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ABSTRACT 

State inconsistency is an inherent problem m distributed computing systems 

(DCS) because of the high degree of autonomy of the executing entities and the 

inherent delays and errors in communicating events among them. Thus any reliable 

DCS should provide means to recover from such errors. This paper discusses the state 

inconsistency issues and their solution techniques in local area network based distri­

buted kernels. In particular, we deal with state inconsistencies due to i) failures of 

processes, machines and/or the network, ii) packet losses, iii) new machines joining or 

exiting from the network, and iv) processes or hosts migrating from one machine to 

another in the network . The solutions presented are mostly provided within the ker­

nel itself and are transparent to the applications. 
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State inconsistency issues in local area network-based 

distributed kernels 

1.0 Introduction 

As local area network ( LAN ) technologies move out of the laboratory and into the 

market place interests in LAN-based distributed computing systems ( LDCS ) have 

become widespread. Several experimental LAN-based distributed kernels have been built 

in the last few years including the V-system (3), Rochester's Intelligent Gateway (6], 

PORT [9], Accent (7], SHOSHIN [11], DEMOS(13) and Eden [18] . These distributed ker­

nels manage objects which may physically reside on different machines. The executing 

entities in such systems exhibit a high degree of autonomy but may interact with one 

another from time to time. Thus a state change in one entity may cause the state of one 

or more other entities to change. State inconsistency is an inherent problem in such sys­

tems because entities may fail independently (and thus without immediate knowledge) of 

one another and because of the inherent delays and errors in communicating events 

among them (4,25]. The problem is compounded as entities often only maintain partial 

state information for practical reasons. Thus any reliable LDCS should provide means to 

handle such errors. 

State inconsistencies may arise at different levels in a LDCS involving different 

issues and solution techniques. We shall confine ourselves to state inconsistency issues in 

the kernel of a distributed operating system. We describe four common classes of events 

that will lead to state inconsistencies and present solutions for each. The classes of 

events are i) failures of processes, machines and/or the network, ii) packet losses, iii) new 

machines joining or exiting from the system, and iv) processes or hosts migrating from 

one machine to another in the network. The solutions presented are mostly provided 

within the kernel itself and are transparent to the applications. The solution techniques 

are largely based on the concept of process aliases supported in our model of the kernel, 

and they make extensive use of a simple failure detection protocol. For this reason, we 
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shall first briefly describe the distributed environment assumed and the essential aspects 

of the kernel model in the next section. 

2.0 The distributed environment 

2.1 Message-based distributed kernel 

This is the layer that provides the primitive abstract tools using which the operat­

ing system service layers and applications are structured. It runs on a set of workstations 

interconnected by a LAN. The characteristics of the underlying hardware base are: 

non-shared memory among the computing elements, 

a high bandwidth network medium with low error rate and a broadcast capabil­

ity [24] that forms the interconnection backbone of the workstations. 

The basic functions of this layer are: 

(i) to provide the process and the host abstractions across machines with the 

underlying interprocess communication ( IPC ) by messages and interhost com­

munication ( the related issues form the focus of this paper ), 

(ii) the traditional local functions such as interrupt handling, device management, 

local scheduling of processes and memory management. 

Several variants of message passing kernels have been designed and implemented [2, 

6, 7, 10, 11]. A good treatment of the various message-passing abstractions may be found 

in [1]. We restrict ourselves to a specific form of message-based abstraction called mul­

tiprocess structuring [2] that has been adopted in the V-system and PORT [ 3, 9]. How­

ever, the solution techniques are applicable to other message-based models as well, and 

even to procedure-based models [5] with appropriate translation of the solution tech­

niques to match the underlying model. 

2.2 A typical message transaction 
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The client sends a message to the server and remams blocked until the server 

receives the message and replies to the client or an error message is dispatched to it. If 

when the server issues a receive request to the kernel, there is already a message from 

the specified process in its input buffer, the message is delivered to the server; otherwise 

the server is blocked until a message from the specified process arrives. After servicing 

the request, the server dispatches a reply message which unblocks the client; the reply 

operation is stateless in that it is not acknowledged. Thus there is an implicit -association 

between the client and the server on a per-transaction basis. The synchronous opera­

tions ( blocking send and receive ) are desirable because they improve the clarity of the 

program structure and help make possible the verification of the program for correctness 

(2]. 

2.3 Process a/foses {19] 

A process alias is an ancillary process that executes on behalf of a main process to 

carry out a limited, well defined function. These aliases may be created by the process 

itself or by the kernel. In the later case, they are transparent to the process and are 

known as invisible aliasea . The aliases execute asynchronously to its associated process 

and may reside on different machines. An alias uses an identity derived from that of the 

associated process in all its interactions with other processes/aliases. In other words, 

aliases are abstract tools by which a process may be simultaneously present at different 

sites in the distributed system perf arming different activities. It is different from a pro­

cess in the following respects: 

(i) A process is an independent entity whereas aliases do not exist by themselves, 

i.e., as soon as a process dies, its aliases cease to exist. 

(ii) Aliases do not have distinct, high level identity, and they are not subject to high 

level scheduling, i.e., they are executed indivisibly until they exit or are blocked. 

(iii) Aliases are only support tools provided to perform limited, well defined func­

tions. They may be created in a predefined state. Typical examples of alias 
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functions are to receive a message and buffer it, read data from a message chan­

nel and write it onto another. 

Our model of the kernel supports the above alias abstraction across machines. 

