Computation of Full Logic Programs Using
One-Variable Environments

Paul J. Voda
Department of Computer Science
The University of British Columbia
Vancouver, B.C. V6T 1W5
Canada

Technical Report 85-8

Computation of Full Logic Programs Using
One-Variable Environments.

Paul J. Voda

Department of Computer Science, The University of British Columbia,
6356 Agricultural Road, Vancouver, B.C. Canada V6T 1WS5.

ABSTRACT

Computation of formulas of the full first order predicate calculus is per-
formed by first converting the multi-variable formulas into a single variable
presentation of the Theory of Pairs (TP). Pairs are symbolic expressions of LISP
with only one atom 0. Single variable calculus is suitable for both computations
and mechanical theorem proving because the problems of multiple variable names
and clashes between free and bound variables are eliminated. We present a logic
programming language R¥-Maple which computes by solving equations instead of
unifications and refutations. Pairs permit a single one-variable equation called
environment equation to hold the values of all variables. Traditionally environ-
ments are implementation tools used to carry bindings of variables during the
computation. With the help of environment equations for the single variable of
our calculus we make the environments visible within the framework of a first
order theory. This allows a straightforward demonstration of soundness of our
computations. Moreover, the explicit form of environments allows to experiment
with diflerent forms of computational rules directly within the logic. The sound-
ness of new rules can be thus readily proven formally. This has the advantage
over the traditional method which buries the rules, as they are closely connected
with environments, deeply within the code of an interpreter.

Keywords: Formal Semantics, Logic Programming, Environments, Formal
Theories,

July 1985

—E—— e i) -

Computation of Full Logic Programs Using
One-Variable Environments.

Paul J. Voda

Department of Computer Science, The University of British Columbia,
6356 Agricultural Road, Vancouver, B.C. Canada V6T 1WS5.

1. Introduction.

Formulas of predicate logic with multiple variables are easy to read but hard to compute. Values
have to be correlated to the corresponding variables either by substitutions or by bindings. Substi-
tutions are costly to implement, bindings require names of variables and systems of equations. We
propose to compute within the framework of a Theory of Pairs (TP) [10,11] which provides for
the operation of pairing. This will allow the reduction of multiple variables into a single one and
the collapse a system of equations (bindings) into one equation giving the binding to the only
variable.

Bindings, whether multiple or single, are maintained during computation of formulas (procedures)
in a stack-like data structure called an environment. Environments are implementation tools not
directly related to predicate logic. As a consequence it is rather hard to demonstrate an interpre-
tation strategy correct (sound). We reformulate TP as a one-variable first-order theory and show
how to express environments within the theory. As a consequence the computation rules are
directly visible in the logic and an interpreter is immediately seen sound. In such a framework we
can easily investigate alternative interpretation strategies. Furthermore, by having to deal with
only one variable, we can make the process of interpretation more efficient.

The use of environments allows the computation of logic programs by the solution of equations
rather than by unification and proofs by refutations of most logic programming languages. There
bas been recently an interest in the computation of logic programs without unification. To name
just two examples: Prolog-II of Colmerauer [2,3] and R-Maple by the present author [9,11].
Prolog-II solves systems of equations (i.e. environments), whereas R-Maple works with annotated
(tests and assignments) identities. The annotated identities allow computation without
unification as well as synchronisation of parallel processes. We illustrate the computation with
environments with a sequential subset of R-Maple called R*-Maple. Without the sychronisation
there is no need to distinguish between tests and generators and we regain the symmetry of Pro-
log predicates. We show how to map Prolog [see for instance 1] into R*-Maple. Thus everything
which can be computed in Prolog can be computed with a better expressivness in R*¥-Maple. This
is not only because R*-Maple allows ordinary connectives and quantifieres of predicate logic but
also because we permit the use of different computation rules for positive and negative predicates.
The safe method of dealing with negations [5,6,7] in Prolog requires a restricted form of negative
predicates obtained via completion.

The paper is divided into following sections. Section (2) gives an overview of the Theory of Pairs.
Section (3) illustrates the reduction to one variable informally. Section (4) develops the one-
variable Theory of Pairs formally. Section (5) discusses the environments. These two sections
establish the definitions and theorems required in the sections (6) and (7) to prove the soundness
of the computation in R*-Maple. Section (6) defines computations in R*~Maple. Section (7) gives
the rewriting rules used in the computations.

2. Overview of TP.

The basic theory into which programs of R*-Maple are interpreted is the Theory of Pairs (TP)
developed by the author as a formalization of S-expressions of Lisp. Pairs are S-expressions with
only one atom 0. At this point the reader may ask why we do not adopt the approach of Prolog
where a program is viewed as a set of axioms. The only rules of inference are the computational
rules. Prolog sets up a new formal theory for each program. The basic question one has to ask
about a new formal theory is the question of consistency. Pure Prolog computes only positive cal-
culus of implications so there is a model for each set of axioms. The situation is dramatically
different as soon as onme computes with a Prolog implementing a sound form of negation, for
instance with MU-Prolog [7]. Now one should - in principle - prove the consistency of each pro-
gram before trusting the results of computations.

The approach we have taken in a previous paper [11] is based on defining a programming
language as a subset of a sufficiently rich theory which is eztended with each new predicate. If one
takes suitable precautions with the form of extensions by using only conservative ezlengions [see
for instance 8] then the extended theory contains the computational rules as theorems rather than
as new axioms. With a Prolog like approach one has to prove that a program has a model. With
the extension approach one introduces the predicates of a new program in a restricted way for
which the consistency is guaranteed. The computational axioms which are usually recursive have
to be then proven as theorems from non-recursive definitions. Thus instead of constructing models
we are proving (heorems. In this respect our approach is only slightly superior to the model
theoretic one. Models are usually non-constructive, provability is semi-decidable. The real advan-
tage of embedding programs into a basic theory is that one can use the full deductive apparatus
of the theory to reason about programs. One can use the full quantifier rules and a suitable induc-
tion principle,

Theory of Pairs is described elsewhere [10,11]. In this section we only recapitulate the basic prin-
ciples of TP. The domain of the intended interpretation of TP contains the individual 0 and is
closed under the operation of pairing. Two pairs are equal iff the corresponding components are
equal. No pair is equal to 0. TP is a first order formal theory (see for instance [11]) with the
primitive constant symbol 0 and the binary function symbol [_, _| of pairing. In addition to the
identity, there is only one binary predicate symbol, € , of list membership.

A term composed only by pairing from 0 is called a literal. For instance |[0, 0], [0, 0]] is a
literal. Literals correspond to the numerals of Peano Arithmetic. We shall assume the operation
of pairing to associate to the right. Thus [a, b, ¢| abbreviates [a, [b, ¢]]. We shall use bold
faced letters as syntactic variables ranging over variables (x,y, - - -), terms (a, b, -) or for-
mulas (A, B, + - -) in the standard fashion of logic. To maintain close ties to Prolog we shall
also use the reverse implication A «— B as an abbreviation for B —+ A. The precedence of con-
nectives and quantifiers is given in the ascending order as follows: (=, « , «) (V) (&) (~,
¥,). We denote by a{x:=b}, resp. A{x:=b} the term, resp. formula, obtained from the term
a (formula A) by the substitution of the term b for all free occurrences of the variable x. We use
the meta-theoretic symbol of syntactic identity a = b (A = B) to express the fact that the
terms a and b (formulas A and B) are exactly the same sequences of symbols.

The axioms of TP - besides the logical axioms for connectives, quantifiers and identity - are the
following ones:

[z,)] = [z, y] = z2=2& y= (Un)
z¢ 0 (Mem1)
z€|y zl»z=yVz€:2 (Mem2)
A{x:=0} & ¥xYy (A & A{x:=y)} - Al{x:=[x,y]|}) = ¥xA. (Ind)

The axiom (Un) asserts the uniqueness ol pairing (the reverse implication is a logical equality
axiom)., The schema of axioms of induction (Ind) in effect says that all individuals are composed
from O by pairing. Thus all individuals are denoted by literals. The membership axioms define
properties of € .

-3-

The domain of pairs corresponds to S-expressions of LISP with O being the only atom. Note that
instead of (a.b) we write [a, b] where a and b are literals. The principle of induction, together
with membership axioms guarantees that every non zero individual can be uniquely written in the
form [a,, 8,a, 0]. This means that every individual of TP is a list. We do not introduce
the list notation of LISP because the list (a b ¢) can be written as [a, b, ¢, 0] in TP. Note also
that there is no need for the operation cons(a, b) of LISP. One simply writes [a, b| to denote
exactly the same element.

