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ABSTRACT 

Computation or formulas or the full first order predicate calculus is per
formed by first converting the multi-variable formulas into a single variable 
presentation of the Theory of Pairs (TP). Pairs are symbolic expressions or LISP 
with only one atom 0. Single variable calculus is suitable for both computations 
and mechanical theorem proving because the problems of multiple variable names 
and clashes between free and bound variables are eliminated. We present a logic 
programming language R+-Maple which computes by solving equations instead of 
unifications and refutations. Pairs permit a single one-variable equation called 
envfronment equation to hold the values or all variables. Traditionally environ
ments are implementation tools used to carry bindings or variables during the 
computation . With the help or environment equations for the single variable or 
our calculus we make the environments visible within the framework of a first 
order theory. This allows a straightforward demonstration of soundness of our 
computations. Moreover, the explicit form of environments allows to experiment 
with different forms of computational rules directly within the logic. The sound
ness of new rules can be thus readily proven formally. This has the advantage 
over the traditional method which buries the rules, as they are closely connected 
with environments, deeply within the code or an interpreter. 

Keywords: Formal Semantics, Logic Programming, Environments, Formal 
Theories. 
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1. Introduction. 

Formulas of predicate logic with multiple variables are easy to read but hard to compute . Values 
have to be correlated to the corresponding variables either by substitutions or by bindings. Substi
tutions are costly to implement , bindings require names of variables and systems of equations. We 
propose to compute within the framework of a Theory or Pairs (TP) !IO,llj which provides for 
the operation of pairing. This will allow the reduction or multiple variables into a single one and 
the collapse a system of equations (bindings) into one equation giving the binding to the only 
variable. 

Bindings, whether multiple or single, are maintained during computation of formulas (procedures) 
in a stack-like data structure called an environment. Environments are implementation tools not 
directly related to predicate logic. As a consequence it is rather hard to demonstrate an interpre
tation strategy correct (sound} . We reformulate TP as a one-variable first-order theory and show 
how to express environments within the theory. As a consequence the computation rules are 
directly visible in the logic and an interpreter is immediately seen sound . In such a framework we 
can easily investigate alternative interpretation strategies. Furthermore, by having to deal with 
only one variable, we can make the process of interpretation more efficient. 

The use of emironments allows the computation of logic programs by the solution of equations 
rather than by unification and proofs by refutations or most logic programming languages. There 
has been recently an interest in the computation or logic programs without unification. To name 
just two examples: Prolog-11 of Colmerauer l2,3J and R-Maple by the present author l9,llJ . 
Prolog-11 solves systems of equations (i.e . environments), whereas R-Maple works with annotated 
(tests and assignments) idenlilies. The annotated identities allow comp1.1tation without 
unification as well as synchronisation Clf parallel processes. We illustrate th e compu tat ion with 
environments with a sequential subset of R-Maple called R+- Maple . Without the sychronisation 
there is no need to distinguish between tests and generators and we regain the symmetry or Pro
log predicates. We show how to map Prolog jsee for instance lj into R+-Maple. Thus everything 
which can be computed in Prolog can be computed with a better expressivness in R+-Maple. This 
is not only because R+-Maple allows ordinary connectives and quantifieres or predicate logic but 
also because we permit the use of different computation rules for positive and negative predicates. 
The safe method or dealing with negations j5,6,7J in Prolog requires a restricted form or negative 
predicates obtained via completion. 

The paper is divided into following sections. Section (2) gives an overview or the Theory or Pairs . 
Section (3) illustrates the reduction to one variable inrormally. Section (4) develops the one
variable Theory or Pairs formally . Section (5) discusses the environments. These two sections 
establish the defini t ions and theorems requ ired in the sections (6) and (7) to prove the soundness 
or the compu t ation in R+-Maple. Section (6) defines computations in R+- Maple. Section (7) giv es 
the rewriting rules used in the computations. 



- 2 -

2. Overview of TP. 
The basic t.h eory into which programs or R+- Maple are interpreted is the Theory or Pairs (TP) 
developed by the au t hor as a formalization or $-expressions of Li p. Pairs are S-expressions with 
only one ato m 0. At t.bis poinl th e reader may ask why we do not adopt the approach of Prolog 
wb . re a program is viewed as a se t of axioms. The only rules of inference are the computational 
rules. Prolog sets up a new formal th eory for each program . The basic question one has to ask 
about a new formal theory is the question of consi6tency. Pure Prolog computes only positive cal
culus or implications so there is a model for each set or axioms. The situation is dramatical ly 
different as soon as one computes with a Prolog implementing a sound form or negation, for 
instance with Mll-Prolog l7]. Now one should - in principle - prove the consistency or each pro
gram before trusting the results of computations. 

The approach we hav e taken in a previous paper 1111 is based on defining a programming 
language as a subs t or a sufficiently rich theory which is eztended with each new predicate . If one 
tak es suitable prec au t ions with th e form or ext,ensions by using only coneervative ezteneions !see 
for instance 8] then the extended theory contains the computational rules as theorems rather than 
as new axioms. With a Prolog lik approach one bas to prove that a program has a model. With 
t.b e xt. nsion approach one introduces be predicates of a new program in a restricted way for 
whi ch lhe con sisten cy is guarnn teed . Tbe computational axioms which ar usually r cursive have 
to b then prov en as theorem from non-r cursive definitions. Tbu s ins t.cad of constructing mod ls 
we are proving th eorems. In this re ped our approach is only slightly superior to the model 
theoretic one. Model are usually non-con structive, provability is s mi-decidable. The real ad\·an
tage of embedding programs into a basic theory is that one can use the full deductive apparatus 
of the th ory to reason about programs. One can use the full quantifier rules and a suitable induc
tion principl . 

Theory of Pairs is described elsewhere II0,11]. In this section we only recapitulate the basic prin
ciples of TP. The domain of the intended interpretation of TP contains the individual O and is 
closed under the op ration of pairing. Two pairs are equal iff the corresponding components are 
equ al. No pair is equal to 0. TP is a first order formal theory (see for instance [111) with the 
primiti e constant symbol O and the binary func 1lion symbol I_, _j of pairing. ln addition t.o the 
id ent ity, there is only one binary predicate symbol, E , of liet membership. 

A term composed only by pairing from 0 is called a literal. For instan ce IIO, 0j, IO 0]] i a 
literal. Literals correspond to the numerals or Peano Arithmetic . We shall a5.5ume the operation 
of pairing to assoc iate lo the right. Thu s [ a , b, c] abbr vi ates I a, I b , c ] j. We shall use bold 
faced le t.ters as syntac tic variable ranging over variables (x, y · · · ) , terms (a, b, · · · ) or for
mul as (A B, · · · ) in th stan d ard fa hion of logic . To maintain clos ties to Prolog we sb3II 
also use the reYerse implication A +- B as an abbreviation for B -+ A . Th e precedf'ace or con
nectives and qu antifiers is giv en in the ascending order as follows: (-+ , - , +-+ ), ( V) ( & ) (-, , 
\/-, 3). We denoLe by a{x :=b}, resp . A{x:=b} the term, resp. formula, obtained rrom the term 

( formula A) by the substit ut ion of the term b Cor all Cree occurrences or the variable x . We use 
the meta-theoretic symbol of syntactic id ntity a = b ( A = B ) to express the fact that t.be 
terms a and b (formulas A and B ) are exactly the same sequences of symbols. 

The axioms of TP - besides the logical axioms for connectives, quantifiers and identity - are the 
foll owing ones: 

I z, y] = I z', y'] -+ z = z' & y = y' 
z '/. 0 
z E I Y, zJ +-+ z = y V z E z 
A{x:=0} & V-xVy (A & A{x:=y} -+ A{x:=I x, y I}) -+ 'fxA. 

(Un) 
(Meml) 
(Mem2) 

(Ind) 

T ile ax iom (Un) asser ts tbP uniqueness of pairing (the reverse implication is a logical equ a lity 
xiom ). The schema or axioms of ind uction (In d) in e·ffec t says th at all individuals a1e composed 

from O by pairing. Th us all in d ividuals are denoted by literals . T he membership axiom d fine 
properties of E . 
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The domain or pairs corresponds to S-expressions or LISP with O being the only atom. Note that 
instead or (a.b) we write [ a, b J where a and b are literals. The principle or induction, together 
with membership axioms guarantees that every non zero individual can be uniquely written in the 
form [a1 , a2, ... an, OJ. This means that every individual or TP is a list. We do not introduce 
the list notation of LJSP because the list (a b c) can be written as [ a, b, c, 0 J in TP. Note also 
that there is no need for the operation cone(a, b) or LISP. One simply writes [a, b] to denote 
exactly the same element. 

The standard interpretation of the predicate symbol E makes 

x E [ ai, 42, ... , a,., 0 J 

true iff x = a, for some i such that 1 $ i$ n. 

