
A Portable Image Processing System

for

Computer Vision

\\'illiam Havens

Laboratory for Computational Vision
Department of Computer Science

University of British Columbia
Vancouver, British Columbia

Canada V6T 1 W5

Technical Report 85-0

Keywords: image processing, C'omputer vision, graphics programming, software engineering

Abstract
Computer ns1on research is flourishing although its growth has been hindered by the lack of
good image processing s:,·stem~. Existing systems are neither general nor portable despite vari­
ous attempts at establishing standard image representations and software . Issues of hardware
architecture and processing efficiency ha Ye frequently dominated system design. Oft en standard
represent at ions are primarily data formats for exchanging data among researchers working at
affiliated laboratories using similar equipment. We argue that generality, portability and exten­
sibility are the important criteria for developing image processing systems. The system
described here, called PIPS, is based on these principles. An abstract image datatype is defined
which is capable of representing a wide variety of imagery. The representation makes few
assumptions about the spatial resolution , intensity resolution, or type of information contained
in the image. A simple set of primitive operations are defined for direct and sequential access of
images. These primitives are based on a bit stream access method that considet5 files and dev­
ices to be a long contiguous stream of bits that can be randomly read and written . Bit streams
allow the word boundaries and file system architecture of the host computer system to be com­
pletely ignored and require only standard byte-wide direct-access 1/0 support. The standard
image representation has encouraged the development or a library or portable generic image
operators. These operators support interactive experimentation and make it easy to combine
existing functions into new more complex operations. Finally, graphics device interlaces are
defined in order to isolate graphics hardware from image processing algorithms. The system has
been implemented under the l.:nix t operating system.

t l'oix is a Trademark or ATA:T Bell Laboratories.

2

1. Introduction

Computer vision 1s an important and growmg discipline within Artificial Intelli­

gence. It is central to robotics, automated manufacturing and inspection, remote sens­

ing and other applications requiring the automatic computer interpretation of digitally­

sampled spatial information. When the input information has a regular two-dimensional

organization of picture elements (pixels), its representation is called an image. A consid­

erable amount of programming effort in computer vision research is concerned with

images and image processing. Datatypes must be defined for various types of images

(such as rectangular gray-scale and colour imagery, binary masks, real, complex and

vector-valued images and digital terrain models) and for images having varying spatial

resolution (number of rows and columns) and different intensity resolution (number of

bits/pixel). Algorithms must be developed that allow the interactive manipulation of

image dat atypes. Typical operations include simple transformations (such as arithmetic,

windov,·ing, scaling, displaying, overlaying and concatenating) as well as more sophisti­

cated operations (such as convolution, fast Courier transform, edge detection,

classification and stereo projection).

Hardware and software for image processing are under rapid development in both

academic and industrial research laboratories. Unfortunately, much of the programming

effort is wasted. The code produced is tailored to the current experimental task and

must take into consideration the constraints of the particular graphics devices, computer

and operating system being used. Subsequent experiments (in the same laboratory and

elsewhere) will be able to use surprisingly little of the existing software without

modification. To overcome this dilemma, a number of image representations have been

3

developed, including [Dehne,771, [Havens,821, [Horn,77J, [Kirby ,79], [Landy ,84],

[McKeown,771, [Quam,84], [Selfridge,7Q], [Sproul,76] and [Tamura,80]. Significantly, the

sheer number of standards testifies to the existence of no standard at all. There is good

reason for this proliferation. Typically an image processing system is developed with a

particular type of application and/or computing system in mind. The voluminous quan­

tities of data1 and the intensive amount of computation required have made efficiency in

image representation and calculation paramount. -Portability, generality and extensibil­

ity have been sacrificed. In research environments, however, these attributes for

software tools are far more important than absolute computational efficiency.

Based on this principle, we have developed a Portable Image Processing System

(PIPS) which provides the following capabilites:

(1) An abstract image datatype is defined which 1s capable of representing a wide

variety of imagery. An image consists of its sampled data, a set of image parame­

ters, plus arbitrary user-defined parameters and documentation. The representa­

tion makes few assumptions about the spatial resolution, intensity resolution, or

type of information contained in an image. Word and byte boundaries of the host

computer architecture are ignored. Image data is stored packed at its specified

resolution which facilitates both efficient storage and transmission of images.

(2) A standard set of image primitives is defined for direct and sequential access of

images. These primitives are based on a subsystem, called bitio, [Havens,82] which

implements a bit stream access method for images. Files and devi~es are considered

1 For example, a single Landsat MSS image contains in excess of 57 million bits of information .

4

to consist of a stream of contiguous bits which can be randomly read and written.

Bitio can be easily ported to most modern computing environments, requiring only

standard byte-wide direct-access 1/0 support from the host operating system.

(3) A library of high-level generic image operators is being collected. These are useful

routines for interactive image manipulation which are coded in the C programming

language [Kernighan, 78] and assume the existence of a command-level macro facil-

ity in the host for composing new operators from existing ones.2 Image operators

encourage experimentation by making it easy to try various combinations of opera­

tions already existing in the library.

(4) The notion of tiirtual devices is introduced to isolate the peculiarities of graphics

hardware from the design of image processing algorithms. A virtual device is a

software interface to a particular graphics device which accepts standard images as

input and/or produce standard images as output. Ea.ch virtual device is responsible

for mapping the parameters of a given image to the capabilities of its actual physi­

cal device, thereby removing that tedium from the programmer. For example, a

virtual device for a medium resolution graphics display can expand or reduce the

image as necessary to fill the graphics screen. Virtual devices are implemented as

user-level programs and therefore require only those 1/0 capabilities for devices

described in 2) above.

