
Hierarchical Arc Consistency:
Exploiting Structured Domains in
Constraint Satisfaction Problems

by

Alan K. Mackworth, Jan A. Muldert and William S. Havens

Technical Report 85-7 A

t Current Address:

June 1985

L ::i bor :itory for Compu tation:.11 Vis ion
D partment of Computer Science

University of British Columbia.
Vancouver , B.C.

Canada VOT l\V5

Depar tment of Mathematics, Statistics and Computer Science
D::i lhou s-ie University
Halifax, Nova Scotia
Canada B3H 4H8

-2-

ABSTRACT

Constraint satisfaction problems can be solved by network con

sist.ency algorithms that eliminate local inconsistencies before construct

ing global solutions. \Ve describe a new algorithm that is useful when

the variable domains can be structured hierarchically into recursive sub

sets with common properties and common relationships to subsets of the

domain values for related variables. The algorithm, RAC, uses a tech

nique known as hierarchical arc consistency. Its performa.nce is

analyzed theoretically and the conditions under which it is an improve

ment are outlined. The use of RAC in a program for understanding

sketch maps, Mapsee3, is briefly discussed and experimental results con

sistent with the theory are reported.

Key Words: constraint satisfaction problems, network consistency

algorithms, arc consistency, map understanding, computational vision

• ..
I

-3-

1. Introduction

In this paper we show how to exploit aspects of the intrinsic struc

ture of variable domains when using a network consistency algorithm to

solve a constraint satisfaction problem. A prerequisite brief review of

the basic concepts is presented first. For a fuller explanation the reader

should consult the original material (Waltz, 1972; Montanari, 1G7 4;

Mackworth, 1977a; Freuder, 1978; Haralick and Elliott, 1Q80; Mack

worth and Freuder, 1984).

I. I Constraint Satisfaction and Network Consistency

A constraint satisfaction problem (CSP) is defined as follows: Given

a set of n variables each with an associated domain and a set of con

straining relations each involving a subset of the variables, find all pos

sible n.-tuples such that each n-tuple is an instantiation of the n vari

ables satisfying the relations. In this paper we shall only consider CSP's

in which the relations are unary and binary. This restriction is not

necessary for consistency techniques to be applied (Mackworth, 19iib;

Freuder, 1978).

Since graph colouring is an NP-complete CSP it is most unlikely

that a polynomial time a.lgorithm exists for solving general CSP's.

Accordingly, the class of network consistency algorithms was invented.

These algorithms do not necessarily solve a CSP completely but they

eliminate, once and for all, local inconsistencies that cannot participate

in any global solutions. These inconsistencies would otherwise have

been repeatedly discovered by any backtracking solution. One role for

network consistency algorithms is as a preprocessor for subsequent

backtrack search, or they can be interspersed with case analysis or sim

ple domain splitting to recover the complete set of solutions to the CSP.

A k-consistency algorithm removes all inconsistencies involving all sub

sets of size k of the n variables. For example, the node, arc and path

consistency algorithms detect and eliminate inconsistencies involving

k = I, 2 and 3 variables, respectively. Freuder (1978) generalized

those algorithms for },: = I, ... ,n thereby producing the complete set of

solutions to the CSP.

1.2 Node and Arc Consistency

The algorithms below are reprinted from a previous paper (!\foe k

worth, 1977a) which should be consulted for a full explanation. The

domain of variable x; is D.- , P.- is the unary predicate on x.- and P.-i is

the binary constraint predicate on the variables x; and xi correspond

ing to an edge between vertices vi and v; in the constraint graph G.

The edge between i and j is replaced by the directed arc from i to j and

the arc from j to i as they are treated separately by the algorithms. Let

the number of variables be n, the number of binary constraints be e

-5-

(the number of edges in the constraint graph) and the edge degree of v,
be d, . The time unit used for our complexity measures is the applica

tion of a unary or binary predicate. To simplify the description of the

complexity results, in this section we assume that each Di is the same

initial size, a.