One can introduce into TP new predicate and function symbols by conservative extensions. We 
briefly sketch the method here, for a detailed treatment see for instance [11]. Predicates are 
introduced by explicit definitions. For instance the predicate Large(x) satisfied only by lists or at 
least two elements bas the following defining axiom: 

Large(x) - 3uay:Iz x = [ w, Y, z]. 
Functions are introduced by contextual or explicit definitions. Function prefix(x) prefixing a list 
by two zeros can be defined by an explicit definition 

prefix(x) = [O, 0, x]. 
More complicated functions are introduced by contextual definitions. Assume for instance that 
the formula A(x, y, z) contains at most the variables x, JI, and z free. Suppose further that we are 
able to prove the existence and uniqueness conditions 

~ 3zA(x, y, z) 
~ A(x, y, z) & A(x, y, z')-+ z=z'. 

We can now introduce a new binary function symbol f with the help of the defining axiom 

A(:r, y, f(x, y)). 

(I) 
(2) 

(3) 

The explicit definition of predicates guarantees their elimination in any context. Each predicate is 
simply replaced by its right band side. The same is true of explicit definitions of functions . Func
tions introduced by contextual definitions can be always eliminated in a context of formulas. For 
instance B (/(a, b ), c) is equivalent to the formula 

:lw(/(a, b)=w&B(w,c)) 

assuming that the variable w does not occur in the above terms and formulas. In the view or the 
uniqueness condition (2), this is again equivalent to 

3w(A(a, b, w) & B(w, c)). 

As a consequence we can eliminate all occurrences of defined predicates and functions by replac
ing them with equivalent terms or formulas. We cannot possibly prove anything new with intro
duced symbols which we could not have proved without them. In particular we cannot prove a 
contradictory formula if there was no contradiction before. Thus if we make sure that TP is 
extended only by the above definitions we improve the readability or TP formulas without 
compromising the consistency of TP. 

Let us introduce two unary projection functions _.b, _.t taking the head and tail of an element 
respectively by the following contextual defining axioms 

(x = 0 & x.h = 0) V 311 x = [x.h, 11J 
(z = 0 & x.t = 0) V :ly z = [ II, x.t J. 

We leave it to the reader to prove the existence and uniqueness conditions. As the consequence of 
the defining axioms we can easily prove the expected properties (4) through (7) 

~ [x, yj.h = :r (4) 
~ Ix, v].t = 11 (5) 
~ 0 .h = 0 (6) 
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~ O.t = 0. (7) 

Natural numbers can be introduced into TP as lists containing only 0 as elements. We can abbre
viate [0, 0] as 1, [0, I] a.s 2, etc. The predicate of being a natural number has the explicit 
definition 

Nat(z) - Vy(y Ex - y = 0). 

3. Reduction of V arlablea. 
Before we start the discussion or environments we informally illustrate how to reduce formulas or 
TP into equivalent one-variable formulas. The reduction of variables is made possible by the 
pairing fun ction used together with projection fanction s _.h and _.t. A5 a result the variable-free 
eff ct of combinatory logic is achieved . To keep the formulas readable we shalJ use multiple vari
ables but the computations will be done on formulas containing only one variable w. A two-place 
predicate 

P(x,y)- ·· · x·· · y··· 

can be viewed as an abbreYiation for the one-place predicate 

P( w) - w :/= 0 & ( · · · u•.h · · · w.t · · · ) 

or equivalently as 

P ( w) - 3 x3 !/ ( w = [ x, y] & ( · · · x · · · y · · · ) ) . 

Now that all predicates. are one place only , we can write P(a, b ), or R(a, b, c ), etc. as abbrev ia
Llons for P(la b]) and ll([a, b, c]) respectively . The two-place predicate Len(x, 11) satisfied 
when y is the length of tb e list x is defin ed in Prolog with the help or clauses 

Len(0, 0) 
Len([x, y], [O, y']) +- Len(y, y') 

R+-Maple requires all predicate definitions to be in one or or more of the following forms. 

~ P(w)+-A 
~ P(w)-+ B 
~ P(w) - C . 

Her A , B . and C are formul as of a suitable extension or TP with only one variable w. The predi
cate P will ban either a g ncral definition given by the third formula or one or two sp ecial 
definition s given by the firsl two formulas . The first formula is used to compute P(a) in positive 
con texts (in t hl' scope of even auml>er of negations) , the second formula computes predicate calls 
in n egali tlf' ont ex~s. T he general formula computes in any contexts. Notice that we require the 
clauses to be t heorems of TP rat,h r than axioms. Io the absence of negations, all Prolog compu
tations occur in the positive context. 

repatatory to the conversion of the predicate Len into an R+- Maple form , we reduce the terms 
in heads of · lau, es to one variable by introducing identities. We temporarily retain multiple vari
abl in the idc-n tities . 

Len(w) +- w = I0, 0] 
Len(w)- w= [[x, y], [o, y']] & Len(y, y'). 

The reader can convince himself that these two forms of Len are equivalent in TP. The last two 
clauses are again equivalent to the single formula 

Len(w) +- w = [0, 0] V w = II z, y], I0, u'I I & Len(y, y'). (I) 

Tbe formula (1) can be, after the elimination of variables x, 11, and 11', used only in positive con
texts . 

The next step consists of the elimination or variables other than w from the bodies. The idea of 
elimination is illustrat ed first with a few examples. The ident ity w = 0 is satisfied only by w hav
ing the value 0. The identity w = [ x, y] is satisfied by w being any pair (i.e. a non-zero valu e). 
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This fact can be expressed by an identity formulated solely in terms of the variable w a.s 
w = [ w.h, w.t ]. The theorem 

~ u:= [w.h, w.t]- :li!y w= [z, 11I 
makes clear that only pairs as values of w satisfy the left-band side. The implication (-+) is obvi
ous. To show ( +-) we observe that from w = Ix, 11I we have w.b = x and w.t = y, so we obtain 
w = [ w.h, w.t] by the properties of identity. 

Using the projections of the variable w we can eliminate all other variables from identities. This 
will be demonstrated in section (6) formally. We can even express dependencies among parts of w. 
The identity w = [ x, x J is satisfied only by such pairs as values for w that have the bead and tail 
parts identical. The identity w = [ 0, :r] is satisfied by any pair with the head part equal to 0. The 
elimination of the variable x yields the equivalent identities w = [w.t, w.tJ and w = [0, w.t]. 
These identities can be depicted as trees with pointers as in the figure 1. We can see that the 
right occurrence of the free Yariable :z: in the identities w = Ix, z] and w = I 0, zJ corresponding 
to the projection w.t is a self-pointer, whereas the left occurrence of z in the first identity 
corresponds to a pointer. As we shall shortly see, self-pointers can assume any values, but the 
other pointers have their values determined by the structure they point to. We a.re now in the 
position to eliminate the variables z and 11 Crom the predicate Len. 

Len(u:) +- w = [o, o] V w =II w.h.h, w.h.t], [0, w.t.t]] & Len(w.h.t, w.t.t ). (2) 

The reader can easily convince himself that the universal closures of formulas (1) and (2) are 
equivalent in TP. To allow the computation of Len in both positive and negative contexts the 
predicate can be introduced into TP to satisfy (2) with a biconditional ( ..,.. ) instead of implica
tion . 

Formulas like (2) are single variable formulas. Such, essentially, variable-free formulas will haYe 
the identities represented during the computation by pointers. The figure 2 shows the graph 
representation of both identities of Len, where the self-pointers are shown as asterisks. Just as in 
combinatol')' logic . variable-free formulas are hard to read and comprehend . A practical program
ming language will have to introduce abbreviations in order to simplify the presentation. We can 
use a slight generalisation or the connective case of R-Maple Ill]. The formula (2) (with the 
biconditional) becomes 

~ Len(w)..,.. case wot 
[0, 0] : 
[I*, xi, [O, y]]: Len(z, y). 

Bound (local) variables x and y are used as abbreviations for w.h .t and w.t .t respectively . Note 
that the self-pointer w.h .h which is not needed is abbreviated by an asterisk. 

Variables not occurring in heads of Horn-clauses are called by Prolog programmers local Yariables . 
Consider the Prolog clause defining the predicate Long satisfied only by lists having more than six 
elements : 

Long(w) +- Len(w, z) & z>6 . (3) 

The variable z is a local variable. Logically speaking, local variables correspond to existential 
quantifiers. The existential quantifier is not necessary in clauses like (3) since it can be always 
added by :I-introduction . The same predicate introduced into TP by an explicit definition with a 
biconditional requires the quantifier: 

~ Long(w) +-+ :Ix(Len(x, w) & z>6). (4) 

This is because we cannot haYe an implicit existential quantifier for the (-+) part or the 
equivalence which can be used to compute within negations. 

The reader will notice that in the head of the formula (4) we have the predicate Long(w) in the 
standard one-variable form, yet we cannot use the trick of eliminating the variable z by a projec
tion of w. The reduction to one variable in this case will be made possible by an introduction of a 
one-variablt t:ristn1tial quantifier 1A in the next section. The formula A will contain only the 
variable w. The quantifier 3: will bind the projection w.h leaving the projection w.t free in :lA. 
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This corresponds to the standard implementation or environments with stacks. Roughly speaking , 
in order to compute the formula JA( w.h, w.t) in the environment a(w) giving the binding for th 
only var iable w, we star t a computation of the formula A(w.h, w.t) in the eztended environment 
I w. b , a ( w.t) I- A prog ram mer would say that a new stack frame for an, as or yet unassigned, v ari
able w.h is created on top of the stack, pushing the previous environment a(w) further down the 
stack. 