The standard interpretation of the predicate symbol € makes

z€ Iab Gy . - ,0p 0]
true ifl z = g, for some ¢ such that 1<i<n.
One can introduce into TP new predicate and function symbols by conservative extensions. We
briefly sketch the method here, for a detailed treatment see for instance [11]. Predicates are
introduced by explicit definitions. For instance the predicate Large(z) satisfied only by lists of at
least two elements has the following defining axiom:

Large(z) « Ivddz z = |w, y, 2.
Functions are introduced by contextual or explicit definitions. Function prefiz(z) prefixing a list
by two zeros can be defined by an explicit definition

prefiz(z) = |0, 0, z].
More complicated functions are introduced by contextual definitions. Assume for instance that

the formula A(z, y, z) contains at most the variables z, y, and z free. Suppose further that we are
able to prove the existence and uniqueness conditions

F 3:A(z g, 2) (1)

F Az, 9, 2) & A(z, y, &) = z=2. (2)
We can now introduce a new binary function symbol f with the help of the defining axiom

Az, y, /(2) 3)

The explicit definition of predicates guarantees their elimination in any context. Each predicate is
simply replaced by its right hand side. The same is true of explicit definitions of functions. Func-
tions introduced by contextual definitions can be always eliminated in a context of formulas. For
instance B (f(a, b), ¢) is equivalent to the formula

Iuw(f(a, b)=w & B(w, ¢))

assuming that the variable w does not occur in the above terms and formulas. In the view of the
uniqueness condition (2), this is again equivalent to

Iw(A(a, b, w) & B(uw, ¢)).
As a consequence we can eliminate all occurrences of defined predicates and functions by replac-
ing them with equivalent terms or formulas. We cannot possibly prove anything new with intro-
duced symbols which we could not have proved without them. In particular we cannot prove a
contradictory formula if there was no contradiction before. Thus if we make sure that TP is
extended only by the above definitions we improve the readability of TP formulas without
compromising the consistency of TP,
Let us introduce two unary projection functions _h, _.t taking the head and tail of an element
respectively by the following contextual defining axioms

(z=0& zh=0)VIyz=|[zh, y|

(z=0& 2t =0)VIyz= |y zt|.
We leave it to the reader to prove the existence and uniqueness conditions. As the consequence of
the defining axioms we can easily prove the expected properties (4) through (7)

F |z,9)h=12z (4)

Flzylt=1y (5)
F 0h=0 (6)

I 0t =0. (7)

Natural numbers can be introduced into TP as lists containing only 0 as elements. We can abbre-
viate [0, 0] as 1, |0, 1| as 2, etc. The predicate of being a natural number has the explicit
definition

Nat(z) ~+ Vy(y € z = y=0).

3. Reduction of Varlables.

Before we start the discussion of environments we informally illustrate how to reduce formulas of
TP into equivalent one-variable formulas. The reduction of variables is made possible by the
pairing function used together with projection functions _.h and _.t. As a result the variable-free
effect of combinatory logic is achieved. To keep the formulas readable we shall use multiple vari-
ables but the computations will be done on formulas containing only one variable w. A two-place
predicate

Pz g)er -ozmye-
can be viewed as an abbreviation for the one-place predicate

Plw)o w#0& (-~ wh---wt-)
or equivalently as

P(w)« 3Idy(w=[z, y|& (- -z -y "))
Now that all predicates are one place only, we can write P(a, b), or R(a, b, ¢), etc. as abbrevia-
tions for P(|a, b]) and R([a, b, ¢]|) respectively. The two-place predicate Len(z, y) satisfied
when yis the length of the list z is defined in Prolog with the help of clauses

Len(0,0)

Len([z, y), [0, ¥]) = Len(y, v)

R*-Maple requires all predicate definitions to be in one or or more of the following forms.

F Plu)+~ A
} Plw)— B
| P(w)«~ C.

Here A, B, and C are formulas of a suitable extension of TP with only one variable w. The predi-
cate P will have either a general definition given by the third formula or one or two special
definitions given by the first two formulas. The first formula is used to compute P(a) in posilive
contexts (in the scope of even number of negations), the second formula computes predicate calls
in negative contexts. The general formula computes in any contexts. Notice that we require the
clauses to be theorems of TP rather than axioms. In the absence of negations, all Prolog compu-
tations occur in the positive context.

Preparatory to the conversion of the predicate Len into an R*-Maple form, we reduce the terms
in heads of clauses to one variable by introducing identities. We temporarily retain multiple vari-
ables in the identities,

Len(w) «~ w=10, 0]

Len(w) « w=[[z, y], |0, y]] & Len(y, ¥).
The reader can convince himself that these two forms of Len are equivalent in TP. The last two
clauses are again equivalent to the single formula

Len(w) «~ w=1[0,0]Vw=|[|z y], [0, y]| & Len(y, ¢). (1)
The formula (1) can be, after the elimination of variables z, y, and y', used onlyv in positive con-
texts.

The next step consists of the elimination of variables other than w from the bodies. The idea of
elimination is illustrated first with a few examples. The identity w = 0 is satisfied only by w hav-
ing the value 0. The identity w = |z, y] is satisfied by w being any pair (i.e. a non-zero value).

B

This fact can be expressed by an identity formulated solely in terms of the variable w as
w= [wh, wt]. The theorem

Fow=|wh, wt] e Idyw=|zy

makes clear that only pairs as values of w satisfy the left-hand side. The implication (=) is obvi-
ous. To show (—) we observe that from w= |z, y| we have wh = z and w.t = y, s0 we obtain
w = [wh, w.t] by the properties of identity.

Using the projections of the variable w we can eliminate all other variables from identities. This
will be demonstrated in section (6) formally. We can even express dependencies among parts of w.
The identity w = |z, z] is satisfied only by such pairs as values for w that have the head and tail
parts identical. The identity w = |0, z| is satisfied by any pair with the head part equal to 0. The
elimination of the variable z yields the equivalent identities w = [w.t, wt] and w= |0, w.t].
These identities can be depicted as trees with pointers as in the figure 1. We can see that the
right occurrence of the free variable z in the identities w = [z, z] and w = [0, z| corresponding
to the projection w.t is a self-pointer, whereas the left occurrence of z in the first identity
corresponds to a pointer. As we shall shortly see, self-pointers can assume any values, but the
other pointers have their values determined by the structure they point to. We are now in the
position to eliminate the variables z and y from the predicate Len.

Len(w) «~ w=[0,0]Vw=[[whh, wht], [0, wtt]] & Len(wh.t, wtt). (2)

The reader can easily convince himself that the universal closures of formulas (1) and (2) are
equivalent in TP. To allow the computation of Len in both positive and negative contexts the
predicate can be introduced into TP to satisfy (2) with a biconditional («) instead of implica-
tion.

Formulas like (2) are single variable formulas. Such, essentially, variable-free formulas will have
the identities represented during the computation by pointers. The figure 2 shows the graph
representation of both identities of Len, where the self-pointers are shown as asterisks. Just as in
combinatory logic. variable-free formulas are hard to read and comprehend. A practical program-
ming language will have to introduce abbreviations in order to simplify the presentation. We can
use a slight generalisation of the connective case of R-Maple [11]. The formula (2) (with the
biconditional) becomes

} Len(w) < case w of
(0,0]:
[* z], [0, y]] : Len(z, y).
Bound (local) variables z and y are used as abbreviations for w.h.t and w.t.t respectively. Note
that the self-pointer w.h.h which is not needed is abbreviated by an asterisk.

Variables not occurring in heads of Horn-clauses are called by Prolog programmers local variables.
Consider the Prolog clause defining the predicate Long satisfied only by lists having more than six
elements:

Leng(w) «~ Len(w, z) & z>6. (3)

The variable z is a local variable. Logically speaking, local variables correspond to existential
quantifiers. The existential quantifier is not necessary in clauses like (3) since it can be always
added by d-introduction. The same predicate introduced into TP by an explicit definition with a
biconditional requires the quantifier:

| Long(w) « Az(Len(z, w) & z>6). (4)

This is because we cannot have an implicit existential quantifier for the (—) part of the
equivalence which can be used to compute within negations.