The node consistency algorithm NC-1 simply ensures that all

values in Di satisfy P1 by removing those that do not.

procedure NC (i):
D.. - D, n { x I Pi (x)}

begin
for i - 1 until n do NC{ i)

end

NC-I: the node consistency algorithm

An arc consistency algorithm is a symbolic relaxation algorithm

that establishes the strong arc consistency condition on each arc of G.

The arc (i, J} from vi to v j is strongly arc consistent iff:

and

1 - vi is node consistent

2 - For each value in Di there is at least one value in

D; that is compatible with it (such that Pii 1s

satisfied) .

-6-

The algorithm AC-3 (Mackworth, 1977a) 1s an efficient arc con

sistency algorithm:

procedure REVISE ((i ,j)):
begin

DELETE - false
for each x l D; do

If there is no y l D j such that P;; (X , y) then
begin

delete X from Di
DELETE - true

end;
return DELETE

end

I begin
2 for i - 1 until n do NC(i)
3 Q-{(i,j)l(i,j)£ arcs(G), i i:-i}
4 whlle Q not empty do
5 begin
6 select and delete any arc (/.: , m) from Q
7 if REVISE ((k ,m)) then Q-Q U{(i ,k) I (i ,k)£ arcs (G),

ii:-k, ii:-m}
8 end
9end

AC-3: an arc consistency algorithm

-7-

REVISE ((i , y)) makes arc (i, j) strongly arc consistent. AC-3

applies RE\-lSE to each arc of G in turn. It only reconsiders arc (i: j)

if it has potentially become inconsistent again because of a deletion

from D; .

Mackworth and Freuder (lg84) showed that the time complexity of

AC-3 is at best 0(a 2e) and at worst 0(a 3e). This somewhat surprising

worst case behavior for a relaxation algorithm, linear in the number of

constraints, confirms the empirical results of using AC-3 in several

experimental systems (Waltz, 1972; Mackworth, 1077b; Havens and

Mackworth, 1983). The time complexity does depend heavily on the

domain size, a. As more realistic problems are tackled the domain size

increases substantially. Accordingly we were motivated to look for ways

of coping with larger domain sizes.

-8-

2. Intensional Domains and Predicates

The arc consistency algorithm described above, AC-3, assumes that

the domains are supplied extensionally as unstructured sets, listing the

finite number of members. Consistency techniques can, however, be

applied to CSP's in which the domains do not satisfy that assumption.

For example, the domains could be supplied intensionally as descrip

tions. For any infinite domain this is clearly a necessity. A good exam

ple of this is space planning (Mackworth, 1977a).

In a two-dimensional facility or VLSI layout problem the domains

(possible placements of the objects) might be given intensionally as sub

sets o(R 2 by describing their boundaries. The constraints, similarly,

would be described as intensional predicates. The only necessary ade

quacy requirement on domain and constraint representa.tions is that

they allow one to carry out the domain restriction operation of REVISE.

The version of REVISE used by AC-3 assumes an extensional, unstruc

tured set representation of Di. A more abstract definition of REVISE

that does not make that assumption is as follows:

1 procedure REVISE-A((i ,j)):
2 begin

.g.

3 A+- {x I (xEA.-) A [(3y)(yEAi) A Pii(x,y)]};
.i DELETE +-(ACAi);
5 if DELETE then Ai -+--A;
6 return DELETE
i end

\Ve are now usmg A.- to represent the dynamic value of the

currently permissible domain of variable t'i, which monotonically

decreases in size. The set of domains, {Ai}, will have to be initialized

by the following statement to be inserted into AC-3 between steps 1

and 2:

1.5 for i +-1 untll n do Ai -+-- Di

and similarly NC(i) becomes :

procedure NC(i):

Line 3 of REVISE-A is the domain restriction operation. If the

proper subset test of line 4 sets DELETE to true then the restricted

domain A replaces the old value of A; and REVISE-A returns true to

indicate that a domain restriction has occurred. If AC-3 uses REVISE

A instead of REVISE then it is suitable for this more general class of

CSP's, provided, of course, that the domain and predicate representa-

-10-

tions used by NC and REVISE-A allow the domain restrictions.

Incidentally, in the language of relational database theory (Maier, 1983)

the domain restriction of REVISE-A is a semi-join. However, in gen

eral, relational data base theory makes the extensional assumption, both

for the domains and the relations.