An overview of the PIPS system is shown in Figure 1 which indicates the maJor

components in schematic form. In the next section, the design of the sy_stem will be dis-

2 ~fost modern systems provide such capability. The shell script5 and pipes facilities in Unix are par-

PROGRAM
INTERFACE

SHELL
COMMANDS

cussed.

IMAGE
OPERATORS

2. Design Criteria

IMAGE
FILES BITIO

VIRTUAL
DEVICE
DRIVERS

Figure 1: System Overview

FILE
SYSTEM

GRAPHICS
DEVICES

6

It is interesting to examme image representations and image processmg ennron­

ments from the critNia of generality, portability and extensibility.

2.1. Generality

Images encompass a wide variety of two-dimensional spatial information including

digitally sampled photographs, the output of multispectral scanners (e.g. Landsat

imagery), video frames, digitized maps, and graphic display files. There are many possi­

ble ways to represent images [Ballard,82] [Shapiro,78] including arrays, vectors, strings,

graphs, and pyramids [Tanimoto,80]. Conceptually, an image is a two-dimensional

ticu l:uly con v en ien t.

array of pixels which represent regularly sampled values of the image intensity function,

I (x ,Y), for discrete points, (x ,Y), in the image plane. The value of I (x ,Y) can

encode variously image brightness, colour, depth, surface orientation, or any other image

property [Barrow,78]. The two-dimensional pixel array conveniently corresponds to rec­

tangular, triangular and hexagonal tessellations of the image plane.

A standard image representation should be general and make no assumptions about

the spatial resolution, intensity resolution, type, or application of the data contained in

the image. The spatial resolution of imagery varies widely in both the horizontal and

vertical dimensions. For images derived from photographic media, the spatial resolution

depends on the photograph's dimensions and the scanning resolution of the image digi­

tizer. For video imagery, the resolution depends on the number of horizontal scan lines

in a video frame and the aspect ratio of the video format. 3 As well, many image process­

ing operations reduce and expand the spatial resolution of images.

The intensity resolution of different images also varies considerably. Intensity reso­

lution is often expressed as the number of bits/ pixel necessary to represent the pixel

values stored in the image. This number is a function of the pixel datatype and the

dynamic range of possible pixel values. For example, a gray-scale image digitized from a

black and white photograph or video frame typically contains a pixel array or unsibned

integers whose values represent image brightness. The number or bits required per pixel

varies according to the sampling precision of the digitizing hardware. Colour imagery is

represented in a similar fashion except that each pixel encodes a vee:tor of three colour

3 For example, ti.Le l\'TSC format ha.5 525 horizontal lines and an 3.'ipect ratio of 4:3 whirh)'i<'l<is a
vertical resolution of 700 pixels.

7

values. Binary images have only two possible intensity values and are represented by a

single bit of intensity information. Other types of imagery may have real or complex­

valued pixels. For instance, a digital terrain model is a synthetic image whose pixels

represent terrain altitude typically as floating-point numbers. As well, complex images

are frequently produced in the Fourier analysis of imagery. Each pixel contains a pair

of values representing the real and imaginary (or alternatively the magnitude and phase)

components of the image at that point. Finally, one-dimensional images are also impor­

tant. Colour transformation tables, histograms, plot vectors and graphics display files

are all conveniently encoded as one-dimensional images. An adequate image datatype

must be able to represent all of these common types of imagery using the same data

structures and the same set of primitive operations.

Image processing software must also be general. Computer vision experiments

requue interactive access to sophisticated image processmg algorithms. These algo­

rithms are complex , tedious to program and often implemented for a particular applica­

tion even though many image processing operations are common to a variety of applica­

tions. \Vhat is needed are generic image operators which can process images having

arbitrary spatial resolution, intensity resolution or pixel datatype. The accepted solu­

tion to this problem is to associate the parameters of an image with its data representa­

tion in a header record at the beginning of the image file . Image operators can then be

coded which fetch these parameters from input images and store them in output images .

By so doing, a library of useful and general purpose image processing algorithms can be

developed.

8

Most existing image representations satisfy the above requirements. Probably the

best known image representation is the NATO standard [Dehne,77] which has been

extended at various sites. This standard was developed as part of the distributed Image

Understanding (JU) Testbed facility at a number of computer vision laboratories spon-

sored by DARPA. 4 The image representation chosen contains three parts: a header for

storing image parameters, the pixel array, and an index table for efficiently mapping

image coordinates into linear memory references. The representation provides a storage

format and method of access for large images that can be used in different programming

languages on multiple machines. Images are manipulated using a large number of primi­

tive operations which provide efficient access to pixel data by image coordinates. Other

related representations include the RIFF system [Selfridge,79] and a predecessor AIS

[Sproul,76]. See also [Kirby,79].

An alternate approach is to build a general and powerful image processing environ­

ment for one particular computer and display. This methodology is illustrated by the

ImagCalc * system of Quam[84] developed for the Symbolics 3600 Lisp machine. This

machine provides a single-user Lisp programming environment with a very high resolu­

tion black and white or colour display. lmagCalc adds a general purpose image process­

ing environment that allows the display screen to be divided into image panes. Each

pane is associated with a stack of images and displays the image currently on top of its

stack. There are a sizeable number of image operators which access these images, com­

pute new images and manipulate the stacks. The environment is very interactive and

4 l 1. S. Defense Advanced Research Projects Agency.

* Trademark of SRI International.

0

relies heavily on its extensible menu of image operators. No particular image represen­

tation is assumed. Instead, the system can process images eucoded in a number of exist­

ing image formats.

