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ABSTRACT 

A logic computer system consists of an inference machine and a coru
patible logic operating system. This paper describes prospective mode!s 
for a logic computer system, and its hardware and software components. 
The language Concurrent Prolog serves as the single implementation, 
specific ation, and machine language. The computer system is represented 
as a logic programming goal logic_computer_,,ystem. Specilication of the 
system corresponds to resolution of this goal. Clauses used to solve the 
goal - and ens uing subgoals - progressive ly refine the machine, operating 
system, and computer ~ystem desig ns. In addition, the accumub.tion of 
all clauses describing the logic operat ing sysLem constitute its implemen
tation. Logic computer systems with vastly different fundamental charac
teristics can be concisely specified in this manner. Two contrasting exam-
p les :ire given and discus ed . n important characteristic of both peri-
pheral devices o.nd the overall computer sys em, whether they are ,est.::t.rt
ab le or perpetual, is examined. As well a method for operational ioi t i::d i
zation of the logic computer system is presented. The ·ame clauses which 
incrementally specify characteristics of the computer system also describe 
the manner in which this initialization takes place. 
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1. Introduction 

In general, an operating system can be regarded as enhancing the set. of services 
and capab il it,ies provided by underlying computer hardware. A "logic operat ing system" 
fulfills this role for a logic inference machine and is implemented in a logic programming 
language. An inference machine and a compatible logic operating system constitute a 
"logic computer system". 

An importaut. aspect of logic programs is that axioms (the program. st:.i.tements) can 
be read two ways: declaratively or operationally. A single logic programming language 
can be used for both specification and implementation. The duality permits the 5::1,me 

axioms which describe a model to be used in implementing a progr:1m conforming to the 
model. 

The exp ressi-ve power of logic programs allows many conventional notions to be 
adapted to logic inference mac hincs and their operating systems. For example, principles 
of object-oriented programming work well in a logic programming environment [I ahn82, 
ShTa.83, ZaniM]. Ho,vever, the properties of logic programming languages ruay suggest 
new techniques and idea ls . A lso, not a ll traditional concepts may be accommodated well 
within a "logical" context. 

This paper presents models for a logic computer system and its two constituents, a 
logic operating ystem and a logic inference machine. Possible designs for the logic com
pu er system are exp lored . The underlying hardware is assumed to be a Concurrent 
Prolog m:1chine. Two alternate views of the computer system and peripheral devices are 
examin cl. The pn.per suggests th.at the operating system can be implemented by accu
mulating cl::i.uses from progressive model refinement. Further, a method is described for 
the opern.l.ional initialization (ubootstrapping") of the entire logic compu er system. The 
same langu:i.ge, Concurrent Pro!og, is used as imp lementation, specific::i.tioa, and machine 
language. 

Langu:1ge characteri. tics uti lized within the work - guards, data.flow control, etc. -
ar not pecu liar o Concurrent Prolog but are present in a Dllillber of other coucurr ·nt 
logic programm ing language ' . Cons quent ly, the ideas developed in his paper are appli
cab le for th most part to related languages such :l.S PARLOG [Cl0r84:.1] :i.nd CH 
[Ueda85]. 

The remainder of this section introduces the language Concurrent Prolog and sur
veys related work. Section 2 describes the abstr;,1 t Concurrent Pro log machine and g .. n
eral characteristics of the operating ystem. ection 3 concerns p cifi ·ation of thc.lo:;ic 
computer system and discusses contrasting designs. The initializa iou of th 0 logi oru
pu er system is the subject of Section 4. Section 5 concludes the paper and suggests 
areas of further study. 

1.1. Language 

The best-known logic _programming language, Prolog [Rous75, Warr77j, is a poor 
candidate as a pecification, yst.ems programming, and mach.ine language: it doC>s not 
allow the expression of concurrent. computatior1s without, resort t,o side-e!rects. [n Lhis 
work, Concurrent Prolog [Shap83a], hereafter denoted "CP", is used because it is power
ful, concise, and supports concurrent computation. Many effective programming con
;tructs and techniques, such as objects, clas:1 hierarchies, stream communications, and 
message-passing can be clean ly realized using the language [Shap83a, Shap83c, SbTa83, 
TaFu83, I-li CF81l]. GP has a lso been employed in a wide variety of app lic tions 
!FuTK83, I-lira83, S hSh83, HeS h8-1, Kusa84.a ShMi84]. On the whole, results favor its 
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use for systems programming, and for expression of high-level or complex concepts. The 
kernel language, KLl, of ICOT's parallel inference machine is a superset of CP 
[FKTU84J. A prospective architecture for a CP machine has also appeared [Shap83b]. 

It is assumed that the reader is familiar with CP. An in-depth description, includ
ing a computational model, is provided by Shapiro [Shap83a]. Papers by Shapiro 
[Shap83c] and Shapiro and Takeuchi [ShTa83} provide summaries. A condensed intro
duction is also provided in Appendix A. The following iable summarizes the manner in 
which CP embodies familiar computational concepts. 