3. Hierarchical Domains

Another technique for handling large domains is to exploit their

internal structure. Indeed for many real world problems the domain

elements often cluster into sets with common properties and relations.

Those sets, in turn, group to form higher level sets. This clustering or

categorization into "natural kinds" can be represented as a

specialization/generalization (is-a) hierarchy (Havens and Mackworth,

1983). The main theme of this paper is the exploitation of the structure

provided when the domains can be naturally represented as specializa

tion hierarchies. Each domain can be interpreted as a domain graph

with each vertex corresponding to a set of elements and each arc the

subset relation between sets. Domain graphs are, of course, quite dis

tinct from the constraint graphs introduced earlier.

In general a domain graph is not a strict tree since a set may be a

direct subset of more than one superset; the general characterization of

the resultant "tangled" hierarchy is as a directed acyclic graph

-11-

-representing the lattice induced by the partial ordering of the subset

relation. For the purposes of this paper we shall assume that the

domain hierarchies are singly-rooted strict trees. Each subset has only

one direct superset and the subsets of a set are mutually exclusive and

exhaustive. Without further loss of generality, we shall assume that the

trees are binary: the root represents the entire domain, each non

singleton set has two subsets, and the leaves are the singleton sets, one

for each domain element.

The aim is to make REVISE, the inner loop of AC-3, considerably

more efficient by reducing the number of predicate evaluations it must

perform. The currently active elements of a domain can be represented

by a set of tree vertices that dominate those members. REVISE can

then retain, delete, or further examine entire subsets of the domain with

one or two predicate evaluations.

For the sake of relative simplicity in the notation, we shall assume

that each domain D.- can be structured as a balanced binary tree of

depth m thus all the domains have the same number of elements:

a = 2m . \Ve shall use D.- to represent the original domain for variable

x; and A.- to represent the active subset of D.- for xi at any point in

the symbolic relaxation process. A,- may be implemented as a set of

the active subdomains of Di. The subdomains of Di are {D/'} which

can be arranged as a tree as shown in Figure 1, where an arc indicates

that the su bdomain at the bottom of the arc is a direct subset of the

-u-

subdomain at the top. The notation for Df' indicates that it is on the

k th level of the domain tree for D.- and it is the s th subdomain at that

level.

'·

•

I
I

I I
•

-13-

',.
r·

n(m-2),4
. t

\
\

\

/
I
'

I '

\
\
\

Figure 1. Nomenclature for the domain tree containing subdomains of D ..

The following conditions obtain on the subdomains:

Fork = 1, ... , m

D,k, = D,(k-1)2, U D,(k-1)2,+1
I I I

D,(k-1J2, n D,(k-1)(2,+1) = 0 I I

I D.,00 I= 1

In the algorithm we shall develop, A,., the set of still active elements of

the original Di , ts the union of a number of mutually exclusive sets,

D/''. At all times, A,. CD.-.

I
Suppose A· =UA·" I I

J•

f/

and A·= U A~
J r J

-15-

\\/e call each !::,} an abstract label of Ai. Each abstract label is identi-

cal to a D.-ke for some k and s. In the algorithm, Ai is represented by

the set {A/} .

We must now efficiently implement the domain restriction step of

RE\1SE-A:

3 A+- {xi (xfA;) /\ [(3y)(yfAj) /\ Pij(x,y)]

Informally, what we wish to do is test each abstract label A/ of

A.-, using a generalized version of REVISE. If there is a A/ such that

every domain element in A.-9 is compatible with some m A I then A/1

survives unchanged m A, . If not, then check to see if there 1s a A I

such that some element in A/I is compatible with some element in A I,

If not then A/ is simply removed from A.-. If there is such a A I then

A/ is replaced in A.- by its two child subdomains. When all Ai9 sub-

sets of Ai have been processed this way (including the new ones gen-

erated in the course of processing) then the arc (i ,j) is arc consistent.

" re generalize the definition of arc consistency as follows. An

abstract label pair (~;9, ~ I) is strongly hierarchically arc consistent iff

the set of leaf labels below A/ is strongly arc consistent with the set of

leaf labels below A I, The arc (i, j) is strongly hierarchically arc con-

sistent iff each abstract label of Ai is strongly hierarchically arc con-

sistent with some abstract label of Ai .