A third approach, which is compatible with our work, is the HIPS system

!Landy ,84]. The system provides a flexible general purpose image processing environ­

ment under the Unix operating system. A standard image representation is defined

-~
which consists of a header record and the pixel data. The header specifies the number

of frames, rows, columns and bits/pixel contained in the image plus the pixel datatype

and an indicator for pixels which are not multiples or sub-multiples of 8-bit bytes.

There is also annotation information in the header which is automatically updated by

the image software. This is a nice feature for keeping track of the genealogy of images.

The system provides a large number of image operators and peripheral interfaces for a

number of graphics and video devices.

2.2. Portability

To be truly portable, an image procc>ssing system should be as m:1chi11C' indqwn­

dent as possible, defining a small number of primitive operations for manipulating imagr

data. These image primiti~,es should make as few assumptions as possible about the

wordsize, 1/0 functions or file system of any target host and be accessible from high­

level programming languages available on the host. To facilitate por1 ability, they

should be implemented using only rudimentary 1/0 operations. Iv1ost operating systPms

provide both sequential and random access reading and writing of files for byte-oriented

data. Once the primitives have been ported successfully to a new host system, all of the

10

existing library of image operators that are coded in a programming language resident

on the host automatically become available.

Portability has not been a strong feature of image processing systems which have

been developed with existing computing and graphics hardware in mind. Obtaining the

most flexibility and performance from this equipment has taken precedence. For exam­

ple, one of the goals of the ARP A IU Testbed was the portability between sites of both

image databases and image processing algorithms. Unfortunately, each site has a sub­

stantial investment in its local hardware and software configuration. Consequently, the

ARPA standard has served primarily as a transport format for interchange of imagery

from one site to another. The different systems are too diverse for extensive sharing of

image software. Instead, the approach has been to distribute processing oYer the

ARPANET using remote procedure calls and image transfers.

A second requirement for portability is the removal of derJendencil's on particular

graphics devices from image programming. Software should make no assumptions ahout

which graphics devices are being used for image input or display. All of the information

pertinent to the image should be specified by its image parameters. For example, HIPS

addresses this requirement by constructing software peripheral interfaces between image

processing software and each graphics device. All 1/0 to a device must pass through its

interface which is responsible for mapping between the parameters of a particular image

and the architectural constraints of the actual device. The ARPA system follows a

different solution. An ideal generic device is assumed and all 1/0 is made to this device.

Peripheral interfaces are then defined which map the generic properties of the ideal dev­

ice to the actual parameters of each real device.

11

2.3. Extensibility

Computer vision is an experimental science. New experimental techniques must not

require extensive programming effort before they can be tried. The ability to quickly

forge new image processing tools from an existing library of useful image operators

encourages experimentation. The HIPS system exploits the command macros and mul­

tiprocessing facilities provided by the Unix operating system to achieve this capability.

Many image processing operations act as filters, accepting a single image as input and

producing another a.s output. By implementing image operators as Unix processes, the

output of one operator can be directly connected to the input of another (called a pipe)

without the need for temporary intermediate files. New operators can be composed by

collecting sequences of these operators in a macro file (called a script). PIPS relies on

these same elegant mechanisms although the macro facilities of other operating systems

can also suffic-e.

A very powerful approach to extensibility can be used "it h imag;C' process111g

enviroments for which the system command language is also an internctin> program­

ming language. For example, the lmagCalc system allows new image operators to be

easily coded as new Lisp functions. The image processing system thereby inherits the

considerable capabilities of the Lisp programming environment:5

Another aspect of extensibility is the ability to augment the information contained

m the image representation. HIPS allows arbitrary annotation data in the image

header. Other systems have viE!wed image processing as part of the lar:gcr task of image

6 An example of Lisp-based processing is giYen in Section 3.~.

12

database construction and manipulation [McKeown,77) [Tamura,80). For example, the

RIFF system uses an image header that includes an arbitrary number of binary rela­

tions, implemented as name/value pairs. Each pair can record relational information

about the image such as statistical measures, the parent image of this image and the

window coordinates of this image in its parent. The result is a linked database of

imagery.

3. Standard Images

PWS defines the following representation for image data. The representation is

straightforward and simple thereby supporting the goals of generality and portability.

In the rectangular pixel array of Figure 2, the number of horizontal rows in the image

(called nrows) and the number of vertical columns in the image (called ncols) specify

the Yertical and horizontal spatial resolution of the image respectively. Individual pixels

in the image are referenced by their discrete spatial coordinates , (x ,y), in the array,

0 ~ x < nrows , 0 ~ y < ncols . Conventionally, the origin of the image coordinate

system is the top-left-hand corner of the array. The image can also be usefully viewed

as being a contiguous stream of pixels in row-major order beginning at / (0,0) and ter­

minating with/ (nrou's-l,ncols-1). Such an organization of the image is called a ras­

ter and is the format assumed by many serial graphics devices. It is desirable to be able

to access images by both absolute pixel locations and as sequential streams of pixels.

The third image dimension is intensity resolution expressed as the number of bits/pixel

(bpp) needed to represent the entire range of values of/ (x ,y) for a given image. For

efficient storage and transmission of images, bpp must be an independent parameter of

Origin
(0,0) ry

X

the image.

I
nrows

1
.

.

13

...............................
• "1111 •• •••• .

Figure 2: Image Representation

The image rt'presentntion includes the two-dimensional array of pachd pixel values

plus an image file descriptor called the image header. The header contains a small set of

common image parameters necessary for all images, additional parameters specific to a

given image plus an annotation field for optional textual information about th(' image.