Before we present the one-variable form or TP in the next section we show how to transform Pro
log terms containing constants and function symbols into TP. Functions or Prolog are never com
puted. they are used only to generate values freely. This amounts to functions being just con
structors of da ta structures. If Prolog is used with negation then the completion procedure IXJ 
requires t hat all constants and term generated from constants by function symbols denote 
different obje ts. This can be guaranteed in TP ill1 a straight-forward way. For instance, the predi
cate In ( e, t) looking for a value e in the binary tree t has the following definition in Prolog 

ln(:r, leaf(x)) 
In(x, node(y, z)) +- Jn(x, y) 
ln(x, node(y, z)) +- ln(x, z). 

The £unctions leaf and node can be introduced into TP by the explicit definitions 

1-- / a/(:r) = !O, xJ 
1-- node(x, y) =II, x, yJ. 

This definition guarantees that 

1-- le af(x} :/- node(y, z} 
1-- node(x, y) = node(x', y') - x = x' & y = y'. 

The predicate In can be introduced to TP to satisfy 

1-- In ( IL') - case w of 
Ix, /ea/(x)] : 
Ix, node(y, z)]: Jn(x, y) V /n(z, z). 

4. One-Variable Terms and Formulas. 

We now define a class of terms and formulas with only one variable w. These classes will be called 
w--terms and w--formulas respectively. R+-Maple predicate definitions and programs are con
structed from w-formulas . Environments, defined in the next section, are subsets of w-terms . We 
do not intend to compute implications, equivalences and universal quantifiers explicitly . Consf'
quently, we restrict w-formulas only to existential quantifiers, negations, disjuncti ons and conjunc• 
tions . Obviously, universal quantifiers and implications can be defined with the help or the 
remaining connectives . We start with a few auxiliary d fini t ions . 

A projection a is a possibly empty sequence or symbols .h and .t. We shall use Greek letters as 
meta-variables ranging over projections. The empty (unit) projection will be denoted by f. Pro
jections can be onc atenated in t.he standard way . Thus, for instance, rn.h,8 denotes the proj c
t ion obtained by appending .b after the (possibly empty) projection a and then appending tl1P 

project.ion /3 at the end . 

Ir a is a projection then wa is a pointer. We have wt = w. W-terms are defined as the least class 
satisfying the r ollowing clauses. 

i. The constant O and all pointers are w-terms. 

ii Ir a and b are w-terms then [ a, b] is a w-term. 

W-formulas form the least class satisfying the following clause. 

i. Ir a and bare w-terms then a = bis a (atomic) w-formula. 

ii. Ir a is a w-term an d P is a one-place predicate symbol introduced into TP, then P (a) is a 
(atomic} w-formula . 
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111. If A is a w-formula, so are 1A and -, A. 

1v . If A and B are w-formulas, so are (A & B) and (A I/ B ). 
An occurrence of a subformula of the w-rormula A is said to occur in a positive (negative) context 
if it occurs within the scope of even, including 0, (odd) number or negation signs. 

We do not intend to give special semantics to w-terms and w-formulas as we want them to be 
subsets of terms and formulas of an extension or TP. R+-1'-taple programs will then inherit the 
meaning from the standard interpretation or TP. W-terms are already a subset of terms or TP. 
W-rormula.s can contain the one-variable existential quantifiers which must introduced into TP ~ 
variable binding operators. The schema of defining axioms introducing the operator 3 is as fol
lows: 

3 ( w )A - :Ix A{ w:=I x, w]}. (1) 

where A is any formula of TP and x ';¢ w is the first variable in the standard sequence not occur
ring in A. We shall abbreviate 3 ( w )A just to :IA. 
The variables free in 3 ( w )A are wand all other variables rree in A . At the same time the variable 
w is bound in A. In order to guarantee that the schema of axioms (1) is a conservative extension 
of TP we have to define the meta-theoretic operation of substitution for the free variables of 
3 ( w )A in such a way that the corresponding substitution in the right-hand-side or (1) leads to an 
equivalent formula. For that it is enough to set 

(3( w)A ){ w:=a} = 3 (a )A 
(3(w)A){x:=a} = 3(w)A where x ';¢ w is first variable not in A 
(3(w)A){x:=a} = 3(w)A{x:=a} otherwise. 

The last identity is subject to the standard restriction or not binding free variables or a. Ordi
nary substitution leads outside of the class of w-terms and w-formulas as can be seen by the fol
lowing examples. 

w.h{ w:=0} = 0.h 
(3( w )A){ u·:=O} = 3 (0 )A 

The expressions on the right-hand-side are not w-expressions although all left-hand-side expres
sions are . Since we intend to perform computations or w-formulas by doing proofs containing only 
w-formulas we have to define the substitution in w-expressions to be closed in w-expressions. 
Although we do not intend to reason directly within a calculus of w-forrnulas a computer-assisted 
theorem prover can be simplified by reasoning entirely within the w-calculus. The human inter
face to the user will then either introduce standard variables by means of abbreviations or per
form the two-way translations between the standard TP and w-calculus which we can call w-TP. 

We have decided here to embed w-calculus within TP. We are preparing a detailed paper on w
TP discussing its semantics and proof-theory as well as abbreviations for multiple variables. To 
give the reader the 0avor of quantifier rules of w-TP we prove them here within TP. 

The w-expression obtained by the substitution or the w-term b for the variable win the w-term • 
or w-formula A is denoted by a (b) or A (b ). We adopt the standard predicate call conventions 
and, for instance, write A (I a, b j) as A (a, b ). The substitution is defined by induction on the 
construction of w-expressions. 

O(b) = 0 
ja, b)(c) = [a(c), b(c)j 
wa(wM = wf3a 
wa(0) = 0 
w(a, b) = I a , b] 
w.ha(a, b) = wa (a) 
w.ta (a, b) = wa (b) 
(a = b )(c) = a (c) = b (c) 
P(a )(b) = P(a (b)) 
(-, A)(a) =.., A(a) 



(A & B )(a)= A(a) & B(a) 
(AV B )(a) = A (a) VB (a) 
(lA)(a) = lA(w.h, a(w.t)) . 

We have the following theorem. 
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Substitution Theorem (ST): If a, b, and care w-terms and A is aw-formula then 

a(b)(c)=a(b(c)) (2) 
A(b)(c)=A(b(c)) (3) 
I- a(b) = a{w:=b} (4) 
~-A(b)-A{w:=b} (5) 

The theorem is proven by a straight-forward induction on the construction of w-terms and formu
las, although there are quite a few cases to be considered. Just for the illustration we show one 
case or (3) and one case of (5). A case or (3): 

(lA)(b)(c) = (:!A(w.h, b(w.t))(c) = :lA(w.b, b(w.t))(w.b, c(w.t)) = 
:IA(! w.h, b(w.t)J(w.h, c(w.t))) = lA(w.b, b(w.t)(w.b, c(w.t))) = 
:lA(w.h, b(w.t(w.h, c(w.t)))) = lA(w.b, b(c(w.t))) = 
:lA(w.h, b(c)(w.t)) = (:!A)(b(c)). 

We have arranged the chain of symbolic identities ( = ) in such a way that the first formula on a 
new line has been obtained from the last formula on the previous line by the use of (2) or by the 
use of induction hypothesis. 

The interesting case of (5) is the following one. 

(:IA )(b) = 1A ( w.h, b ( w.t)) +-+ 

:IA{w:=[ w.h, b{w:=w.t} I} - :ix A{w: = I w.h, b{w:=w.t} J}{w:=[x, wl} +-+ 

:lx A{w:=[x, bl}+-+ :l(b)A = (:lA){u~=b) 

As a.n example consider the formula 

A= z= yV:lz(:z:E z&:ly( z E y& x= y)) 

where z E z is an abbreviation for E ( z, z ). The w-equivalent of A is the w-formula B 

B = w.h E w.t V 3(w.t.h E w.h & :l(w.t.h E w.h & w.t.t.h = w.h)). 

Note that the same free variable w.h becomes w.t.h within the scope of one existent.ial quantifier 
and w.t.t.h within two quantifiers. The variable w.h occurring within the first quantifier 
corresponds to the bound variable z of A . The same variable becomes w.t.h within two 
quantifiers. We can say that existential quantifiers push all free variables down the list of vari
ables. 

The substitution A{.:z::=y} can be performed only after the bound variable y has been renamed 

A { x: = y} = y = y V 3 z ( y E z & 3 v ( z E v & y = v) ) . 

There is no problem with the corresponding substitution in B 

B ( w.t, w.t) = w.t E w.t V 3 ( w.t.t E w.h & 3 ( w.t .h E w.h & w.t .t .t = w.h) ). 