2.,1. A simple failure detection protocol 

The purpose of the protocol is to allow executing entities on different machines to 

ascertain the existence of one another. It is an asynchronous polling type protocol. The 

basic structure of the protocol is very simple and has only two states NORMAL and 

A YT _AWAIT ( A YT is a synonym for A re You There? ). The protocol defines a single 

packet type A YT which is used to probe the existence of the peer. When the remote 

entity does not exist, the kernel on the remote site returns an error message 

NON_EXISTENT. When the site hosting the remote entity becomes inaccessible due to 

site failure or network failure, timeout enables eventual recovery. Thus the protocol 

asynchronously detects failure. The protocol is best described by the Finite State 

Machine ( FSM ) diagram in Figure 1. Such an asynchronous protocol may be built on 

top of any other protocol, as was done in LNTP [20] as a failure detection mechanism. 

We now present the common classes of state inconsistencies and outline their solu­

tions. Wherever appropriate, the recovery schemes used in existing systems are described 

and compared to our proposed solutions. Examples are mostly drawn from the V-system 

as it is one of the more complete distributed kernel in existence and is operational in our 

Distributed Systems Research Laboratory on a network of SUN workstations. 

3.0 State inconsistency due to failures of some kernel objects 

We shall call this type of failures partial failurea. They may originate in different 

forms such as power failure, hardware failure, system crashes and software errors. Usu­

ally such failures are localised since the various active components do not depend on one 

another for their functional existence. Whatever the cause, partial failures are viewed by 
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the distributed kernel as one of process deaths, machine failures or network failures. 

Such failures occur asynchronously and induce state inconsistencies which might lead to 

loss of resources, heavy flow of unnecessary messages, etc. The recovery techniques for 

each class of partial failures are different and are described below. 

3.1 Process deaths 

The death of a process is generally not a problem unless the process is involved in 

an interaction with another process residing on a different machine. In this case unless 

the kernel provides adequate support for death detection and notification, loss of 

resources may result. 'We shall consider the client-server interaction which may either be 

connectionless or connection-based. 

3.1.1 Connectionless client-server interaction 

A connectionless client-server interaction is exemplified by the message transaction 

described in section 2.2. We examine the state inconsistencies caused by the death(s) of 

the interacting processes and the recovery techniques. 

3.1.1.1 Failure recovery protocol in the V-system 

In the V-system [3], a remote send operation by a client creates a passive alien 

descriptor at the site where the server resides. This alien descriptor is a mirror image of 

the process descriptor of the client, and its existence depends on the existence of the 

server process i.e., when the server dies, the client's alien descriptor is also destroyed. 

The kernel at the client site executes an asymmetric protocol by which a remoteSend 

message is retransmitted periodically. The kernel at the server site responds with a 

breatho/Life message if the server is alive i.e., if the alien descriptor exists; it returns a 

negative acknowledgement nAck if the server has died i.e., if the alien descriptor has 



been destroyed. 

When the server replies, the kernel at the server site first checks for the existence of 

the associated alien descriptor. If the alien descriptor does not exist, the operation fails. 

If it is present, the kernel dispatches a remoteReply message. The alien descriptor is 

then scheduled for destruction after a specified time interval; if during this interval, a 

retransmitted remoteSend message arrives from the client site, the kernel retransmits 

the reply and reinitialises the destruction schedule of the alien descriptor. The alien 

descriptor is destroyed when the schedule expires. 

Due to its passive nature, the alien descriptor is not automatically destroyed upon 

the client's death. Thus the existence of the client's alien descriptor at the server site 

does not guarantee the existence of the client. Since the reply operation is stateless, the 

server may never know about the status of the operation as viewed from the client site. 

Consider a simple scenario in which a client requests a server administrator [16] to create 

an abstract object say, a file. Normally such an operation is initiated with a single mes­

sage transaction from the client to the administrator. If the client dies immediately after 

requesting the operation, the resources acquired for the client by the administrator may 

become lost. Thus the server must be notified of the death of the client in a proper 

recovery scheme. We now describe a proposed solution. 

3.1.1.2 A robust model of failure recovery 

Our model of failure recovery manifests in two forms: 

(i) a symmetric protocol executed by active agents ( aliases ) for the client. 

When a client issues a remote send operation, the kernel creates ( on behalf 

of the client ) two invisible aliases, one at the local site and one at the 

server site; these aliases engage in the failure detection protocol described in 

section 2.4. 

(ii) a reliable reply operation. 

A primitive of the form 
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reply_with_ack { mag, pid) 

is used to ensure successful delivery of the reply message <msg> to the 

client identified by <pid>. The reply operation blocks the server until 

notification of delivery of the message to the client arrives. Absence of such 

a notification results in the failure of the operation. 

In applications where reliable reply is not crucial say for example, a time request to a 

time server, the stateless reply operation may be used. In either case, the completion of 

the reply operation destroys the client alias at the server site. Let us see how this 

scheme handles process deaths with respect to a connectionless client-server interaction ( 

see Figure 2 and the FSM diagram of Figure 3 ). 

If the server dies before receipt of the message from client., the kernel returns a 
I 

NON_EXISTENT message with which the client recovers. If the server dies after the 

receipt of the client's message, the alias at the server site ( CAsi ) detects this, sends an 

error message KILL_ YOURSELF to its peer at the client site ( CAci ) advising close 

down of the transaction and then destroys itself. CA . learns of the failure of the tran-
c1 

saction on receiving the error message ( or if it is lost, via the failure detection protocol) 

in which case it destroys itself after unblocking the client with a failure code 

NON_EXISTENT_PROCESS, thereby terminating the interaction. 