Concept 

Process 

System 

Process state 

Process computation 

Process communication 

Process synchronization 

1.2. Related Work 

Concurrent Prolog Construct 

Unit goal 

Conjunctive goal 

Value of arguments 

Goal reduction 

Unification of shared variables 

Suspending unification of read-only variables 

Shapiro [Shap83c] bas demonstrated the feasibility of CP as an operating system 
kernel language. Jn the paper, a num her of common, representative operating system 
functions are implemented in CP. A high-level specification of an operating system with 
a "reboot" capability is given by way of a concise CP program. The operation of a peri
pheral device is described as a CP process, with the device content regarded as an argu
ment int.he process state. It is proposed that the cleanest way to achieve communica
tion with peripheral devices in a CP machine is to have devices consume or generate CP 
streams. 

The use of formal logic, particularly temporal logic, in the specification and 
verification of computer components is not uncommon. Prolog has also been employed 
in this capacity [UeKa83]. Suzuki [Suzu83] uses CP as a specification and verification 
tool. His work, however, concerns only hardware components, and not software or 
high-level system characteristics. 

Presentations of ICOT's prototype inference machine PSI [UYYT83, YYTN83] and 
its operating system, SIMPOS [Ha Yo83, TYUK84], do not make use of logic programs in 
their high-level descriptions. Furthermore, the design of PSI is not suited to the proli
feration of small-sized processes characteristic of CP. The machine language, KL0, and 
the implementation language, ESP, are forms of Prolog with depth-first search, back-

. tracking, and "cut" [Chik83]. Hence, some fundamental aspects of SIMPOS are incom
patible with a CP environment. 

2. Hardware and Opera.ting System Characteristics 

2.1. Abstract Machine 

The logic computer system is targetted for a CP machine. Since such hardware 
does not exist, it is necessary to define and assume hardware properties and capabilities. 
However, logic inference machines are still in the very early stages of their evolution. 
Many architectural proposals exist in the literature with little consensus on t.heir relative 
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merits. Hence, the hardware description is general in nature and independent of imple
mentational details. 

As demonstrated by the ICOT's PSI [YYTN83J, a logic inference machine can 
display couventional features, such as interrupts, sequential execution, ancl reliance on 
side-effeds. However, current trends toward more "intell igent" hardware often place 
function ality previously assigned to lower levels of an operating system with.in ban.lware. 
This again is demonstrat.ed by PS( which h().!j firmware instructions to handle process 
sw itching, creation, deletion, and synch ronization [UYYT83]. 

It is only natural for a logic inference machine to have characteristics of a higher 
level than those of conventional computers. Logic programming languages are high-level 
languages. A machine which executes such a language would certainly have greater 
capabilities and complexity. 

The hardware model is as follows. A CP machine has a multi-processor 
configurat.ioo, consisting of an arbitrary number of individual processing elements. Each 
proce:,s of a conjunctive goa l system can be thought of as executing on an individual 
processor. "Generic processors 0 can undertake the reduction of arbitrary goals. The 
machine is responsible for mapping processes to available processorsl. Hardware sup
ports th efficient access and propagation of shared variable bindings . In this discussion 
a (1proce:sor' is o. generi c processor, unless stated otherwise. 

Each physical peripheral device has associated with it a special "device processor". 
This processor provides an inLerface between the remainder of the CP machine and the 
device. Viewed by other processing elements, a device processor supports a single, 
chara.cteristic perpetual process called a "device process" (DP). A DP is logically indis
tinguishable from 0th.er OP processes and describes the operation of a device processor 
an d peripheral device without recourse to side-effects. The state or contents of the dev
ice is represented by process arguments. Software access to a peripheral device (through 
its device processor) is achieved by communicating with the corresponding DP using CP 
streams. Device processes may vary in specific protocol details. A device process exists 
independently of the operating system processes; it exists whenever its device processor 
is active. 

A device processor may be any type of machine. It must, however, support an 
interface consistent with the remainder of the CP machine. Its execution as a perpetual 
proc'ss must be describable by a CP program. The actual program is dependent on the 
specification of the entire logic c.omputer system (as discussed in Section 3). For 
insta.uce, a. terminal display may have associated with it a device process described by 

tty_d£3play( {C!i(l.r ,' Cha rStrm/, Di:JplayedChars} :
tty_di1Jplay( CharSlrm?, [Char,' DisplayedChars/ ). 

Program (a): Terminal Display Device Process 

Here, the first argument is an input stream of characters. The second argument, Lhe 
local state1 represen ts the characters that appear on the physical display. 

The machine language of the CP machine may be CP, in wLich case its operation is 
describ d by a meta-interpreter. Alternatively, the hardware may execute a logic-bMed 
lirnguage in which higher- level logic-based systems programming languages can be 

1. Sh:i.piro [Sh:i.p83bj presents an a llern:i.te view in which CP programs a.re augmented with 
process- to-processo r mapping not.a.tions. The concepts presented in this pa.per would not be ad
versely affected by such a. change. 
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specified (cf. ESP and KL0 [Chik83I). A CP interpreter is then written in this low-level 
language, but viewed as part of the machine. In either case, unification and goal reduc
tion are provided by the machine model. 