The counterpart of Substitution axioms of predicate logic is the following schema of theorems. 

Theorem: Ir a is a w-term and A a w-Cormula then 

I- A(a, w) - :IA. 

Proof: We start with an instance of the substitution axiom of TP 

I- A{ w:=[ x, wJ}{x:=a} -+ :ix A{ w:=lx, wl} . 

Simplifying the substitution and employing the definition of 3 yields 

I- A{ w:=I a, w]} -+ 3A. 

The theorem follows by an application of (5). 
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The counterpart or 3-introduction or TP is given by the following derived rule of inference. 

Variable-free ]-Introduction: Ir A, and B are w-formulas and ~ A( w.h, w.t)-+ B ( w.t) 
then also ~ :IA -+ B. 

Proof: Under the assumption w = [ x, 111 we have w.t = 11 and I w.b, w.t I = w = Ix, yJ. Thus 
also 

B(w.t) ..... B{w:=w.t} ..... B{w:=y} 

and 

A(w.h, w.t) ..... A{w:=I w.h, w.tl} ..... A{w:=jz, 111}. 

Using the assumption of the theorem we obtain 

~ w = jx, 111-+ (A(w.h, w.t)-+ B(w.t)). 

From this we have 

~ w = Ix, 111 -+ (A{ w:=I x, yl} -+ B{ w:=11} ). 
We observe that the variable w does not occur free in the consequent. We substitute w:=I x, y I 
and use modus ponens to obtain ]w-introduction and modus-ponens to obtain 

~ A{w:=I x, y]}-+ B{w:=y}. 

We observe again that the variable x does not occur in the consequent. We use :b,-introduction 
and replace y by w. 

~ 3x A{ u~=I x, wl}-+ B 
The conclusion of the theorem follows from the definition or 3 by a suitable renaming of x. 

The reader will note that w-TP has a great potential for the proof-theory ~ well as for the 
automatic theorem proving as there are no clashes of free and bound variables and no eigen
variable restrictions on 3-introductions. 

6. Environments and Environment Equatlona. 

Computations in R-Maple were defined with the help of substitutions. To compute the predicate 
call P(a) we used its definition P(x) ..... A and computed the formula A{r.=a} obtained from 
the body of predicate by a substitution . As every programmer knows, substitutions are fine in 
logic, but they are expensive to implement on a computer. Since the Algol-60 times one has com
puted a pure program, i.e. never changing formula, A in the enviro1;1ment a binding the variable 
x. This environment is carried around the formula A during the computation. It is modified as 
new bindings for variables are computed. Environments are extended upon entrance to the scope 
of an existential quantifier or when executing a predicate call. Environment contraction occurs 
when existential variable bas been found or the predicate call has been completed. 

Environments of R+-Maple form a certain subset of w-terms. Ir a is an environment then thew
formula w = a is called an environment equation. This binda the variable w to the w-term a. 
Environment equation w = a specifies a class of pairs as values for w such that the equation 
w = a is satisfied. Before we can specify environments we need some auxiliary definitions. 

A project.ion a is an ancestor of a projection /J iff there is a projection /J' =I= E such that /J = a/J'. 
Two projections are in the an cestor relation iff one is an ancestor or the other. A projection fJ is to 
the right of a projection a iff there are projections 'l, /J' and a' euch that a= 1.ha' and /3 = 'Y,tf:)'. 

A term a is called a eemi-w-term iff it is comp06ed from 0, pointers, and ordinary variables by 
pairing. Semi-w-terms are like w-terms but they may also contain variables other than w but no 
projections of these variables. 

Let us define a-parts of semi-w-terms. The a-part or the semi-w-term a, if it exists, will be 
denoted by a/ a. Parts are defined by the induction on the construction of projections: 

i. a/£ = a, 
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ii. if a/c, = fb, c] then a/r,.h =band a/a.t = c, 

iii. there are no parts of the term a other then those defined by i. and ii. 

Note Iha! if a/a is a part of a , all ancest.ors /3 or a: are also parts or a, i.e. a//3 is defined. By the 
induclion on the projections one can easily prove the following theorem. 

Part Theorem: If for a semi-w-tcrm a the part a/ a exists then 

~ w =a-+ wa = a/a . 

Informally, the Part theorem says that for all values w satisfying the environment equation 
w = a the pointer wa select5 the part a/a. 

The poin te r U.'(l is a et/- poinl r: r in th e semi-w-term a ilf a/a = W<l. The pointer w{:J o c urring in 
t he w-tnm a at th e position a i.e . a/a = w/3 points to the right ifJ /3 is to the right. of a. A 
pointer 111<.t is odm,'.ssible in t,h c w-term a ill there is a number n such th at wet is admiss ible in a 
wi th tt jumps. T he admissibility with jumps is defined as follows . 

i. If a: is a part or a, i.e. a/ a exists then wa is admissible in a with O jumps. 

11. If a/a: = w/3 and the pointer wfJ/3' such that /3' =/:- f is admissible in a with n jumps then the 
pointer wu./3' is admissible in a with n+l jumps. 

A pointer not admissible in aw-term is a dangling pointer. Figure 3 shows the graph rrpresenta
tion of the r ollowing w-terms 

a) ! I w.h.t, tu.h.t.h, w.t], 0, w.t.t I, 
b) I w, 0], 

c) 11 I w.h, w.h.h .h I, w.t.h], w.t]. 

The pointer w.h .t in th e t.erm a) points to the right, w.h.t.h is a self-pointer, and w.h.h.t .h is an 
adm iss ible pointer with two jumps selecting 0. The pointer win the head orb) and the pointer 
u.h in the part .h .h .h of c) point to their ancestors. Terms b) and c) thu contain loop s. Pointers 
w.b .h .h .t and w.t .b both point to the same non-existent part of the term c) . So they are both 
dangling . 

Thew-term ! w, OJ is the empty environment. Aw-term a is a prop er environment ifJ each pointer 
occurring in a is admissible and it is either a &'If-pointer or it points to the right. An environ
ment is either empty or proper. The w-term a) in the fi.gure 3 is a proper environment, th l.erm 
b) is empty and the term c) is not an environment be a.use it contains loops, pointers to the lert, 
and a lso dangling pointens. 

T he env ironment equation for the empty environment w = I w, OJ will be abbreviated as fall. The 
quation fall ca n be never satisfied as we have 

I- -, fall. (1) 

"be equation fall can be understood as fals ehood. The proper environment w, containing only a. 
selr-pointer, is the most inclusive environment . Its equation w = w is satisfied by any value w , 
i.e. 

I- w= w 

Thus w = w can be understood as truth. Proper environments can be always satisfied , i.e. 

~ 3w w= a. 

This is an immediate consequence of the Satisfiability theorem (5) proven below . 

.lthoug it is tru that environments with cyclical pointer11 are empty, environment equations for 
w-t rms with left-poin ters can still be satisfi ed. The w-term ! w.h, w.b J is such an example. It is 
cquival t t,0 the environment. I w.t, w.t J. The reason for excluding pointe rs to the left will 
become ob, 1ious one t he compuLation rules for environment contraction are given in sec tion (7) . 
A w-term I , bl wit li a poin ter in b leading to a ould be t hen contracted to b by popping the 

urrent fram e a. leaving dangling pointer . T his ph nomenon is well-known rrom the i.mplemf'u
t ation r Algol-likP languages with poiot.e . DM gling point er& are not dangerou just because 
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they seemingly lead to nowhere. The pointer w.h is still defined, eventhough w = 0. Both equa
tions w = w.h and w = I w.t.t, w.t] can be still satisfied by w = 0 and, say, w = I 0, 0] respec
tively . Dangling pointers are excluded because they destroy the validity of the Environment 
theorem on which the computation of R+-Maple is based. The Environment theorem is concerned 
with the solution of a system of equations. 

Environment Theorem: Ir a is an environment and b, c are w-terms such that all 
pointers occurring in them are admissible in a provided a is proper then we can effectively 
find an environment d such that 

~ w = a & b = c - w = d. 

Moreover, if d is a proper environment then all pointers admissible in a are admissible in d. 

The Environment theorem says that a proper solution d is a refinement of a. The proof of the 
Environment theorem includes a presentation of an algorithm tor finding the environment d 
together with the proof of termination and of correctness. The proof is quite lengthy and techni
cal. We shall just present the algorithm below and refer the interested reader to the paper [12] 
under preparation. 

Had we allowed w-terms with dangling pointers as environments, we would not be able to find a 
single w-term d solving the system 

~ w = [ w.t.h, w.t] & w = [ w.t.t, w.t] - w = d. 

Any solution with a pair as a tail part will have to be or the form d = [ w.t.t, w.t.t, w.t.t ]. This 
w-term excludes the value [ 0, 0] satisfying the left-hand-side. The only way to include I 0, 0] in a 
single w-term is to have a self-pointer d = I a, w.t I with a being either O or a self-pointer. This 
would include the value [ 0, 0, 0, 0] which fails the left-hand-side. 