If clienti dies after sending a request message, the kernel on the client site destroys 

the local alias CA . after dispatching the error message KILL YOURSELF to CA .; the 
Cl - SI 

news will eventually reach CA . in which case it destroys itself. When the server replies 
SI 

to the client, CA . may be in one of three states: 
SI 

normal state, 

recovery state, 

(i) 

(ii) 

(iii) destroyed following the detection of the death of its peer CA .. 
Cl 

In case (i), the reply operation fails on receipt of the NON_EXISTENT error message 

from the kernel at the client site when CA
5
i dispatches the reply message. In case (ii), 

the reply is held back until CA . detects the death of its peer CA . and destroys itself; 
SI Cl 

then the reply operation fails. In case (iii), the reply operation fails immediately. 
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S.1.2 Connection-oriented client-server interaction 

The problem is more severe for a connection-oriented client-server interaction con­

sisting of a sequence of transactions ( for example, a file access ). Significant amount of 

resources are committed at both ends to maintain the connection (this is in addition to 

those acquired and released for each transaction). These resources may be tied up for a 

long time ( or may even be lost ) if either the client or the server dies in between tran­

sactions without the knowledge of the other. We illustrate the problem with the exam­

ple of a TCP /IP [22, 23] Internet Server implemented on the V-system [17] ( See Figure 

4 ). The client process ( rlogin client ) requests the Internet Server to create a. TCP 

connection to a well-known socket address on which the rlogin aerver on a remote host 

say, UNIX listens. The Internet Server creates a set of processes ( TCP process, Query 

process, Timeout process, Network process, etc.) which maintain the peer state informa­

tion for the connection at its end. Similarly, the UNIX kernel at the other end of the 

connection commits a set of resources ( in the form of shared data structures, protocol 

control blocks, packet buffers, socket control blocks, etc.) to the connection. Suppose 

the client process suddenly dies, the resources committed at the Internet Server machine 

and on the UNIX remote host are to be reclaimed. The key issue is again the detection 

of the client's death by the server. However, the server in our current version of the V­

system does not contain any detection and recovery mechanisms. 

THOTH [2] uses a vulture-based scheme in a single machine environment whereby 

a server creates a vulture that becomes receive-blocked on the client. On the client's 

death, the vulture is unblocked and notifies the server enabling resource reclamation 

from the server end. The death of the server destroys the vulture due to the ancestral 

relationship between them. A limitation in directly using this scheme in a distributed 

environment is the notification of process deaths across machines; let us see the implica­

tions of this limitation. Suppose the server creates a vulture on the local machine Ml 

which becomes receive-blocked on the client residing on a different machine M2. The 

death of the server automatically destroys its creation, the vulture. But the death of the 

client is not notified to Ml. Thus the vulture is unaware of the client's death, nullifying 

'·· 
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its purpose. On the other hand, if the server arranges to create the vulture on M2 by 

indirect means (say using a process server on M2 ), the client's death can be detected by 

the vulture which notifies the server. However the server's death does not destroy the 

vulture since the server is not the ancestor of the vulture, thereby losing the resources 

being used by the vulture. 

The kernel solution proposed in section 3.1.1.2 is to provide failure recovery during 

a connectionless interaction; thus the kernel-created aliases are destroyed after each mes­

sage transaction. In a connection-oriented interaction, the death of the client in between 

message transactions must also be detected. A conceivable solution is to extend the 

above-referenced kernel solution to a connection-oriented interaction but this calls for 

additional connection-oriented kernel primitives, and the kernel has to maintain the con­

nection information resulting in increased kernel complexity. The preferred solution is 

for the server S to dispatch a remote alias Sa to the client site ( see Figure 5 ). The 

function of S is essentially that of the vulture used in THOTH. When S dies, the ker-
a 

nel destroys Sa because of the abstraction supporting the alias properties ( that aliases 

do not have self-existence ). The realisation of the binding between a process and its 

remote alias ( in this case, S and Sa ) is described in appendix-A. 

An alternative scheme that is client-driven which we wilJ call the death-will scheme 

is described below. The client prepares a death-will list containing a list of processes that 

are to be notified upon its death. Typically, when the client opens a connection to a 

server, it includes the server in its death-will list. It also optionally specifies the message 

to be delivered to the processes on the list and registers the death-will with the kernel. 

The kernel sets up an invisible alias at the client site and one alias for each of the 

processes on the death-will list to be resident at the site of the associated process. The 

death-will message is deposited with these remote aliases. Each of the remote aliases 

engages in the failure detection protocol ( described in section 2.4 ) with the alias at the 

client site. When the client dies, the kernel destroys the local alias and dispatches an 

EXECUTE_DEATH_WILL message to each of the remote aliases. Upon detection of the 

client's death, the remote aliases deliver the death-will message to the respective 

processes and destroy themselves. Typically a server handles the message of type 
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DEATH_ WILL_MSG by destroying the internal resources committed for the client. 

3.2 Machine failures 

From the server's or client's point of view, a machine failure has the same effect as 

a process death as far as high level recovery is concerned. The basic difference is that 

when a machine fails, all processes and foreign activations including the kernel on that 

machine die. Thus the underlying techniques to recover from machine failures and pro­

cess deaths are different. In the former case, the absence of messages from the kernel 

concerned initiates recovery whereas in the later case, positive error messages initiate the 

recovery. 

Consider the failure recovery protocol in the V-system for a connection-less client­

server interaction ( section 3.1.1.1 ). When the server site fails, the kernel at the client 

site times out after a fixed number of retransmissions and unblocks the client process 

with the error message KERNEL_TIME_OUT; but when the client site fails, a similar 

problem, as discussed in the case of process deaths, arises due to the semantics of the 

reply operation and the passive asymmetric structure of the alien descriptor. Now con­

sider our failure recovery model of section 3.1.1.2 ( see Figure 2 ). When the client site 

fails, C. and CA . are destroyed. CA . detects this by the protocol described in section 
I Cl SI 

2.4. It returns an error message SITE_UNREACHABLE to the server if the later had 

already issued the reply_with_ack request. It then destroys itself. If the server replies 

later, the operation fails immediately due to the non-existence of CA
5
i. When the server 

site fails thereby destroying S and CA ., CA . detects this and destroys itself after 
SI Cl 

unblocking Ci with an error message SITE_UNREACHABLE. 