2.2. Operating System 

The operating system design follows principles of multi-process structuring (pro
gram structuring using multiple concurrent processes). Several characteristics of CP 
make t.bis appro ach a.Uract ive: large numbers of small processes, easily attained int.erpro
cess ~o mm unicat ion , dynamic process creation and destruction, and the ability to hare 
dat.a structures among processes. 

Th e logic operating system is composed of small , complement.ary, and cooperating 
s<'ners. Each server provides a ompact set of r elated services to other processes. 
S rY ers are construct.ed as CP obj ects [ShTa83), or as obj ct hi er archies . They may 
dynamically create and d troy constit uent processes. Servers communicate via object
based protocols using message-passing over streams. They may call on the utilities of 
devices and other servers in their operation. Progressively more substantive services are 
generated in this manner. Clients normally communicate directly with the server 
responsible for the utility being sought. Servers may be transient (dynamically created 
to fill a temporary need, then removed) or permanent (created at system initialization 
for the duration of system execution). 

T hr operating system do es not include a kernel. A process abstract ion (process 
creatio n, execut ion, and destruction) is already provided by goal reduction. Unification 
provides com munication dat a transfer, and synchronization mechanisms. Hence, capa
bilities traditionally ascribed to a kernel are captured by the metalanguage and incor
porated into the CP machine model. 

In a conventional operating system, the bu.lk of the software cannot access physical 
1/0 hardware directly. A device driver is i11troduced to provide an interface. Here, 
directly accessible devices are provided by the machine model. Clients may access a 
peripheral device by communicating with its corresponding device process. The operat
ing system need only assist in identifying the appropriate stream. Servers are typically 
present to provide an alternate interface or addit,ional functionaljt.y. During system ini
tialization (discussed in Section 4), the operating system obtains a channel to each deYice 
process. These channels are preserved for the duration of system execution. 

The logic operatin g system is not designed for a particular proposed or prototype 
inference machin e. Rat.her, it only presumes the previous basic hardware model. Any 
CP machine, or emulator, conforming to the model should be capable of executing the 
operating system program. 

3. Specification of the Logic Computer System 

The logic computer system model has two components, a hardware (ma.chine) 
model and an operating system model. The latter builds upon the machine model. The 
hardware model, in turn, is an extension of the computational model of the chosen 
logic-based machine language, in this case CP. 

A logic computer system can be represented by a goal 

lo gic_c omputer _system. 

Specification of the system can be viewed as the process of resolving this goal. The 
resulting proof tree represents progressive refinements in the operating system and 
hardware models . To illustrate, the following clauses could describe the overall sy~tem: 



logic_computer_.,ystem :-
di,,k( Di.,kStrm? }, 
tty_keyboard{ Ttyl<eyStrm? }, 
tty_ di:,play{ TtyDi.,pStrrn? }, 
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operating_sy:,lem( (Di.,kStrm, TtyK eyStrm, TtyDi:,pSlrm}} I 
true. 

logic_computer _system :-
otherwise I logic_computer_sy:,tem. 

Program (b): Logic Computer System Specification 

This concise program specifies the components of the system, and the existence and style 
of communication channels between peripheral devices and the operating system. It also 
describes operational characteristics of system initialization ( to be discussed in Section 4). 
Clauses for the subgoals disk(Di8kStrm?}, tty_,keyboard(TtyKeyStrm ?), and 
Uy_disp/ay(TtyDiBpStrm?) provide more detail regarding these components of the 
hardware model. The operating system model is further developed by clauses for the 
subgoal 

operating_syBtem( DeviceStrmLi11t} 

(see Program (e) of Section 4, for example). The same language, CP, is used throughout. 
The accumulation of clauses from recur.,ive refinement of the operating system mode l is 
a program which implements the operating system. 

Execution of the computer system also corresponds to construction of the proof tree 
rooted with goal loyic_computer_sy11tem. By nature of the applicat ion, the proof (execu
t ion) never terminates successfully; a computer system is intended to be always execut
ing (cf. perpetual processes[vVarr82]). 

Program (b) succinctly specifies many properties of a logic computer system: 

a) The components of the syst m are a disk (file storage device), terminal keyboard, ter
minal display, and opcrat,ing system all functioning simultaneously. 

b) Communication between the operating system and each device is over a single 
stream. Message transfer is initiated by the operating system. Given the most intui
tive producer / consumer assignments for the relationships among the system com
ponents individual exchanges are eager [TaFu83, HiCF84] between opera.t ing system 
and disk, and operating system and display. They are lazy between operating system 
and keyboard. Despite the one-way nature of the communjcation channels, message 
replies can be realized easily using incomplete messages [Shap83c, ShTa83]. 

c) Subgoals describing devices and the operating system are placed within the guard of 
the first clause. This guard system represents the computation normally being exe
cuted. Failure of one of these subgoals causes the resolution of the entire guard to be 
abandoned, and computation to proceed using the second clause (the semantics of 
otherwise) [ShTa83]. This alternate clause, however, simply re-invokes the goal 
logic_ ompnler_syslem, restarting the previous computation, and hence the entire 
computer system. Tbe syst m is thus said to "restart (reboot) on failure". 