The reader will notice that in the head of the formula (4) we have the predicate Long(w) in the
standard one-variable form, yet we cannot use the trick of eliminating the variable z by a projec-
tion of w. The reduction to one variable in this case will be made possible by an introduction of a
one-variable erisiential quantifier IA in the next section. The formula A will contain only the
variable uw. The quantifier I will bind the projection w.h leaving the projection w.t free in IA.

s B

This corresponds to the standard implementation of environments with stacks. Roughly speaking,
in order to compute the formula 3A (w.h, wt) in the environment a(w) giving the binding for the
only variable w, we start a computation of the formula A (w.h, w.t) in the eztended environment
|wh, a(wt)]. A programmer would say that a new stack frame for an, as of yet unassigned, vari-
able w.h is created on top of the stack, pushing the previous environment a(w) further down the
stack.

Before we present the one-variable form of TP in the next section we show how to transform Pro-
log terms containing constants and function symbols into TP. Functions of Prolog are never com-
puted. they are used only to generate values freely. This amounts to functions being just con-
structors of data structures. If Prolog is used with negation then the completion procedure [X]
requires that all constants and terms generated from constants by function symbols denote
different objects, This can be guaranteed in TP in a straight-forward way. For instance, the predi-
cate In(e, ¢) looking for a value e in the binary tree ¢ has the following definition in Prolog

In(z, leaf(z))
In(z, node(y, 2)) « In(z, y)
In(z, node(y, z)) « In(z, 2).
The functions /eaf and node can be introduced into TP by the explicit definitions
F leaf(z) = [0, z]
F node(z, y) = |1, z, y].
This definition guarantees that
b leaf(z) # node(y, 2)
b node(z, y) = node(z’, y') » z2=2'& y=y.
The predicate /n can be introduced to TP to satisfy
b In(w) + case wof

|z, leaf(z)] :
|z, node(y, z)] : In(z, y) V In(z, 2).

4. One-Variable Terms and Formulas,

We now define a class of terms and formulas with only one variable w. These classes will be called
w-terms and w-formulas respectively. RY-Maple predicate definitions and programs are con-
structed from w-formulas. Environments, defined in the next section, are subsets of w-terms. We
do not intend to compute implications, equivalences and universal quantifiers explicitly. Conse-
quently, we restrict w-formulas only to existential quantifiers, negations, disjunctions and conjunc-
tions. Obviously, universal quantifiers and implications can be defined with the help of the
remaining connectives. We start with a few auxiliary definitions.

A projection a is a possibly empty sequence of symbols .h and .t. We shall use Greek letters as
meta-variables ranging over projections. The empty (unit) projection will be denoted by ¢. Pro-
jections can be concatenated in the standard way. Thus, for instance, ea.hf denotes the projec-
tion obtained by appending .h after the (possibly empty) projection a and then appending the
projection g at the end.

If ais a projection then wa is a pointer. We have we = w. W-terms are defined as the least class
satis{ying the following clauses.

i. The constant 0 and all pointers are w-terms.

i~ If aand b are w-terms then [a, b] is a w-term.
W-formulas form the least class satisfying the following clause.

i. If a and b are w-terms then a = b is a (atomic) w-formula.

ii. Il ais a w-term and P is a one-place predicate symbol introduced into TP, then P(a) is a
(atomic) w-formula.

iii. If A is a w-formula, so are A and - A.
iv. If A and B are w-formulas, so are (A & B) and (A YV B).

Ab occurrence of a subformula of the w-formula A is said to occur in a positive (negative) context
if it occurs within the scope of even, including 0, (odd) number of negation signs.

We do not intend to give special semantics to w-terms and w-formulas as we want them to be
subsets of terms and formulas of an extension of TP. R*¥-Maple programs will then inherit the
meaning from the standard interpretation of TP. W-terms are already a subset of terms of TP.
W-formulas can contain the one-variable existential quantifiers which must introduced into TP as
variable binding operators. The schema of defining axioms introducing the operator 3 is as fol-
lows:

I(w)A « Ix A{w=|x, w]|}. (1)

where A is any formula of TP and x £ wis the first variable in the standard sequence not occur-
ring in A. We shall abbreviate 3(w)A just to JA.

The variables free in 3(w)A are w and all other variables free in A. At the same time the variable
w is bound in A. In order to guarantee that the schema of axioms (1) is a conservative extension
of TP we have to define the meta-theoretic operation of substitution for the free variables of
3 (w)A in such a way that the corresponding substitution in the right-hand-side of (1) leads to an
equivalent formula. For that it is enough to set

(F(w)A){w:i=a} =3(a)A
(F(w)A){x:=a} =3 (w)A where x = w i3 first variable not in A
(F(w)A){x:=a) =d(w)A{x:=a} otherwise.

The last identity is subject to the standard restriction of not binding free variables of a. Ordi-
nary substitution leads outside of the class of w-terms and w-formulas as can be seen by the fol-
lowing examples.

wh{w=0} =0h
(F(w)A){u:=0} =3(0)A

The expressions on the right-hand-side are not w-expressions although all left-hand-side expres-
sions are. Since we intend to perform computations of w-formulas by doing proofs containing only
w-formulas we have to define the substitution in w-expressions to be closed in w-expressions.
Although we do not intend to reason directly within a calculus of w-formulas a computer-assisted
theorem prover can be simplified by reasoning entirely within the w-calculus. The human inter-
face to the user will then either introduce standard variables by means of abbreviations or per-
form the two-way translations between the standard TP and w-calculus which we can call w-TP.

We have decided here to embed w-calculus within TP. We are preparing a detailed paper on w-
TP discussing its semantics and proof-theory as well as abbreviations for multiple variables. To
give the reader the flavor of quantifier rules of w-TP we prove them here within TP,

The w-expression obtained by the substitution of the w-term b for the variable w in the w-term a
or w-formula A is denoted by a(b) or A(b). We adopt the standard predicate call conventions
and, for instance, write A(|a, b]) as A(a, b). The substitution is defined by induction on the
construction of w-expressions.

o(b)=0

[a, b](c) = [a(c), b(c)]
wae(wf) = wha

wa(0)=0

w(a, b) = [a, b]
wha(a, b) = wa(a)
wtae(a, b) = wa(b)

(a = b_](c =a(c)=Db(c)
P(a)(b)= P(a(b))
(~A)(a)=~Afa)

(A& B)(a)=A(a)& B(a)
(AVB)(a)=A(a)VB(a)
(3A)(a) = IA (wh, a(wt)).
We have the following theorem.
Substitution Theorem (ST): If a, b, and ¢ are w-terms and A is a w-formula then

a(b)(c) = a(b(c)) (2)
A(b)(c) = A(ble)) (3)
b a(b) = a{u:=b) (4)
I A(b) « A{u:=b) (5)

The theorem is proven by a straight-forward induction on the construction of w-terms and formu-
las, although there are quite a few cases to be considered. Just for the illustration we show one
case of (3) and one case of (5). A case of (3):

(FA)(d)(c) = (FA(wh, b(wt))(c) = FA(wh, b(wt))(wh, e(wt)) =
JA(|wh, b(wt)](wh, e(wt))) = FIA(wh, b(wt)(wh, c(wt))) =
A (wh, b(wt(wh, e(wt)))) = IA(wh, ble(wt))) =
IA(wh, b(c)(wt)) = (FA)(b(e)).

We have arranged the chain of symbolic identities (=) in such a way that the first formula on a
new line has been obtained from the last formula on the previous line by the use of (2) or by the
use of induction hypothesis.

The interesting case of (5) is the following one.

(FA)(b) = JA (wh, b(wt)) «
JA{w=[wh, b{w=wt}]} « Ix A{lw=|wh, b{v=wt}]}{w=[x,]|} «
Ix A{w=|x, b]} = I(b)A = (A){u==Db}

As an example consider the formula
A=z=yVi(z€:z:&IY(z€Ey& z=1y))

where z € z is an abbreviation for € (z, z). The w-equivalent of A is the w-formula B
B=whewtVIi(wuthe wh&I(wth€ wh & wtth=wh)).

Note that the same free variable wh becomes w.t.h within the scope of one existential quantifier
and wt.t.h within two quantifiers. The variable wh occurring within the first quantifier
corresponds to the bound variable z of A. The same variable becomes w.t.h within two
quantifiers, We can say that existential quantifiers push all free variables down the list of vari-
ables.

The substitution A{z=y} can be performed only after the bound variable y has been renamed
Alz=y}=y=yVIz(y€ 2 & v(z€E v& y= v)).
There is no problem with the corresponding substitution in B
B(wt, wt)=wt € wtVI(wtt € wh&I(wth € wh& wttt= wh)).
The counterpart of Substitution axioms of predicate logic is the following schema of theorems.
Theorem: If a is a w-term and A a w-formula then
 Alas, w) = 3A.
Proof: We start with an instance of the substitution axiom of TP
F A{w=[x, w]}{x:=a} = Ix A{w=]x, w]|}.
Simplifying the substitution and employing the definition of 9 yields
|- A{w=|a, w]} = JA.
The theorem follows by an application of (5).

