge, and u:ait are assumed to be self
explanatory though descriptions are given in Appendix B.

b) The memory locations for variables Device1 .. . DeviceN have no spec ial properties.
It may even be possible, given sophisticated tail recursion optimization and garbage
collection techniques, to reuse them for other variables.

c) Reduction of the subgoals in Program (e) can migrate to idle processors. The initi:i.li
zation processor is only required to start tbe computation.

d) A device pro ess ueed not retain the capability to handle an init{DeviceType) mes
sage once communications with the opera.ting system processes have been established.

e) Not only does Program (e) specify how system initialization takes place, it is also a
refinement of the opera.ting system model. For example, the program initiates, and
the operating system is composed of, a set of permanent servers and a transient
server to aid in initialization. Certain predicates such as eatabli:Jh_comm, require no
further elaboration, whereas the bulk of the operating system is described by the
clause for permanent_aeruera and its subgoals.

t) The high-level specification of the operating system is independent of the number
and types of peripheral devices in the computer system.

g) The stream server is an important permanent server. Its purpose is the maintenance
of associations between identifiers (of obj,:!cts) and communication variables to these
objects. On receipt of a message reg_device{DeuiceType,DeviceSlrm}, it adds to its
<latabo.se the information "DeviceStrm is the stream to device DeviceType".

h) The operating system is initiated in such a way that the unexpected absence of a
device processor does not create severe problems. The most significant consequence
would be an eatabliah_comm process suspended, awaiting a reply from a non-existent
DP. The rest of the sys em can ca.rry on. This also means -that the operating system
can be started expecting more devices than are actually present. New devices can
easily be added at a later point in time without restarting operations.

Unfortunately, Program (e) may be too idealistic and impractical, at least given
conventional techniques for initi alizing computer systems. It is implicit that the entire
opera.ting system progrri.m is present within the machine at the start of operation. A
more typica l situation has the operating system program stored on a file-s t ructured dev
ice&. The initially executed program - the (primary) bootstrap - is minimal and stored
in ROM. Its sole purpose is to read into majn memory a larger program and begin it;s

5. Though this is the norm, it need not be. The development or novel computer architectures al
lows the questioning or such forms or conventional wisdom.

- 13 -

execution. These operational considerations require changes to Program (e) which inter
fere with the correspondence between model refinement and initialization procedure.
However, through a conscious effort and a language extension, the interference can be
minimized. The following is an example:

operating_3ystem{ DeviceStrmLilft } :-
boot_urver{ DeviceStrmList ?, DeviceRe3p, OSProg),
prove{ permanent_urvers{ DeviceResp?), OSProg?).

boot_server{ DeviceStrmList, DeviceResp, OSProg) :
contact_devices{ DeviceStrmList, RespStrm },
boot_from_fsd{ RespStrm?, OSProg, DeviceResp).

contact_devices{ {DeviceStrm{ DeviceStrmList/, DeviceResp) :
establish_comm{ DeviceStrm, EstCommSlrm),
merge(EstCommStrm ?, RespStrm?, DeviceResp),
contact_device.,{ DeviceStrmList?, RespStrm).

contact_device:i({/, fl).

boot_from_fsd{ RespStrm, OSProg, DeviceResp} :-
receive{ reg_device{ fsd, FSDStrm }, RespStrm, NRespStrm} I
send{ access{ permanent_servers, OSProg), FSDStrm, NFSDStrm),
und{ reg_device{ f,d, NFSDStrm), DeviceRe.,p, NRespStrm).

boot_from_Jsd{ {Resp{ RespStrm/, OSProg, {Resp{DeviceResp/) :
otherwise I
boot_Jrom_j:Jd(RespStrm?, OSProg, DeviceResp).