4) Since the subgoals di:ik{DiBkStrmP}, etc. are with in a guard failure of any or them 
causes the abandonment of the entire computation represented by the clause. Prior 
to failure, changes to the state (contents) of devices are represented in Lhe histories 
(st.reams) bou_nd to DiskStrm, etc. Upon failure, reBults of t_be attempt to resolve the 
guard, including the bindings of these streams, are all abandoned. When th.e second 
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clause succeeds, the resolution of logic_operating_.,yatem begins again, but as if the 
computation preceding the error had never taken place. To correctly reflect the 
correspondence between procedural and declarative semantics, devices must therefore 
be "restarted". This means operationally resetting the device to the state it was in 
(or an equivalent) at the start of the failing guard computation. Hence, devices are 
"restartable". 

e) A grave software error which results in failure of the subgoal operating_ayatem( . . . ) 
- an operating system "crash" - causes the system to be reinitialized as described in 
c) and d) [Shap83c]. 

f) Serious hardware errors, which would be expected to operationally require reinitiali
zation of the system, can cause exactly that: they can be treated as failure of the goal 
representing the malfunctioning device. The effect on the system is demonstrated in 
c) and d) above. Thus hardware errors can be handled cleanly within the logical 
framework. 

g) Power failure, whether deliberate or unforeseen, can be treated as serious hardware 
error . Another subgoal, power_up, could be added to the first guard system in Pro
gram (b). Resolution or this predicate suspends while adequate power levels are sus
tained , but fails if they decline. Subsequent reduction, that using the second clause, 
is seen to suspend until power is again available. 

h) A manual restart capability {for control by humans) could be implemented as tem
porary cessation or power, or as a separate signal taken as indicating goal failure. 

Alternate specifications of the computer system are possible. For example, each 
subgoal representing a device could have as an extra argument the initial state of the 
device. A more contrasting example is: 

logic_computer _aystem :
di.,k( Diskin, DiskOut? ), 
tty_keyboard( TtyKeyln, TtyKeyOut? ), 
tty_di.,play( TtyDispln, TtyDispOut'I ), 

· operating_system( {Diskin'!, DiskOut, TtyKeyln?, TtyKeyOut, TtyDispln'I, TtyDispOutj ). 

Program (c): Alternate Logic Computer System Specification 

Though it may not appear so at fir3t glance, the computer sy3tem 3pecificd by thi3 pro
gram is much different in character from the previous one. In particular: 

i) Communication betwee n. operating system and devices is still over CP streams. How
ever, separate input and output streams are used. More care in synchronization of 
messages is therefore necessary. Further, the placement of read-only annotations 
(assuming significance to the variable names) implies that the generation of messages 
is lazy [TaFu83, CIGr84a, HiCF84]. For instance, a request cannot be sent to disk 
until the device process partially instantiates Di3kln. Similarly, di8k cannot generate 
an output message until operating_ay8lem or one of its subprocesses partially instan
tiates Di8kOut. 

j) There is no provision for reinitialization; failure of a goal means failure and termina
tion of the entire system. Once initiated, the computer system is 11 perpetual". 

Jc) Devices are perpetual; that is, the result of the computation is never "undone" as in 
the case of a restartable device (see item d)). Certain devices, such as file storage, are 
naturally conceptualized as perpetual. A logic computer system which has any per
petual component must itself be perpetual. 
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I) The subgoal represent,ing the operating system cannot be allowed to fail. Therefore, 
the operating system must be very robust and able to always intercept subgoal 
failure. Techniques for this are known (er. railure within a user shel.l program 
[Shap83c, ClGr84b]). 

m) As the system is perpetual, hardware errors cannot be treated as high-lev I goal 
failure. They can, however, be represented by suspension2. For example, if a 
hardware error occurs in a device, it may be treated 83 srupension of the gout reduc
tion r epresenting the device . Operationally, it is the responsibility of the offending 
physical hardware to re-e8tablish its state to that immediately preceding tbe error 
before the device computation can be seen to continue. 

As demonstrated, different characteristics are possible for the logic computer system. 
These characteristics are concisely specified by CP program.s. The two logic computer 
system examples are consistent with the hardware and operating system dencriptioru 
given in Section 2. 

Certain combinations of properties of the previous two programs are problematic. 
For example a naive mi.xt1ire of "restartable" and "perpetual" devices is not viable 
because of the corn mit, operator's effect on the propagation of variable bindings . That is, 
in the program 

logic_computer _.,y:,tem :
reJtartable_part( CommonStrma ), 
perpetual_part( CommonStrma ). 

reatartable_part( [DiakStrmj) :
tty_keyboard( TtyKeyStrm? ), 
tty_di play( TtyDiilpStrmt ), 
operating_syatem( [DiskStrm, TtyK eyStrm, TtyDispStrmj) I 
true. 

restartable_part( CommonStrms ) :-
otherwiae I reatartable_part( CommonStrma ). 

perpetual_part( [DiakStrmj) :-
disk( DiskStrm? ). 