8

The counterpart of I-introduction of TP is given by the following derived rule of inference.
Variable-free 3-Introduction: If A, and B are w-formulas and } A(wh, wt) — B(wt)
then also | IA — B.
Proof: Under the assumption w = [z, y] we have wt = yand [wh, wt] = w=z y|. Thus
also
B(wt) « B{ui=wt} ~ B{w=y}
and
A(wh, wt) & A{lw=|wh, wt]} « A{w=|z, y]}.
Using the assumption of the theorem we obtain
F w=|z y] = (A(wh, wt) = B(wt)).
From this we have
Fw=lz 4] = (A{w:=[z, y]} = B{w:=y}).

We observe that the variable w does not occur free in the consequent. We substitute w:=|z, y]
and use modus ponens to obtain Ju~introduction and modus-ponens to obtain

F A{uw=|z, y]} = B{w:=y}.
We observe again that the variable z does not occur in the consequent. We use Iz-introduction
and replace y by w.

F 3z A{w=|z, w|} - B
The conclusion of the theorem follows from the definition of I by a suitable renaming of z.

The reader will note that w-TP has a great potential for the proof-theory as well as for the
automatic theorem proving as there are no clashes of free and bound variables and no eigen-
variable restrictions on 3-introductions.

6. Environments and Environment Equations.

Computations in R-Maple were defined with the help of substitutions. To compute the predicate
call P(a) we used its definition P(z) «+ A and computed the formula A{z=a} obtained from
the body of predicate by a substitution. As every programmer knows, substitutions are fine in
logic, but they are expensive to implement on a computer. Since the Algol-60 times one has com-
puted a pure program, i.e. never changing formula, A in the environment a binding the variable
z. This environment is carried around the formula A during the computation. It is modified as
new bindings for variables are computed. Environments are extended upon entrance to the scope
of an existential quantifier or when executing a predicate call. Environment contraction occurs
when existential variable has been found or the predicate call has been completed.

Environments of R*-Maple form a certain subset of w-terms. If a is an environment then the w-
formula w = a is called an environment equation, This binds the variable w to the w-term a.
Environment equation w = a specifies a class of pairs as values for w such that the equation
w = a is satisfied. Before we can specify environments we need some auxiliary definitions.

A projection a is an ancestor of a projection f iff there is a projection f' £ € such that § = of.
Two projections are in the ancestor relation iff one is an ancestor of the other. A projection £ is to
the right of a projection « iff there are projections 7, 8’ and a’such that o = 4.ha'and f = 7.t5.

A term a is called a semi-w-term iff it is composed from 0, pointers, and ordinary variables by
pairing. Semi-w-terms are like w-terms but they may also contain variables other than w but no
projections of these variables.

Let us define a-parts of semi-w-terms. The a-part of the semi-w-term &, if it exists, will be
denoted by a/a. Parts are defined by the induction on the construction of projections:

i aje = a,

-10 -

ii. ifa/o=|b,¢c|thena/ch=banda/at=c,
iii. there are no parts of the term a other then those defined by i. and ii.

Note that if a/a is a part of a, all ancestors f of a are also parts of a, i.e. a/8 is defined. By the
induction on the projections one can easily prove the following theorem.

Part Theorem: If for a semi-w-tcrm a the part a/a exists then

F w=a— wa=ala.

Informally, the Part theorem says that for all values w satisfying the environment equation
w = a the pointer wa selects the part a/a.

The pointer we is a eelf-pointer in the semi-w-term a iffl a/a = wa. The pointer wf occurring in
the w-term a at the position a, i.e. afa = wf points to the right iffl fis to the right of a. A
pointer wa is admissible in the w-term a iff there is a number n such that we is admissible in a
with n jumps. The admissibility with jumps is defined as follows.

i. If ais a part of &, i.e. a/« exists then wa is admissible in & with O jumps.

ii. Ifa/a = wp and the pointer w34 such that #’ £ € is admissible in a with n jumps then the
pointer waf' is admissible in & with n+1 jumps.

A pointer not admissible in a w-term is a dangling pointer. Figure 3 shows the graph representa-
tion of the following w-terms

a) ||[wht, whth, wt], 0, wtt],
b) [w 0],
¢) [llwh, whhh| wth], wt].

The pointer w.h.t in the term a) points to the right, wh.t.h is a self-pointer, and wh.h.t.h is an
admissible pointer with two jumps selecting 0. The pointer w in the head of b) and the pointer
wh in the part .h.h.h of ¢) point to their ancestors. Terms b) and ¢) thus contain loops. Pointers
wh.h.h.t and wth both point to the same non-existent part of the term ¢). So they are both
dangling,

The w-term [w, 0] is the empty environment. A w-term a is proper environment iff each pointer
occurricg in a is admissible and it is either a self-pointer or it points to the right. An environ-
ment is either empty or proper. The w-term a) in the figure 3 is a proper environment, the term
b) is empty and the term c) is not an environment because it contains loops, pointers to the left,
and also dangling pointers.

The environment equation for the empty environment w = | w, 0] will be abbreviated as fall. The
equation fall can be never satisfied as we have

I = fail. (1)

The equation fall can be understood as falsehood. The proper environment w, containing only a
sell-pointer, is the most inclusive environment. Its equation w = w is satisfied by any value w,
i.e.

F w=w
Thus w = w can be understood as fruth. Proper environments can be always satisfied , i.e.

F dww=a.
This is an immediate consequence of the Satisfiability theorem (5) proven below.
Although it is true that environments with cyclical pointers are empty, environment equations for
w-terms with left-pointers can still be satisfied. The w-term [wh, w.h] is such an example. It is
equivalent to the environment |wt, w.t]. The reason for excluding pointers to the left will
become obvious once the computation rules for environment contraction are given in section (7).
A w-term [a, b] with a pointer in b leading to a could be then contracted to b by popping the

current frame a leaving a dangling pointer, This phencmenon is well-known from the implemen-
tation of Algol-like languages with pointers. Dangling pointers are not dangerous just because

-11-

they seemingly lead to nowhere. The pointer w.h is still defined, eventhough w = 0. Both equa-
tions w= wh and w= [w.t.t, wt]| can be still satisfied by w = 0 and, say, w= [0, 0] respec-
tively. Dangling pointers are excluded because they destroy the validity of the Environment
theorem on which the computation of R*~Maple is based. The Environment theorem is concerned
with the solution of a system of equations.

Environment Theorem: If a is an environment and b, ¢ are w-terms such that all
pointers occurring in them are admissible in a provided a is proper then we can effectively
find an environment d such that

‘_ w-..—.a&b=cﬂw=d.
Moreover, if d is a proper environment then all pointers admissible in a are admissible in d.

The Environment theorem says that a proper solution d is a refinement of a. The proof of the
Environment theorem includes a presentation of an algorithm for finding the environment d
together with the proof of termination and of correctness. The proof is quite lengthy and techni-
cal. We shall just present the algorithm below and refer the interested reader to the paper [12]
under preparation.

Had we allowed w-terms with dangling pointers as environments, we would not be able to find a
single w-term d solving the system

F w=[wth wt]& v=|wtt, wt] » w=d.

Any solution with a pair as a tail part will have to be of the form d = [w.t.t, wt.t, wt.t]. This
w-term excludes the value [0, 0] satisfying the left-hand-side. The only way to include [0, 0] in a
single w-term is to have a self-pointer d = [a, w.t| with a being either O or a self-pointer. This
would include the value [0, 0, 0, 0] which fails the left-hand-side.

Before we can give the Environment solution algorithm we have to define the notion of replace-
ment of parts of semi-w-terms. Let us denote by a<a:=b> the term obtained by the replace-
ment of the part a of the semi-w-term a by the term b. The replacement is defined as follows,

i. a<e=b> = b,
ii. Ifa/aisa pair then
a<ah:=b> = a<a:=[b, a/at|>
a<a.t:=b> = a<a:=|b/ah,b|>
We have the following theorem.
Replacement Theorem: For any semi-w-term a with an a part
F a/a=b— a=a<a=b>. (2)

The Replacement theorem is proven by the induction on a.
Environment Solution Algorithm: To solve the system
F w=a&b=ceow=d
consider the following cases.

i. The environment a is empty, or one of the terms b and ¢ is 0 and the other a pair, or the
terms b and c are pointers in the ancestor relation. Set d = | w, 0].

ii. The equation b == ¢ is of the form 0 = 0 or wa = wa. Set d = a.

ili. The equation b = ¢ is of the form [b;, b;] = |e;, €,]. Solve the system of equations
F w=a&by=c+uwv=d
}— w=d'&b1=c1ﬂw=d.

iv. The equation b = ¢ is of the form wa = c. If ¢ = wf we can assume after possibly revers-
ing the equation that §is to the right of a. There are three subcases all yielding an auxiliary
environment d’.