4. Hierarchical Predicates

In order to implement a generalized REVISE we need two new sets

of predicates derived from P.-i (x, y). These are predicates on the

abstract labels D/' needed to carry out the operations described above.

We define A.-}1(D/8, D jt) to be true iff for all elements belonging to D/'

there is an element of Dl compatible with it. Analogously we define

S.-~.l(D/",D }') to be true iff for some element belonging to D/' there is an

element of D l compatible with it.

-17-

\Ve can compute A.-~-1 inductively on k and / as follows:

Suppose

and

D . -{b It -1 '> ••• '>m} } - t - ' .. , , ..,

then let D.-°' ={a,} and D/t = {bt}

[2] A·Q'(D ·o, Dit) = 4 .Q,l-l(D·o, D,(l-t)(2t-t)) v A ,Q,l-l(D·o, D -(l-1)2t)
IJ I l J • IJ I ' J IJ I I J

for I = 1, 2, ···, m

[3] A,k.l(D·k, Di')= 4..(k-l)l(D · (k-1)(2,-1) Di') I\ A,(k-l)l(D·(*-1)2, Dit)
IJ I l J • IJ I l J / \ I] I l J

fork = I 2 ··· m
' ' '

-18-

and / = 1, 2, ... , m

Suppose, as a simple example, that:

D :1° { b b } :; = 1, 2

\Ve are given the predicate P 12(a, , bt) as a relation matrix.

-19-

b1b2b3b4

a 1 1 1 1 0

a2 1 1 0 0
P12: a3 0 0 1 0

a 4 0 0 I 0

Then we compute A i°l by pa1rw1se ORing together pairs of

columns of A 1~
0 using equation [2].

01 1 0 I 1 1 I
A 12 : g !

and, then we compute A 1'q from A 1~
1

1

1
Q'> 1

A tf: 1
1

Using equation [3], A 1~
0 results from pairwise ~1\JDing t.he rows of

A 00
12 ·

Similarly, A N results from pairwise ANDing the rows of A 1°z1 .

A 11 (1 0)
12 : 0 1

Parenthetically, for those readers somewhat bemused by the thicket of

formal notation, let us remind you what this means. For example, the

entry in the first row of the second column of AN is a 0 which indi

cates it is not true that for all elements of D l° = { a 0, a 1} there is an

element of D,} 1 such that Pij is satisfied.

A 1k2 is computed by ANDing together the rows of A i°l .

Finally , we obtain A ?z° , A 1~
1 and A 1~

2 by ANDing the rows of A 1\
0 ,

11 d 1,, · A 12 an A. 1:f , respectively.

A Pl: (0 0 0 0)

A ;:y : (0 0)

Ai2l:(l)

-21-

'vVe also define a set of predicates Si~-1 where Si~-1 (D/",Dt) is true iff

for some mPmber of abstract label D/' there is a member of abstract

label D jt compatible with it.

We can also compute S,-}1 inductively on k and I from the base

predicate Pi; as follows:

where

[4]

[5] s.Q'(D ·o, D!t) = s .Q(t-tl(D ·o, D .(t-1)(2t-1J) v s.Q(t-1J(D·o, D .(1-1J!!t)
IJ I ' } I} I ' J I} I ' J

for l = 1, .. ·,m

and

[6] s.k.'(D·/,:' D !tJ = s. (k-1J1(D·l*-1)(2, -1) D !'J v 8 .1e.-11(D· (J:-1)2, D !'J
IJ I ' J IJ I ! J IJ I ! J

In other words the hierarchy of Si; predicates is computed by collapsing

Pii: ORing together pairs of rows or pairs of columns.

