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ABSTRACT 

Constraint satisfaction problems can be solved by network con

sist.ency algorithms that eliminate local inconsistencies before construct

ing global solutions. \Ve describe a new algorithm that is useful when 

the variable domains can be structured hierarchically into recursive sub

sets with common properties and common relationships to subsets of the 

domain values for related variables. The algorithm, RAC, uses a tech

nique known as hierarchical arc consistency. Its performa.nce is 

analyzed theoretically and the conditions under which it is an improve

ment are outlined. The use of RAC in a program for understanding 

sketch maps, Mapsee3, is briefly discussed and experimental results con

sistent with the theory are reported. 

Key Words: constraint satisfaction problems, network consistency 

algorithms, arc consistency, map understanding, computational vision 
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1. Introduction 

In this paper we show how to exploit aspects of the intrinsic struc

ture of variable domains when using a network consistency algorithm to 

solve a constraint satisfaction problem. A prerequisite brief review of 

the basic concepts is presented first. For a fuller explanation the reader 

should consult the original material (Waltz, 1972; Montanari, 1G7 4; 

Mackworth, 1977a; Freuder, 1978; Haralick and Elliott, 1Q80; Mack

worth and Freuder, 1984). 

I. I Constraint Satisfaction and Network Consistency 

A constraint satisfaction problem (CSP) is defined as follows: Given 

a set of n variables each with an associated domain and a set of con

straining relations each involving a subset of the variables, find all pos

sible n.-tuples such that each n-tuple is an instantiation of the n vari

ables satisfying the relations. In this paper we shall only consider CSP's 

in which the relations are unary and binary. This restriction is not 

necessary for consistency techniques to be applied (Mackworth, 19iib; 

Freuder, 1978). 

Since graph colouring is an NP-complete CSP it is most unlikely 

that a polynomial time a.lgorithm exists for solving general CSP's. 

Accordingly, the class of network consistency algorithms was invented. 

These algorithms do not necessarily solve a CSP completely but they 



eliminate, once and for all, local inconsistencies that cannot participate 

in any global solutions. These inconsistencies would otherwise have 

been repeatedly discovered by any backtracking solution. One role for 

network consistency algorithms is as a preprocessor for subsequent 

backtrack search, or they can be interspersed with case analysis or sim

ple domain splitting to recover the complete set of solutions to the CSP. 

A k-consistency algorithm removes all inconsistencies involving all sub

sets of size k of the n variables. For example, the node, arc and path 

consistency algorithms detect and eliminate inconsistencies involving 

k = I, 2 and 3 variables, respectively. Freuder ( 1978) generalized 

those algorithms for },: = I, ... ,n thereby producing the complete set of 

solutions to the CSP. 

1.2 Node and Arc Consistency 

The algorithms below are reprinted from a previous paper (!\foe k

worth, 1977a) which should be consulted for a full explanation. The 

domain of variable x; is D.- , P.- is the unary predicate on x.- and P.-i is 

the binary constraint predicate on the variables x; and xi correspond

ing to an edge between vertices vi and v; in the constraint graph G. 

The edge between i and j is replaced by the directed arc from i to j and 

the arc from j to i as they are treated separately by the algorithms. Let 

the number of variables be n, the number of binary constraints be e 



-5-

(the number of edges in the constraint graph) and the edge degree of v, 
be d, . The time unit used for our complexity measures is the applica

tion of a unary or binary predicate. To simplify the description of the 

complexity results, in this section we assume that each Di is the same 

initial size, a. 

The node consistency algorithm NC-1 simply ensures that all 

values in Di satisfy P1 by removing those that do not. 

procedure NC (i ): 
D.. - D, n { x I Pi ( x )} 

begin 
for i - 1 until n do NC{ i ) 

end 

NC-I: the node consistency algorithm 

An arc consistency algorithm is a symbolic relaxation algorithm 

that establishes the strong arc consistency condition on each arc of G. 