Before we can give the Environment solution algorithm we have to define the notion or replace
ment, of parts of semi-w-terms. Let us denote by a<a:=b> the term obtained by the replace
ment of the part a of the semi-w-term a by the term b. The replacement is defined as follows. 

i. a<c=b> = b, 
11. Ir a/ a is a pair then 

a<a.h:=b> = a<a:=[b, a/a.t]> 
a<a.t:=b> = a<a:=[b/o.h, b]> 

We have the following theorem. 

Replacement Theorem: For any semi-w-term a with an a part 

~ a/a= b-+ a= a<a:=b>. 

The Replacement theorem is proven by the induction on a. 

Environment Solution Algorithm: To solve the system 

~ w=a&b=c-w=d 

consider the following cases. 

(2) 

i. The environment a is empty, or one of the terms b and c is O and the other a pair, or the 
terms b and c are pointers in the ancestor relation. Set d = I w, 0 ]. 

ii. The equation b = c is or the form O = 0 or wa...,. wa. Set d = a. 

iii. The equation b = c is of the form lb1, b 2 J = lcv c2 j. Solve the system or equations 

~ w = a & b 2 = e:z - w = d' 
~ W = d' & b1 = C1 - W = d. 

iv. The equation b = c is or the form wa = c. Ir c = w/3 we can assume after possibly revers
ing the equation that /3 is to the right of a. There are three subcases all yielding an auxiliary 
environment d '. 



- 12 -

a) The pointer wa contains a jump or a/a points to the right, i.e. a= a 1a 2 and 
a/ a 1 = W')' for some projections ai, a 2, , =/=- a. Solve the system 

~- w = a & w10 2 = c +-+ w = d'. 

b) The pointer wa is a self-pointer, i.e. a/a= wa. Ir c is a pair [ci, c2 ] then solve the 
system 

~ w = a<a:=[ wa.h, wa .tJ> & I wa.h, wa.tJ = [ci, c2 ] +-+ w = d'. 

Otherwise, if c = 0 set d' = a<a:=0> else c is a pointer and set d' = a. 

c) a/ a must be O or a pair . Solve 

~ w = a & a/a= c +-+ w = d'. 

Ir d' is a proper environment and c = w/3 set d = d'<a:=w/3>. Set d = d' otherwise. 

Consider the following system: 

~ w = [ [ [O, w.h.h.t], 0, w.t], w.t] & w.h.h = w.t +-+ w = d. 

The solution obtained by the environment algorithm is 

d = [[w.t, 0, w.t], 0, w.t .tj. 

The two environments are shown in the figure 4. 

We now prove some technical theorems concerned with environments. The theorems are neces
sary for the proofs of computation rules of R+-Maple. Readers interested only in the computation 
of R+- Maple and not in its soundness can skip the rest of the section. 

Copy Theorem: Ir a is a proper environment such that a/ a = w/3, a =/=- /3 and a/ /3 exists 
then b = a< n:=a//3> is a proper environment and 

~ w = b +-+ w = a . (3) 

Proof: We can show by induction on the number of jumps that every pointer admissible in a is 
admissible in b ( with one less jump if the pointer jumps through a). All pointers occurring in b 
occur in a so they are admissible in a and also in b. AJI pointers in the part b/a = a/fl point to 
the right, the other pointers in b occur in a so they ar either self-pointers or point to th e right. 
Thus b is a proper environment. 

Now we prove the formula (3). (-+) Assume w = b. By the Part theorem we have 

a/a= w/3 = b/f3 = a//3. 
The Replacement theorem applies and we have a= band thus also w = a. (-) Assume w = a. 
We have 

a/a = w/3 = a/ {3. 

So again by the Replacement theorem we have a = b and w = b. 

Self-pointer Theorem: If x is a variable not occurring in the serni-w-terrn a, wa is a setr
pointer, i.e. a/a= wa, and if b is the serni-w-term obtained from a by replacing all 
pointers wa in a by x then 

~ :Ix w = b +-+ w = a. (4) 

Proof: (-+) Assume w = b. By the Part theorem we have wa = x . By the Equality th orem of 
the predicate calculus w = a. (-) Because a= b{x:=wa} this implication is a Substitution 
axiom of predicate calculus. 

Satlaftabllity Theorem: For a proper environment a we can find a semi-w-term b with no 
pointers and containing variables Zi, .f-:u · • ·, Zn (n2!:0) such that 

~ :lz1:lz.i · · · :lz" w = b - w = a. (5) 

Note that we have 
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~- w = b-+ w = a. 

Ir we substitute b for w we obtain 

~ b = b{w:=b}-+ b = a{w:=b}. 

And since b does not contain the variable w we have 

~ b = a{w:=b} 
by modus ponens . Thus the term b solves the environment equation w = a. The(-) part of the 
theorem (5) says that any solution of the equation will have to be obtained by a substitution for 
the variables in b. In this sense the term b is the most general term solving the equation w = a. 

The proof of the Satisfiability theorem is by induction on the number or occurrences or pointers in 
a which do not occur also as self-pointers. Ir all pointers in a directly point to self-pointers then 
we obtain the term b by rP,peatedly applying the Self-pointer theorem, replacing the self-pointers 
by the variables x1, x2 , etc . If there is a pointer in a which doe.s not occur also as a selr-pointer 
then we select the rightmost occurrence a/ a = w/3. The part a/ /J must exist, and it cannot con
tain pointers which are not also self-pointers, so a'= a< o:= a/ /3> is by the Copy th ore.m a 
proper environment such that 

~ w=a+-+ w=a' (6) 

and a' contains one less occurrence or a pointer which is not also a self-pointer. Induction 
hypothesis applies and because of (6) the term b also satisfies (5). 

The most general solution of the environment equation 

w = 11 w.t, 0, w.t], 0, w.t .t J 

for the second environment from the figure 4 is 

w = 111 o, xiJ, o, o, .xi], o, .xi]. 
It is obtained by a two-fold application of the Copy theorem to remove the two pointers to the 
right in c and by a single use of the Self-pointer theorem to replace the only self-pointer or c by 
.:Z:1, 

AdmlBBiblllty Lemma: If b is a w-term and a is a proper environment then every pointer 
wa is admissible in a with n jumps iff w.t.a is admissible in the w-term I b, a ( w.t)] with n 
jumps iff w.ha is admissible in I a ( w.h ), b J with n jumps. 

The lemma has a straightforward, although tedious proof, by the induction on the number or 
jumps. 

Extension Lemma: If a is a proper environment and b a w-term with all its pointers 
admissible in a then both terms c = lw.h, a(w.t)J and d = lb(w.t), a(w.t)I are proper 
environments. Ir bis a proper environment then the term e = lb(w.h), a(w.t)J is a proper 
environment. 

Proof: By the admissibility lemma all pointers occurring in the tails of c, d, and e are admissible. 
Moreover, all or them have the form w.t/3. Ir c/ .ta = w.t/3 then a/a = w/3. Con sequently, either 
a = /3 or /3 is to the right of a. Thus also all pointers in the tail or c are either selr-pointers or 
they point to the right. The same holds or tails of d, and e. Similar argument can be used with 
the head of e. Thus e is a proper environment if b is. The only pointer in the bead of c is a self
pointer which is admissible with O jumps. Thus c is a proper environment. All pointers in the 
bead or d have the form d/ .her = w.t/3 so they point to the right. We then also have b/ o = w/3 
with w/3 admissible in a so by the Admissibility lemma, w.t/3 is admissible in d. Thus also d is a 
proper environment. 

Contraction Lemma: Ir c = [ b, a'J is a proper environment then there is a proper 
environment a such that a'= a(w.t) and 

~ w = • -+ :b z = b{ w:=I z, wl}. (7) 
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Proof: Every pointer occurring in a' must be of the form w.ta so the w-term a is obtained from 
a' by replacing all pointers w.t ,1 by wa. By the Admissibility lemma all pointers occurring in a 
are admissible. By a similar rea:mning as in the proof of the Extension lemma we show that they 
either point to the right or are self-pointers. Thus a is a proper environment. 

The formula (7) is proven a.5 the Satisfiability theorem was. We first eliminate from I b, a ( w.t)] 
all pointers of the form w.ho- which do not occur also as setr-p inters by a repeated application of 
Copy theorem. We obtain a new term b' such that 

1-- w= lb', a(w.t)J - w= lb, a(w.t)J 
holds. Next we apply the Self-pointer theorem repeatedly to remove all self-pointers of the form 
w.ha from the term b'. We obtain a new semi-w-term b" containing variables Zi, · · · , xfl with all 
pointers only or the form w.ta. Thus b" = d{ ur.= w.t} for a certain semi-w-term d. We have 
from the Self-pointer theorem 

1-- w= ld{w:=w.t}, a(w.t)J-+ w= lb, a(w.t)J. 
This can be weakenned to 

1-- w= ld{w:=w.t}, a(w.t)]-+ w.b = b. 