Program (f): Operating System Bootstrap

The logic computer system is assumed to include a file system device (FSD) [Kusa84b] in
which the remainder of the operating system program is stored. The clauses for
establish_comm are as in Program (e). otherwise and receive are familiar CP predicates
(a description is given in Appendix B). The new metalogical predicate prove is similar to
call of PARLOG [CIGr84b]. Its definition is an application of the work of Bowen an<l
Kowalski [BoKo82]. Declaratively the goal

prove{ Goal, Prog}

succeeds if Goal is provable from program Prog. Its resolution suspends until both its
input. arguments are instantiated.

The contact_devicea process is equivalent to init_server of Program (e). The role of
boot_from_J:id is to monitor responses from establiJh_comm processes on stream
ReapStrm, watchful for the one identifying the file system device (FSD)6. Upon arrival
of this response, a request to access the file with identifier permanent_aervera is sent to
the FSD, a replacement reg_device respomie is inserted into the output response stream,
and the process terminates. All other responses on ReapStrm are passed through unal
tered. It is assumed t.hat the file identified by permanent_servers contains all clauses
necessary for the reduction of the goal

&. The FSD is a device process which provides the basic services or cre:i.tion, access, removal, and
stable storage or files !Kusa84bJ. In response to a request accett(FName,FContent) the device
process unifies FContent with the current contents oC the file identified by FName. Both
FName and FContent a.re arbitrary terms, though FName must be ground.

permanent_urvers{ DeviceResp)

i.e. the bulk of the operating system.

5. Concluding Remarks

- 14 -

This paper has presented models for a logic computer system, and its hardware and
software components. It has demonstrated that CP programs can be used to concisely
:;pecify a logic computer system , its operating system, aud operation of peripheral dev
ices . Examples with significantly different characteristics -w ere given and compared.

A method for operationally initializing a logic computer system was presented. As
demonstrated, the correspondence between model refinement and operating system ini
tiation need not be adversely affected by the necessity of a boot.strap. In Program (f),
most of the complications are contained within the specification of boot_server.

It is noteworthy that concepts such as hardware error and reinitialization do not
complicate the d eclarative reading of Programs (b) and (c). These concepts are
inherently operat ional and are handled within that component of the language and com
puter system models.

5.1. Further Study

Several areas of further study are immediately apparent:

• Errors can be represented by suspension for both perpetual and restartable devices.
Howe ver, th is requir es t hat, following the error, a device continue from the precise
point of preem_p t ion. lmplementat ionally, this should not be difficult to approximate.
I t IB not clear, how ever, that it can ever be precisely attained.

• Certain devices, such as file storage, are best conceptualized as perpetual. However,
hardw are errors cannot be represented as conjunctive goal failure for perpet ual dev
ices . T he en;or-as-suspens ion scheme may also be unwor kab le because of the problem
ment ioned a bove. Therefore other mea,ns of handling h ardware errors should be
investigated.

• It may be feasible to declaratively account for a restartable file storage device which
operationally retains its contents on system reinitialization. The idea of an oracle
presents one possibility.

• Because of Program (d), it may be taken that restartable and perpetual devices can
not both be present within a single logic comp1tte r system. This may not n cessarily
be the case . The metalogical predicate prove (si milar to call of PARLOG [C\Gr84h])
offers several possibilities.

Preliminary investigations suggest interesting results in these areas.

As Programs (b) and (c) suggest, computer systems with a wide variety of charn.c
teristics can be specified. As further study, systems with varying proper ies c,1n be
developed, explored, and compared. Techniques for op rationally inj Liali zing tbese sys
tems can also be investigated. Other issues ·which an be explored include prot.ccLion
and security and user-programmable error handling.

Acknowledgements

Thi:i work benefitted greatly from the encouragement, criticism, and suggestions of
Harvey Abramson. Also, Mats Carlsson provided valuable comments.