The arc (i, J} from vi to v j is strongly arc consistent iff: 

and 

1 - vi is node consistent 

2 - For each value in Di there is at least one value in 

D; that is compatible with it (such that Pii 1s 

satisfied) . 
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The algorithm AC-3 (Mackworth, 1977a) 1s an efficient arc con

sistency algorithm: 

procedure REVISE ((i ,j )): 
begin 

DELETE - false 
for each x l D; do 

If there is no y l D j such that P;; ( X , y ) then 
begin 

delete X from Di 
DELETE - true 

end; 
return DELETE 

end 

I begin 
2 for i - 1 until n do NC( i ) 
3 Q-{(i,j)l(i,j)£ arcs(G), i i:-i} 
4 whlle Q not empty do 
5 begin 
6 select and delete any arc ( /.: , m ) from Q 
7 if REVISE ((k ,m )) then Q-Q U{(i ,k) I (i ,k )£ arcs ( G ), 

ii:-k, ii:-m} 
8 end 
9end 

AC-3: an arc consistency algorithm 
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REVISE ( ( i , y ) ) makes arc (i, j) strongly arc consistent. AC-3 

applies RE\-lSE to each arc of G in turn. It only reconsiders arc ( i: j ) 

if it has potentially become inconsistent again because of a deletion 

from D; . 

Mackworth and Freuder (lg84) showed that the time complexity of 

AC-3 is at best 0( a 2e) and at worst 0( a 3e ). This somewhat surprising 

worst case behavior for a relaxation algorithm, linear in the number of 

constraints, confirms the empirical results of using AC-3 in several 

experimental systems (Waltz, 1972; Mackworth, 1077b; Havens and 

Mackworth, 1983). The time complexity does depend heavily on the 

domain size, a. As more realistic problems are tackled the domain size 

increases substantially. Accordingly we were motivated to look for ways 

of coping with larger domain sizes. 
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2. Intensional Domains and Predicates 

The arc consistency algorithm described above, AC-3, assumes that 

the domains are supplied extensionally as unstructured sets, listing the 

finite number of members. Consistency techniques can, however, be 

applied to CSP's in which the domains do not satisfy that assumption. 

For example, the domains could be supplied intensionally as descrip

tions. For any infinite domain this is clearly a necessity. A good exam

ple of this is space planning (Mackworth, 1977a). 

In a two-dimensional facility or VLSI layout problem the domains 

(possible placements of the objects) might be given intensionally as sub

sets o( R 2 by describing their boundaries. The constraints, similarly, 

would be described as intensional predicates. The only necessary ade

quacy requirement on domain and constraint representa.tions is that 

they allow one to carry out the domain restriction operation of REVISE. 

The version of REVISE used by AC-3 assumes an extensional, unstruc

tured set representation of Di. A more abstract definition of REVISE 

that does not make that assumption is as follows: 



1 procedure REVISE-A((i ,j )): 
2 begin 

.g. 

3 A+- {x I (xEA.-) A [(3y)(yEAi) A Pii(x,y)]}; 
.i DELETE +-(ACAi); 
5 if DELETE then Ai -+--A; 
6 return DELETE 
i end 

\Ve are now usmg A.- to represent the dynamic value of the 

currently permissible domain of variable t'i, which monotonically 

decreases in size. The set of domains, {Ai}, will have to be initialized 

by the following statement to be inserted into AC-3 between steps 1 

and 2: 

1.5 for i +-1 untll n do Ai -+-- Di 

and similarly NC(i) becomes : 

procedure NC( i): 

Line 3 of REVISE-A is the domain restriction operation. If the 

proper subset test of line 4 sets DELETE to true then the restricted 

domain A replaces the old value of A; and REVISE-A returns true to 

indicate that a domain restriction has occurred. If AC-3 uses REVISE

A instead of REVISE then it is suitable for this more general class of 

CSP's, provided, of course, that the domain and predicate representa-
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tions used by NC and REVISE-A allow the domain restrictions. 