In the case of the connection-oriented interaction as discussed in section 3.1.2, our 

proposed vulture-based solution enables recovery from site failures as well. When the 

client site fails thereby destroying C and Sa ( see Figure 5 ), the underlying abstraction ( 

refer to appendix-A ) delivers the error message SITE_UNREACHABLE to S enabling 

recovery. If the server site dies destroying S, the same abstraction destroys Sa; the client 
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detects the death of S upon sending a message to it and recovers. The death-will scheme 

( discussed earlier ) also enables recovery from site failures as follows: when the client 

site fails, the client alias at the server site detects this, delivers the death-will message to 

the server and terminates itself. If the server site fails, the client alias at the client site 

detects this and excludes the server from its polling list. 

In our model of the kernel, a distributed program is composed of a root activation ( 

process ) and a set of dependent activations ( aliases ) some of which may execute on 

different machines [19]. When a machine fails, all processes and foreign activations exe­

cuting on that machine are also destroyed. In general, the kernels running on the other 

machines in the network recover from machine failure by 

(i) destroying the dependent activations created at their sites by processes in the 

failed machine, 

(ii) sending notifications to the appropriate processes executing in their sites which 

might have created dependent activations on the failed machine. 

Since the distributed kernel binds these dependent activations to the root activation 

with appropriate recovery messages against site failures ( see appendix-A ), the above 

recovery will eventually complete. 

3.3 Network failures 

The failure of the network may cause the partitioning of the subnet with the active 

machines delinked from each other [9]. This may result in the partitioning of the 

interacting processes. However, because of the complete break down in communications, 

to each of the interacting processes on different machines across a partition the network 

failure has the same effect as the failure of the site holding the process it is trying to 

communicate with. The recovery techniques are therefore the same as in the case of 

machine failures discussed earlier for the connection-less and connection-oriented interac­

tions. 
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4-, 0 Inconsistency due to loss of packets 

Messages may be lost in a loaded system due to channel errors, buffer shortage in 

the network interfaces and/or lack of high level resources (29, 30) such as alias descrip­

tors. Let us see the implications of message loss with respect to the reply operation by 

the server during a message transaction ( section 2.2 ). Both the stateless reply opera­

tion and the reply_with_ack operation in the case of a connection request initiated by a 

client will be considered. Refer to Figure 2. 

4-, 1 Sta.teless reply 

After the reply message is dispatched, CA
5
i is destroyed and the message transac­

tion as viewed from the server site succeeds with the consequent committment of 

resources for the client. Suppose the reply message is lost, recovery may be in two ways: 

(i) The kernel on the client site retransmits the remoteSend to the server. Since 

the reply operation is stateless and the kernel on the server site does not 

guarantee to maintain the sequence numbers of the various message transac­

tions, it may be taken to be the retransmitted request packet of a new message 

transaction even if message sequence numbers and retransmission counts are 

kept in the packet. 

(ii) CAci gets an error message NO_ALIAS ( which indicates the existence of S and 

the non-existence of CA
5
i ) from the kernel at the server site when the underly­

ing protocol ( see section 2.4 ·) probes the later. Thereupon, CA . returns a 
Cl 

TRANSACTION_FAILURE error message to the client process and destroys 

itself. The client process then reissues the request. 

In both cases, the server creates a new instance of the connection thereby losing the 

resources committed to the previous request ( see Figure 6 ). Thus the inconsistency 

leads to loss of resources if such duplicate transaction requests are not identified. 
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.4- 2 reply_with_ack 

The reply_with_ack primitive which handles client deaths ( see section 2.2.1.2 ) 

does not solve the problem fully. When CAci receives the reply message, it dispatches a 

"reply _ack" packet to CAsi' returns a success code to the client process and destroys 

itself. Suppose the "reply _ack" packet is lost. CA
8
i times out, retransmits the reply mes­

sage and gets an error message NO_ALIAS ( which indicates the existence of clienti and 

the non-existence of CA . ) from the kernel at the client site. CA . then terminates the 
Cl fil 

operation by returning a TRANSACTION_F AIL URE error message to the server and 

destroys itself. Such an inconsistency typically results in the client getting a false < 

instance-id> of the resource that was originally committed by the server and subse­

quently destroyed when the server detected the failure of the reply_with_ack operation . 

. 4- 3 Extension to i/ o protocol 

The inconsistencies arising due to packet loss can not be solved at the kernel level; 

the solution should manifest as a feature of the client-server i/o protocol. Our solution 

to the problem is to extend the standard i/o protocols [27, 28) by identifying each tran­

saction request ( typically an open request on a file ) with a umque 

<transaction_request_id>. The server associates this <transaction_request_id> with 

the resource allocated. Thus a typical resource descriptor is of the form 

struct instance 

{ 

struct transaction_request_id trans_req_id; / * Id of the last 

transaction operated on this instance * / 

struct instance_id inst_id; / * id of the resource instance 

that was created for the client * / 

struct process_id client_pid; / * process id of the client for 

whom the resource was committed*/ 

struct resource_type resource; / * control blocks, 

object descriptors, etc * / 

} instance_descriptor; 
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Such a state information associated with the resource itself enables the server to discard 

duplicate transaction requests that may show up due to low level inconsistencies. 

If, upon the failure of the previous aend operation containing the transaction 

request, the client chooses to reissue the request, the i/o protocol requires that the client 

assigns the same id to the transaction request. Thus the server is able to distinguish 

duplicate requests. On the other hand, if the client chooses not to reissue the request, 

the i/o protocol allows the client to send a message to the server advising deallocation of 

any instance that might have been created in response to the particular transaction 

request. The code skeletons executed by the client and the server are shown in 

appendix-C.l. 