For our example :

-22-

S 11 (1 1)
12 : 0 1

-s?l:(1110)

-23-

'\Ve distinguish the arc (i j) from the arc (j ,i). Observe that:

p .. =(P ..)T
JI IJ

and so A .9°=(A · 9°) T JI IJ

and 5.QO=(S ..)T
IJ IJ

However A }7 is, in general, not equal to (Ai~·') T. It is always the case,

however, that S}f = (S;~•1) T. In our example:

whereas

I
1

00 1
A21 = ~

A 11 (1 0)
21 = 0 0

-24-

5. Hierarchical Arc Consistency

\Ve are now in a position to define a generalized hierarchical arc

consistency algorithm to be known as HAC. HAC uses the general

relaxation structure of AC-3 but uses REVISE-HAC as an instantiation

of REVISE-A.

In particular step 3 of REVISE-A is:

where .6.i = U.6./ and .6. · = UA !' q , , J

as described earlier.

Step 3 can be implemented using the hierarchical predicates A. and

S, defined above. Ai is represented by a list of its abstract labels A/I

and similarly for Ai .

1

2

3

4

5
6

7

8

9

10

11

12

13

14

15
16

17
18

19

20

21

22

23
24
:::?5

26

27

28

:::?9

30
31

32
33

34
35
36
37
38

39

-25-

procedure REVISE-RAC ((i, j)):
begin

DELETE - false
Q 1- .6.-
.6- -0 I

whlle Q 1 not empty do
begin
select and delete an element D/' Crom Q 1

Q2-.6;
FOUl\.'D - falae
whlle Q 2 not empty and not FOUND do

begin
select and delete an element D p from Q 2

if A.-; (D/',D}') then
begin

.6i -.6i U{D/'}
FOUND - true
end

end
if not FOUND then

begin
DELETE +- true

if k >O then

begin

Q2-.6j
while Q 2 not empty and not FOUND do

begin
select and delete an element D} from Q 2
lf s .k.l(D ,k, D It) then

IJ I I J

begin
Q 1 +-Q l u { D.- (k -1)(2, -1) ,Di(/,; -1)2,}

FOUND - true
end

end
end

end
end

return DELETE
end

REVISE-HAC: domain restriction for hierarchical arc consistency

procedure NC (i):
Ai -Di n{x IPi (x)}

1 begin

2 for i - 1 until n do NC (i)
3 Q-{(i,i)l(i,j)€arcs(G), i~j}
4 whlle Q not empty do
5 begin
6 select and delete any arc (k , m) from Q
7 ir REVISE-HAC ((k, m)) • \:
8 then Q-Q U{(i ,k)l(i ,k)€ arcs (G),i ~k ,i ~m}
9 end

10 end

HAG: the hierarchical arc consistency algorithm

REVISE-HAC implements the generalized arc consistency algo

rithm introduced in Section 3. In particular after the application of

REVISE-RAC to arc (i ,j) that arc will be strongly hierarchically arc

consistent in the sense defined earlier. The loop defined in lines 6-3i

tests each abstract label in Ai to see if it is hierarchically consistent. It

does that by testing the label D; from Ai against the abstract labels in

Ai. The loop in lines 11-rn looks for a label D jt in Ai such that Aii.

If every label below D/' is compatible with some label below D l then

Ai; is true. In that case, D/'' survives unchanged in A,. If not and

D/" is not a leaf (k >O) then lines 20-36 look for a label in Ai such

that some label below D/' is compatible with some label below D jt in

which case Sii is true. If such a label is found then the label D/1 is

replaced by its two successors in Q 1. They must be tested similarly on

-27-

A.-i and S.-i before this invocation of REVISE-HAC returns. It is clear

that A.- starts as the empty set and adds members only at line 16 when

A.-i (D/1,DP) is true and so when REVISE-HAC returns all members of

Ai are strongly arc consistent with some abstract label in A j, and so

the algorithm is correct. Since the domain trees are non-cyclic and the

queues Q I and Q 2 decrease monotonically in size (except at line 28

,vbere a finite total number of elements can be added to Q 2) the pro

cedure must terminate. The symbolic relaxation algorithm that has the

form of the modified AC-3 but uses REvlSE-HAC is known as HAC.