Incidentally, in the language of relational database theory (Maier, 1983) 

the domain restriction of REVISE-A is a semi-join. However, in gen

eral, relational data base theory makes the extensional assumption, both 

for the domains and the relations. 

3. Hierarchical Domains 

Another technique for handling large domains is to exploit their 

internal structure. Indeed for many real world problems the domain 

elements often cluster into sets with common properties and relations. 

Those sets, in turn, group to form higher level sets. This clustering or 

categorization into "natural kinds" can be represented as a 

specialization/generalization (is-a) hierarchy (Havens and Mackworth, 

1983). The main theme of this paper is the exploitation of the structure 

provided when the domains can be naturally represented as specializa

tion hierarchies. Each domain can be interpreted as a domain graph 

with each vertex corresponding to a set of elements and each arc the 

subset relation between sets. Domain graphs are, of course, quite dis

tinct from the constraint graphs introduced earlier. 

In general a domain graph is not a strict tree since a set may be a 

direct subset of more than one superset; the general characterization of 

the resultant "tangled" hierarchy is as a directed acyclic graph 
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-representing the lattice induced by the partial ordering of the subset 

relation. For the purposes of this paper we shall assume that the 

domain hierarchies are singly-rooted strict trees. Each subset has only 

one direct superset and the subsets of a set are mutually exclusive and 

exhaustive. Without further loss of generality, we shall assume that the 

trees are binary: the root represents the entire domain, each non

singleton set has two subsets, and the leaves are the singleton sets, one 

for each domain element. 

The aim is to make REVISE, the inner loop of AC-3, considerably 

more efficient by reducing the number of predicate evaluations it must 

perform. The currently active elements of a domain can be represented 

by a set of tree vertices that dominate those members. REVISE can 

then retain, delete, or further examine entire subsets of the domain with 

one or two predicate evaluations. 

For the sake of relative simplicity in the notation, we shall assume 

that each domain D.- can be structured as a balanced binary tree of 

depth m thus all the domains have the same number of elements: 

a = 2m . \Ve shall use D.- to represent the original domain for variable 

x; and A.- to represent the active subset of D.- for xi at any point in 

the symbolic relaxation process. A,- may be implemented as a set of 

the active subdomains of Di. The subdomains of Di are {D/'} which 

can be arranged as a tree as shown in Figure 1, where an arc indicates 

that the su bdomain at the bottom of the arc is a direct subset of the 
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subdomain at the top. The notation for Df' indicates that it is on the 

k th level of the domain tree for D.- and it is the s th subdomain at that 

level. 

'· 
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Figure 1. Nomenclature for the domain tree containing subdomains of D .. 



The following conditions obtain on the subdomains: 

Fork = 1, ... , m 

D,k, = D,(k-1)2, U D,(k-1)2,+1 
I I I 

D,(k-1J2, n D,(k-1)(2,+1) = 0 I I 

I D.,00 I= 1 

In the algorithm we shall develop, A,., the set of still active elements of 

the original Di , ts the union of a number of mutually exclusive sets, 

D/''. At all times, A,. CD.-. 

I 
Suppose A· =UA·" I I 

J• 

f/ 

and A·= U A~ 
J r J 
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\\/e call each !::,} an abstract label of Ai. Each abstract label is identi-

cal to a D.-ke for some k and s. In the algorithm, Ai is represented by 

the set {A/} . 

We must now efficiently implement the domain restriction step of 

RE\1SE-A: 

3 A+- {xi (xfA;) /\ [(3y)(yfAj) /\ Pij(x,y)] 

Informally, what we wish to do is test each abstract label A/ of 

A.-, using a generalized version of REVISE. If there is a A/ such that 

every domain element in A.-9 is compatible with some m A I then A/1 

survives unchanged m A, . If not, then check to see if there 1s a A I 

such that some element in A/I is compatible with some element in A I, 

If not then A/ is simply removed from A.-. If there is such a A I then 

A/ is replaced in A.- by its two child subdomains. When all Ai9 sub-

sets of Ai have been processed this way (including the new ones gen-

erated in the course of processing) then the arc (i ,j) is arc consistent. 