If the server uses the reply_with_ack operation and the "reply _ack" is not received 

( section 4.2 ), the <instance_id> received by the client in response to its connection 

request is invaild. When the client makes subsequent transaction requests with this 

<instance_id>, the i/o protocol requires that the server responds with an 

INVALID_INSTANCE_ID error message with which the client recovers. The code skele­

ton executed by the server is shown in appendix-C.2. 

5.0 Process migration 

Process migration is desirable in a distributed system from the point of view of per­

formance, modularity and robustness. Such a kernel feature enables a high level process 

manager to schedule processes across machines during execution to effect global load con­

trol and automatic reconfiguration in the event of site failures [12, 13). Since process 

migration directly manifests in a dynamic movement of the locus of execution from one 

site to another, the implementation of the process abstraction should be site­

independent. 

Typically, a process is identified by the pair 

<process_id> = <site_id, local_pid> 
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where <site_id> is usually the network station address of the site in which the process 

was created and <local_pid> is an id generated locally to be unique within the site [26). 

This ensures global uniqueness of the id and provides a direct mapping of <process_id> 

to the appropriate <site_id> for launching a packet [3, 11, 14). The scheme is efficient 

since little time is spent for this mapping function. However the scheme tightly associ­

ates the process abstraction with the site, and hence the underlying protocols for local 

and remote message operations. In an environment which supports migration, the 

<site_id> field of the <process_id> only ensures global uniqueness but does not neces­

sarily indicate the current location of the process. Instead, a mapping of the form 

<process_id> --> <site_id> 

1s maintained by the kernel in a cache. When a message transaction is initiated by a 

client, the kernel seaches its cache to locate the corresponding mapping entry. Error may 

arise in two cases: 

Case 1. 

There is no entry in the cache ( due to size limitations of the cache, update policy, 

etc ). The protocol supporting the aend-receive-reply then initiates a broadcast­

based search for the process across the network. The kernel which hosts the con­

cerned recipient process responds with its site id so that the client can complete the 

message transaction. The kernel at the client site may then, subject to its cache 

management policy, add the entry in its cache. The absence of a response to the 

search message results in the failure of the operation. 

Case 2. 

The kernel finds a mapping entry in its cache namely <process_id>--> <site_id1 > 

but the mapping might be inconsistent due to migration of the recipient process 

from site1 to site2. Such an inconsistency arises since a migration event cannot be 

instantaneously propagated to other machines. This may cause messages to be mis­

directed and lost, and may even lead to high level state inconsistencies and resource 

loss. Take for example, the case of a connection-oriented interaction from a client 
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with, say a file server. If the file server migrates in the midst or an ongoing client­

server connection, the kernel at the original site responds with a 

NON_EXISTENT_PROCESS error message to a client's request. The client may 

recover by say, releasing the resources ( data structures, processes, etc. ) committed 

from its end, thereby orphaning the resources committed at the migrated server's 

end. 

Thus kernel level solutions as part or the abstraction that supports migration are neces­

sary to handle such errors. 

5.1 Solution techniques 

Essentially, the solution approach consists of two steps namely i) handling the mis­

directed messages, and ii) updating the state ( i.e., the mapping entry ) in other sites to 

stop the flow of misdirected messages. A reliable broadcast of the state to all nodes in 

the distributed system is an obvious solution; but this entails heavy overhead [8]. Furth­

ermore, when the process interactions exhibit some degree of locality with respect to 

other processes [4], it is unwarranted to send this information to all nodes. We outline a 

set of solution techniques based on process aliases [19]. All the schemes assume a map­

ping entry namely <process_id>--><site_id> in the cache at the client site which 

becomes stale when the server migrates. 

5.1.1 Cli'ent-driven scheme 

The kernel installs an invisible alias at the original site when the process migrates 

to a new site. The function of this agent process is to respond with a message 

PROCESS_MIGRATED to a client's request message. The underlying protocol that 

supports the aend-receive-reply transaction then initiates a broadcast-based search for 

the migrated process. When the answering agent for the migrated process at the new site 

responds with a HERE_I_AM message, the kernel at the sending machine updates its 

cache with this information to be used for subsequent message interactions with the 
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migrated process, and then completes the message transaction; the failure of the search 

results in the failure of the transaction. The protocol implemented is depicted by the 

FSM diagram of Figure 7. 

5.1.2 Message forwarding by agent 

The kernel installs an intelligent agent at the original site when the process 

migrates. The function of the agent is to forward the messages directed to the migrated 

process to the new site. Thus unlike the client-driven scheme, the protocols supporting 

the und-receive-reply need not include a search for the migrated process. The agent 

at the original site executes the same aend-receive-reply protocol as the client site but 

with a different <process_id>-·> <site_id> mapping. Since each message from a client 

to the migrated process as well as the reply message has to be forwarded, the number of 

such messages exchanged is atleast doubled. 

A simple variant of the scheme is for the agent to piggyback on the reply message 

to the client the new state information which may be cached by the client site for subse­

quent communication with the server directly. 

5.1.3 Server-driven scheme 

In this scheme, when a process is migrated to a new machine, the kernel installs an 

invisible alias for the process at the new site. The function of this alias is to repeatedly 

broadcast the state 

<process_id> --> <new_site_id> 

to other nodes by a message I_HAVE_MIGRATED for a fixed number of times and then 

destroy itself; the interested nodes may update their mapping entry. Failure of a mes­

sage transaction 1s still possible if a message has been sent before the 

I_HA VE_MIGRATED message is received or if the I_HAVE_MIGRATED message is not 
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heard by a client site. An error message NON_EXISTENT _PROCESS is returned m 

these cases which initiates a broadcast-based search for the migrated server across the 

network similar to that described in section 5.1.l. If the search also fails, then the mes­

sage transaction fails. The FSM representation of the protocol is very similar to that of 

Figure 7 except the message that triggers the search is NON_EXISTENT_PROCESS 

instead of PROCESS_MIGRATED. This scheme is less complex than the client-driven 

and message forwarding schemes but the probability of failure is higher. 