=10~

a) The pointer wa contains a jump or a/a points to the right, i.e. a = aja, and
a/a), = wy for some projections @, az, ¥ ¥ a. Solve the system

w=a&wya,=c+o w=d.
b) The pointer wa is a self-pointer, i.e. a/a = wa. If ¢ is a pair [¢,, €;] then solve the
system
l w=a<o=[wah, wat]> & [wah, wat] =[e;, ¢;] =+ w=d"
Otherwise, if ¢ = 0 set d'= a<a:=0> else ¢ is a pointer and set d'= a.
¢) a/a must be 0 or a pair. Solve
F w=a&ala=cw w=d.
If d'is a proper environment and ¢ = wfsetd = d'<a:=wf>. Set d = d’ otherwise.
Consider the following system:
F w=1[[]0, whht] 0 wt], wt| & whh=wt e w=d.
The solution obtained by the environment algorithm is
d=|[[wt, 0, wt], 0, wt.t]
The two environments are shown in the figure 4.

We now prove some technical theorems concerned with environments. The theorems are neces-
sary for the proofs of computation rules of Rt*-Maple. Readers interested only in the computation
of R*-Maple and not in its soundness can skip the rest of the section.

Copy Theorem: If a is a proper environment such that a/a = wf, a 5 J and a/pf exists
then b = a<o:=a/f> is a proper environment and

|_ w=b+—~w=a. (3)
Proof: We can show by induction on the number of jumps that every pointer admissible in a is
admissible in b (with one less jump if the pointer jumps through «). All pointers occurring in b
occur in a so they are admissible in a and also in b, All pointers in the part b/a = a /8 point to

the right, the other pointers in b occur in a so they are either self-pointers or point to the right.
Thus b is a proper environment.

Now we prove the formula (3). (—) Assume w = b. By the Part theorem we have
a/a=uwf=Db/f=a/p.

The Replacement theorem applies and we have & = b and thus also w = a. (+) Assume w = a.
We have

a/a=uf=a/p
So again by the Replacement theorem we have 8 = b and w = b.

Self-pointer Theorem: If x is a variable not occurring in the semi-w-term a, wa is a self-
pointer, i.e. a/a = wa, and if b is the semi-w-term obtained from a by replacing all
pointers wa in & by x then

F Ixw=Db~ w=a. (4)
Proof: (=) Assume w = b. By the Part theorem we have wa = x. By the Equality theorem of

the predicate calculus w = a. («) Because & = b{x:==wa} this implication is a Substitution
axiom of predicate calculus,

Satisflability Theorem: For a proper environment a we can find a semi-w-term b with no
pointers and containing variables z,, z,, * -, z, (n20) such that

F 323z -3z, w=b e~ w=a. (5)

Note that we have

s 13=

F v=b— w=a.
If we substitute b for w we obtain
F b= b{w:=b} - b = a{uw=b}.
And since b does not contain the variable w we have
} b = a{w=b}
by modus ponens. Thus the term b solves the environment equation w = a. The (+) part of the

theorem (5) says that any solution of the equation will have to be obtained by a substitution for
the variables in b. In this sense the term b is the most general term solving the equation w = a.

The proof of the Satisfiability theorem is by induction on the number of occurrences of pointers in
a which do not occur also as self-pointers. If all pointers in & directly point to self-pointers then
we obtain the term b by repeatedly applying the Self-pointer theorem, replacing the self-pointers
by the variables z;, z,, etc. If there is a pointer in a which does not occur also as a self-pointer
then we select the rightmost occurrence a/a = wf. The part a/f must exist, and it cannot con-
tain pointers which are not also self-pointers, so a’= a<a:=a/f> is by the Copy theorem a
proper environment such that

}_w=a¢-w=a’ (6)

and a' contains one less occurrence of a pointer which is not also a self-pointer. Induction
hypothesis applies and because of (6) the term b also satisfies (5).

The most general solution of the environment equation
w=|[wt, 0, wt], 0, wt.t]
for the second environment from the figure 4 is
w=1{[|0,], 0,0, %], 0, 2]
It is obtained by a two-fold application of the Copy theorem to remove the two pointers to the
right in ¢ and by a single use of the Self-pointer theorem to replace the only self-pointer of ¢ by
2.
Admissibllity Lemma: If b is a w-term and a is a proper environment then every pointer
wa is admissible in a with n jumps iff w.t.a is admissible in the w-term [b, a(w.t)] with n
jumps iff whe is admissible in [a(w.h), b] with n jumps.
The lemma has a straightforward, although tedious proof, by the induction on the number of
jumps.
Extension Lemma: If a is a proper environment and b a w-term with all its pointers
admissible in a then both terms ¢ = [wh, a(wt)] and d = [b(w.t), a(w.t)] are proper

environments. If b is a proper environment then the term ¢ = [b(w.h), a(w.t)] is a proper
environment.

Proof: By the admissibility lemma all pointers occurring in the tails of ¢, d, and e are admissible,
Moreover, all of them have the form w.tf. If ¢/.ta = w.tf then a/a = wf. Consequently, either
a = for fis to the right of «. Thus also all pointers in the tail of e are either self-pointers or
they point to the right. The same holds of tails of d, and e. Similar argument can be used with
the head of e. Thus e is a proper environment if b is. The only pointer in the head of ¢ is a self-
pointer which is admissible with 0 jumps. Thus e is a proper environment. All pointers in the
head of d have the form d/.ha = w.t§ so they point to the right. We then also have b/a = wg
with wf admissible in a so by the Admissibility lemma, w.tf is admissible in d. Thus also d is a
proper environment.

Contractlon Lemma: If ¢ = [b, a'] is a proper environment then there is a proper
environment a such that a’= a(w.t) and

F w=a— 3Izz=b{w=|z, w]}. (7)

- 14 -

Proof: Every pointer occurring in a' must be of the form w.ta so the w-term a is obtained from
a' by replacing all pointers w.ta by wa. By the Admissibility lemma all pointers occurring in a
are admissible. By a similar reasoning as in the proof of the Extension lemma we show that they
either point to the right or are self-pointers. Thus & is a proper environment.

The formula (7) is proven as the Satisfiability theorem was. We first eliminate from |b, a(w.t)]
all pointers of the form w.ho which do not oceur also as self-pointers by a repeated application of
Copy theorem. We obtain a new term b’such that

} w=[b,a(wt)] «» w=[b, a(wt)]

holds. Next we apply the Self-pointer theorem repeatedly to remove all self-pointers of the form
w.ha from the term b’ We obtain a new semi-w-term b” containing variables z;, - -, z, with all
pointers only of the form wta. Thus b”= d{w:=w.t} for a certain semi-w-term d. We have
from the Self-pointer theorem

F w=[d{w=ut}, a(wt)] = w=|b, a(wt)].
This can be weakenned to
F w=|d{w=uwt}, a(wt)] - wh=b.

Let us substitute wr=|d, w] in the last formula. After the simplifications [d, w]h = d and
{d, w].t = w we obtain

F (d, w]=[d,a] = d=b{w=[d, w]}.

The theorem (7) follows after the simplification of the antecedent and an application of Iz
introduction right.

8. Computation of Formulas of TP.

Before a formula of TP can be computed in R*-Maple it has to be converted into a suitable w-
formula. In this section we show how to convert formulas and predicate definitions of TP into the
format of R*-Maple. The rewriting rules presented in the next section assume that the computed
w-formulas have a certain format, We also require predicate definitions to be in a special form.
The formulas of R-Maple are w-formulas with all identities of the form of environment equations
w= a for an environment a. We present below an algorithm for the conversion of TP formulas
into w-formulas which replaces all identities by equivalent environment equations. This will be
done by a repeated use of the Environment theorem (section 5).