" re generalize the definition of arc consistency as follows. An 

abstract label pair (~;9, ~ I) is strongly hierarchically arc consistent iff 

the set of leaf labels below A/ is strongly arc consistent with the set of 

leaf labels below A I, The arc ( i, j) is strongly hierarchically arc con-

sistent iff each abstract label of Ai is strongly hierarchically arc con-

sistent with some abstract label of Ai . 

4. Hierarchical Predicates 

In order to implement a generalized REVISE we need two new sets 

of predicates derived from P.-i ( x, y ). These are predicates on the 

abstract labels D/' needed to carry out the operations described above. 

We define A.-}1( D/8, D jt) to be true iff for all elements belonging to D/' 

there is an element of Dl compatible with it. Analogously we define 

S.-~.l(D/",D }') to be true iff for some element belonging to D/' there is an 

element of D l compatible with it. 
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\Ve can compute A.-~-1 inductively on k and / as follows: 

Suppose 

and 

D . -{b It -1 '> ••• '>m} } - t - ' .. , , .., 

then let D.-°' ={a,} and D/t = {bt} 

[2] A·Q'(D ·o, Dit) = 4 .Q,l-l(D·o, D,(l-t)(2t-t)) v A ,Q,l-l(D·o, D -(l-1)2t) 
IJ I l J • IJ I ' J IJ I I J 

for I = 1, 2, ···, m 

[3] A,k.l(D·k, Di')= 4..(k-l)l(D · (k-1)(2,-1) Di') I\ A,(k-l)l(D·(*-1)2, Dit) 
IJ I l J • IJ I l J / \ I] I l J 

fork = I 2 ··· m 
' ' ' 
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and / = 1, 2, ... , m 

Suppose, as a simple example, that: 

D :1° { b b } :; = 1, 2 

\Ve are given the predicate P 12( a, , bt ) as a relation matrix. 
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b1b2b3b4 

a 1 1 1 1 0 

a2 1 1 0 0 
P12: a3 0 0 1 0 

a 4 0 0 I 0 

Then we compute A i°l by pa1rw1se ORing together pairs of 

columns of A 1~
0 using equation [2]. 

01 1 0 I 1 1 I 
A 12 : g ! 

and, then we compute A 1'q from A 1~
1 

1

1 
Q'> 1 

A tf: 1 
1 

Using equation [3], A 1~
0 results from pairwise ~1\JDing t.he rows of 

A 00 
12 · 



Similarly, A N results from pairwise ANDing the rows of A 1°z1 . 

A 11 (1 0) 
12 : 0 1 

Parenthetically, for those readers somewhat bemused by the thicket of 

formal notation, let us remind you what this means. For example, the 

entry in the first row of the second column of AN is a 0 which indi

cates it is not true that for all elements of D l° = { a 0, a 1} there is an 

element of D,} 1 such that Pij is satisfied. 

A 1k2 is computed by ANDing together the rows of A i°l . 

Finally , we obtain A ?z° , A 1~
1 and A 1~

2 by ANDing the rows of A 1\
0 , 

11 d 1,, · A 12 an A. 1:f , respectively. 

A Pl: (0 0 0 0) 

A ;:y : (0 0) 

Ai2l:(l) 
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'vVe also define a set of predicates Si~-1 where Si~-1 (D/",Dt) is true iff 

for some mPmber of abstract label D/' there is a member of abstract 

label D jt compatible with it. 

We can also compute S,-}1 inductively on k and I from the base 

predicate Pi; as follows: 

where 

[4] 

[5] s.Q'(D ·o, D!t) = s .Q(t-tl(D ·o, D .(t-1)(2t-1J) v s.Q(t-1J(D·o, D .(1-1J!!t) 
IJ I ' } I} I ' J I} I ' J 

for l = 1, .. ·,m 

and 

[6] s.k.'(D·/,:' D !tJ = s. (k-1J1(D·l*-1)(2, -1) D !'J v 8 .1e.-11(D· (J:-1)2, D !'J 
IJ I ' J IJ I ! J IJ I ! J 

In other words the hierarchy of Si; predicates is computed by collapsing 

Pii: ORing together pairs of rows or pairs of columns. 