Program (d): Inconsistent Logic Computer System Specification 

any bindings made to DiskStrm by resolution of the goal 

operating_system( [Di.,kStrm, TtyKeyStrm, TtyDispStrmj) 

will not be known to diak prior to commitment. But commitment to a clause to reduce 
the goal 

restartable_part( [DiskStrmj) 

(i.e. the second clause) occurs only after failure of the guard computation which gen
erated the bindings to DiskStrm (the first one). Therefore, the di:,/. process never 
receives any messages. Making 

operating_system( [DiskStrm, TtyK eyStrm, TtyDiapStrmj) 

a subgoal of 

2. The_ suspension or goal reduction is a fundamental capability in CP. In fact, Shapiro's original 
computational model for CP [Shap83aJ treats goal failure as infinite suspension. 
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perpetual_part( /DiakStrm/) 

alters the symptoms, but does not rectify the underlying problem. 

3.1. Representation of Errors 

Since the CP machine has a distributed architecture, representing a hardware error 
as suspension is easier in some respects than representing it as goal failure. With the 
goal-failure scheme, knowledge of an error cannot remain local and must be distributed 
to, and acted upon, by processors responsible for other goals of tb.e current conjunctive 
system. The error-as-suspension approach allows knowledge of an error occurrence to 
remain restricted to a single device processor. 

Error-as-suspension can also be used for restartable devices, in particular for less 
serious errors. For example, the computer system should not be reinitialized just 
because the lineprinter is suddenly out of paper. It is preferable to consider the line
printer as suspended in its response to the message which motivated the error condition. 
The device process will be seen to continue after paper is added. 

Errors of less gravity can be handled by message replies for both restartable and 
perpetual devices. For instance, output of character Char may be achieved by sending 
the message out{Char,Reply) to the terminal display. To indicate that there was a prob
lem in doing this, the terminal display could bind Reply to the constant error. 

3.2. Perpetual versus Restartable Devices 

Certain peripheral devices are more naturally conceptualized as perpetual devices. 
For example, with file storage the most up-to-date state (cont,ent) should always be 
maintained. Restartable file storage would require that on reinitialization the entire 
informational content of the device be eliminated, reverting back to some initial state. 
However, to be useful file storage must be nonvolatile across hardware error, power 
failure, and other sources of reinitialization. It seems best, then, that file storage be per
petual. 

l\fost other peripheral devices can be conceptualized as either perpetual or restart
able. For example, on reinitialization the screen of a restartable terminal display can be 
cleared, reestablishing an initial state; a line printer can generate a page eject to ensure 
t,hat any output will be at the top of clean paper. However, even though characters 
have disappeared from the screen, they were present at some specific point in time with 
certain characters preceding and following; the fact that the line printer generated a par
ticular page of output cannot be later refuted. Therefore, in a more abstract sense, 
these devices can also be regarded as perpetual. With this view, the initial state of a res
tartable device is actually an equivalence class of states. For a terminal display, for 
instance, all members of the class may be represented by clear screens. 

The initial states of restartable devices are not restricted to those given in the 
examples. Instead or a clear screen, the initial state of a terminal display could, for 
instance, involve having the string "wake me" displayed in the lower right corner. The 
initial state or a restartable file storage device could include predetermined files and their 
contents. 

4. Initialization of the Logic Computer System 

A device process ex.ists independently of the operating system servers; it exists 
whenever its device processor is active. The purpose of system initiali7,ation is to initiate 
the permanent servers (see Section 2.2) of the operating system, and establish 
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communication channels to each device process. Communication via shared variables is 
declaratively simple (see Programs (b) and (c)). Its practical use, however, requires opera
tional initialization. 

The following is a simple but effective mechanism for establishing communication 
channels from the operating system to each device process. It assumes that the CP 
machine represents variables as pointers into memory accessible by all processors and 
globally addressable (not necessarily global, multi-ported memory). The logic computer 
system is taken to be of the style in Program (b); in particular, devices are restartable, a 
single st.ream exists to each device, and communications are initiated by the operating 
sy tern . Finally , it is assumed that each device process is able to accept a message of the 
form init(DeviceType} and respond by unifying DeviceType with a ground term identify
ing its type. 

On initialization, e-ach device processor has a separate, predetermined variable that 
it tries to access, waiting for it to be instantiated. N l/0 devices, devicel through devi
ceN are a.'3sumed to exist. The "number" of each device is set by physical marripula
tion3. The first N variable addresses are used by the N devices. Device i tries to access 
the ith variable. The 0pera·tion of ea,ch de-vice - devicd>'f is used as an example - a.t this 
point i.s describable as resolution of the goal 

deviceM( DeviceM'? }. 

One processor, not a device processor, is designated the "initialization processor"4. 
It begins the resolution of a predetermined (firmware) goal: 

uperating_system{ [Devicel, ... , DeviceM, ... , DeviceNJ ). 