5.2 Failure recovery of the uhemes 

All of the above schemes have to address the common issue of how long these 

aliases should remain alive. Our model of the kernel [19] implicitly binds these aliases to 

the migrated process. In case of remote aliases ( sections 5.1.l and 5.1.2 ), such a binding 

is realised by the asynchronous polling protocol described in section 2.4; this protocol is 

executed by two kernel-created invisible aliases similar to those described in appendix-A. 

When the migrated process dies, the kernel eventually destroys the associated aliases. 

6.0 New machines joining the network 

The first network level activity initiated by a machine joining the network is the 

acquisition of a site_id. A simple static assignment of site_id's to machines is too restric­

tive and precludes easy reconfiguration and host level migration. A robust distributed 

technique is needed to dynamically allocate new site_id's. site_id's have the same 

requirement as that of process_id's, viz., they should be systemwide unique and non­

reusable. 

In the V-system, each kernel maintains a host address table of Ethernet station 

addresses used in the network. On powerup, the host reads the hardware Ethernet 

address of the local network interface and searches the host address table for a match. 

When a match is found, the index into the table is used as the <site_id> for the 
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machine. Since Ethernet addresses are known to be universally unique [15], the 

<site_id> thus generated is guaranteed to be systemwide unique. The scheme however 

tightly binds the <site_id> to the network station address precluding transparent 

host-level reconfiguration. 

We now describe a three-stage approach for the dynamic allocation of unique 

site_id's. 

6.1 Step1: Acquiring a tentative id 

The host initially acquires by some means ( such as one of the methods detailed 

below ) a tentative id that can be used as a bid in the network for use as the 

<site_id>. 

6.1.1 A localised scheme to generate a tentative id 

A tentative id may be acquired by generating a random number with the network 

station address as the initial seed value. Though unsuitable to be statically allocated as 

the site id, the network station address is systemwide unique. This minimises the proba­

bility of two or more hosts generating the same tentative id. 

6.1. 2 Acquiring a tentative id from the network 

In this scheme, a logical ordering in the assignment of id's to hosts is maintained 

based on the t.ime of joining. A host. joining at time tj is allocated an id whose numerical 

value is greater than that of a host that joined at time t. if t. > t.. Each host maintains 
1 J I 

a state-pair, namely, 

<self_id, highest_site_id>. 

where <self_id> is the site id of the host and <highest_site_id> is the highest host id 
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across the entire system. When a new host wishes to join the network, it broadcasts a 

search message looking for the highest host id in the network. The node whose 

<self_id> matches its knowledge of the <highest_host_id> responds with its id. 

The initial search message may go unanswered if the host that wishes to join is the 

first machine in the network, or if none or the sites have their <self_id> equal to the 

<highest_host_id>; the later is possible if the machine holding the <highest_host_id> 

as <self_id> has failed. In such an event, the site broadcasts a second type of search 

request requiring all sites with 

highest_host_id - Id_range < = self_id < = highest_host_id 

( where <ld_range> is an integer specified by the new host ) to send their respective 

<self_id> values to the broadcasting site. The host then filters the highest id from 

among the replies. Failure to get any response results in the host rebroadcasting with 

logarithmically incremented <ld_range> values until the MAX_ID_SPACE 1s 

exhausted. If there is no response still, the host assumes that it is the first machine join­

ing the network, and takes LOWEST_HOST_ID as the tentative id. 

Since there may be sites in the network whose state-pair is not up-to-date, there 

may be more than <ld_range> + 1 replies. This is illustrated by the simple scenario 

where a new hosti joins the network and assumes an id <host_idi>; this information is 

subsequently broadcast to other sites. If hosti-l did not hear the message then both 

host. 1 and host. believe they are holding the highest host id. When a new host intends 
I- I 

to join the network by broadcasting an initial search message with <ld_range> = 0, 

both hosti-I and hosti respond with their id's. A simple solution to this problem would 

be to field all replies to the initial broadcast message over a time interval and select the 

highest id from among the replies. Having thus obtained the highest host id used in the 

network, the new host then takes the next higher id as the tentative id. The code skele­

ton to acquire a tentative id by this scheme is given in appendix-B. 

6. 2 Step 2: Resolving id clashes 
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After acqumng a tentative <site_id>, the host should check for any clash with 

other hosts in the network in the use of this id. The host broadcasts an 

IS_THERE_OBJECTION message containing the tentative id. Any host whose id 

clashes with that in the message raises an objection by replying with an OBJECTION 

message. If an objection to the bid is received indicating that the id is already in use, the 

host recompiles another id and rechecks for objections. When there is no objection from 

other hosts after a certain number of broadcast-based probe messages, the host acquires 

the id. 

When more than one host try to establish their site id's at the same time ( i.e., 

when a host sending the IS_THERE_OBJECTION message receives one from another 

host ), the protocol requires that the colliding hosts backo.lI for a random interval of time 

and try again to acquire an id. This is similar to the CSMA/CD technique used in Ether­

net to resolve collisions [21] but applied to a higher level problem. 

6.8 Step3: Officialisation of the id 

After affirming there is no objection to the id, the site officially announces its entry 

into the system by broadcasting its <site_id>--> <network_interface_id> mapping 

information. Other nodes may cache this information subject to their cache constraints. 

Nodes which already have an inconsistent entry for this <site_id> update it with the 

new mapping. Such a mapping information is fundamental to every message transaction 

since the physical launching of the packet requires a physical station address to reach 

the site concerned. 