Tbe common image parameters are listed in Table 1. The header record wa~ chosen to

be a fixed-length field appearing at the beginning of each image file. The header is large

enough to hold a considerable number of parameters and annotation yet occupies negli­

gible space compared to the data contained in most images. More importantly, a fixed

header allows updating of the image parameter information in situ without copying the

remainder of the (possibly very large) image file. Two image operators, iffsee and

14

iff edit, 6 allow examining and modifying all image parameters.

The format of the header is a free-form sequence of characters according to the fol­

lowing BNF syntax:

<header> .- lmagefile: < ezp > n < annote >
<exp> .- <parm > = <tJafoe >;
<parm > .- tJer.,1on I nrow., I ncola I bpp I type I poai'titJe I
< annote > - <atring >

The header contains an initial character sequence, "Image/ ile : ", indicating that the file

is an image followed by set of n parameter expressions, < exp >. Each expression

Parameter

tJers1on

Tl r Otl'8

ncols

bpp

type

po.,itive

Interpretation

Software release used to produce this image.

The num her of rows contained in the image.

The number of columns in the image.

The num her of bits/pixel required to represent the full range
of intensity values for the image.

Datatype of the pixels contained in the image.

Boolean indicating whether the image was produced from a
photographic positive or negative source.

Table 1: Common Image Parameters

8 Both are described in Section 3.3.

15

encodes the value of either a common or user-defined parameter for the image.7 < exp >

consists of a parameter name, < parm >, followed by an equality sign, followed by the

value for the parameter, < value >, and a delineating semicolon or space character.

Appearing after the parameters is the annotation record, < an note >, which is ter­

minated by the first occuring NUL character or the end of the header record.

3.1. Image Primitives

In order to make the system as portable as possible, it is necessary to minimize

dependencies on any particular host operating system. To this end, we have defined a

small simple set of image primitives which provide basic access to image files and dev­

ices. The primitives include opening and closing an image file associated with a disk file

or graphics device; reading and/or writing of pixel values in either sequential or random

order by specifying pixel address, row address, or by default raster order; and obtaining

or setting of the parameters associated with the image. The host need provide only the

following capabilities to support the PIPS system:

• A direct-access file system for files containing contiguous sequences of 8-bit
bytes.

• System calls for opening and closing files with read, write and update modes of
access.

• System calls for creating and deleting files under program control.
• Access to the C programming language compiler.

The image primitives described below are also summarized in Table 2. The function,

iopen (!name, mode),

opens an image file, named /name, for access mode, mode , specified as reading, writing

or both. iopen returns a file descriptor to be used for subsequent references to the

7 In the current version, n ~ 6 and all or the common parame~rs must appear in a fixed order.

Primitive

iopen/ iclose

getheader

putheader

iget/ iset

getpix/ putpix

getrow/ putrow

iseek

ieof/ ierror

16

Operation

Open/close a file or graphics device for reading and/or writing.

Obtain the image parameters associated with an image file or dev­
ice.

Write new image parameters to an image file or device.

Gets/sets a specified parameter for an image file.

Read/write the next pixel in an image file in raster order.

Read/write an entire row of pixels in the image or device.

Set the pixel stream pointer to the specified row and column.

Synchronize the image with its open file or device.

Returns true if an end-of-file/error condition has occurred, else
false.

Table: 2: PIPS Image PrimitiYes

image. Its counterpart function,

iclose (rf p),

closes the file associated with the image, ifp, after image processing has been completed.

getheader and putheader retrieve and store respectively the image header information

from the image file. These functions must be called before reading and/or writing pixels

begins. The primitive,

getheader (ifp, an note),

retrieves the image header from file, r/p, and copies the annotation record into the

string. annote . The default image parameters in rfp are thus overwritten by the actual

17

parameters of the image file, while

putheader (ifp, an note)

performs the reverse function. The image parameters contained in i/p and the new

annotation, annote , are written to the file. The functions, iget and iset , are used to

get and set respectively a parameter associated with an image as follows:

iget (•fp, parm)

returns the value of parm contained in the header Jor •fp, whereas

iset (i/p, parm , value)

sets the value of parm to its new value, value , in the header of i/p.8

The actual reading and writing of image data is performed by two functions:

getpix (i/p)

which reads the next pixel in raster order from image, i/p; and

putpix (rfp, pix)

which writes the value, pi:r, into the current pixel position of the image. To read more

than a single pixel at a time or to read in other than raster sequence, the following

primitives are provided:

getrow (ifp, row, arr)

reads an entire row of pixels from 1/p into an array, arr, which must be the same data-

type as the pixel data and have a length adequate for the number of columns in each

row, ncols. The arg, row, is an integer number specifying which row to read,

0 ~ row ~ nrows . Alternatively,

8 Current!~, this is done by associating an index number with each common parameter in the header.
A more powerful approach is to construct a symbol table in the header allowing all parameters to be ac­
cessed by name. RIFF provides such a capability .

18

putrow (if p, row , arr)

,,,rites an entire row of pixels contained in arr into image, i/p, beginning at row number,

row. The procedure,

iseek (•1P, row , co~,

is used to access pixels in the image randomly by positioning the file pointer to the ph:el

beginning at row number, row, and column number, col. Subsequent read and write

operations will proceed in raster order from this pixel position. A related procedure,

isync (i/p),

is useful for 1/0 operations directly to graphics devices. It flushes the pixel buffer asso-

ciated with ifp thereby synchronizing the attached device to the read and write calls of

the program. Finally,

ieo/ (1fp)

returns true if the exception, end-of-file, has been encountered during the last read on

ifp and

ierror (i/p)

returns true if an 1/0 error has occurred for ifp. Otherwise, both functions return false.

For more detailed documentation of these functions, see [Havens,1982}.

3.2. An Interactive Programming Example

The primitives defined above help simplify image processing software development.