Let us substitute w:= ld, w] in the last formula. Arter the simplifications Id, wJ.b = d and 
Id , w].t = wwe obtain 

1-- [d, w] = [d, a]-+ d = b{w:=ld, wl}. 

The theorem (7) follows after the simplification of the antecedent and an application of :l.r,. 
introduction right. 

&. Computation of Formulas of TP. 

Before a formula of TP can be computed in R+-Maple it has to be converted into a suitable w
formula . ln this section we show how to convert formulas and predicate definitions or TP into the 
format of R+- Maple. The rewriting rules presented in the next section assume tha the computed 
w-formul as have a cert ain formaL. We also require predicate definitions to be in a special form . 
The formulas or R-Maple are w-formulas with all identities of the form of environment equations 
w = a for an environment a. We present below an algorithm for the conversion of TP formulos 
into w-formulas which replaces all identities by equivalent environment equations. This will be 
done by a repeated use of the Environm ent theorem (section 5). 

ln section (3) we said that we require the predicates of R+- M.aple to be in the form 1--- P( w) ++ A 
or in an implicational form. These forms are not directly suitable for computations in R+- Maple. 
The reader is inv ited to inspect. the computation rule ror predicate calls (7 .5) given in the ne:-<t 
sect.ion and note that we would be forced to p rform the substitution A( w.h ). There are two 
objections to the substitution A(w.h ). One or the reasons ror the introduction of environments is 
to eliminate substitu ·ions which are costly to implement. Here the substitution would occur in the 
pure code for the body or P. The second objection Ill that the substitution A ( w.b) would destroy 
th e nviron ment equ a ioo as the only form of identiti s allowed in the formulas of R+- Maple. 
These d iffi ul t ies are vercome by requiring that the predica te definitions are of the form 

~- w 'F o & P( w.h ) ++ A 
f- w 'F O & P( w.b) - A 
1-- w 'F O & P( w.b) -+ A 

where the formula A is a formula of R+-Maple with an addi ional restriction that the pointer w.t 
never occurs in arguments to predicate calls and occurs only as a self-pointer in environment 
equations. This restriction is necessary to guarantee that the body or a predicate accesses only its 
argumen ts. The convers ion algor it hm given below takes care or this. The predicate Len presented 
in section (3) will have the following form : 

1-- w :/ 0 & Len(wb) ++ w = IIO, OJ, w.tJ V 
w = 11 I w.h .h.b, w.h.h.t J, I 0, w.b.t.t JI, w.t] & Len ( w.h.h.t, w.b .t.t ). 
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[[ *, xl, [O, vii: Len(x, v). 

We now describe the conversion or TP formulas into the formulas of R+-Map)e. Let us assume 
that we bave eliminated all implications, equivalences, universal quantifiers, one-variable existen
tial quantifiers as well as all introduced function symbols (including .h and .t) from the formula A 
we want to convert into a w-formula. We assume that the formula A does not contain the vari
able w. We first construct a semi-w-term a = [ a', & J where • is a variable not occurring in A. If 
A is closed we :set a'= z otherwise we form the term a' from the complete list x 1,x2, · · · , Xn 

(,1>0) o( all free variables of A. The term a' is constructed in such a way that it contains all 
variables x, exactly once and nothing else. The shape of a' is not important. For a single variable 
x the term a' will have to be z. For three variables :i:, 1/, z we can group them either I z, 1/, z j or 
I I z, vl, z I, or even I z, x, vi. The important thing is that every variable x 1 has a uniquely deter
mined location a, in a, i.e . a/o:, = x,. The conversion algorithm replaces first all variables x 1 by 
their corresponding poin t.ers wo: ,. Then it replaces existential quantifiers by one-variable 
quantifiers and finally it brings all identities into the form of environment equations. 

We define a sequence or formulas A 1, 0$ i$ m such that ~=A, A 111 is a formula of R+-Maple 
and for all i the following holds: 

~ w = a & A+-+ w = a & A 1• (1) 

Note that (1) holds for i = 0. For i f5uch that 0$i<n we set 

A,+1 = A,{x,:=w.o:,}. 

Since ~ w =a-+ w.o:, = x, we have by the Equality theorem or predicate calculus 

~ w = a & A 1 +-+ w = a & A,+1. 

This implies (1) for all i~ n. The formula An does not contain variables other than w free. 

For i2 t1 we obtain A,+1 from A, by the elimination of one existential quantifier :lx. Ir A 1 d0<.>s 
not contain existential quantifiers then it is aw-formula and we set j = i. Otherwise, the formula 
A,+1 is obtained from A, by a replacement of its subforrnula :lxC by the equivalent formula in 
the right-hand-side or 

~ 3xC +-+ 3C{ur.=w.t}{x:=w.h}. 

As the consequence we haYe ~ A,+1 +-+ A., this is enough to satisry (1) for n< i$j. We select the 
subformula 3xC in such a way that it is not contained in another existential quantifier 3y. This 
restriction is necessary to prevent a later substitution 

(3D){w:=w.t} = 3(w.t)D 

when :ly will be eliminated. The substitution obviously leads outside of w-forrnulas. 

For i2i we obtain A 1+1 from A 1 by transforming one identity into an environment equation. If 
A, contains only environment equations then it is a formula of R+_Maple and we set m = i. Oth
erwise, th e formula A 1+1 is obtained from the formula A, by choosing one occurrence of an iden
tity c = d which is not an environment equation and replacing it by the environment equation 
w = e. II the occurrence or identity c = d is within the scope of p existential quantifiers (p~O) 
the environment e is round as the solution or the environment system 

w = b" & c = d +-+ w = e 

where the proper environment bP is called the main environment for the scope or depth p. 

Main environments are defined as follows. The environment for the scope 0: b = b0 is obtained 
from tLe semi w-term a by the replacement of all variables x 1 by wa1 and • by w.t. Since the only 
location of x, is a/0: 1 the term b is a proper environment. Note that b contains only self-pointers 
if A is open and is I w.t, w.t I otherwise. We set 
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bp-t-1 = [w.h, bp(w.t)J . 

By lbe Exteo ion lem ma (section 5) all environments bp are proper. It is an easy proof by iqduc
tion on p to a.sce rlain that all pointers in A1 occurring at the depth p are admissible in b r in O 
jumps. Con equently, all pointers in the idenLiLy c = d are also admissible and the Environment 
theorem (section 5) applies. Thus the environment e can be effectively found. To show that (I) is 
satisfied for i+ l we have to demonstrate 

~ w = a & A,+1 ++ w = a & A,. 

This is done by induction on depth p or the identity c = d. Ir the identity occurs at the depth O 
we observe that ~ w = a -+ w = b0. Thus under the assumption w = & we have 

c = d ++ w = b0 & c = d ++ w = e 

so we can use the Equality theorem or predicate calculus. Ir the identity c = d occurs within p+l 
existential quantifiers in the subformula 3C or A, t.ben we use the theorem (7.5) proven in the 
next section to obtain 

~ w = hp & :IC++ 3(w= bp-t-1 & C). 

It can be readily seen that under the a.ssumption w = a we are allowed to perform the replace
ment 

c = d ++ w = bP+1 & c = d ++ w = e. 

From (1) we have for the w-conuert Am or the formula A 

~ w = a & Am -+ A. (2) 

Let us now turn to predicate definitions. Every predicate P we want t-0 use in R+- Maple has to 
be brought into the required form as given at the beginning or the section. We show h re just the 
general form (with the equivalence). The special forms (with implications) are converted similarly. 
We first bring Lbe predicate Pinto the form 

~ P(xv X2, · · ·, Xn) ++ A 

for n>O with all variables x, di,tinct and occurring in A . Next we use the above procedure to 
convert the formula A into Lbe R+- Maple form . We start with the 6emi-w-term a= ja', •l where 
z is a variable not occurring in A and a'= x 1 for n = 1 or a'= jx1, · • ·, x"J otherwise . From 
(1) we have 

~ w = I a', z J & P(a') ++ w = I a', z l & A,,,. 

For the main environment b we have 

~ w= [a', zJ-+ b = [a', zj & w.h = a'& w.t = z. 

Using this we obtain 

~ w = [ w.b, w.t J & P( w.h) ++ w = b & Am· 

Finally we observe that ~ w ~ 0 +-+ w = I w.b, w.t J so we have the predicate P in the desired 
computational form 

~ w ~ 0 & P( w.h) +-+ w = b & A,,,. 

To start the computation of the formula A we compute w = b & A 111 by repeatedly applying 
rewriting rules of R+-Maple to it (see section 7 ro1r the rules). 

Rewriting rules are always theorems or an extension or TP and have the following forms: 

~ B .- C (3) 
~ B-+ C (4) 
~ B +-+ C. (5) 

wher • B and C are w-r rmulas. Suppose that. a subformula B or the w-rormula D is the left
lland-side or a rewriting rule . We say that the rewriting rule is applicable to that occurrence or B 
if it is of the form (5), or it is or the form (3) and the occurrence of B is in the positive context, or 
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the rewriting rule is of the form (4) and the occurrence of B is in the negative context. A w
formula E is obtained from the w-formula D by one computation step if the leftmost occurrence in 
D of a subformula with an applicable rule is replaced by the righ~hand-side or the rule yielding 
E. The rewriting rules of R+-Maple are chosen in such a way that at most one rule applies to a 
given subformula. From the definition of applicability we have 

~ E--+ D. 