For our example : 
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S 11 (1 1) 
12 : 0 1 

-s?l:(1110) 



-23-

'\Ve distinguish the arc (i j) from the arc (j ,i ). Observe that: 

p .. =(P .. )T 
JI IJ 

and so A .9°=(A · 9°) T JI IJ 

and 5.QO=(S .. )T 
IJ IJ 

However A }7 is, in general, not equal to (Ai~·') T. It is always the case, 

however, that S}f = (S;~•1) T. In our example: 

whereas 

I 
1 

00 1 
A21 = ~ 

A 11 (1 0) 
21 = 0 0 
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5. Hierarchical Arc Consistency 

\Ve are now in a position to define a generalized hierarchical arc 

consistency algorithm to be known as HAC. HAC uses the general 

relaxation structure of AC-3 but uses REVISE-HAC as an instantiation 

of REVISE-A. 

In particular step 3 of REVISE-A is: 

where .6.i = U.6./ and .6. · = UA !' q , , J 

as described earlier. 

Step 3 can be implemented using the hierarchical predicates A. and 

S, defined above. Ai is represented by a list of its abstract labels A/I 

and similarly for Ai . 



1 

2 

3 

4 

5 
6 

7 

8 

9 

10 

11 

12 

13 

14 

15 
16 

17 
18 

19 

20 

21 

22 

23 
24 
:::?5 

26 

27 

28 

:::?9 

30 
31 

32 
33 

34 
35 
36 
37 
38 

39 
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procedure REVISE-RAC (( i, j )): 
begin 

DELETE - false 
Q 1- .6.-
.6- -0 I 

whlle Q 1 not empty do 
begin 
select and delete an element D/' Crom Q 1 

Q2-.6; 
FOUl\.'D - falae 
whlle Q 2 not empty and not FOUND do 

begin 
select and delete an element D p from Q 2 

if A.-; (D/',D}') then 
begin 

.6i -.6i U{D/'} 
FOUND - true 
end 

end 
if not FOUND then 

begin 
DELETE +- true 

if k >O then 

begin 

Q2-.6j 
while Q 2 not empty and not FOUND do 

begin 
select and delete an element D} from Q 2 
lf s .k.l(D ,k, D It) then 

IJ I I J 

begin 
Q 1 +-Q l u { D.- (k -1)(2, -1) ,Di(/,; -1)2,} 

FOUND - true 
end 

end 
end 

end 
end 

return DELETE 
end 

REVISE-HAC: domain restriction for hierarchical arc consistency 



procedure NC ( i ): 
Ai -Di n{x IPi (x)} 

1 begin 

2 for i - 1 until n do NC (i ) 
3 Q-{(i,i)l(i,j)€arcs(G), i~j} 
4 whlle Q not empty do 
5 begin 
6 select and delete any arc ( k , m ) from Q 
7 ir REVISE-HAC ((k, m)) • \: 
8 then Q-Q U{(i ,k )l(i ,k )€ arcs ( G ),i ~k ,i ~m} 
9 end 

10 end 

HAG: the hierarchical arc consistency algorithm 

REVISE-HAC implements the generalized arc consistency algo

rithm introduced in Section 3. In particular after the application of 

REVISE-RAC to arc (i ,j) that arc will be strongly hierarchically arc 

consistent in the sense defined earlier. The loop defined in lines 6-3i 

tests each abstract label in Ai to see if it is hierarchically consistent. It 

does that by testing the label D; from Ai against the abstract labels in 

Ai. The loop in lines 11-rn looks for a label D jt in Ai such that Aii. 