In section (3) we said that we require the predicates of R¥-Maple to be in the form |- P(w) < A
or in an implicational form. These forms are not directly suitable for computations in R*-Maple.
The reader is invited to inspect the computation rule for predicate calls (7.5) given in the next
section and note that we would be forced to perform the substitution A(w.h). There are two
objections to the substitution A (u.h). One of the reasons for the introduction of environments is
to eliminate substitutions which are costly to implement. Here the substitution would occur in the
pure code for the body of P. The second objection is that the substitution A (w.h) would destroy
the environment equations as the only form of identities allowed in the formulas of R*-Maple.
These difficulties are overcome by requiring that the predicate definitions are of the form

F w# 0& P(wh)«~ A

|- w# 0& Plwh) « A

F w# 0& P(wh)— A
where the formula A is a formula of R*-Maple with an additional restriction that the pointer w.t
pever occurs in arguments to predicate calls and occurs only as a self-pointer in environment
equations. This restriction is necessary to guarantee that the body of a predicate accesses only its

arguments. The conversion algorithm given below takes care of this. The predicate Len presented
in section (3) will have the following form:

F w3# 0& Len(wh) « w=[[0,0], wt]V
w=[|[whhh, whhit], [0, whtt]], wt] & Len(whht whit)

= 15=

The same formula can be abbreviated as

| ws 0& Len(wh) « case wh of
[0,0]:
[[# 2], [0, y]] : Len(z, y).

We now describe the conversion of TP formulas into the formulas of RT-Maple. Let us assume
that we have eliminated all implications, equivalences, universal quantifiers, one-variable existen-
tial quantifiers as well as all introduced function symbols (including .h and .t) from the formula A
we want to convert into a w-formula. We assume that the formula A does not contain the vari-
able w. We first construct a semi-w-term a = [a’, 2] where g is a variable not occurring in A. If
A is closed we set &' = z otherwise we form the term a’ from the complete list x;x,, - - -, x,
(n>0) of all free variables of A. The term a’is constructed in such a way that it contains all
variables x, exactly once and nothing else. The shape of a'is not important. For a single variable
z the term a’ will have to be z. For three variables z, y, z we can group them either |z, y, z| or
[[z y], z], or even [z z, y]. The important thing is that every variable x, has a uniquely deter-
mined location «, in &, i.e. 8/a, = x,. The conversion algorithm replaces first all variables x, by
their corresponding pointers wa, Then it replaces existential quantifiers by one-variable
quantifiers and finally it brings all identities into the form of environment equations.

We define a sequence of formulas A, 0<i<m such that Ay = A, A, is a formula of Rt-Maple
and for all ¢ the following holds:
Fw=a& A w=a&A, (1)
Note that (1) holds for i = 0. For i such that 0<{<n we set
Ay =Alx=wal.
Since | w = a — w.a, = x, we have by the Equality theorem of predicate calculus
Fw=a&A ~uwv=a&A,.
This implies (1) for all i< n. The formmula A, does not contain variables other than w free.

For i>n we obtain A, from A, by the elimination of one existential quantifier Ix. If A, does
not contain existential quantifiers then it is a w-formula and we set j = 1. Otherwise, the formula
A, is obtained from A, by a replacement of its subformula 3xC by the equivalent formula in
the right-hand-side of

F 3xC « IC{w=w.t}{x:=w.h}.

As the consequence we have | A, <« A, this is enough to satisfy (1) for n<i<j. We select the
subformula IxC in such a way that it is not contained in another existential quantifier Iy. This
restriction is necessary to prevent a later substitution

@D {w=wt} = I(wt)D
when Iy will be eliminated. The substitution obviously leads outside of w-formulas.

For i>j we obtain A4, from A, by transforming one identity into an environment equation. If
A, contains only environment equations then it is a formula of R*¥-Maple and we set m = i, Oth-
erwise, the formula A, is obtained from the formula A, by choosing one occurrence of an iden-
tity ¢ = d which is not an environment equation and replacing it by the environment equation
w = e. If the occurrence of identity ¢ = d is within the scope of p existential quantifiers (p>0)
the environment e is found as the solution of the environment system

v=b, &e=dew=e
where the proper environment b, is called the main environment for the scope of depth p.

Main environments are defined as follows. The environment for the scope 0: b = b, is obtained
from the semi w-term a by the replacement of all variables x, by wa, and s by w.t. Since the only
location of x, is a/a, the term b is a proper environment. Note that b contains only self-pointers
if A is open and is [w.t, w.t] otherwise. We set

- 16 -

b,y = [wh, by(uwt)].

By the Extension lemma (section 5) all environments b, are proper. It is an easy proof by induc-
tion on p to ascertain that all pointers in A, occurring at the depth p are admissible in b, in 0
jumps. Consequently, all pointers in the identity ¢ = d are also admissible and the Environment
theorem (section 5) applies. Thus the environment e can be effectively found. To show that (1) is
satisfied for ++1 we have to demonstrate

F w=a& A, swv=a&A,.

This is done by induction on depth p of the identity ¢ = d. If the identity occurs at the depth 0
we observe that |- w = & — w = by. Thus under the assumption w = a we have

c=d~w=by&e=d—ww=e

so we can use the Equality theorem of predicate calculus. If the identity e = d occurs within p+1
existential quantifiers in the subformula 3C of A, then we use the theorem (7.5) proven in the
next section to obtain

It can be readily seen that under the assumption w = a we are allowed to perform the replace-
ment

ce=desuv=>b,,&ec=d—wv=e.

From (1) we have for the w-convert A, of the formula A
F w=a&A,— A (2)

Let us now turn to predicate definitions. Every predicate P we want to use in R™-Maple has to
be brought into the required form as given at the beginning of the section. We show here just the
general form (with the equivalence). The special forms (with implications) are converted similarly.
We first bring the predicate P into the form

i— P(lexm "';xn}”A

for n>0 with all variables x, distinct and occurring in A. Next we use the above procedure to
convert the formula A into the R*-Maple form. We start with the semi-w-term a = |a’, 5] where
% is a variable not occurring in A and a'=x, for n= lora’'= [x,, ' - -, x,] otherwise, From
(1) we have

F w=|a, 2] & P(a') = w=|a, 2] & A,
For the main environment b we have

F w=[a,g)]=b=[az]&wvh=a"& wt=1.
Using this we obtain

F w=[wh, wt]& Plwh) v=b& A,

Finally we observe that | w5 0« w=|wh, wt] so we have the predicate P in the desired
computational form

F w#0& P(wh)«~ w=D>b&A,,.

To start the computation of the formula A we compute w= b & A, by repeatedly applying
rewriting rules of R¥-Maple to it (see section 7 for the rules).

Rewriting rules are always theorems of an extension of TP and have the following forms:

I B—C (3)
LI B—C (4)
L B+ C. (5)

where B and C are w-formulas. Suppose that a subformula B of the w-formula D is the left-
hand-side of a rewriting rule. We say that the rewriting rule is applicable to that occurrence of B
if it is of the form (5), or it is of the form (3) and the occurrence of B is in the positive context, or

17

the rewriting rule is of the form (4) and the occurrence of B is in the negative context. A w-
formula E is obtained from the w-formula D by one computation step if the leftmost occurrence in
D of a subformula with an applicable rule is replaced by the right-hand-side of the rule yielding
E. The rewriting rules of R¥-Maple are chosen in such a way that at most one rule applies to a
given subformula. From the definition of applicability we have

- E— D.
A computation sequence for a w-formula Dy is a finite sequence of w-formulas

DOJ Dl’ D?} = Rty Dt
such that for each i (0<i<k) the formula Dy, is obtained from the formula D, by one computa-
tion step, and the formula Dy is the first formula in the sequence such that D, = w = ¢ for an
environment ¢ or D, = w= ¢ V D' for a proper environment ¢ and a w-formula D', If there is no
computation sequence for Dy it is because there is either no rewriting rule applicable to a formula
D, or the sequence can be arbitrarily extended without ever encountering a formula of the form

suitable for D;. In the first case we say that the computation blocks, in the latter case the compu-
tation is said to be non-lerminating.

We always have |- D, — D, for 0<i<k Consequently we have |- D; — D, and also

F w=rc— D, (6)
If D, = w=c then we say that the computation sequence is deferministic. Otherwise the for-
mula D, contains the backirack formula D' Any value satisfying the environment equation
w = ¢ satisfies the initial formula D,. If the computation sequence is deterministic and ¢ is empty
we say that the computation failed. Unless the rewriting rules are complete a failed computation
means only that we did not succeed in finding a value w satisfying the formula D,. In R*-Maple
we basically use the negation as failure and a depth-first search so it can very well happen, that
R*-Maple, just as Prolog, can miss a solution.