- 15 -

Appendix A - Introduction to Concurrent Prolog

CP [Shap83a] facilitates the expression or concurrency, communication, synchroni
zation, and indeterminacy by a minimal extension to the basic computational model or
logic programs. The language is based on the Relational Language or Clark and Gregory
[C1Gr81]. In CP, as opposed to Prolog, the AND- and OR-parallelism or the theoretical
model[CoKi81] or logic programs is retained. A conjunctive goal can be regarded as a
system or processes, a unit goal being an individual process. The state of a process is
the value of a goal's arguments, and the state of a system is the union or the states of its
processes. Concurrency among processes is the AND-parallelism of the theoretical
model. The OR-parallel trial or candidate clauses provides each process with the ability
to perform indeterminate actions. Variables shared between goals serve as the process
communication mechanism. Synchronization is achieved by denoting which processes
can write a variable (instantiate it to a non-variable term).

CP introduces two constructs to the model or logic programs: read-only annotations
or variables and the commit operator. Read-only variable references, X? where Xis a
variable, are used to constrain the order and pace of process reduction. Commit,
denoted by 'I', permits both "committed choice" and "don't care" nondeterminism.

A CP program is a finite set of guarded clauses. A guarded clamie is a universally
quantified axiom of the form

m,n~O

where the Gj's and the B/s are atomic formulae (unit goals). His the clause head and
the Gj's form the guard. The guard may be empty, in which case the commit operator
is omitted. Read-only variable references may appear within any part of a clause.

The semantics of a guarded-clause

H :- GIB

are as follows. Declaratively, read-only annotations are ignored and the commit operator
reads as a conjunction: His true if G and Bare true. Operationally, the clause is similar
to an alternative in a guarded-command [Dijk76]. To reduce a process H' using the
clause above, Hand H' are unified, G is recursively reduced to the empty system, com
mitment is made to this clause, and H1 is reduced to B. The reduction may suspend or
fail at any or these steps. Unification of Hand H' suspends if it requires the instantia
tion or variables annotated as read-only. It fails if JI and H' are not unifiable . The
reduction of the guard system G suspends if the processes in it all suspend, and fails if
any of them fails. Commitment may fail if variable bindings generated by the guard
computation conflict with those generated by other (concurrent) computations.

The semantics of the commit operation require that variable bindings produced by
the first two steps of reduction - unification of Hand H' and reduction of G - are acces
sible only to processes in G, or their descendants, prior to the commitment. Also, as
part of commit.ment, all other OR-parallel attempts to reduce H' are abandoned.

As a programming aid, CP contains the metalanguage predicate otherwise
[ShTa83]. A single otherwise goal in a guard - the only manner in which it can be used
- succeeds if and when all other OR-parallel guards fail.

Appendix B - Commonly Used Concurrent Prolog Predicates

The following is a list of commonly used CP predicates employed in the program
ming examples. A description is given for each.

B.1. System Predicates

wait{X)
waits until the principle functor of its argument, X, is determined, then terminates
with success (Shap83a].

otherwise
this predicate may only be used as a single subgoal in a guard. It succeeds if and
when all of its brother OR-parallel guards fail. Declaratively, it may be read as the
negation of the disjunction of the guards of the brother clauses (ShTa83].

B.2. User-Definable Predicates

merge{ln1,fn2, Out)
computes the relation "Out contains the elements of Int and ln2, preserving the
relative order of their elements". The predicate may demonstrate various opera
tional properties, depending on its precise definition and utilization of operational
characteristics of the language implemenation (Shap83a, Kusa84a, ShMi84,
UeCh84, ShSa85J.

send{Msg,Strm,NS'trm}
names the relation "the result of sending Mag on stream Strm is the stream
NStrm" [Shap83cJ.

receive{M3g1 Strm, NStrm}
names tbe relation "the result of receiving Mag on stream Strm is the stream
NStrm" [Shap83c).

References

BoKo82.

- 17 -

K. A. Bowen and R. A. Kowalski, "Amalgamating Language and Metalanguage in
Logic Programming," in Logic Programming, ed. K. L. Clark and S.-A. Tarnlund,
pp. 153-172, Academic Press, London, England, 1982.