A computation sequence for a w-rormula D0 is a finite sequence or w-formulas 

D0, D 1, D2, · · · , Dt 

such that for each i ( 0~ i< k) the formula Dt+1 is obtained from the formula D, by one computa
tion step, and the formula D t is the first. formula in the sequence such that D t = w = c for an 
environment c or Dt = w = c VD ' for a proper environment c and aw-formula D'. If there is no 
computation sequ ence for D0 it is because there is either no rewriting rule applicable to a formula 
D, or the sequence can be arbitrarily extended without ever encountering a formula or the form 
suitable for Dt, In the first case we say that the computation blo cks, in t he latter case the compu
tation is said to be non-terminating. 

We always have~ D,+1 --+ D, for O~i<k. Consequently we have~ Dt--+ D0 and also 

~ w = c ....... D0. (6) 

Ir D, = w = c then we say that the computation sequence is deterministic. Otherwise the for
mula Dt contains the backtrack formula D'. Any value satisfying the environment equation 
w = c satisfies the initial formula D0. If the computation sequence is deterministic and c is empty 
we say that the computation failed. Unless the rewriting rules are complete a failed computation 
means only that we did not succeed in finding a value w satisfying the formula D0. In R+-Maple 
we basically use the negation as failure and a depth-first search so it can very well happen , that 
R+-Maple, just as Prolog, can miss a solution. 

If a computation (both deterministic or with a backtrack formula) terminates with the proper 
environment c then by (6) any solution of the environment equation w = c satisfies the starting 
formula . Additional solutions can be obtained in the non-deterministic case by realising that 
~ D ' -+ D 0 and by using the backtrack formula D' a.s the starting formula or a new computat.ion 
sequence . 

Let us now relate the computations to the w-convert A,,. of a formula A. We start the computa
tion with D0 = w = b & A,,.. When we terminate with a proper environment w = c we have 

~ w = C ....... w = b & A,,. . 

It is a relatively straigh~forward proof by the induction on the length of the computation 
sequence (utilizing tht> rewriting rules as given in the next section) to show th at the environment 
c is a refinement or the main environment b . Thus every pointer admissible in b is admissible in 
c. We use the Satisfiability theorem (5.5) to find a semi-w-term d without pointers such that 

~ w = d --+ w = C . 

Since the variables free in d do not occur in c we can always rename the variables in d so they 
are disjoint with the variables x, and a. We have 

~ w = d --+ w = b & A,,.. 

Observing that d is a refinement or b and that 

~ w = d--+ wa 1 = d/(X1 & w.t = d/.t 
we replace every pointer wa in b by d/ a yielding a new semi-w-term e such that 

~ w = d --+ w = e & A,,.. 

Next we observe that 

e = a{x1:=d/a1, · • ·, Xn:=d/an, a:=d/.t}. 

Performing the above substitution in the formula (2) yields 

(7) 



- 18 -

t- w = e & A,,., - A{x1:=d/cr1, · · ·, Xn:=d/crn}-

Note that r. does not occur in A. Combining (7) and (8) together yields 

t- w = d - A{x1:=d/a1, · · ·, Xn:=d/an}-

(8) 

(9) 

Since neither d nor A contain the variable w we substitute d for w in (9) and use the modus 
ponens to obtain 

(10) 

We can say that we have found an answer to the query A. The substitution for the variables x, 
is called the answer substi:tution in l6J. 

7. Rewriting Rules of R+-Maple. 

We now present the rewriting rules or R+-Maple. For simplicity's sake we are concerned purely 
with sequential computations in the st.yle or Prolog. Our computations with n gations are basi
cally computations with negation as finite failure. 

A formula of TP, after the conversion into an equivalent w-rormula, is or the form w = a & C 
where a is a proper environment and C a w-formula. We have seen that the computation agenl 
always selects thE' ll'rtmo t application of a rewriting rule. As a consequence, the environment 
will traverse tht> formula in the depth-first left-to-right order. As the computation goes on, t.he 
initial environment is modified, extended, and contracted. The rules are chosen in such a way that 
the resulting w-terms will be always environments. The rewriting rules will, however, distinguish 
between empty and proper environments. 

The first group of rewriting rules will carry the proper environment w = a down the computed 
formula. There is one rule for each possible form or the w-formula C. 

The cases when C is a disjunction or conjunction are straightforward and the reader can easily 
convince himself that they are indeed theorems or TP. 

Rewriting Rules for Conjunctions and Dlajunctlont: Ir a is a proper environment and 
A and B ,~·-formulas then 

t w = a & (A & B) - ( w = a & A) & B 
t- w= a& (AVB)- (w=a&A)V (w=a&B). 

(1) 
(2) 

When a proper environment reaches a negation it will go inside the negation unchanged. The rule 
for negation relies on the tautology t- D & -, A - -, (B & A) & B. 

Rewriting Rules for Negations: Ir a is a proper environment and A a w-formula then 

t- w = a & ., A - -, ( w = a & A) & w = a. (3) 

When the computation reaches an existential quantifier then the environment w = a will be 
ext.ended to w = I w.h, a(w.t )J. The old environment a is pushed further down in the stack. 
Tbis means that every pointer wa in a will have to be renamed to w.t.a. This is achie,,ed by the 
substitution a ( w.t ). Although substitutions are expensive to implement on computers, this su bsti
tution come6 for free when environments are implemented by pointers. Figure 5 illustrates the 
extension with environment graphs. 

Rewriting Rules for Exlatentlal Quantlflera: Ir a is a proper environment and A a w
rormula then b = I w.h, a ( w.t) J is a proper environment and 

t- w=a&3.A-3(w=b&A). (4) 

Proof: By the Extension lemma (section (5)) the term b is a proper environment. Preparatory to 
the demonstration or (4) we observe that 

(w= b){w:=!x, wl}- (w= !w,h, a(w.t)l){w:=lx, wl}-
!x, wJ = Ix, a{w:=w.t}{w:=!x, wl}J - w= a{w:=w} - w= a. 

We have 
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w = a & :IA+-+ w = a & 3.x A{ur.= !x, wl} ++ :Ix(w = a & A{w:=lx, wl}) +-+ 
:Ix((w = b){w:=[x, wl} & A{w:= [x, wl}) ++ :l(w== b & A). 

This terminates the proof of (4). The la.st two cases are concerned with atomic formulas. 

When the environment w = a reaches the predicate call P(b) we construct from the pure code 
for P(b) thew-term b(w.t). The environment a is extended by pushing the term b(w.t) on the 
top or stack yielding the environment I b ( w.t), a ( w.t) J. The situation is tihown in the figure 6. 

Rewriting Rules for Predicate Calla: Ir a is a proper environment, b a w-term with all 
pointers admissible in a and the predicate P has the definition ~ w ,' 0 & P( w.b) ++ A 
where A is aw-formula then the w-term c = I b ( w.t ), a ( w.t) I is a proper environment and 

~ w=a&P(b)+-+:I(w=c&A). (5) 

If the predicate P is defined by ~ w ,' 0 & P( w.b) - A or ~ w ,' 0 & P( w.b) -+ A then 
we use as rewriting rules the theorems obtained from (5) by replacing ++ by - or -+ . 

Proof: The Extension lemma (section 5) shows that c is a proper environment. Preparatory to 
the demonstration of (5) we observe that 

(w= c){w:=!x, u:]} +-+ (w= lb(w.t), a(w.t)J){w:=!x, wl} +-+ Ix, wJ = lb, aJ 
P(w.h){u~=[x, w]} +-+ P(x). 

We have 

u: = a · P (b) +-+ u· = a & :Ix (x = b & P(x)) +-+ 

:lx(x = b & w = a & P(x)) +-+ Ix([x, wJ = [b, aJ & P(x)) ++ 

:Ix(( w = c){w:=!x, w]} & P(w.h){w:=[x, wl}) ++ :l(w = c & P(w.b)) ++ 

3.(w=c&A). 

The last step is justified by observing that c ,' 0. The counterparts of (5) for the cases when the 
predicate Pis not defined by an equivalence are proven just like (5). 

All identities occurring in a computed formula are environment equations. Thus it is enough to 
consider the following case. 

Rewrltlng Rules for ldentltles: Ir a is a proper environment and b is an environment 
then we can effectively find an environment c such that 

~ w = a & w = b H w = c. (6) 

Moreover, if b and c are proper then every pointer admissible in a and bis admissible in c. 

Proof: If b is empty theu it suffices to set c = [ w, OJ. Ir b is proper then by the Extension 
lemma (section 5) thew-term [b(w.h), a(w.t)J is a proper environment with pointers w.h and 
w.t admissible with O jumps. The Environment theorem (section 5) applies and we can apply the 
environment solution algorithm to solve the system 

~ w = lb(w.h ), a(w.t )I & w.h = w.t ++ w = d. 