If a computation (both deterministic or with a backtrack formula) terminates with the proper
environment ¢ then by (6) any solution of the environment equation w = ¢ satisfies the starting
formula. Additional solutions can be obtained in the non-deterministic case by realising that
| D'— D, and by using the backtrack formula D’ as the starting formula of a new computation
sequence,

Let us now relate the computations to the w-convert A, of a formula A. We start the computa-
tion with Dy = w= b & A,. When we terminate with a proper environment w = ¢ we have

i_ v=c—+w=D>b&A,.

It is a relatively straight-forward proof by the induction on the length of the computation
sequence (utilizing the rewriting rules as given in the next section) to show that the environment
¢ is a refinement of the main environment b. Thus every pointer admissible in b is admissible in
¢. We use the Satisfiability theorem (5.5) to find a semi-w-term d without pointers such that

F w=d—-w=c¢c.

Since the variables free in d do not occur in ¢ we can always rename the variables in d so they
are disjoint with the variables x, and 2. We have

F w=d—-w=b&A,.
Observing that d is a refinement of b and that

F w=d— wa,=d/o, & wt=d/t
we replace every pointer wa in b by d/a yielding a new semi-w-term e such that

F w=d—-w=1e&A,. {7)
Next we observe that
e = a{x;=d/e,, ‘', xp=d/a,, z:=d/.t}.

Performing the above substitution in the formula (2) yields

s 3B

Fw=e& A, — Afx;;=d/a;, ' -, xpy=d/a,}. (8)
Note that ¢ does not occur in A. Combining (7) and (8) together yields
F w=d—= Al{x;;=d/a;, ', x;=d/a,}. (9)

Since neither d nor A contain the variable w we substitute d for w in (9) and use the modus
ponens to obtain

F A{xp=d/a;, ', xgx=d/a,}. (10)

We can say that we have found an answer to the query A. The substitution for the variables x,
is called the answer substitution in [6].

7. Rewriting Rules of R*-Maple.

We now present the rewriting rules of R*-Maple. For simplicity’s sake we are concerned purely
with sequential computations in the style of Prolog. Our computations with negations are basi-
cally computations with negation as finite failure.

A formula of TP, after the conversion into an equivalent w-formula, is of the form w=a & C
where a is a proper environment and C a w-formula, We have seen that the computation agent
always selects the leftmost application of a rewriting rule. As a consequence, the environment
will traverse the formula in the depth-first left-to-right order. As the computation goes on. the
initial environment is modified, extended, and contracted. The rules are chosen in such a way that
the resulting w-terms will be always environments. The rewriting rules will, however, distinguish
between empty and proper environments,

The first group of rewriting rules will carry the proper environment w = & down the computed
formula. There is one rule for each possible form of the w-formula C.

The cases when C is a disjunction or conjunction are straightforward and the reader can easily
convince himself that they are indeed theorems of TP.

Rewriting Rules for ConjJunctions and Disjunctions: If a is a proper environment and
A and B w-formulas then

F v=a& (A&B)«~ (v=8a&A)&B (1)
Fwu=a& (AVB)~ (v=a&A)V(wv=a&B) (2)

When a proper environment reaches a pegation it will go inside the negation unchanged. The rule
for negation relies on the tautology } B& ~ A« -~ (B & A) & B.
Rewriting Rules for Negations: If a is a proper environment and A a w-formula then
Fv=a&~Ae-(v=a&A)kwv=a. (3)

When the computation reaches an existential quantifier then the environment w = a will be
extended to w = [wh, a(w.t)]. The old environment a is pushed further down in the stack.
This means that every pointer wa in a will have to be renamed to w.t.a. This is achieved by the
substitution a(w.t). Although substitutions are expensive to implement on computers, this substi-
tution comes for free when environments are implemented by pointers. Figure 5 illustrates the
extension with environment graphs.

Rewrlting Rules for Existential Quantifiers: If a is a proper environment and A a w-
formula then b = [wh, a(w.t)] is a proper environment and

Fw=a&3dA I (w=Db&A) (4)
Proof: By the Extension lemma (section (5)) the term b is a proper environment. Preparatory to
the demonstration of (4) we observe that

(v =b){w=|x, w]} « (v=[wh, a(ws)]){w=[x, v]} <
[x, v] = |x, a{w=wt}{w=|x, v]}| » v=a{w=v} & w=a.

We have

19«

v=a&3A ~ w=a&Ix A{lw=|x, v]} «» Ix(v=a & A{w=|x, v]}) ~»
Ix((w = b){w=[x, v]} & A{lw=]|x, w]}) » I(v=Db & A).
This terminates the proof of (4). The last two cases are concerned with atomic formulas.

When the environment w = a reaches the predicate call P(b) we construct from the pure code
for P(b) the w-term b(w.t). The environment a is extended by pushing the term b(w.t) on the
top of stack yielding the environment [b(w.t), a(w.t)]. The situation is shown in the figure 6.

Rewriting Rules for Predicate Calls: If a is a proper environment, b a w-term with all
pointers admissible in & and the predicate P has the definition } w# 0& P(wh) < A
where A is a w-formula then the w-term ¢ = |b(w.t), a{w.t)] is a proper environment and

F w=a&Pb)eI(w=c&A). (5)
If the predicate P is defined by | w# 0& P(wbh)+~ Aor|} w# 0& P(wh)— A then
we use as rewriting rules the theorems obtained from (5) by replacing + by « or — .

Proof: The Extension lemma (section 5) shows that ¢ is a proper environment. Preparatory to
the demonstration of (5) we observe that

(w=e){w=]x, u]} = (u=[b(wst), s(wt)]){w=[x, u]} = [x, u] = [b, a]
P(wh){w=[x, w]} ~ P(x).
We have
v=a& Pb)suv=a&Ix(x=>b& P(x)) «
Ix(x =b & w=a & P(x)) ~ Ix([x, w| = |b, a] & P(x)) ~
Ix((w = ¢){w=|x, v]} & P(wh){w=|x, w]}) ~ I(w=1¢c & P(wh)) «
J(w=-c & A).

The last step is justified by observing that ¢ £ 0. The counterparts of (5) for the cases when the
predicate P is not defined by an equivalence are proven just like (5).

All identities occurring in a computed formula are environment equations. Thus it is enough to
consider the following case.

Rewrlting Rules for Identitles: If a is a proper environment and b is an environment
then we can eflectively find an environment ¢ such that

Fw:a&w=b+‘uﬁ=c. (6)
Moreover, if b and ¢ are proper then every pointer admissible in & and b is admissible in ¢.

Proof: If b is empty then it suffices to set ¢ = [w, 0]. If b is proper then by the Extension
lemma (section 5) the w-term [b(w.h), a(wt)] is a proper environment with pointers w.h and
w.t admissible with O jumps. The Environment theorem (section 5) applies and we can apply the
environment solution algorithm to solve the system

 w=|b(wh), a(wt)] & wh=wte w=d.

Let us call this formula A. By the substitution theorem of the predicate calculus we have
} A{w=|w, w]} and thus also |- A(w, w). This last formula is

F lw,w=|bal & w=w+ |v vw] =d(w w).

After some simplification we have
Fwu=a&w=>be |u w]=d(vw w)

If d is empty then
lw, w]=d(w, w)=|v, v]=|[w, w], 0] » w=]uw,0].

Thus it suffices to take ¢ empty. Otherwise, d must have pointers w.h and w.t admissible, so it is
of the form d = [d,, d,| where d, = w.t and d; = e(w.t) for a proper environment ¢. We have

(w,w]=d(w, w)=|w, v]=|wc]=sw=ec

We see that ¢ solves the equation (6). The method for finding the environment e will have to be

=20«

implemented in the software or hardware interpreter of R¥-Maple.

We have seen how environments travel down in the computed formula until they reach an
environment equation. The new environment d does not have to be necessarily proper, it can be
also empty, Moreover, it does not have to be the case that the new environment equation w = d
is in the context w= d & D which would allow further downward computation. Alternatively,
the environment equation can be in the context w=d & D, but d may be empty, i.e. we have
the situation fail & D. When the computation cannot proceed further down, it starts to ascend
in the computed formula. Ascent starts with the empty environment equation fall occurring in
any context, a preper equation w= a occurring in the context of negations and existential
quantifiers, or a proper equation in the context w = a V C. The formula C in the last case is a
backtracking formula. The second case, when a proper equation travels backwards by itself is the
deterministic case when a single term has been computed.