The variable addresses for Devicel through DeviceN are known by the previous conven
tion. However the operating system does not presuppose which variable will be used for 
which device. Computation proceeds using the following program: 

3. This setting is analogous to the vector or CSR address in the DEC PDP-11 architecture. 

4. This designation and the number of devices, N, can be set in a variety of ways, from firmware 
memory values to hardware jumpers. 
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operating_ayatem{ DeviceStrmLiat ) :
init_aerver( DeviceStrmLiat'I, DetiiceReap ), 
permancnt_aerver-,{ DeviceReap'I }. 

init_., erver{ {DeviceSlrm / DeviceStrmLiatl, DeviceReap) :
e.,tabliali_comm{ DeviceSlrm, E.,t CommStrm }, 
merge{ Ea tCommS trm'I, R eapStrm P1 DeviceReap ), 
init_aerver( DeviceStrmLiat'I, ReapStrm ). 

init_aerver( fl, fl). 

eatabliali_comm( DeviceStrm1 ReapStrm) :-
send{ in.it( DeviceType ), DeviceStrm, NDeviceStrm }, 
eat abliah_co mm( DeviceType'I, NDeviceStrm, ReapStrm }. 

eatabliah_comm( DeviceType, DeviceStrm, R eapStrm) :
wait( DeviceType } I 
send{ reg_device( DeviceType, DeviceStrm ), ReapStrm1 fl). 

permanent_aervera{ ReapStrm} :
file_aystem_aervera{ FSServerStrm ), 

uaer_servera( UaerServerStrm ), 
merge( fReqStrm?,FSServerStrm?, ... , UaerServerStrm?j, StrmServerReq ), 
atream_server{ StrmServerReq?, [] ). 

atream_server( freg_device{ Device Type, DeviceStrm JI ReqStrmj, Server DB}:
atream_server{ ReqStrm?, favail(DeviceType ?,DeviceStrm)/ ServerDBj ). 

Program ( e): Operating System Initialization 

At some point in this computation, the subgoal 

eatabliali_comm{ DeviceStrm, ReapStrm) 

must be resolved for each device i. Consider the general case, device M, for which Devi
ceStrm is bound to DeviceM. Resolution of the goal 

eatabliah_comm{ DeviceM, ReapStrm) 

causes DeviceMto be bound to finit{DeviceType)/NDeviceM}and a process 

eatabliah_comm{ DeviceType?, NDeviceM, Re8pStrm) 

to be invoked. This last process suspends awaiting instantiation of DeviceType. It has 
been arranged that DeviceM is a variable shared by the devicelvl and operatirig_ayatem 
processes. Therefore, its binding is also known by deviceM. The device processor for 
device M has been awaiting just such an instantiation. The program describing its 
operation contains a clause similar to 

de viceM( finit( ex ample_ type ) IR eqStrmJ ) :-
devic eM{ R eqStrm?, initial_conlent }. 

( example_type would actually be replaced by an atom identifying the type of this device; 
for example, termina/_di.,p/ay or line_printer. Likewise, initial_content would be the ini
tial state of the device.) Reduct.ion of the goal 
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deviceM( finit( Device Type }/ NDetriceMJ'I} 

succeeds, binding Dev iceType to example_type. The su,tipended eJtabliali_comm process 
can now resume execution. It place!! information necessary for further communications 
with device Min an outgoing message destined for stream_aerver. Communication 
betwe n_ device Mand the operating system is now established. The new variable NDev
iceM is lcuow u to both parties and will be used for the next exchange. The establish
ment of communication at system initialization, then, is primarily a matter of coordina
tion. 

The following points can be made regarding initialization and Program (e): 

a) The clauses for predicates [Jermanent_urvera and atream_urver are given in outline 
form for purposes of clisc115sion. send, merge, and u:ait are assumed to be self
explanatory though descriptions are given in Appendix B. 

b) The memory locations for variables Device1 .. . DeviceN have no spec ial properties. 
It may even be possible, given sophisticated tail recursion optimization and garbage 
collection techniques, to reuse them for other variables. 

c) Reduction of the subgoals in Program (e) can migrate to idle processors. The initi:i.li
zation processor is only required to start tbe computation. 

d) A device pro ess ueed not retain the capability to handle an init{DeviceType) mes
sage once communications with the opera.ting system processes have been established. 

e) Not only does Program (e) specify how system initialization takes place, it is also a 
refinement of the opera.ting system model. For example, the program initiates, and 
the operating system is composed of, a set of permanent servers and a transient 
server to aid in initialization. Certain predicates such as eatabli:Jh_comm, require no 
further elaboration, whereas the bulk of the operating system is described by the 
clause for permanent_aeruera and its subgoals. 

t) The high-level specification of the operating system is independent of the number 
and types of peripheral devices in the computer system. 

g) The stream server is an important permanent server. Its purpose is the maintenance 
of associations between identifiers (of obj,:!cts) and communication variables to these 
objects. On receipt of a message reg_device{DeuiceType,DeviceSlrm}, it adds to its 
<latabo.se the information "DeviceStrm is the stream to device DeviceType". 

h) The operating system is initiated in such a way that the unexpected absence of a 
device processor does not create severe problems. The most significant consequence 
would be an eatabliah_comm process suspended, awaiting a reply from a non-existent 
DP. The rest of the sys em can ca.rry on. This also means -that the operating system 
can be started expecting more devices than are actually present. New devices can 
easily be added at a later point in time without restarting operations. 