If every label below D/' is compatible with some label below D l then 

Ai; is true. In that case, D/'' survives unchanged in A,. If not and 

D/" is not a leaf (k >O) then lines 20-36 look for a label in Ai such 

that some label below D/' is compatible with some label below D jt in 

which case Sii is true. If such a label is found then the label D/1 is 

replaced by its two successors in Q 1. They must be tested similarly on 
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A.-i and S.-i before this invocation of REVISE-HAC returns. It is clear 

that A.- starts as the empty set and adds members only at line 16 when 

A.-i (D/1,DP) is true and so when REVISE-HAC returns all members of 

Ai are strongly arc consistent with some abstract label in A j, and so 

the algorithm is correct. Since the domain trees are non-cyclic and the 

queues Q I and Q 2 decrease monotonically in size ( except at line 28 

,vbere a finite total number of elements can be added to Q 2) the pro

cedure must terminate. The symbolic relaxation algorithm that has the 

form of the modified AC-3 but uses REvlSE-HAC is known as HAC. 

G. Complexity Re.mils 

The algorithm AC-3 reqmres time linear in the numbrr of con

straints. As we remarked earlier it is at best 0( a 2e) and at worst 

O(a 3e ). The unit of time used is the evaluation of a, binary predicate 

on a pair of domain elements. \Ve should not expect HAC to improve 

on the worst case performance of AC-3. Indeed, since it relics on a 

hierarchical organization or the domain one could perversely strncture 

the domains in the worst possible way to ensure worst case bchavio11r 

worse than AC-3. 

\Ve first consider the time required to compute the hierarchical 

predicates A;~-1 and S.-~.t defined by the recursive equations (1) - (6). 

Computation of these predicates is a preprocessing step req11ired by 
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Il.\C, if they are not already provided for an application. For ea.ch arc 

(i ,j) we must compute Ai~·' and Si~·' where k ,I = 0,1,2,-·· m. Consider 

that Ai~! is represented by a relation matrLx, with 2m -le X _2m -I entries. 

The total number of entries for A.-,; is then 

m m E E 2m-/r 2m-l 

1r - o 1-0 

m m 
= E E 2" 29 

p - o q -=O 

Each entry requires 2 predicate evaluations to compute except the "J?m 

entries in A 00 which require 1. Similarly for S.-~•1 so far arc ( i ,j ) the 

number of evaluations is: 



,..._, 14X22m 

Since a = 2m this is 14a 2. Let e be the number of edges in the 

constraint graph. There are 2e arcs and so the preprocessing computa

tion requires 8( ea 2), but this can be done once and for all for an appli

cation domain before any particular CSP is tackled. 

The best case for HAC clearly occurs when the network is already 

strongly hierarchically arc consistent. In that case it merely has to 

check that condition which requires exactly 2e predicate evaluations of 

A17m between the root node of each domain tree and the root node of 

its neighbouring domain tree. So HAC is 0( e ). 

Our analysis of the HAC worst case behaviour parallels the analysis 

in Mackworth and Freuder (1984) so it will not be spelled cut in detail. 

Let di be the edge degree of vertex i in the constraint graph and let n 

be the number of vertices (variables). The worst case would occur when 

there is no solution but that fact is discovered in the slowest possible 

way. For each variable :ti REVISE-HAC can minimally replace one of 

the abstract labels by its two successors. \Vhen that occurs ( di -1) arcs 

are, at worst, 2.dded to HA.C's arc queue Q. The domain size is the 

number of leav~ .in the domain tree, a = 2m; therefore, that replace

ment can occuT 2a-2 times since there are that many arcs in the 

domain tree. 
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The number of arcs that are, in total, then removed from Q is the 

number of arcs originally on Q plus the number added to Q as a result 

of RE\1SE-HAC modifying a domain: 

n 
2e + I: (2a -2)( d.- -1) ,-1 

= 2e + (2a -2)(2e -n) 