Much of our own experimental computer vision work is interactive and t.he Lisp

language is often the programming environment of choice. For example, Figure 3 lists a

protocol from an interactive session using the Franzlisp [Foderaro,1980] interpreter.9

g Figures 3 and 4 through 9 appear at the end of the paper.

19

The protocol begins by invoking the Lisp interpreter and loading the PIPS interface to

Lisp, called lispimage (in steps 1-3). Lines prefixed with the prompt, "-> ", are typed

by the user. All others are output from the interpreter.

In the first part of the example, it is desired to process an image file, claire , by

reducing its intensity resolution from 8-bits to 3-bits while leaving the resolution in both

spatial dimensions unaffected. This image is shown in Figure 4. iopen is used to open

the image for reading and the resulting image file descriptor is assigned to a variable,

rfp1, (in steps 3 and 4). Next, the image header information is retrieved using the primi­

tive, getheader, and its parameters stored in the file descriptor (step 6). getheader

returns the annotation record as a character string (in step 7). The values of the

parameters, nrows, ncols and bpp are retrieved from the file descriptor using the func­

tion, iget , (in steps 8-13). A new image, called claire. 3b, is then created to receive the

output image and its file descriptor assigned to a variable, ifp2, (in steps 14 and 15).

The number of rows and columns for rfp:2 will be identical to ,jp1 but with the parame­

ter, bpp, equal to 3-bits. All the parameters are set for the output image (in steps lG-

21) and the image header is written out to the file (steps 22 and 23).

The system is now ready to process the pixel data which is performed by the single

Lisp while expression (in step 24). The pixels are read in raster order from ifp1, divided

by the scale factor, 32 = 28-3, and written to rfp2. This loop terminates when an end­

of-file is detected by the function, ieof, on ifp1. Finally, both images are closed using

iclose (steps 26-29). The result of this scaling operation can be seen in Figure 5 where

the reduction in intensity resolution is evident.

!O

Image primitives can also, of course, be incorporated into compiled and interpreted

programs. Again using Lisp as an example programming language, the remainder of the

protocol of Figure 3 illustrates the definition and application of a function,

slice (image 1, image 2 ,low, high)

which reads an input image, image 1, of any spatial or intensity resolution and produces

a binary image, image 2, as output. Each pixel is image 2 is set to 1 if its corresponding

pixel in image 1 has an intensity value between low and high. Otherwise, the output

pixel is set to 0. In steps 47 and 48, the function is applied to the image, claire , with

low = 140 and high = 200. The computed image, claire.bin, is shown in Figure 6.

3.3. Bit Stream 1/0

Images can be very large data objects. To transmit. and store images efficiently in

the host file system has necessitated implementing the bitio input/out.put method for

packed bit streams. Bitio is similar to normal character stream input and output except

that files are considered to be a randomly accessible contiguous stream or bits. Byte

boundaries are completely ignored and input/output operations to the host file system

are fully buffered.

The bitio primitives are listed in Table 3. Strings of bits can be read and/or writ­

ten either sequentially or by absolute bit position in the bit stream. The number or Lits

that can be read or written in the stream is limited by the largest v,·ordsize, u•si:e , on

which the host computer can perform unsigned integer arithemetic. 10 The maximum size

10 In the Vax/Unix implementation, bit strings are limited to u·si:e = 3~ bits maximum length .
The largest value of bpp for an image file is also this value.

Primitive

bopen/bcloae

bget

bput

buek

baync

21

Operation

Open/close a bit stream with a file or device for reading and/or
writing.

Read a string of bits from a bit stream into a long word.

Write a string of bits from a long word into a bit stream.

Move bit stream pointer to specified bit position.

Synchronize 1/0 operations with the open file or device.

Table: 3: Bitio Primitives

of a bit stream file is 2wi:e bits. 11 The bitio primitive are an independent subsystem of

standard images and are potentially useful for other purposes. Most of the image primi­

tives simply call the bitio primitives directly translating pixel coordinates into absolute

bit posit ions where necessary.

3.4. Image Operators

Many high level operations on image datatypes are common to a wide variety of

computer vision, graphics, and image processing applications. These operators typically

manipulate whole images as a unit, frequently producing new images as their results.

The library of image operators currently available in the PIPS system is listed in

Table 4. 12 Most of these routines have been contributed by the user community and

11 The ma.ximum size of an image file is nrows-tncols-tbpp ~ 2tl's1 zt, which is more than large t'nough
for practical purposes . For example, an &-bit Vax/Unix image may have upto 23170 rows and columns.

12 Table 4 appears at the end of the paper.

satisfy our design goals of being both generic and portable. By enforcing a flexible stan­

dard representation for images, the class of images for which a particular operator is

applicable can be made very general. Likewise, by defining a simple set of portable

image primitives and requiring that all image operators be coded in a widely accessible

high-level programming language (like C or Pascal), the operators can also be made

portable.

The library can roughly be divided into three groups of operators. Basic operators

perform simple and frequently used graphics operations on images. For examples, the

window 13 operator accepts as input an image of arbitrary spatial and intensity resolu­

tion and unknown pixel type. By specifying the row and column coordinates of a rec­

tangle within the input image, the operator produces a new output image for that rec­

tangle. The nev,· image inherits the bpp parameter and annotation record of its parrnt.