We shall first give rules for the backward movement of failure fall through enclosing connectives
and quantifiers. The reader can convince himself that the rewriting rules are theorems of TP.

Rewrliting Rules for Fallure: If A is a w-formula and a a proper environment then

I fall &£ A « fall (7)
I faliVA « A (8)
F ~fall& u=ae w=a (9)
F 3 fall « fall (10)

The reader will note that the rule for negation (3) guarantees that there will be a proper environ-
ment equation after = . So the rule (9) is sufficient.

The proper environment equation w == a will travel backwards in the deterministic computation
through enclosing negations and existential quantifiers. As soon as it reaches a conjunction it will
start a downward movemcnt in the conjunct. When it reaches a disjunction, it changes into a
backtrack computation.

Rewriting Rules for Determinlstic Computatlon: If a and [b, a(w.t)] are proper
environments then

F ~w=a& w=a « fall (11)
b 3w=|b a(wt)] & w=a. (12)

Proof: The theorem (11) is obvious. By the Contraction lemma every proper environment [b, a'|
has the form [b.a(u.t)| where a is a proper cnvironment. We have

Fw=|b a(wt)] + Ix(w=|b, a{wt)|{w=|x, w]} ~
Ix [x, w] = [b{ur=|x, w]}, a] » w=2a & Ix x = b{w=|x, w|} » w=1a.

The last step is justified by the Contraction lemma.

The rewriting rules (9) and (11) cater to the case when the formula in the negation either fails or
succeeds without changing the environment. We do not supply here any rules for the case when
the environment is changed within a negation = w= a & w=b. This is consistent with the
negation as failure as implemented in R-Maple or with a correctly implemented negation of some
Prolog interpreters such as MU-Prolog.

A proper environment a in the context w = a V C will travel backwards through the enclosing
environments carrying around the backtracking formula C. The backtracking formula will be
amended in the course of its backward travel. There is one case when backtracking is not neces-
sary. This happens in the following computation.

v=a& (AVB)~ (wv=a& A)V(v=a&B)«~
v=aV(w=a&B)
We see that the computation of the formula A in the environment a did not change the environ-

ment, i.e. A is a les! which succeeded. This situation is captured by the following straight-forward
rewriting rule which discards the backtracking formula,

-2] -

Rewriting Rules for Tests: If A is a w-formula and a a proper environment then
Fw=aV(iv=a&A)~ w=a. (13)

The other cases are captured by the following rule.

Rewrlting Rules for Backtracking: If a and [b, a(w.t)] are proper environments and C
is a w-formula for which (13) does not apply then

I (u=aVC)& A~ (u=a2A)V(CLZA) (14)
}F (w=aVC)VA~ w=aV(CVA) (15)
f ~(w=aVC)& w=a« fall (16)
|- 3(w=|b,a(wt)]VC)+~ w=aVIC. (17)

The theorems (14), (15), and (16) are obvious. (17) relies on the easily proven theorem
F 3(AVB)«~ IAVIB
and on the theorem (12).

Consider the situation when an environment reaches a predicate call in the context of an existen-
tial quantifier

I(w = |b, a] & P(c)).
The standard rewriting rules for predicate calls will extend the environment as follows:
13 (w=[c(wt) b(uwt) a(wt)] & A).

Here A is the body of the predicate P. This situation is called ta:l recursion and when the compu-
tation of A results in a new call to a predicate (probably P itself) we will have to extend the
environment again. To prevent such explosion of environments by a nesting of existential
quantifiers we can coalesce the terms b and ¢ into one. This is called tail recursion optimization.

Rewriting Rules for Tail Recursion: If the predicate P is defined by
b ws£0& P(wh) « A where A is a w-formula, and if [b, a] is a proper environment
and c is a w-term with all pointers admissible in [b, a] then

} I(w=|b,a] & P(c)) ~ I(w=|c,a'l & A) (18)
where the new proper environment |c', a'] is obtained by the solution of the system
F w=|b(wh, wtt), wth,a(wt)] & c(wh, wtt)=wth w=|b) ¢, a)

for some w-term b’ The equivalence « in (18) should be replaced by implications if the
predicate P is defined with implications.

The trick of the rule is to substitute into ¢ parts of the term b yielding the argument of the new
call ¢’ However, the substitution must be done carefully since the w-term b can contain depen-
dencies, i.e. pointers to itsell of the form w.ha. These dependencies must be incorporated into ¢’
We leave the proof of this optimization rule to the reader.

8. Conclusions and Future Work.

We have formulated in this paper a one-variable version of Theory of Pairs. This version can be
used by itsell as the basis for an automated theorem prover because it simplifies the handling of
variables. We have presented a method of collapsing of a system of equations with many vari-
ables into a single one-variable equation. Moreover, this equation can be represented efficiently
within the computer. The single equation can be used as an environment in computing full predi-
cate logic programs. We have presented and proven sound the rules of computations dealing with
the sequential computation and with the negation as failure. The language R*-Maple has basi-
cally the computation power of a Prolog with a good negation (and occurs check) although it has
a greater expressive power. Moreover, we do not require the full completion for the computation
of negated predicates.

We are presently preparing a paper proving the Environment theorem and dealing also with the
solution of inequalities. Environments amended by inequalities will be then incorporated into a set

-20.

of rewriting rules which will have a stronger form of negation than the presently allowed one. We
intend also to present connectives of the case type to improve the readability of logic programs
by syntaz sugering. We also plan to present computation rules for lazy evaluation. This will allow
the computation with functions other than data structures within the R¥-Maple framework.

We are working on the use of environments within a complete proof system having the classical
negation. This system will be equivalent to TP without induction but with
w= 0V drly w= |z, y| as a new axiom. Such a system is complete in the sense that every for-
mula valid in every (including non-standard) model is provable. On the other hand, it is
equivalent to the elementary arithmetic of Abraham Robinson Isee for instance 4], and so it is
incomplete in the sense of GBdel, i.e. there are unprovable formulas true in the standard interpre-
tation. Obviously, such unprovable formulas cannot be valid in some non-standard models. The
environments will take care of the axioms for identity as well as the axioms for pairs. Although
this system could be a good basis for an automated theorem prover, we have a good reason to
believe that a classicaly complete system cannot be efficiently used in a computational way where
we have to execute deep chains of recursive predicate calls. The best we can probably hope for
computationally is a TP system with an intuitionistic negation.

The author would like to thank Karl Abrahamson and Jamie Andrews for long series of discus-
sions and suggestions about environments.

[1] Clocksin W., Mellish C., Programming in Prolog, Springer Berlin 1981.

2] Colmerauer A., Prolog and Infinite Trees; in Logic Programming (eds Clark, Tarnlund),
Academic Press 1982,

[3] van Emden, M., Lloyd J., A Logical Reconstruction of Prolog II; 2nd International Logic
Programming Conference 1984, Uppsala Sweden.

[4] Kleene S., Introduction to Meta-Mathematics; North Holland 1952.
5] LLoyd J., Foundations of Logic Programming; Springer Berlin 1984.

[6] LLoyd J., Topor R., Making Prolog More Expressive; Journal of Logic Programming 1984
no. 3.

[7] Naish L., An Introduction to MU-Prolog, Tech. Report Dept. of Comp. Science University of
Melbourne, 1982.

[8] Shoenfield J., Mathematical Logic, Addison-Wesley, 1967.

[9] Voda P., Yu B., RF-Maple: A logic Programming Language with Functions, Types and Con-
currency, Proceedings of the International Conference on Fifth Generation Computer Sys-
tems 1984, Tokyo November 1984.

[10] Veoda P., Theory of Pairs, Part I. Provably Recursive Functions; Technical Report of Dept.
Comp. Science UBC, Vancouver December 1984.

[11) Voda P., A View of Programming Languages as Symbiosis of Meaning and Computations;
New Generation Computing, Tokyo, February 1985.

[12] Voda P., Solving Multiple Equations and Inequalities with Environments. Under prepara-
tion.

Figure 1

w=|wt, wt] w= [0, wt]
Figure 2
9] o) * ® O *
w= [0, 0] w=[[whh, wht] 0, wtt]
Figure 3

w=[[wht, whth wt], 0, wtt] w=|w, 0] w=][{[wh, whhh] wth] wt]

Figure 4

w=[[[0, whhit], 0, wt], wt] w=[[wt, 0, w.t], O,w.t.t]
Figure 5
$ 3
v p—
w=a w=[wh, a(wt)]
Figure 6

b w=a w= |b(wt), a(wt)]