Chik83.
T. Chikayama, "ESP - Extended Self-contained Prolog - as a Preliminary Kernel
Language of Fifth Generation Computers," New Generation Computing, vol. 1, no.
1, pp. 11-24, Tokyo, 1983.

C1Gr81.
K. L. Clark and S. Gregory, "A Relational Language for Parallel Programming,1'
Proceedings of the A CM Conference on Functional Programming Languages and
Computer Architectures, pp. 171-178, ACM, October 1981.

C1Gr84u
K. L. Clark and S. Gregory, "PARLOG: Parallel Programming in Logic," Research
Rep. DOC 84/4, Department of Computing, Imperial College, London, April 1984.

CIGr84b
K. L. Clark and S. Gregory, "Notes on Systems Programming in PARLOG,1'
Research Rep. DOC 84/15, Department of Computing, Imperial College, London,
July 1984.

CoKi81.
J. S. Conery and D. F. Kibler, "Parallel Interpretation of Logic Programs,"
Proceedings of the A CM Conference on Functional Programming Languages and
Computer Architecture, pp. 163-170, ACM, Portsmouth, New Hampshire, October
18-22, 1981.

Dijk76.
E. W. Dijkstra, A Discipline of Programming, Prentice-Hall, Englewood Cliffs, New
Jersey, 1976.

FKTU84.
K. Furukawa, S. Kunifuji, A. Takeuchi, and K. Ueda, "The Conceptual
Specification of the Kernel Language Version 1," Technical Report, ICOT, Tokyo,
1984.

FuTK83.
K. Furukawa, A. Takeuchi, and S. Kunifuji, "Mandala: A Concurrent Prolog Based
Knowledge Programming Language/ System," TR-029, ICOT, Tokyo, November,
1983.

HaYo83.
T. Hattori and T. Yokoi, "Basic Concepts of the SIM Operating System," New
Generation Computing, vol. 1, no. 1, pp. 81-85, Tokyo, Japan, 1983.

HeSh84.
L. Hellerstein and E. Y. Shapiro, "Implementing Parallel Algorithms in Concurrent
Prolog: The MA.XFLOW Experience," 1984 International Symposium on Logic Pro
gramming, pp. 99-115, IEEE, Atlantic City, NJ, February 6-9, 1984.

HiCF84.
H. Hirakawa, T. Chikayama, and K. Furukawa, "Eager and Lazy Enumerations in
Concurrent Prolog," Proceedings of the Second International Logic Programming
Conference, pp. 89-100, Uppsala, Sweden, July 2-6, 1984.

- 18 -

Hira83.
H. Hirakawa, "Chart Parsing in Concurrent Prolog," TR-008, ICOT, Tokyo, Japan,
May 1983.

Kahn82.
K. M. l ahn, "Intermission - Actors in Prolog," in Logic Programming, ed. K. L.
Clark and S.-A. Ta.rnlund, pp. 213-228, Academic Press, London, England, 1982.

Kusa84r,~
A. J. Kusalik, "Bounded-Wait Merge in Shapiro's Concurrent Prolog, n New Gen
eration Computing, vol. 2, no. 2, Springer-Verlag, Tokyo, Japan, 1984.

Kusa84b
A. J. Kusalik, "The File System of a Logic Operating System," Technical Report
84-21, Computer Science Department, University of British Columbia, Vancouver,
B.C., Canada, November 1984.

Rous75.
P. Roussel, "Prolog: Manuel de Reference et d'Utilisation," Technical Report,
Groupe d'lntelligence Artificielle, Universite d 1Aix Mareille, 1975.

Shap83.o
E. Y. Shapiro, "A Subset of Concurrent Prolog and Its Interpreter," TR-003, ICOT,
Tokyo, Japan, January 1983. Also as CS83-06, Department of Applied Mathemat
ics, Weizmann Institute of Science, Rehovot, Israel.

Shap83L
E. Y. Shapiro, "(Lecture Notes on) The Bagel: a Systolic Concurrent Prolog
Machine," TM-0031, ICOT, Tokyo, Japan, November 1983.