7.0 Machines exiting from the network 

There are two ways in which machines may exit from the network: 

(i) machine failure ( due to a machine crash or a local power failure or a local 

hardware failure ), 
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(ii) scheduled shutdown of the machine. 

In both cases, the high level recovery is as discussed in section 3.2. 

In the case of machine failure, the <host_id>--> <network_interface_address> 

mapping information available at the other sites is no longer valid. If a new machine 

joining the network independently assumes the same id as that of the failed machine, 

then the inconsistent mapping information at other sites is updated by the broadcast 

message from the new site. 

In the case of a scheduled shutdown, the kernel executes a shutdown protocol 

whereby it systematically terminates all processes and foreign activations executing on 

the machine, and invalidates the <host_id>--> <network_interface_address> map­

ping information by broadcasting a HOST_ID_INVALID message. 

8.0 Host migration 

A related issue is the migration of the host from one physical machine to another. 

This is functionally different from the process migration problem discussed earlier. Host 

migration becomes a requirement when machines are to be taken in and out, of a net­

work for operational reasons transparent to other hosts in the network. We consider a 

simple scenario to illustrate the feature. Let H1, H2, .. , Hi, .. , H
0 

be hosts on the net­

work, and suppose Hi is to be taken out of the network for maintenance purposes. A 

new machine Hi
1 

( identical to Hi ) has to be introduced into the network, and all execu­

tions on H. are moved onto H.'; then H. is shutdown and removed. From this point 
I I I 

onwards, H/ assumes the identity of Hi for all process level interactions though the 

underlying < host_id >-- > < network_interface_address> mapping has changed. Before 

the underlying mappings are updated at other sites, there is a short-term inconsistency 

resulting in misdirected messages. Though the recovery protocols on other machines have 

a built-in host search mechanism to acquire the new mapping information ( similar to 

the process search discussed in section 5.1.1 ), the migrated host on its part., broadcasts 

this information so that the interested nodes may cache them to reduce loss of messages. 
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9.0 Conclusions 

We have described four common classes of state inconsistencies to be handled in a 

LAN-based distributed kernel caused by failures of certain kernel objects, packet losses, 

machines joining or exiting Crom the network and process or host migration. Solutions 

based mostly on the concept of kernel-supported process aliases are outlined. 

Because we have assumed an environment that supports migration of processes and 

hosts, the underlying issues of cache management and object search techniques across 

the network require efficient solutions. These issues need not arise if the kernel does not 

support migration; in this case, direct mapping techniques to find the address of the 

physical network interface can be used. 

In most existing kernels [3, 6}, object search is used solely to resolve Bervice names 

to process_id's. In our model of the kernel however, object search is fundamental to the 

operation of the system; the search is used to resolve state inconsistencies and update 

the <process_id>--> <site_id> and <site_id>--> <network-interface_address> 

mappmgs. 

Though cache management issues are mentioned in the paper, the techniques to 

manage the cache namely the policy to add/remove entries from the cache, the cache 

size and their effects on efficiency are not discussed as they are beyond the scope of this 

paper. 

Reliable LAN-based distributed kernels must be able to cope with the large class of 

errors due to state inconsistency as discussed in the paper. 
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Appendix-A 

Binding between a process and its remote alias 

When a remote alias Pa is created by a root process P, the kernel at the root 

machine creates an invisible alias I 1 at the local site. The kernel on the machine where a.p 

the remote alias executes also creates an invisible alias Iap2 at that site. These aliases 

implement the asynchronous failure detection protocol ( see section 2.4 ) to ascertain the 

existence of each other ( Figure A.1 ). 

When P dies, the kernel destroys Iapl and dispatches an error message 

KILL_YOURSELF to Iap2; I .. p2 then destroys Pa and itself. On the other hand, if Pa 

dies, the kernel destroys I 2 and dispatches the message KILL YOURSELF to I 
1
; I 

1 ~ - ~ ~ 

delivers an error message ALIAS_DEAD to P and terminates itself. P detects the death 

of Pa when it performs a receive_any operation, and initiates appropriate recovery. 

When site1 fails ( thus destroying P and Iapl ), Iap2 detects this and destroys Pa 

and itself. \,Vhen site? fails ( thus destroying P and I ,.. ), I 1 detects this and destroys 
M a ap~ ap 

itself after delivering the message SITE_UNREACHABLE to P to enable recovery. P 

detects the site/network failure when it performs the receive_any operation, and ini­

tiates proper recovery. 



site 1 site 2 

<?r,~t> Binding between the process and its 
aliases. 

Figure A.1. Alias-based structure to provide binding between 
a process and its remote alias. 
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Appendix-B 

B.1 Code skeleton executed by the kernel of a new site to acquire a tentative id from 

the network: 

Kernel_init() / * kernel initialisation * / 
{ 

tentative_id = O; 

for ( Id_range = 0, seq_no = O; Id_range <= MAX_ID_SPACE; 
seq_no++) 

{ 
rebroadcast_count =0; 
do 

{ 

} 

msg.type = SUBMIT_YOUR_ID; 
msg.station_adrs = <Network interface address 

of this site>; 
msg.brdcst_cnt = rebroadcast_count++; 
msg.seq_no = seq_no; 
msg.ld_range = Id_range; 
broadcast (msg ); 
<initiate TIMER>; 
for ( sender = receive ( msg, ANY _PID ); 

sender != TIMER; sender = receive ( msg, ANY _PID ) ) 
/ * Initially the kernel assigns a logical 

host id 'O' for all local processes * / 
if ( sender == NETWORK_RECEIVER ) 

<cache reply>; 

while ( re broadcast_count < = MAX_RETRIES ) 
if ( <cache not empty> ) 