Let us call this formula A. By the substitution theorem of the predicate calculus we have 
~ A { w:= I w, w I} and th us also ~ A ( w, w ). This last formula is 

~ [ w, w] == I b, a] & w = w ++ I w, w I = d ( w, w ). 

After some simplification we have 

~ w = a & w == b ++ I w, wJ = d(w, w). 
If d is empty then 

[w, wJ = d(w, w) = [w, wJ = [lw, wl, OJ++ w= lw, OJ. 

Thus it suffices to take c empty . Otherwise, d must have pointers w.b and w.t admissible, so it is 
or the form d = I di, d 2 ] wher~ d 1 = w.t and d2 = e ( w.t) for a proper environment c. We have 

[w, wJ = d(w, w) = !w, w] = [w,cJ ++ w= c. 

We see that c solves the equation (6). The method for finding the environment c will have to be 



- 20 -

implemented in the software or hardware interpreter of R+-Maple. 

We have seen how environments travel down in the computed formula until they reach an 
environment equation. The new environment d does not have to be necessarily proper, it can be 
also empty. Moreover, i! does not have to be the case that the new environment equation w = d 
is in the context w = d & D which would allow further downward computation. Alternatively, 
the environment equation can be in the context w = d &; D, but d may be empty, i.e. we have 
the situation ran & D . When the computation cannot proceed further down, it starts to ascend 
in tbe computed formul:i . Ascent starts with the empty environment equation fall occurring in 
any context, a proper equation w = a occurring in t.he context of negations and existential 
quantifiers , or a proper equation in the context w = a V C. The formula C in the last case is a 
backtracking formula. The second case, when a proper equation travels backwards by itself is the 
deterministic case when a single term has been comput d. 

We shall first give rules tor the backward movement of failure fall through enclosing connectives 
and quantifiers. The reader can convince himself that the rewriting rules are theorems or TP. 

Rewriting Rules for Failure: If A is a w-formula and a a proper environment then 

~ fall & A +-+ f'a.11 
~ f'ail VA+-+ A 
~ -, fall & w = a +-+ w = a 
~ 3 fall +-+ f'aU 

(7) 
(8) 
(9) 

(10) 

The reader will note that the rule for n<'gation (3) guarantees that there will be a proper environ
ment equation after -, . So the rule (9) is sufficient. 

The proper environment equation w = a will travel backwards in t.be deterministic computation 
through enclosing negations and existential quantifiers. As soon as it reaches a conjunction it will 
start a downward moveme:nt in the conjunct. When it reaches a disjunction, it. changrs into a 
backtrack computation. 

Rewriting Rules for Deterministic Computation: Ir a and I b, a ( w.t) J are proper 
en.·ironments then 

~ -, w = a & w = a +-+ fall 
f- 3 u· = I b, a ( w.t) J - w = a . 

( 11) 
(12) 

Proof: The theorem (11) is obvious. By the Contraction lemma every proper environment ! b, a'] 
has the form I b.a ( u•.t) I where a is a proper environment. We have 

3 w = lb, a(w.t)j +-+ 3.x(w = lb, a(w.t)l{w:=lx, wl} -
:Ix [x, w] = [b{w:=[x, w]}, aj +-+ w= a & :Ix x = b{w:=jx, wl} +-+ w = a. 

The last step is justified by the Contraction lemma. 

The rewriting rules (9) and (11) cater to the case when the formula in the negation either fails or 
succeeds without. changing the environment. We do not supply here any rules for the case when 
the environment is changed within a negation .., w = a &; w = b. This is consistent with the 
negation as failure as implemcn ted in R-Maple or with a correctly implemented negation of some 
Prolog interpreters such as Ml/-Prolog. 

A proper environment a in the context 1r = a V C will travel backwards through the enclosing 
environments carrying around the backtracking formula C. The backtracking formula will be 
amended in the course or its backward travel. There is one case when backtracking is not neces
sary. This happens in the following computation. 

w = a & (AV B) +-+ (w = a & A) V (w = a & B) - · · · 
w=aV(w=a&B) 

We see that the computation of the formula. A in the environment a did not change the em·iron
ment, i.e. A is a lest which succeeded. This situation is captured by the following straight-forward 
rewriting rule which discards the backtracking formula. 
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Rewriting Rules for Testa: If A is a w-formula and a a proper environment then 

f-- w=aV(w=a&A)-w=a. (13) 

The other cases are captured by the following rule. 

Rewriting R ules for Backtracking: Ir a and I b, a ( w.t) J are proper environments and C 
is a w-formul a for which (13) docs not apply then 

f-- (w= aVC) &: A - (w= a & A)V(C&:A) (14) 
f-- (w = a V C) VA - w = a V (CV A) (15) 
f-- -. ( w = a V C ) & w = a +-+ fall ( 16) 
f-- 3( w= [b, a( w,t )]VC)- w= aV~C. (17) 

The theorems (14), (15), and (16) are obvious. (17) relies on the easily proven theorem 

f-- 3 (A V B) - :lA V 3B 

and on the theorem (12). 

Consider the situation when an environment reaches a predicate call in the context of an existen
tial quantifier 

3(w = [b, a] & P(c)). 

The standard rewriting rules for predicate calls will extend the environment as follows: 

3 3 ( w = [ c ( w.t ), b ( w.t ), a ( w.t) J & A). 

Here A is the body of the predicate P. This situation is called tail recursion and when the compu
tation of A results in a new call to a predica te (probably P itself ) we will have to extend the 
environment again . To prevent such explosion of environments by a nesting of existential 
quantifiers we can coalesce the terms b and c into one. This is called tail recursion opt.imization. 

Rewriting Rules for Tall Recursion: If the predicate P is defined by 
f-- w :f O & P( w.h) - A where A is a w-formula, and if I b, aj is a proper environment 
and c is a w-term with all pointer. admissible in I b, a J then 

f-- 3 ( w = I b, a] & P ( c) ) - 3 ( w = I c ', a 'J & A) 
where the new proper environment [ c', a'] is obtained by the solution of the system 

f-- w = I b ( w.b, w.t.t ), w.t.h, a ( w.t) J & c ( w.b, w.t .t) = w.t.b - w = I b', c', a'J 

( 18) 

for some w-t.erm b '. The equivalence - in (18) should be replaced by implications if the 
predicate Pis defined with implications. 

The trick of the rule is to substitute into c parts or the term b yielding the argument of the new 
call c'. However, the substitution must be done carefully since the w-term b can contain depen
dencies, i.e . pointers to itself or the form w.ha. These dependencies must be incorporated into c'. 
We leave the proof of this optimization rule to the reader. 

8. Conclualona and Future Work. 

We have formulated in this paper a one-variable version or Theory of Pairs. This version can be 
used by itsetr as the b:i.s is for an autom ated theorem prover because it simpli6es the handling of 
variables. We have presented a method or collapsing or a system or equations with many vari
ables into a single one-variable equation. Moreover, this equation can be represented efficiently 
within the computer. The single equation can be used as an environment in computing full predi
cate logic programs. We have presented and proven sound the rules ot computations dealing with 
th sequential compu t ation and with the negation as failure . The language R+- Maple has basi
cally the computation power of a Prolog with a good negation (and occurs check) although it has 
a greater expressive power. Moreover, we do not require the fuU completion for the computation 
of negated predicates. 

We are presently preparing a p aper proving the Environment th eorem and dealing also with the 
solution of inequalities. Environmen ts amended by inequalities will be then incorporated into a set 
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of rewri l iug rules which will ha,•e a stronger form or neg:i.lion than the presently allowed one. We 
intend a!S<.) t.o present connectives of th cage type lo improve the readability of logic programs 
by Byn!o:r eugari ng. We also plan to prt>se nt computation rules for lazy evaJuation. This will allow 
the com putatio n with functi0ns other than data structures within the n+-Maple framework. 

\Ve are working on the use of environments within a complete proof system having the classical 
negation . This syst m will be equival nt to TP without induction but with 
w = 0 V i3y w = [ :z, y I as a new a.'Xiom . Such a system is complete in the sense that ev ery for
mula va lid in every (including non-standard) model is provable . On the other hand , it is 
equivalent to t he eleml.'n t ary arithmetic of Abraham Robinson !see for instance 4J, and so it is 
incomplete in Lhe sense of GBdel, i.e. there are unprovable formulas true in the standard interpre
tation . Obviously , such unprovable formulas cannot be valid in some non-standard models . The 
environments will take care of the axioms for identity as welJ as the axioms for pairs. AJtbougb 
this system could be a good basis for an automated theorem prover, we have a good reason to 
believe that a classicaly omple te sy tern cannot be efficien t ly used in a computational way where 
we have to exe ute deep c hains or recursive predicate calls. The best we can probably hope for 
computa tionally is a TP sys tem with an intuitionistir negation . 

The author would like to thank Karl Abrahamson and Jamie Andrews for long series of discus
sions and suggestions about environments. 
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