The operator, iscale , performs both spatial and intensity scaling on an image. The size

of the image can be independently scaled in both the x and y directions by an arbitrary

scale factor using a variety of different algorithms (for example, a four-point cubic con­

volution). At the same time, the intensity resolution can also be scaled either increasing

or decreasing the value of bpp for the image. Again a number of different scaling

methods are available including dithering t.o maintain the original tonal range of the

image when reducing bpp . Finally, general arithmetic can be performed on images

usmg the operator, adjust .14 This operator takes a single image as input,

adds/subtracts a constant from each pixel, multiplies/divides the pixel by another con­

stant, and optionally limits the results to specified upper and lower bounds. The output

13 window and iscale were implemented by Stewart Kingdon .

23

image contains the same parameters, nrows and n.cols, as the input but the value of

bpp may be adjusted to hold the maximum value produced during the arithmetic.

The second group of image operators are more specialized. These routines are usu­

ally associated with a particular image processing application. For example, edge­

detection is an important operation in computer vision. Frequently edges in the image

correspond with surface discontinuities in the underlying scene. Many edge detectors

are known, but recently there has been considerable interest in a non-directional second

derivative operator described by Marr and Hildreth [1980]. The operator looks for zero­

crossings of the Laplacian function, y>2, applied to a Gaussian-smoothed gray-scale

image, I (x, y) as follows:

y> 2(G * l(x, y))

where G is the Gaussian function and "* " indicates two-dimensional convolution.

Since both v7 2 and G are linear operators, they can be combined into a single operator,

v7 2 G, and applied direc-tly to the image. To experiment with this technique, we have

implemented an image operator, called appropriately del2g. 14 The operator takes r,s

input a gray-scale intensity image digitized from a natural scene and a set of parameters

for constructing the convolution mask approximating y> 2G. The mask, which is also

represented as an image, is convolved with the input image producing the convolution

as a signed integer image. The locus of points in this image where adjacent pixel values

pass through zero corresponds to maximum intensity changes in the gray-scale image.

The performance of del2g is demonstrated for the input image of Figure 4 producing the

convolution image, c/afre. cv, shown in Figure 7 and final zero-crossmg image,

14 Implemented by Alan Carter .

claire. Ox, of Figure 8.

3.5. Defining New Operators

Functional composition is a powerful mechanism for defining new operators. The

existing library of image operators in conjunction with a reasonable macro facility in the

host operating system provides the necessary functional composition capability. Most

modern operating systems have some sort of command macro facility. In our Unix

implementation of PIPS, we make major use of process pipes and shell scripts. For

example, the operator, del2g, is actually implemented as a script. All of the steps in the

method described above are existing image operators. To construct del2g, it is only

necessary to compose the individual steps into a new operator. A simplified version of

this operator is illustrated in Figure 10 below. The operator is ealled by specifying three

arguments: the size of the convolution mask, the frequency of the Gaussian filter, and

tht> input gray-scale image. These arguments are bound to their variables, $si.::e ,

$sigma and $image respectively (in steps 1-4). In step 5, the image primitive, mask is

invoked to construct a convolution ma.sk for del2g from the parameters, $siu and

$sigma. The output of this operator is piped into convoli•e (using the Unix pipe

1
2
3
4
5
6

del2g size sigma image
set size=$1
set sigma=$2
set image=$3
mask -k $size -s $sigma I convolve $image >Simage.cv
zerox $image.cv I adjust -bpp 1 -thresh 15 >$image.Ox

Figure 10: Composition of v12G Operator

25

operator, "I") which applies the new mask to $image and produces the convolved

image, $image.cv, as result (stored as the name of the input image suffixed by ".cv 'l

In the last step (6), the zero-crossing detector, zerox is applied to the convolved image

and produces a magnitude image as result indicating the strength of the zero-crossing.

This image is thresholded to I-bit by adjust and the final output is saved m a new

image called $image. Ox .

3.6. Virtual Devices

The final group of image operators are intentionally device specific. One of the

objectives of this work is to divorce the manipulation of images from the hardware

peculiarities of graphical devices. Our approach has been to define software interfaces,

which we call virtual devices, that accept images as input and produce images as out­

put. By interpreting the parameters of the image file directly, they free the programmer

from having to conform to the physical constraints of the actual device. Ideally, the

user of the system should never have to know what devices were used to produce the

imagery or what type of displays are available for viewing the results.

We have developed a number of virtual devices for the hardware that we have

available in our laboratory although this work is still in progress. Each device is imple­

mented as an image operator that makes use of the normal device driver software pro­

vided by the host system. No operating system modifications for image files is neces­

sary. However, it would be tempting to integrate virtual devices with the real devices of

the host. By doing so, the file system primitives provided by the host could operate

directly on images. Unfortunately, the portability of our system would seriously suffer .

28

There are currently virtual devices for Raster Technology 1/25 displays, for Telidon

[Godfrey,1081] videotext terminals, for Imagen Imprint-IO laser printers, for an Optron­

ics scanning densitometer/film writer, for Comtal Vision/One workstations, and for the

Apple Macintosh personal computer.

For example, Telidon terminals make inexpensive graphics displays for low resolu­

tion imagery. In our system, the tshade 15 operator accepts standard images as input

and displays them in eight possible gray levels on the screen. On the other hand, an

Imagen Imprint-IO laser printer has a very high spatial resolution but can print only

binary images. The operator, ishade 15, accepts an image file containing a bit map

(represented as a single bit image), converts it to lmpresst format, and submits it to the

printer .

Recently, the Macintosh has become a popular and inexpensive graphics computer.

It has a display of 512 columns and 342 rows with 1-bit of intensity resolution. The

image operator, maciff, can translate in both directions between l\facPaint+ documents

and image files having a single bit of intensity resolution. For example, the image of

Figure 9 is a MacPaint document, claire l.pntg, created by piping the image of Figure 4

first through iscale to yield an intensity range of 1-bit and then into maciff to produce

the result shown. Finally, it should be noted that the original photograph was digitized

using the photoscan 16 operator and all the images in Figures 4 through 8 were produced

15 Implemented by Stewart Kingdon.

t Impress is a trademark of Imagen Inc.