G. Complexity Re.mils

The algorithm AC-3 reqmres time linear in the numbrr of con

straints. As we remarked earlier it is at best 0(a 2e) and at worst

O(a 3e). The unit of time used is the evaluation of a, binary predicate

on a pair of domain elements. \Ve should not expect HAC to improve

on the worst case performance of AC-3. Indeed, since it relics on a

hierarchical organization or the domain one could perversely strncture

the domains in the worst possible way to ensure worst case bchavio11r

worse than AC-3.

\Ve first consider the time required to compute the hierarchical

predicates A;~-1 and S.-~.t defined by the recursive equations (1) - (6).

Computation of these predicates is a preprocessing step req11ired by

-28-

Il.\C, if they are not already provided for an application. For ea.ch arc

(i ,j) we must compute Ai~·' and Si~·' where k ,I = 0,1,2,-·· m. Consider

that Ai~! is represented by a relation matrLx, with 2m -le X _2m -I entries.

The total number of entries for A.-,; is then

m m E E 2m-/r 2m-l

1r - o 1-0

m m
= E E 2" 29

p - o q -=O

Each entry requires 2 predicate evaluations to compute except the "J?m

entries in A 00 which require 1. Similarly for S.-~•1 so far arc (i ,j) the

number of evaluations is:

,..._, 14X22m

Since a = 2m this is 14a 2. Let e be the number of edges in the

constraint graph. There are 2e arcs and so the preprocessing computa

tion requires 8(ea 2), but this can be done once and for all for an appli

cation domain before any particular CSP is tackled.

The best case for HAC clearly occurs when the network is already

strongly hierarchically arc consistent. In that case it merely has to

check that condition which requires exactly 2e predicate evaluations of

A17m between the root node of each domain tree and the root node of

its neighbouring domain tree. So HAC is 0(e).

Our analysis of the HAC worst case behaviour parallels the analysis

in Mackworth and Freuder (1984) so it will not be spelled cut in detail.

Let di be the edge degree of vertex i in the constraint graph and let n

be the number of vertices (variables). The worst case would occur when

there is no solution but that fact is discovered in the slowest possible

way. For each variable :ti REVISE-HAC can minimally replace one of

the abstract labels by its two successors. \Vhen that occurs (di -1) arcs

are, at worst, 2.dded to HA.C's arc queue Q. The domain size is the

number of leav~ .in the domain tree, a = 2m; therefore, that replace

ment can occuT 2a-2 times since there are that many arcs in the

domain tree.

-30-

The number of arcs that are, in total, then removed from Q is the

number of arcs originally on Q plus the number added to Q as a result

of RE\1SE-HAC modifying a domain:

n
2e + I: (2a -2)(d.- -1) ,-1

= 2e + (2a -2)(2e -n)

For each arc (i ,j) the number or predicate evaluations is at worst

the product or the current sizes or the two abstract label sets. Notice

that there are a leaf vertices in the domain tree and a -1 interior nodes,

for a total or (2a -1). Since no abstract label can be active at the same

time as any or its descend an ts or ancestors the number or abstract

labels active cannot exceed a . Accordingly the number or predicate

evaluations is, at most,

a 2[2e + (2a -2)(2e -n)]

We may, without loss of generality, assume that e>n-1 (Mack

worth and Freuder, 1984), and so the time complexity or RAC is

0(a 3 e). Since the complexity of HAC is asymptotically 4a 3 e com

pared to AC-3's 2 a 3 e , the intuition that the worst case for RAC is

worse than the worst case for AC-3 is confirmed and quantified: it may

be twice as slow. Another way to approach this is to realize that we

~
I
I

r

-31-

have essentially doubled the domain size from a to (2a -1) by adding

the interior nodes so the number of possible deletions from the domain

has doubled. However, since only a labels can be active at once the

number of predicate evaluations is still only a 2 (not (2a)2 = 4a 2) to

test consistency at any iteration and so it is only twice as slow, not

eight times! Notice that of the a active labels (a -1) each require up to

a predicate evaluations of Aij and the label that is deleted or replaced

by its two successors requires up to 4a: Aij and Sii on the label itself

and Aij on its two successors. Since we assume a >> 1 we have

counted that as a 2 evaluations.