{ 

} 
else 

highest_id = get_highest_value ( <cache> ); 
tentative_id = ( highest_id + 1 ) mod MAX_ID _SP ACE; 
break; 

ld_range = ID _INTERVAL * BASE**se<t_no; 
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/• BASE = 10, ID_INTERVAL = 10 ( say ) • / 
} /• End of "for" loop•/ 

If ( tentative_id == 0 ) /• No other site in the network • / 
tentative_id = LOWEST _SITE_ID; 

} / * End of "Kernel_init" * / 

B.2 The code skeleton executed by the kernel on other sites is as follows: 

forever 
{ 

receive ( msg, NETWORK_RECEIVER ); 
if ( msg.t.ype == SUBMIT_YOUR_ID) 

if ( ( self_id + msg.ld_range >= highest_host_id ) ) 
{ 

} 

response_msg.site_id = self_id; 
response_msg.type = SITE_ID_REPLY; 
response_msg.seq_no = msg.seq_no; 
response_msg.hdr .dstn_station_adrs = msg.station_adrs; 
response_msg.hdr.src_station_adrs = <this station address>; 
<dispatch response_msg to the broadcasting site>; 
<assemble the reply_msg for the NETWORK_RECEIVER>; 

if ( msg.type == OFFICIAL_SITE_ID ) 
{ 

} 

highest_host_id = msg.site_id; 
<update mapping cache>; 
<assemble the reply_msg for the NETWORK_RECEIVER>; 

<check for other message types> 

reply ( reply _msg, NETWORK_RECEIVER ); 

} / * end of "forever" loop * / 
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Appendix-C 

C.1 Code skeleton to recover from loss of reply packets 

The following is a code skeleton to illustrate the client-server i/o protocol to guard 

against the failure of the reply operation due to packet loss. 

main() /* Client program */ 
{ 

tx_cnt = O; 

repeat 

{ 

} 

msg.request = CREATE_INSTANCE; 
msg.attributes = <resource_attributes>; 
msg.transaction_id = <this_transaction_id>; 

/ * Assign the same transaction id to all reissued requests * / 
status = send ( msg, server_pid ); 

until ( (status== SUCCESS ) II ( ++tx_cnt >= MAX_TRIES ) ) 
if (status== TRANSACTION_FAILURE) 

{ 

} 
else 

{ 

/ * The client chooses not to reissue * / 
msg.request = DESTROY _INSTANCE; 
msg.instance_id = NULL; 
msg.transaction_id = <this_transaction_id>; 

/ * Assign the same transaction id * / 
status = send ( msg, server_pid ); 

/* Request successful or other errors like NON_EXISTENT_PROCESS */ 

<recover appropriately> 
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} 
} /* End of client's "main" •/ 

main() /* Server administrator•/ 

{ 

forever 

{ 
sender = receive ( msg, ANY _PID ); 

if ( msg.request == CREA TE_INSTANCE ) 

{ 
<search instance_descriptor list>; 

/ * check for instances already created for this client * / 
if ( ( instance_descriptor.client__pid == sender ) && 

( instance_descriptor.trans_req_id == msg.transaction_id ) ) 

{ 

} 
else 

{ 

/ * duplicate transaction request * / 
<discard request>; 
reply _msg.instance_id = instance_descriptor.inst_id; 

/ * assem hie a reply message with the previous instance id * / 

/* No instance was created for this client or 
those created for this client have different 

< transaction_id > 's * / 
<create a new instance>; 
instance_ descriptor.trans_req_id = msg.transaction _ _id; 
instance_descriptor.inst_id = <new _instance_id >; 

instance_descriptor.client_pid = sender; 
reply _msg.instance_id = instance_descriptor.inst_id; 

/* assemble a reply message with the new instance_id */ 
} 

} 
if ( msg.request == DESTROY _INSTANCE ) 

{ 
if ( msg.instance_id == NULL ) 

{ / * Destruction request based on transaction id * / 
<search instance_descriptor list keyed on msg.transaction_id>; 

if ( found ) 



} 
else 
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<destroy instance>; 
<assemble reply_msg>; 

{ / * Destruction request based on instance id * / 

} 
} 

<check for other request types> 

status = reply ( sender, reply_msg ); 

} / * End of "forever" loop * / 
} /* End of server administrator "main" */ 

C. 2 Code skeleton to recover from loss of reply_ack packets 

The following is a code skeleton to illustrate the client-server i/o protocol to guard 

against the failure of the reply_with_ack operation due to loss of acknowledgement 

packet. 

main() /* Server administartor * / 
{ 

forever 

{ 
sender = receive ( msg, ANY _PIO ); 
if ( msg.request != CREATE_INSTANCE) 

{ 
<search instance_descriptor list>; 

/ * check for instances already created for this client * / 
if ( ( instance_descriptor.client_pid == sender ) && 

( instance_descriptor.inst_id == msg.instance_id ) ) 
{ 

/* Comply with the request*/ 



else 
} 

{ 
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<service the request>; 
reply _msg.err_code = SUCCESS; 

/• assemble a reply message with the success code • / 

/• No named instance available •/ 
reply_msg.err_code = INVALID_INSTANCE_ID; 

/ • assemble a reply message with the error code * / 
} 

} 
if ( msg.request == CREATE_INSTANCE) 

{ 

} 

<create a new instance>; 
instance_descriptor .trans_req_id = msg.transaction_id; 
instance_descriptor .inst_id = < new _i nstance_id >; 
instance_descriptor.client_pid = sender; 
reply_msg.err_code = SUCCESS; 
reply _msg.instance_id = instance_descriptor .inst_id; 

/* assemble a reply message with the new instance id*/ 

status= reply_with_ack ( sender, reply_msg ); 
if (status== TRANSACTION_FAILURE) 

< destroy the instance that was created for this client>; 
} / * End of "forever" loop * / 

} / * End of Server administrator "main" • / 