+ MacPaint is a tr::idemark of Apple Computer Inc .
111 Written by Bob Woodham.

27

using the rtshade 17 operator for the Raster Technology display .

4. Conclusion

A significant aspect of computer vision research is the development of laboratory

computing environments for image processing. Unfortunately, research in the field has

been hampered by the lack of good image processing software. Existing software sys­

tems a.re neither general nor portable despite varieus attempts at defining image stan­

dards. An image processing system must be more than an interchange format between

affiliated laboratories using similar equipment.

The development of the PIPS system has followed a different approach. We

identified a number of design criteria for a system intended for a research environment.

These criteria have not previously been adequately addressed. First, we chose a stan­

dard representation for raster image data that is as simple as possible yet capable of

representing a wide variety of types of imagery. The actual parameters for a given

image are stored in the image datatype along with additional user-defined information.

Operations on images can access these parameters facilitating the implementation of

generic image operators.

Second, the system is portable and can easily be implemented on a wide variety of

computing hosts. It makes few assumptions about the wordsize, file system or other

peculiarities of any particular host. We achieved this goal by defining a small set of

image primitives for accessing and manipulating ima.ges. The image primitives provide

both direct and sequential access to image files and image devices. The primitives are

17 Implemented by Marc Majka .

Z8

coded in the C programming language which is available on most modern computer sys­

tems and require only standard 1/0 support from the host. The bitio subsystem allows

the image routines to ignore any mismatch between the parameters of a particular

image and the architecture or the host computer.

Third, the system provides an extensive library or useful and powerful image opera­

tors. Once the image primitives have been ported to a new host, all of the image opera­

tors become available on that new system. The operators are, as well, extensible. They

can be combined into new operators thereby extending the capabilities or the system.

Finally, hardware technology continues to provide new computing and graphics

devices. PIPS provides virtual devices to isolate as much as possible image processing

algorithms from the architectural constraints of these devices. The image operators and

image primitives do not address graphical devices directly. Instead an operator is

defined v.'hich performs the mapping between standard images and the actual physical

device. Virtual devices have been implemented as image operators to preserve the por­

tability of the system.

References

D. H. Ballard & C. M. Brown (1982) Computer Viaion, Prentice-Hall, Englewood Cliffs, N.J.

H. G. Barrow & J.M. Tenenbaum (1978) "Recovering Intrinsic Scene Characteristics from
Images", in A.R.Hanson & E.M.Riseman (eds.), Computer Viaion Syatema, Academic
Press, New York, pp.3-26.

J. S. Dehne (1977) The NATO RSG-4/SGIP Tape Format, in Proc. Workahop on Standarda for
Image Pattern Recogniton, Nat. Bureau or Standards, Special Pub. 500-8, Washing­
ton, D.C.

J. K. Foderaro (1980) The Franzliap Manual, Univ. or California, Berkeley, CA.

29

D. Godfrey & E. Chang (1981) The Telidon Book, Pocepic Publishing, Victoria, B.C., Canada.

W. Havens, A. Carter & S. Kingdon (1982) Standard Image Files: Generic Operations for Image
Datat.ypes, TR-82-10, Department of Computer Science, University of British
Columbia, Vancouver, Canada.

E. C. Hildreth (1980) Implementation of a Theory of Edge Detection, AI-TR-579, MIT Al Lab,
Cambridge, Mass., April 1980.

B. K. P. Horn (1977) unpublished technical note, MIT Al Lab, 545 Technology Square, Cam­
bridge, MMs.

B. W. Kernighan & D. M. Ritchie (1978) The C Programming Language, Prentice-Hall, Engle­
wood Cliffs, N.J.

R. L. Kirby, R. Smith, P. Don.des, S. Ranade, L. Kitchen & F. Blonder (1979) Subroutines and
Programs for Grinnell GMR-27 Display Processor, TR-810, Computer Science Dept.,
University of Maryland, College Park, Md.

M. S. Landy, Y. Cohen & G. Sperling (1984) HIPS: A Unix-Based Image Processing System,
Comp. Vi,,ion, Graphica ff Image Proceaaing 25, pp. 331-347.

D. Marr & T. Poggio (1976) Cooperative Computation of Stereo Disparity, Science 19,1, 1976,
pp.283-287.

D. McKeown & R. Reddy (l 9i7) A Hierarchical Symbolic Representation for an Image Data­
base, Proc. IEEE Workshop on Picture Data Description and Management.

P. Selfridge & K. Sloan jr. (1979) Raster Image File Format. (RIFF): An Approach to Problems
in Image l\fanagement, Tech. Report 61, Computer Science Dept., llnivcrsit.y of
Rochester, Rochester, N.Y., Aug. 79.

R. F. Sproul & P. Baudelaire (1976) Proposed 'Array of Intensity1 Sample Format, unpublished
tech. doc., XEROX PARC, Palo Alto, CA., May 76.

L.G. Shapiro (1978) Data Structures for Picture Processing, Computer Graphica, vol 12, no. 3,
August 1978, pp.140-146.

L. Quam (1984) The Image Cale Viaion Syatem, Parta I tJ II, SRI International, Menlo Park,
CA.

H. Tamura (1980) Image DatabMe Management for Pattern Information Processing Studies, in
Pictorial Information Syatema, S. Chang & K. S. Fu (eds.), Lecture Not.es in Com­
puter Science 80, Springer-Verlag, New York, pp.198-227.