A more reasonable analysis of HAC would consider those applica

tions in which the domains are appropriately structured. A way to

characterize this is to require that there is only one abstract label active

in each node's domain at anytime, that is, l.i:li I< 1. Intuitively, one can

think then of the variable's domain being progressively refined and

reduced by the evidence of its related neighbouring variables. The spe

cialization hierarchy is then being used as a true discrimination tree. If

this is the case then a similar analysis proceeds as follows. If REVISE

RAC returns true on (i ,j) it has minimally replaced an abstract label

by its successor. That can occur m = log2a times for that domain.

Each time it occurs it adds (di -1) arcs to Q. The total number of arcs

removed from Q is

-32-

n

2e + E (di -l)loga
i=l

= 2e + (2e -n)loga

For each arc removed an application or REVISE-RAC is needed so

the number of calls to REVISE-RAC is 2e + (2e -n)loga. We distin

guish now between the successful calls to REVISE-RAC, on which a

domain revision occurs and REVISE-RAC returns true, and the unsuc

cessful calls on which no change occurs and REVISE-RAC returns false.

On the successful calls, REVISE-RAC tests Aif on the single bbel in

Ai a.nd the label in Ai . That fails. S.-; succeeds. The label in A.- is

replaced by its two successors: on one or them Aii succeeds and on the

other Aii fails and Si; fails. In all, 5 predicate evaluations are required.

On the unsuccessful calls, only one evaluation or Ai; is required. The

number of successful calls to REVISE-HAC is simply the number of pos

sible deletions in a domain (loga) times the number of domains (n).

The number or unsuccessful calls to REVISE-RAC is the number of

calls, 2e + (2e -n)loga, minus the number of successful calls, n Ioga.

So the number of predicate evaluations is:

5(n log a) + 1[2e +(2e -n)loga -n loga]

= 2e + (2e +3n)loga

-33-

And so, the worst case complexity of HAC under the specified condition

is O((e +~n)loga), a remarkable improvement over AC-3's O(a 3e).
2

7. Applications.

HAC has been implemented and used in Mapsee3 (Mulder, 1985), a

schema-based system for interpreting hand drawn sketch maps. A brief

note here on how it is used should be useful. Schema instances

represent scene objects and correspond to what we have called variables

here. As a schema instance acquires more evidence as to its nature by

acquiring a new component, for example, it can specialize its own

interpretation; this action corresponds to moving down the domain tree.

Moreover, instances that it is already related to may then be further

specialized and so on. A geographical system (Geo-system) has the spe

cialization hierarchy shown in Figure 2(a) while a shoreline (Shore) has

the specialization hierarchy of Figure 2(b).

Island

Landmass

\
•

Mainland Lake

(a)

-34-

Walerbody

\
\
Ocean Lakeshore

(b)

Figure 2. (a) Geo-system specialization hierarchy
(b) Shore specialization hierarchy

level 2

level 1

Coastline
level 0

.35.

Suppose a Geo-system completely surrounds a closed Shore in the

map then we have the relation P.-; shown in Table 1.

Table I

p ..
I] Lakeshore Coastline

Island I 0

Mainland I 0
Lake 0 I
Ocean 0 I

Table 1: P.-,- for Geo-system Surrounds Shor.e

In other words either the Geo-system is an Island or a Mainland and the

Shore a Lakeshore or the Geo-system is a Lake or an Ocean and the

Shore a Coastline. From this relation we can compute the hierarchical

predicates Ai;-1 and Si~-1 using equations (1) - (6). They are shown in

Table 2. (Note that sso = A.J0
).

-36-

Table 2

A,Qo
IJ Lakeshore Coastline

Island 1 0
Mainland 1 0
Lake 0 1
Ocean 0 1

A• ,o Lakeshore Coastline
I)

Landmass l 0
Waterbody O 1

S- 1° Lakeshore Coastline I)

Landmass 1 0
Waterbody O 1

A·P Shore ,,
Landmass 1
Waterbody 1

-37-

S,P Shore IJ

Landmass 1
\Vaterbody 1

A• io Lakeshore Coastline IJ

Geo-system O 0

s. io Lakesh 1.1re Coastline IJ

Geo-system 1 1

Geo-system 0

S-~1 Shore IJ

Geo-system 1

Table 2: Ai; and Si; for Geo-system Surrounded by Shore

-38-

Experimentally, for this application, Mulder (1985) has found that

HAC is more efficient than AC-3. HAC is faster than AC-3 in Mapsee3

by a factor or about 2, although here the domains are still very small:

a varies from 2 to 8. Mulder also reports experimental evidence that

the number or iterations does depend linearly on the number of con-
1

strain ts.