For each arc ( i ,j) the number or predicate evaluations is at worst 

the product or the current sizes or the two abstract label sets. Notice 

that there are a leaf vertices in the domain tree and a -1 interior nodes, 

for a total or (2a -1). Since no abstract label can be active at the same 

time as any or its descend an ts or ancestors the number or abstract 

labels active cannot exceed a . Accordingly the number or predicate 

evaluations is, at most, 

a 2[2e + (2a -2)(2e -n )] 

We may, without loss of generality, assume that e>n-1 (Mack

worth and Freuder, 1984), and so the time complexity or RAC is 

0( a 3 e ). Since the complexity of HAC is asymptotically 4a 3 e com

pared to AC-3's 2 a 3 e , the intuition that the worst case for RAC is 

worse than the worst case for AC-3 is confirmed and quantified: it may 

be twice as slow. Another way to approach this is to realize that we 

~ 
I 
I 

r 
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have essentially doubled the domain size from a to (2a -1) by adding 

the interior nodes so the number of possible deletions from the domain 

has doubled. However, since only a labels can be active at once the 

number of predicate evaluations is still only a 2 (not (2a )2 = 4a 2) to 

test consistency at any iteration and so it is only twice as slow, not 

eight times! Notice that of the a active labels ( a -1) each require up to 

a predicate evaluations of Aij and the label that is deleted or replaced 

by its two successors requires up to 4a: Aij and Sii on the label itself 

and Aij on its two successors. Since we assume a >> 1 we have 

counted that as a 2 evaluations. 

A more reasonable analysis of HAC would consider those applica

tions in which the domains are appropriately structured. A way to 

characterize this is to require that there is only one abstract label active 

in each node's domain at anytime, that is, l.i:li I< 1. Intuitively, one can 

think then of the variable's domain being progressively refined and 

reduced by the evidence of its related neighbouring variables. The spe

cialization hierarchy is then being used as a true discrimination tree. If 

this is the case then a similar analysis proceeds as follows. If REVISE

RAC returns true on ( i ,j) it has minimally replaced an abstract label 

by its successor. That can occur m = log2a times for that domain. 

Each time it occurs it adds ( di -1) arcs to Q. The total number of arcs 

removed from Q is 
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n 

2e + E ( di -l)loga 
i=l 

= 2e + (2e -n )loga 

For each arc removed an application or REVISE-RAC is needed so 

the number of calls to REVISE-RAC is 2e + (2e -n )loga. We distin

guish now between the successful calls to REVISE-RAC, on which a 

domain revision occurs and REVISE-RAC returns true, and the unsuc

cessful calls on which no change occurs and REVISE-RAC returns false. 

On the successful calls, REVISE-RAC tests Aif on the single bbel in 

Ai a.nd the label in Ai . That fails. S.-; succeeds. The label in A.- is 

replaced by its two successors: on one or them Aii succeeds and on the 

other Aii fails and Si; fails. In all, 5 predicate evaluations are required. 

On the unsuccessful calls, only one evaluation or Ai; is required. The 

number of successful calls to REVISE-HAC is simply the number of pos

sible deletions in a domain (loga) times the number of domains ( n ). 

The number or unsuccessful calls to REVISE-RAC is the number of 

calls, 2e + (2e -n )loga, minus the number of successful calls, n Ioga. 

So the number of predicate evaluations is: 

5( n log a) + 1[2e +(2e -n )loga -n loga] 

= 2e + (2e +3n )loga 
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And so, the worst case complexity of HAC under the specified condition 

is O((e +~n )loga ), a remarkable improvement over AC-3's O(a 3e ). 
2 

7. Applications. 

HAC has been implemented and used in Mapsee3 (Mulder, 1985), a 

schema-based system for interpreting hand drawn sketch maps. A brief 

note here on how it is used should be useful. Schema instances 

represent scene objects and correspond to what we have called variables 

here. As a schema instance acquires more evidence as to its nature by 

acquiring a new component, for example, it can specialize its own 

interpretation; this action corresponds to moving down the domain tree. 