Unfortunately, Program (e) may be too idealistic and impractical, at least given 
conventional techniques for initi alizing computer systems. It is implicit that the entire 
opera.ting system progrri.m is present within the machine at the start of operation. A 
more typica l situation has the operating system program stored on a file-s t ructured dev
ice&. The initially executed program - the (primary) bootstrap - is minimal and stored 
in ROM. Its sole purpose is to read into majn memory a larger program and begin it;s 

5. Though this is the norm, it need not be. The development or novel computer architectures al
lows the questioning or such forms or conventional wisdom. 
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execution. These operational considerations require changes to Program (e) which inter
fere with the correspondence between model refinement and initialization procedure. 
However, through a conscious effort and a language extension, the interference can be 
minimized. The following is an example: 

operating_3ystem{ DeviceStrmLilft } :-
boot_urver{ DeviceStrmList ?, DeviceRe3p, OSProg ), 
prove{ permanent_urvers{ DeviceResp? ), OSProg? ). 

boot_server{ DeviceStrmList, DeviceResp, OSProg) :
contact_devices{ DeviceStrmList, RespStrm }, 
boot_from_fsd{ RespStrm?, OSProg, DeviceResp ). 

contact_devices{ {DeviceStrm{ DeviceStrmList/, DeviceResp) :
establish_comm{ DeviceStrm, EstCommSlrm ), 
merge( EstCommStrm ?, RespStrm?, DeviceResp ), 
contact_device.,{ DeviceStrmList?, RespStrm ). 

contact_device:i( {/, fl). 

boot_from_fsd{ RespStrm, OSProg, DeviceResp} :-
receive{ reg_device{ fsd, FSDStrm }, RespStrm, NRespStrm} I 
send{ access{ permanent_servers, OSProg ), FSDStrm, NFSDStrm ), 
und{ reg_device{ f,d, NFSDStrm ), DeviceRe.,p, NRespStrm ). 

boot_from_Jsd{ {Resp{ RespStrm/, OSProg, {Resp{DeviceResp/) :
otherwise I 
boot_Jrom_j:Jd( RespStrm?, OSProg, DeviceResp ). 

Program (f): Operating System Bootstrap 

The logic computer system is assumed to include a file system device (FSD) [Kusa84b] in 
which the remainder of the operating system program is stored. The clauses for 
establish_comm are as in Program (e). otherwise and receive are familiar CP predicates 
( a description is given in Appendix B). The new metalogical predicate prove is similar to 
call of PARLOG [CIGr84b]. Its definition is an application of the work of Bowen an<l 
Kowalski [BoKo82]. Declaratively the goal 

prove{ Goal, Prog} 

succeeds if Goal is provable from program Prog. Its resolution suspends until both its 
input. arguments are instantiated. 

The contact_devicea process is equivalent to init_server of Program (e). The role of 
boot_from_J:id is to monitor responses from establiJh_comm processes on stream 
ReapStrm, watchful for the one identifying the file system device (FSD)6. Upon arrival 
of this response, a request to access the file with identifier permanent_aervera is sent to 
the FSD, a replacement reg_device respomie is inserted into the output response stream, 
and the process terminates. All other responses on ReapStrm are passed through unal
tered. It is assumed t.hat the file identified by permanent_servers contains all clauses 
necessary for the reduction of the goal 

&. The FSD is a device process which provides the basic services or cre:i.tion, access, removal, and 
stable storage or files !Kusa84bJ. In response to a request accett(FName,FContent) the device 
process unifies FContent with the current contents oC the file identified by FName. Both 
FName and FContent a.re arbitrary terms, though FName must be ground. 



permanent_urvers{ DeviceResp) 

i.e. the bulk of the operating system. 

5. Concluding Remarks 
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This paper has presented models for a logic computer system, and its hardware and 
software components. It has demonstrated that CP programs can be used to concisely 
:;pecify a logic computer system , its operating system, aud operation of peripheral dev
ices . Examples with significantly different characteristics -w ere given and compared. 

A method for operationally initializing a logic computer system was presented. As 
demonstrated, the correspondence between model refinement and operating system ini
tiation need not be adversely affected by the necessity of a boot.strap. In Program (f), 
most of the complications are contained within the specification of boot_server. 

It is noteworthy that concepts such as hardware error and reinitialization do not 
complicate the d eclarative reading of Programs (b) and (c). These concepts are 
inherently operat ional and are handled within that component of the language and com
puter system models. 

5.1. Further Study 

Several areas of further study are immediately apparent: 

• Errors can be represented by suspension for both perpetual and restartable devices. 
Howe ver, th is requir es t hat, following the error, a device continue from the precise 
point of preem_p t ion. lmplementat ionally, this should not be difficult to approximate. 
I t IB not clear, how ever, that it can ever be precisely attained. 