For reasons discussed earlier we expect HAC to be most useful

when the domains can be naturally described hierarchically; that is,

when the interior nodes of the domain tree are natural kinds. There

must be non-trivial relationships between the total set of elements

represented at an internal node of one domain tree and the total set of

elements at an internal node of the neighbouring domain tree. More

over, we expect the advantages of HAC to be more fully realized for

very large domains.

The original edge labelling paradigm in which arc consistency was

invented (Waltz, 1Q72) is an example of such an application. Waltz

essentially used the sets of possible corners as the variable domains with

the edge type being the predicates. Interchanging the role of the

corners and the edges so the variable domains are the edge types and

the set of corners the predicates one can structure the very large

number of edge types (1532) hierarchically (Mackworth, 1977b) and use

.3g.

8. Conclusions

An hierarchical arc consistency algorithm for constraint satisfaction

problems, HAC, has been described that exploits the internal structur

ing of domain values into a hierarchy of subdomains. Complexity
.,.

results show that the algorithm bas demonstrably improved b(' 1: and

worst case performance if the domains obey certain constraints. In that

case HAC is at best 0(e) and at worst 0((e +-2-n)log a) compared to
2

0(a 2 e) and 0(a 3 e) for the previously best known algorithm. Experi-

mental results from the use of the algorithm in a computational vision

system, Mapsee3, are consistent with our analysis.

-40-

9. Acknowledgements

This research was supported by NSERC Operating Grants A9281

and A5502 and the Canadian Institute for Advanced Research. Alan

Mackworth is a Fellow of the Canadian Institute for Advanced

Research. V.le are grateful to May Vink for an heroic job of formatting

the paper.

..

-41-

10. References

Freuder, Eugene C. 1978. Synthesizing constraint expressions. Com

munications ACM 21, 11, pp. Q58-Q66.

Haralick, Robert M. and Elliott, G.L. 1980. Increasing tree search

efficiency for constraint satisfaction problems. Artificial

Intelligence 14, pp. 263-313.

Havens, \Villiam S. and Mackworth, Alan K. 1Q83. Representing

knowledge of the visual world. IEEE Computer 16(10), pp.

90-96.

Mackworth, Alan K. 1977a. Consistency in networks of relations.

Artificial Intelligence, 8(1), pp. 99-118.

Mackworth, Alan K. 1977b. On reading sketch maps. Proceedings of

the International Joint Conference on Artifiticial

Intelligence-5, MIT, Cambridge, :MA., pp. 598-606.

Mackworth, Alan K. 1Q77c. How to see a simple world. Machine

Intelligence, 8, Elcock, E.W. and Michie, D. (Editors), Wiley,

pp. 510-537.

Mackworth, Alan K., and Freuder, Eugene C. 1984. The complexity

of some polynomial network consistency algorithms for

constraint satisfaction problems. Artificial Intelligence, 25(1),

pp. 65-7 4.

Maier, David 1983. The Theory of Relational Databases. Computer

Science Press, Rockville, MD.

Montanari, Ugo 1974. Networks or constraints: fundamental proper

ties and applications in picture processing. Information Sci

ence, 7, pp. 05-132.

Mulder, Jan A. HJ85 . Using Discrimination Graphs to Represent

Visual Knowledge. Ph.D. Thesis (in preparation), Department

of Computer Science, University or British Columbia, Van

couver, Canada.

Waltz, D.E. 1972. Generating semantic descriptions of scenes with

shadows. Technical Report 1vfAC AI-TR-271, :MIT, Cam

bridge, !vL<\..

Figure Captions

Figure 1.

Figure 2.

-43-

Nomenclature for the domain tree containing sub

domains of D;.

(a) Geo-system specialization hierarchy.

(b) Shore specialization hierarchy.