Shap83::
E. Y. Shapiro, "Systems Programming in Concurrent Prolog," TR-034, ICOT,
Tokyo, Japan, November 1983.

ShMi84.
E. Y. Shapiro and C. Mierowsky, "Fair, Biased, and Self-Balancing Merge Opera
tors: Their Specification and Implementation in Concurrent Prolog," 1984 Interna
tional Symposium on Logic Programming, pp. 83-90, IEEE, Atlantic City, NJ,
February 6-9, 1984.

ShSa85.
E. Y. Shapiro and M. Safra, "Fast Multiway Merge Using Destructive Operations/
CS85-01, Department of Applied Mathematics, Weizmann Institute of Science,
Rehovot, Israel, January 1985.

ShSh83.
A. Shafrir and E. Y. Shapiro, "Distributed Programming in Concurrent Prolog,"
CS83-12, Department of Applied Mathematics, Weizmann Institute of Science,
Rehovot, Israel, August 1983.

ShTa83.
E. Y. Shapiro and A. Takeuchi, "Object Oriented Programming in Concurrent Pro
log," New Generation Computing, vol. 1, no. 1, pp. 25-48, Tokyo, 1983.

Suzu83.
N. Suzuki, "Experience with Specification and Verification of Complex Computer
Using Concurrent Prolog," University of Tokyo, July 1983.

TaFu83.
A. Takeuchi and K. Furukawa, "Interprocess Communication in Concurrent

- 19 -

Prolog," Proceedinga Logic Programming Workahop 189, pp. 171-185, Algarve, Por
tugal, June 26 - July 1, 1983. Also as ICOT Technical Report TR-006, 1983.

TYUK84.
S. Takagi, T. Yokoi, S. Uchida, T. Kurokawa, T. Hattori, T. Chikayama, K. Sakai,
and J. Tsuji, "Overall Design of SIMPOS," Proceeding, of the Second International
Logic Programming Conference, pp. 1-12, Uppsala, Sweden, July 2-6, i984.

UeCh84.
K. Ueda and T. Chikayama, "Efficient Stream/ Array Processing in Logic Pro
gramming Languages," Proceedinga of the International Conference on Fifth Gen
eration Computer System, 1984, pp. 317-326, ICOT, Tokyo, Japan, November 6-9,
1984.

Ueda85.
K. Ueda, "Guarded Horn Clauses," TR-103, ICOT, Tokyo, Japan, June 1985.

UeKa83.
T. Uehara and N. Kawato, "Logic Circuit Synthesis using Prolog," New Generation
Computing, vol. 1, no. 2, pp. 187-193, 1983.

UYYT83.
S. Uchida, M. Yokota, A. Yamamoto, K. Taki, and H. Nishikawa, "Outline of the
Personal Sequential Inference Machine: PSI," New Generation Computing, vol. 1,
no. 1, pp. 75-79, Tokyo, 1983.

Warr77.
D. H. D. Warren, "Implementing Prolog - Compiling Predicate Logic Programs,"
Technical Reports 39 and 40, Department of Artificial Intelligence, University of
Edinburgh, Edinburgh, Scotland, May 1977.

Warr82.
D. H. D. Warren, "Perpetual Processes - An Unexploited Prolog Technique,"
Proceedings of the Prolog Programming Environmenta Workshop, Linkoping
University, Sweden, March 1982.

YYTN83.
M. Yokota, A. Yamamoto, K. Taki, H. Nishikawa, and S. Uchida, "The Design and
Implementation of a Personal Inference Machine: PSI," New Generation Computing,
vol. 1, no. 2, pp. 125-144, Tokyo, 1983.

Zani84.
C. Zaniolo, "Object-Oriented Programming in Prolog," 1984 International Sympo
sium on Logic Programming,· pp. 265-270, IEEE, Atlantic City, New Jersey, Febru
ary 6-9, 1984.