• Certain devices, such as file storage, are best conceptualized as perpetual. However, 
hardw are errors cannot be represented as conjunctive goal failure for perpet ual dev
ices . T he en;or-as-suspens ion scheme may also be unwor kab le because of the problem 
ment ioned a bove. Therefore other mea,ns of handling h ardware errors should be 
investigated. 

• It may be feasible to declaratively account for a restartable file storage device which 
operationally retains its contents on system reinitialization. The idea of an oracle 
presents one possibility. 

• Because of Program (d), it may be taken that restartable and perpetual devices can
not both be present within a single logic comp1tte r system. This may not n cessarily 
be the case . The metalogical predicate prove (si milar to call of PARLOG [C\Gr84h]) 
offers several possibilities. 

Preliminary investigations suggest interesting results in these areas. 

As Programs (b) and (c) suggest, computer systems with a wide variety of charn.c
teristics can be specified. As further study, systems with varying proper ies c,1n be 
developed, explored, and compared. Techniques for op rationally inj Liali zing tbese sys
tems can also be investigated. Other issues ·which an be explored include prot.ccLion 
and security and user-programmable error handling. 
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Appendix A - Introduction to Concurrent Prolog 

CP [Shap83a] facilitates the expression or concurrency, communication, synchroni
zation, and indeterminacy by a minimal extension to the basic computational model or 
logic programs. The language is based on the Relational Language or Clark and Gregory 
[C1Gr81]. In CP, as opposed to Prolog, the AND- and OR-parallelism or the theoretical 
model[CoKi81] or logic programs is retained. A conjunctive goal can be regarded as a 
system or processes, a unit goal being an individual process. The state of a process is 
the value of a goal's arguments, and the state of a system is the union or the states of its 
processes. Concurrency among processes is the AND-parallelism of the theoretical 
model. The OR-parallel trial or candidate clauses provides each process with the ability 
to perform indeterminate actions. Variables shared between goals serve as the process 
communication mechanism. Synchronization is achieved by denoting which processes 
can write a variable (instantiate it to a non-variable term). 

CP introduces two constructs to the model or logic programs: read-only annotations 
or variables and the commit operator. Read-only variable references, X? where Xis a 
variable, are used to constrain the order and pace of process reduction. Commit, 
denoted by 'I', permits both "committed choice" and "don't care" nondeterminism. 

A CP program is a finite set of guarded clauses. A guarded clamie is a universally 
quantified axiom of the form 

m,n~O 

where the Gj's and the B/s are atomic formulae (unit goals). His the clause head and 
the Gj's form the guard. The guard may be empty, in which case the commit operator 
is omitted. Read-only variable references may appear within any part of a clause. 

The semantics of a guarded-clause 

H :- GIB 

are as follows. Declaratively, read-only annotations are ignored and the commit operator 
reads as a conjunction: His true if G and Bare true. Operationally, the clause is similar 
to an alternative in a guarded-command [Dijk76]. To reduce a process H' using the 
clause above, Hand H' are unified, G is recursively reduced to the empty system, com
mitment is made to this clause, and H1 is reduced to B. The reduction may suspend or 
fail at any or these steps. Unification of Hand H' suspends if it requires the instantia
tion or variables annotated as read-only. It fails if JI and H' are not unifiable . The 
reduction of the guard system G suspends if the processes in it all suspend, and fails if 
any of them fails. Commitment may fail if variable bindings generated by the guard 
computation conflict with those generated by other (concurrent) computations. 

The semantics of the commit operation require that variable bindings produced by 
the first two steps of reduction - unification of Hand H' and reduction of G - are acces
sible only to processes in G, or their descendants, prior to the commitment. Also, as 
part of commit.ment, all other OR-parallel attempts to reduce H' are abandoned. 

As a programming aid, CP contains the metalanguage predicate otherwise 
[ShTa83]. A single otherwise goal in a guard - the only manner in which it can be used 
- succeeds if and when all other OR-parallel guards fail. 



Appendix B - Commonly Used Concurrent Prolog Predicates 

The following is a list of commonly used CP predicates employed in the program
ming examples. A description is given for each. 

B.1. System Predicates 

wait{X) 
waits until the principle functor of its argument, X, is determined, then terminates 
with success (Shap83a]. 

otherwise 
this predicate may only be used as a single subgoal in a guard. It succeeds if and 
when all of its brother OR-parallel guards fail. Declaratively, it may be read as the 
negation of the disjunction of the guards of the brother clauses (ShTa83]. 

B.2. User-Definable Predicates 

merge{ln1,fn2, Out) 
computes the relation "Out contains the elements of Int and ln2, preserving the 
relative order of their elements". The predicate may demonstrate various opera
tional properties, depending on its precise definition and utilization of operational 
characteristics of the language implemenation (Shap83a, Kusa84a, ShMi84, 
UeCh84, ShSa85J. 

send{Msg,Strm,NS'trm} 
names the relation "the result of sending Mag on stream Strm is the stream 
NStrm" [Shap83cJ. 

receive{M3g1 Strm, NStrm} 
names tbe relation "the result of receiving Mag on stream Strm is the stream 
NStrm" [Shap83c). 
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