S. Tanimoto & A. Klinger (1080) Structured Computer Viaion: Machine Perception through
Hierarchical Computation Structurea, Academic Press, New York, 1980.

Acknowledgments
Major contributions to this system have been made by the researchers in The

Laboratory for Computational Vision, in particular, Alan Carter, Stewart Kingdon,
Rachel Gelbart, Jay Glicksman, Tim Lee, Jim Little, Marc Majka, Farzin Moktarian,
and Bob \Voodham. This work was supported by NSERC under grants A5502 and
SMl-51 and by NSF grant MCS-8004882.

30

31

1 Franz Lisp, Opus 38.79
2 -> (load 'lispimage)
3 t
4 -> (setq ifpl (iopen "claire" 'read))
5 619524
6 -> (getheader ifpl)
7 "date = July 1, 1985 ; Claire Elizabeth Havens"
8 -> (sctq nrows (iget ifpl 'nrows))
9 450
10 -> (setq ncols (iget ifpl 'ncols))
11 535
12 -> (setq bpp (iget ifpl 'bpp))
13 8
14 -> (setq ifp2 (iopen "claire.3b" 'write))
15 619556
16 - > (iset ifp2 'nrows nrows)
17 450
18 - > (iset ifp2 'ncols ncols)
19 535
20 -> (iset ifp2 'bpp 3)
21 3

22 - > (put header if p2 "")
23 t
24 -> (while (not (ieof ifpl)) (put.pix ifp2 (quotient (getpix ifpl) 32))
25 nil
28 - > (iclose ifpl)
27 t
28 - > (iclose ifp2)
29 t
30 -> (defun slice (image} image2 low high)
31 (prog (ifpl ifp2 hdrl pixel)
32 (setq ifpl (iopen imagel read))
33 (setq ifp2 (iopen image2 write))
34 (setq hdrl (getheader ifpl))
35 (iset ifp2 'nrows (iget ifpl 'nrows))
36 (iset ifp2 'ncols (iget ifpl 'ncols))
37 (iset if p2 'bpp 1)
38 (putheader ifp2 (concat hdrl ":slice " low high))
39 (while (not (ieof ifpl))
40 (setq pixel (getpix ifpl))
41 (if (and (greaterp pixel low)(lessp pixel high))
42 (putpix ifp2 1)
43 (put.pix ifp2 0)))
44 (iclose ifpl)
45 (iclose ifp2)))

H

46 slice
47 -> (slice "claire" "claire.lb" 140 200)
48 t

Figure 3: Interactive Programming in Lisp

Operator

gauss

imask

window

mask

convolve

zeroz

del2g

image/ raster

munch/ zoom

isc ale

transpose

iffaee

ijfedit

randomdot

stereo

maciff

Operation

Applies a Gaussian smoothing filter to an image producing a new image as
output.

Masks one image over another.

Extracts a rectangular subregion or an image producing a new image as out­
put.

Constructs a convolution mask represented as an image.

33

Performs the convolution or an input image with a mask image producing the
result as a new real-valued image.

Determines the zero-crossings in a signed integer image

Applies the Marr/Hildreth [1980] edge detection operator to an image. The
output is a single bit image indicating the locus or zero-crossings or the second
derivative of the smoothed input image.

Converts to and from image file representation .

Reduces/enlarges the spatial size of an image by a specified factor producing a
new image as output.

Changes the number of bits per pixel in an image producing a new image as
output .

Exchanges the rows and columns of an image.

Displays the image parameters of an image including the annotation record.

Edits the image parameters of an image file using any text editor or a simple
prompting dialogue. All image parameters are stored in the image header in a
textual format.

Produces a random dot stereogram [Marr&Poggio, 1976] from a digital terrain
model represented in the input image. Two output images are produced
corresponding to the left and right eye views.

Produces an orthographic left and right stereo pair of images from an input
intensity image and a digital terrain model image.

Translates in both directions bet.ween Macintosh Macpaint documents and

iff-fft

nnc/mlc

splice/ paste

histogram

synthetic

transpose

slice

xfiip/ yfiip

ishade

!shade

image files having I-bit intensity resolution.

Performs the fast Fourier transform on an image producing a pair or images
representing the real and imagery portions of the transform.

Nearest neighbour classification / maximum likelihood classification of a
num her of spatial registered input images. The single output image encodes
the assigned class of each pixel.

Performs general arithmetic operations on images.

Com bin es seYeral images into one large image.

Computes histogram and cumulative histogram for an image. The output is
represented as an image containing a single row.

34

Produces a synthetic image of a digital terrain model viewed from an arbitrary
viewing position.

Transposes the rows and columns of any image.

Produces a I-bit image representing an intensity slice of the input image.

Flips an image on either its x or y-axis.

Converts I-bit images to Imagen Impress format and submits the results to
printer spool.

Displays images on the Telidon Yideotext dispby .

rtshade/rtread/rtot•er/rtscroll Controls read/writing of images to the Raster Technology
display.

photoscan

pholoU'rite

Produces digitized images from photographic media on the Optronics film
scanner.

Produces photographic products from images on tLe Optronics film writn.

Table: 4: Synopsis of Image Operators

35

Figure 4: c/aire - 8-Bit Gray-Sea.le Image

Figure 5: claire.Sb - 3-Bit Reduced Intensity Resolution

{ ..
'f

Figure 6: claire. bin - Binary Image

Figure 7: clafre. cv - '7 2G Image

,,
{/

t /
I

' I

I
I

Figure 8: claire. Ox - Zero-Crossing Edge Detection

Edit Goodies Font FontSize

f

~lrl'.£~t · .,

Figure 9: claire1.pntg - Macintosh MacPaint Image

37