Moreover, instances that it is already related to may then be further 

specialized and so on. A geographical system (Geo-system) has the spe

cialization hierarchy shown in Figure 2(a) while a shoreline (Shore) has 

the specialization hierarchy of Figure 2( b ). 



Island 

Landmass 

\ 
• 

Mainland Lake 

(a) 
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Walerbody 

\ 
\ 
Ocean Lakeshore 

(b) 

Figure 2. (a) Geo-system specialization hierarchy 
(b) Shore specialization hierarchy 

level 2 

level 1 

Coastline 
level 0 
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Suppose a Geo-system completely surrounds a closed Shore in the 

map then we have the relation P.-; shown in Table 1. 

Table I 

p .. 
I] Lakeshore Coastline 

Island I 0 

Mainland I 0 
Lake 0 I 
Ocean 0 I 

Table 1: P.-,- for Geo-system Surrounds Shor.e 

In other words either the Geo-system is an Island or a Mainland and the 

Shore a Lakeshore or the Geo-system is a Lake or an Ocean and the 

Shore a Coastline. From this relation we can compute the hierarchical 

predicates Ai;-1 and Si~-1 using equations (1) - (6). They are shown in 

Table 2. (Note that sso = A.J0 
). 
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Table 2 

A,Qo 
IJ Lakeshore Coastline 

Island 1 0 
Mainland 1 0 
Lake 0 1 
Ocean 0 1 

A• ,o Lakeshore Coastline 
I) 

Landmass l 0 
Waterbody O 1 

S- 1° Lakeshore Coastline I) 

Landmass 1 0 
Waterbody O 1 

A·P Shore ,, 
Landmass 1 
Waterbody 1 
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S,P Shore IJ 

Landmass 1 
\Vaterbody 1 

A• io Lakeshore Coastline IJ 

Geo-system O 0 

s. io Lakesh 1.1re Coastline IJ 

Geo-system 1 1 

Geo-system 0 

S-~1 Shore IJ 

Geo-system 1 

Table 2: Ai; and Si; for Geo-system Surrounded by Shore 
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Experimentally, for this application, Mulder (1985) has found that 

HAC is more efficient than AC-3. HAC is faster than AC-3 in Mapsee3 

by a factor or about 2, although here the domains are still very small: 

a varies from 2 to 8. Mulder also reports experimental evidence that 

the number or iterations does depend linearly on the number of con-
1 

strain ts. 

For reasons discussed earlier we expect HAC to be most useful 

when the domains can be naturally described hierarchically; that is, 

when the interior nodes of the domain tree are natural kinds. There 

must be non-trivial relationships between the total set of elements 

represented at an internal node of one domain tree and the total set of 

elements at an internal node of the neighbouring domain tree. More

over, we expect the advantages of HAC to be more fully realized for 

very large domains. 

The original edge labelling paradigm in which arc consistency was 

invented (Waltz, 1Q72) is an example of such an application. Waltz 

essentially used the sets of possible corners as the variable domains with 

the edge type being the predicates. Interchanging the role of the 

corners and the edges so the variable domains are the edge types and 

the set of corners the predicates one can structure the very large 

number of edge types (1532) hierarchically (Mackworth, 1977b) and use 



.3g. 

8. Conclusions 

An hierarchical arc consistency algorithm for constraint satisfaction 

problems, HAC, has been described that exploits the internal structur

ing of domain values into a hierarchy of subdomains. Complexity 
.,. 

results show that the algorithm bas demonstrably improved b(' 1: and 

worst case performance if the domains obey certain constraints. In that 

case HAC is at best 0( e) and at worst 0(( e +-2-n )log a) compared to 
2 

0( a 2 e ) and 0( a 3 e ) for the previously best known algorithm. Experi-

mental results from the use of the algorithm in a computational vision 

system, Mapsee3, are consistent with our analysis. 
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Nomenclature for the domain tree containing sub

domains of D;. 

(a) Geo-system specialization hierarchy. 

(b) Shore specialization hierarchy. 


